1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 /// AArch64AllocLoadStoreOpt - Post-register allocation pass to combine 37 /// load / store instructions to form ldp / stp instructions. 38 39 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 40 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 41 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 42 STATISTIC(NumUnscaledPairCreated, 43 "Number of load/store from unscaled generated"); 44 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted"); 45 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 46 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 47 48 static cl::opt<unsigned> ScanLimit("aarch64-load-store-scan-limit", 49 cl::init(20), cl::Hidden); 50 51 namespace llvm { 52 void initializeAArch64LoadStoreOptPass(PassRegistry &); 53 } 54 55 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 56 57 namespace { 58 59 typedef struct LdStPairFlags { 60 // If a matching instruction is found, MergeForward is set to true if the 61 // merge is to remove the first instruction and replace the second with 62 // a pair-wise insn, and false if the reverse is true. 63 bool MergeForward; 64 65 // SExtIdx gives the index of the result of the load pair that must be 66 // extended. The value of SExtIdx assumes that the paired load produces the 67 // value in this order: (I, returned iterator), i.e., -1 means no value has 68 // to be extended, 0 means I, and 1 means the returned iterator. 69 int SExtIdx; 70 71 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 72 73 void setMergeForward(bool V = true) { MergeForward = V; } 74 bool getMergeForward() const { return MergeForward; } 75 76 void setSExtIdx(int V) { SExtIdx = V; } 77 int getSExtIdx() const { return SExtIdx; } 78 79 } LdStPairFlags; 80 81 struct AArch64LoadStoreOpt : public MachineFunctionPass { 82 static char ID; 83 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 84 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 85 } 86 87 const AArch64InstrInfo *TII; 88 const TargetRegisterInfo *TRI; 89 const AArch64Subtarget *Subtarget; 90 91 // Track which registers have been modified and used. 92 BitVector ModifiedRegs, UsedRegs; 93 94 // Scan the instructions looking for a load/store that can be combined 95 // with the current instruction into a load/store pair. 96 // Return the matching instruction if one is found, else MBB->end(). 97 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 98 LdStPairFlags &Flags, 99 unsigned Limit); 100 101 // Scan the instructions looking for a store that writes to the address from 102 // which the current load instruction reads. Return true if one is found. 103 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 104 MachineBasicBlock::iterator &StoreI); 105 106 // Merge the two instructions indicated into a single pair-wise instruction. 107 // If MergeForward is true, erase the first instruction and fold its 108 // operation into the second. If false, the reverse. Return the instruction 109 // following the first instruction (which may change during processing). 110 MachineBasicBlock::iterator 111 mergePairedInsns(MachineBasicBlock::iterator I, 112 MachineBasicBlock::iterator Paired, 113 const LdStPairFlags &Flags); 114 115 // Promote the load that reads directly from the address stored to. 116 MachineBasicBlock::iterator 117 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 118 MachineBasicBlock::iterator StoreI); 119 120 // Scan the instruction list to find a base register update that can 121 // be combined with the current instruction (a load or store) using 122 // pre or post indexed addressing with writeback. Scan forwards. 123 MachineBasicBlock::iterator 124 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 125 int UnscaledOffset); 126 127 // Scan the instruction list to find a base register update that can 128 // be combined with the current instruction (a load or store) using 129 // pre or post indexed addressing with writeback. Scan backwards. 130 MachineBasicBlock::iterator 131 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I); 132 133 // Find an instruction that updates the base register of the ld/st 134 // instruction. 135 bool isMatchingUpdateInsn(MachineInstr *MemMI, MachineInstr *MI, 136 unsigned BaseReg, int Offset); 137 138 // Merge a pre- or post-index base register update into a ld/st instruction. 139 MachineBasicBlock::iterator 140 mergeUpdateInsn(MachineBasicBlock::iterator I, 141 MachineBasicBlock::iterator Update, bool IsPreIdx); 142 143 // Find and merge foldable ldr/str instructions. 144 bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI); 145 146 // Find and promote load instructions which read directly from store. 147 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 148 149 // Check if converting two narrow loads into a single wider load with 150 // bitfield extracts could be enabled. 151 bool enableNarrowLdMerge(MachineFunction &Fn); 152 153 bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt); 154 155 bool runOnMachineFunction(MachineFunction &Fn) override; 156 157 const char *getPassName() const override { 158 return AARCH64_LOAD_STORE_OPT_NAME; 159 } 160 }; 161 char AArch64LoadStoreOpt::ID = 0; 162 } // namespace 163 164 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 165 AARCH64_LOAD_STORE_OPT_NAME, false, false) 166 167 static bool isUnscaledLdSt(unsigned Opc) { 168 switch (Opc) { 169 default: 170 return false; 171 case AArch64::STURSi: 172 case AArch64::STURDi: 173 case AArch64::STURQi: 174 case AArch64::STURBBi: 175 case AArch64::STURHHi: 176 case AArch64::STURWi: 177 case AArch64::STURXi: 178 case AArch64::LDURSi: 179 case AArch64::LDURDi: 180 case AArch64::LDURQi: 181 case AArch64::LDURWi: 182 case AArch64::LDURXi: 183 case AArch64::LDURSWi: 184 case AArch64::LDURHHi: 185 case AArch64::LDURBBi: 186 case AArch64::LDURSBWi: 187 case AArch64::LDURSHWi: 188 return true; 189 } 190 } 191 192 static bool isUnscaledLdSt(MachineInstr *MI) { 193 return isUnscaledLdSt(MI->getOpcode()); 194 } 195 196 static unsigned getBitExtrOpcode(MachineInstr *MI) { 197 switch (MI->getOpcode()) { 198 default: 199 llvm_unreachable("Unexpected opcode."); 200 case AArch64::LDRBBui: 201 case AArch64::LDURBBi: 202 case AArch64::LDRHHui: 203 case AArch64::LDURHHi: 204 return AArch64::UBFMWri; 205 case AArch64::LDRSBWui: 206 case AArch64::LDURSBWi: 207 case AArch64::LDRSHWui: 208 case AArch64::LDURSHWi: 209 return AArch64::SBFMWri; 210 } 211 } 212 213 static bool isNarrowStore(unsigned Opc) { 214 switch (Opc) { 215 default: 216 return false; 217 case AArch64::STRBBui: 218 case AArch64::STURBBi: 219 case AArch64::STRHHui: 220 case AArch64::STURHHi: 221 return true; 222 } 223 } 224 225 static bool isNarrowStore(MachineInstr *MI) { 226 return isNarrowStore(MI->getOpcode()); 227 } 228 229 static bool isNarrowLoad(unsigned Opc) { 230 switch (Opc) { 231 default: 232 return false; 233 case AArch64::LDRHHui: 234 case AArch64::LDURHHi: 235 case AArch64::LDRBBui: 236 case AArch64::LDURBBi: 237 case AArch64::LDRSHWui: 238 case AArch64::LDURSHWi: 239 case AArch64::LDRSBWui: 240 case AArch64::LDURSBWi: 241 return true; 242 } 243 } 244 245 static bool isNarrowLoad(MachineInstr *MI) { 246 return isNarrowLoad(MI->getOpcode()); 247 } 248 249 // Scaling factor for unscaled load or store. 250 static int getMemScale(MachineInstr *MI) { 251 switch (MI->getOpcode()) { 252 default: 253 llvm_unreachable("Opcode has unknown scale!"); 254 case AArch64::LDRBBui: 255 case AArch64::LDURBBi: 256 case AArch64::LDRSBWui: 257 case AArch64::LDURSBWi: 258 case AArch64::STRBBui: 259 case AArch64::STURBBi: 260 return 1; 261 case AArch64::LDRHHui: 262 case AArch64::LDURHHi: 263 case AArch64::LDRSHWui: 264 case AArch64::LDURSHWi: 265 case AArch64::STRHHui: 266 case AArch64::STURHHi: 267 return 2; 268 case AArch64::LDRSui: 269 case AArch64::LDURSi: 270 case AArch64::LDRSWui: 271 case AArch64::LDURSWi: 272 case AArch64::LDRWui: 273 case AArch64::LDURWi: 274 case AArch64::STRSui: 275 case AArch64::STURSi: 276 case AArch64::STRWui: 277 case AArch64::STURWi: 278 case AArch64::LDPSi: 279 case AArch64::LDPSWi: 280 case AArch64::LDPWi: 281 case AArch64::STPSi: 282 case AArch64::STPWi: 283 return 4; 284 case AArch64::LDRDui: 285 case AArch64::LDURDi: 286 case AArch64::LDRXui: 287 case AArch64::LDURXi: 288 case AArch64::STRDui: 289 case AArch64::STURDi: 290 case AArch64::STRXui: 291 case AArch64::STURXi: 292 case AArch64::LDPDi: 293 case AArch64::LDPXi: 294 case AArch64::STPDi: 295 case AArch64::STPXi: 296 return 8; 297 case AArch64::LDRQui: 298 case AArch64::LDURQi: 299 case AArch64::STRQui: 300 case AArch64::STURQi: 301 case AArch64::LDPQi: 302 case AArch64::STPQi: 303 return 16; 304 } 305 } 306 307 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 308 bool *IsValidLdStrOpc = nullptr) { 309 if (IsValidLdStrOpc) 310 *IsValidLdStrOpc = true; 311 switch (Opc) { 312 default: 313 if (IsValidLdStrOpc) 314 *IsValidLdStrOpc = false; 315 return UINT_MAX; 316 case AArch64::STRDui: 317 case AArch64::STURDi: 318 case AArch64::STRQui: 319 case AArch64::STURQi: 320 case AArch64::STRBBui: 321 case AArch64::STURBBi: 322 case AArch64::STRHHui: 323 case AArch64::STURHHi: 324 case AArch64::STRWui: 325 case AArch64::STURWi: 326 case AArch64::STRXui: 327 case AArch64::STURXi: 328 case AArch64::LDRDui: 329 case AArch64::LDURDi: 330 case AArch64::LDRQui: 331 case AArch64::LDURQi: 332 case AArch64::LDRWui: 333 case AArch64::LDURWi: 334 case AArch64::LDRXui: 335 case AArch64::LDURXi: 336 case AArch64::STRSui: 337 case AArch64::STURSi: 338 case AArch64::LDRSui: 339 case AArch64::LDURSi: 340 case AArch64::LDRHHui: 341 case AArch64::LDURHHi: 342 case AArch64::LDRBBui: 343 case AArch64::LDURBBi: 344 return Opc; 345 case AArch64::LDRSWui: 346 return AArch64::LDRWui; 347 case AArch64::LDURSWi: 348 return AArch64::LDURWi; 349 case AArch64::LDRSBWui: 350 return AArch64::LDRBBui; 351 case AArch64::LDRSHWui: 352 return AArch64::LDRHHui; 353 case AArch64::LDURSBWi: 354 return AArch64::LDURBBi; 355 case AArch64::LDURSHWi: 356 return AArch64::LDURHHi; 357 } 358 } 359 360 static unsigned getMatchingPairOpcode(unsigned Opc) { 361 switch (Opc) { 362 default: 363 llvm_unreachable("Opcode has no pairwise equivalent!"); 364 case AArch64::STRSui: 365 case AArch64::STURSi: 366 return AArch64::STPSi; 367 case AArch64::STRDui: 368 case AArch64::STURDi: 369 return AArch64::STPDi; 370 case AArch64::STRQui: 371 case AArch64::STURQi: 372 return AArch64::STPQi; 373 case AArch64::STRBBui: 374 return AArch64::STRHHui; 375 case AArch64::STRHHui: 376 return AArch64::STRWui; 377 case AArch64::STURBBi: 378 return AArch64::STURHHi; 379 case AArch64::STURHHi: 380 return AArch64::STURWi; 381 case AArch64::STRWui: 382 case AArch64::STURWi: 383 return AArch64::STPWi; 384 case AArch64::STRXui: 385 case AArch64::STURXi: 386 return AArch64::STPXi; 387 case AArch64::LDRSui: 388 case AArch64::LDURSi: 389 return AArch64::LDPSi; 390 case AArch64::LDRDui: 391 case AArch64::LDURDi: 392 return AArch64::LDPDi; 393 case AArch64::LDRQui: 394 case AArch64::LDURQi: 395 return AArch64::LDPQi; 396 case AArch64::LDRWui: 397 case AArch64::LDURWi: 398 return AArch64::LDPWi; 399 case AArch64::LDRXui: 400 case AArch64::LDURXi: 401 return AArch64::LDPXi; 402 case AArch64::LDRSWui: 403 case AArch64::LDURSWi: 404 return AArch64::LDPSWi; 405 case AArch64::LDRHHui: 406 case AArch64::LDRSHWui: 407 return AArch64::LDRWui; 408 case AArch64::LDURHHi: 409 case AArch64::LDURSHWi: 410 return AArch64::LDURWi; 411 case AArch64::LDRBBui: 412 case AArch64::LDRSBWui: 413 return AArch64::LDRHHui; 414 case AArch64::LDURBBi: 415 case AArch64::LDURSBWi: 416 return AArch64::LDURHHi; 417 } 418 } 419 420 static unsigned isMatchingStore(MachineInstr *LoadInst, 421 MachineInstr *StoreInst) { 422 unsigned LdOpc = LoadInst->getOpcode(); 423 unsigned StOpc = StoreInst->getOpcode(); 424 switch (LdOpc) { 425 default: 426 llvm_unreachable("Unsupported load instruction!"); 427 case AArch64::LDRBBui: 428 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 429 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 430 case AArch64::LDURBBi: 431 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 432 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 433 case AArch64::LDRHHui: 434 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 435 StOpc == AArch64::STRXui; 436 case AArch64::LDURHHi: 437 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 438 StOpc == AArch64::STURXi; 439 case AArch64::LDRWui: 440 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 441 case AArch64::LDURWi: 442 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 443 case AArch64::LDRXui: 444 return StOpc == AArch64::STRXui; 445 case AArch64::LDURXi: 446 return StOpc == AArch64::STURXi; 447 } 448 } 449 450 static unsigned getPreIndexedOpcode(unsigned Opc) { 451 switch (Opc) { 452 default: 453 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 454 case AArch64::STRSui: 455 return AArch64::STRSpre; 456 case AArch64::STRDui: 457 return AArch64::STRDpre; 458 case AArch64::STRQui: 459 return AArch64::STRQpre; 460 case AArch64::STRBBui: 461 return AArch64::STRBBpre; 462 case AArch64::STRHHui: 463 return AArch64::STRHHpre; 464 case AArch64::STRWui: 465 return AArch64::STRWpre; 466 case AArch64::STRXui: 467 return AArch64::STRXpre; 468 case AArch64::LDRSui: 469 return AArch64::LDRSpre; 470 case AArch64::LDRDui: 471 return AArch64::LDRDpre; 472 case AArch64::LDRQui: 473 return AArch64::LDRQpre; 474 case AArch64::LDRBBui: 475 return AArch64::LDRBBpre; 476 case AArch64::LDRHHui: 477 return AArch64::LDRHHpre; 478 case AArch64::LDRWui: 479 return AArch64::LDRWpre; 480 case AArch64::LDRXui: 481 return AArch64::LDRXpre; 482 case AArch64::LDRSWui: 483 return AArch64::LDRSWpre; 484 case AArch64::LDPSi: 485 return AArch64::LDPSpre; 486 case AArch64::LDPSWi: 487 return AArch64::LDPSWpre; 488 case AArch64::LDPDi: 489 return AArch64::LDPDpre; 490 case AArch64::LDPQi: 491 return AArch64::LDPQpre; 492 case AArch64::LDPWi: 493 return AArch64::LDPWpre; 494 case AArch64::LDPXi: 495 return AArch64::LDPXpre; 496 case AArch64::STPSi: 497 return AArch64::STPSpre; 498 case AArch64::STPDi: 499 return AArch64::STPDpre; 500 case AArch64::STPQi: 501 return AArch64::STPQpre; 502 case AArch64::STPWi: 503 return AArch64::STPWpre; 504 case AArch64::STPXi: 505 return AArch64::STPXpre; 506 } 507 } 508 509 static unsigned getPostIndexedOpcode(unsigned Opc) { 510 switch (Opc) { 511 default: 512 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 513 case AArch64::STRSui: 514 return AArch64::STRSpost; 515 case AArch64::STRDui: 516 return AArch64::STRDpost; 517 case AArch64::STRQui: 518 return AArch64::STRQpost; 519 case AArch64::STRBBui: 520 return AArch64::STRBBpost; 521 case AArch64::STRHHui: 522 return AArch64::STRHHpost; 523 case AArch64::STRWui: 524 return AArch64::STRWpost; 525 case AArch64::STRXui: 526 return AArch64::STRXpost; 527 case AArch64::LDRSui: 528 return AArch64::LDRSpost; 529 case AArch64::LDRDui: 530 return AArch64::LDRDpost; 531 case AArch64::LDRQui: 532 return AArch64::LDRQpost; 533 case AArch64::LDRBBui: 534 return AArch64::LDRBBpost; 535 case AArch64::LDRHHui: 536 return AArch64::LDRHHpost; 537 case AArch64::LDRWui: 538 return AArch64::LDRWpost; 539 case AArch64::LDRXui: 540 return AArch64::LDRXpost; 541 case AArch64::LDRSWui: 542 return AArch64::LDRSWpost; 543 case AArch64::LDPSi: 544 return AArch64::LDPSpost; 545 case AArch64::LDPSWi: 546 return AArch64::LDPSWpost; 547 case AArch64::LDPDi: 548 return AArch64::LDPDpost; 549 case AArch64::LDPQi: 550 return AArch64::LDPQpost; 551 case AArch64::LDPWi: 552 return AArch64::LDPWpost; 553 case AArch64::LDPXi: 554 return AArch64::LDPXpost; 555 case AArch64::STPSi: 556 return AArch64::STPSpost; 557 case AArch64::STPDi: 558 return AArch64::STPDpost; 559 case AArch64::STPQi: 560 return AArch64::STPQpost; 561 case AArch64::STPWi: 562 return AArch64::STPWpost; 563 case AArch64::STPXi: 564 return AArch64::STPXpost; 565 } 566 } 567 568 static bool isPairedLdSt(const MachineInstr *MI) { 569 switch (MI->getOpcode()) { 570 default: 571 return false; 572 case AArch64::LDPSi: 573 case AArch64::LDPSWi: 574 case AArch64::LDPDi: 575 case AArch64::LDPQi: 576 case AArch64::LDPWi: 577 case AArch64::LDPXi: 578 case AArch64::STPSi: 579 case AArch64::STPDi: 580 case AArch64::STPQi: 581 case AArch64::STPWi: 582 case AArch64::STPXi: 583 return true; 584 } 585 } 586 587 static const MachineOperand &getLdStRegOp(const MachineInstr *MI, 588 unsigned PairedRegOp = 0) { 589 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 590 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 591 return MI->getOperand(Idx); 592 } 593 594 static const MachineOperand &getLdStBaseOp(const MachineInstr *MI) { 595 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 596 return MI->getOperand(Idx); 597 } 598 599 static const MachineOperand &getLdStOffsetOp(const MachineInstr *MI) { 600 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 601 return MI->getOperand(Idx); 602 } 603 604 static bool isLdOffsetInRangeOfSt(MachineInstr *LoadInst, 605 MachineInstr *StoreInst) { 606 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 607 int LoadSize = getMemScale(LoadInst); 608 int StoreSize = getMemScale(StoreInst); 609 int UnscaledStOffset = isUnscaledLdSt(StoreInst) 610 ? getLdStOffsetOp(StoreInst).getImm() 611 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 612 int UnscaledLdOffset = isUnscaledLdSt(LoadInst) 613 ? getLdStOffsetOp(LoadInst).getImm() 614 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 615 return (UnscaledStOffset <= UnscaledLdOffset) && 616 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 617 } 618 619 MachineBasicBlock::iterator 620 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 621 MachineBasicBlock::iterator Paired, 622 const LdStPairFlags &Flags) { 623 MachineBasicBlock::iterator NextI = I; 624 ++NextI; 625 // If NextI is the second of the two instructions to be merged, we need 626 // to skip one further. Either way we merge will invalidate the iterator, 627 // and we don't need to scan the new instruction, as it's a pairwise 628 // instruction, which we're not considering for further action anyway. 629 if (NextI == Paired) 630 ++NextI; 631 632 int SExtIdx = Flags.getSExtIdx(); 633 unsigned Opc = 634 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 635 bool IsUnscaled = isUnscaledLdSt(Opc); 636 int OffsetStride = IsUnscaled ? getMemScale(I) : 1; 637 638 bool MergeForward = Flags.getMergeForward(); 639 unsigned NewOpc = getMatchingPairOpcode(Opc); 640 // Insert our new paired instruction after whichever of the paired 641 // instructions MergeForward indicates. 642 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 643 // Also based on MergeForward is from where we copy the base register operand 644 // so we get the flags compatible with the input code. 645 const MachineOperand &BaseRegOp = 646 MergeForward ? getLdStBaseOp(Paired) : getLdStBaseOp(I); 647 648 // Which register is Rt and which is Rt2 depends on the offset order. 649 MachineInstr *RtMI, *Rt2MI; 650 if (getLdStOffsetOp(I).getImm() == 651 getLdStOffsetOp(Paired).getImm() + OffsetStride) { 652 RtMI = Paired; 653 Rt2MI = I; 654 // Here we swapped the assumption made for SExtIdx. 655 // I.e., we turn ldp I, Paired into ldp Paired, I. 656 // Update the index accordingly. 657 if (SExtIdx != -1) 658 SExtIdx = (SExtIdx + 1) % 2; 659 } else { 660 RtMI = I; 661 Rt2MI = Paired; 662 } 663 664 int OffsetImm = getLdStOffsetOp(RtMI).getImm(); 665 666 if (isNarrowLoad(Opc)) { 667 // Change the scaled offset from small to large type. 668 if (!IsUnscaled) { 669 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 670 OffsetImm /= 2; 671 } 672 MachineInstr *RtNewDest = MergeForward ? I : Paired; 673 // When merging small (< 32 bit) loads for big-endian targets, the order of 674 // the component parts gets swapped. 675 if (!Subtarget->isLittleEndian()) 676 std::swap(RtMI, Rt2MI); 677 // Construct the new load instruction. 678 MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2; 679 NewMemMI = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 680 TII->get(NewOpc)) 681 .addOperand(getLdStRegOp(RtNewDest)) 682 .addOperand(BaseRegOp) 683 .addImm(OffsetImm) 684 .setMemRefs(I->mergeMemRefsWith(*Paired)); 685 686 DEBUG( 687 dbgs() 688 << "Creating the new load and extract. Replacing instructions:\n "); 689 DEBUG(I->print(dbgs())); 690 DEBUG(dbgs() << " "); 691 DEBUG(Paired->print(dbgs())); 692 DEBUG(dbgs() << " with instructions:\n "); 693 DEBUG((NewMemMI)->print(dbgs())); 694 695 int Width = getMemScale(I) == 1 ? 8 : 16; 696 int LSBLow = 0; 697 int LSBHigh = Width; 698 int ImmsLow = LSBLow + Width - 1; 699 int ImmsHigh = LSBHigh + Width - 1; 700 MachineInstr *ExtDestMI = MergeForward ? Paired : I; 701 if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) { 702 // Create the bitfield extract for high bits. 703 BitExtMI1 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 704 TII->get(getBitExtrOpcode(Rt2MI))) 705 .addOperand(getLdStRegOp(Rt2MI)) 706 .addReg(getLdStRegOp(RtNewDest).getReg()) 707 .addImm(LSBHigh) 708 .addImm(ImmsHigh); 709 // Create the bitfield extract for low bits. 710 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 711 // For unsigned, prefer to use AND for low bits. 712 BitExtMI2 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 713 TII->get(AArch64::ANDWri)) 714 .addOperand(getLdStRegOp(RtMI)) 715 .addReg(getLdStRegOp(RtNewDest).getReg()) 716 .addImm(ImmsLow); 717 } else { 718 BitExtMI2 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 719 TII->get(getBitExtrOpcode(RtMI))) 720 .addOperand(getLdStRegOp(RtMI)) 721 .addReg(getLdStRegOp(RtNewDest).getReg()) 722 .addImm(LSBLow) 723 .addImm(ImmsLow); 724 } 725 } else { 726 // Create the bitfield extract for low bits. 727 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 728 // For unsigned, prefer to use AND for low bits. 729 BitExtMI1 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 730 TII->get(AArch64::ANDWri)) 731 .addOperand(getLdStRegOp(RtMI)) 732 .addReg(getLdStRegOp(RtNewDest).getReg()) 733 .addImm(ImmsLow); 734 } else { 735 BitExtMI1 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 736 TII->get(getBitExtrOpcode(RtMI))) 737 .addOperand(getLdStRegOp(RtMI)) 738 .addReg(getLdStRegOp(RtNewDest).getReg()) 739 .addImm(LSBLow) 740 .addImm(ImmsLow); 741 } 742 743 // Create the bitfield extract for high bits. 744 BitExtMI2 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 745 TII->get(getBitExtrOpcode(Rt2MI))) 746 .addOperand(getLdStRegOp(Rt2MI)) 747 .addReg(getLdStRegOp(RtNewDest).getReg()) 748 .addImm(LSBHigh) 749 .addImm(ImmsHigh); 750 } 751 DEBUG(dbgs() << " "); 752 DEBUG((BitExtMI1)->print(dbgs())); 753 DEBUG(dbgs() << " "); 754 DEBUG((BitExtMI2)->print(dbgs())); 755 DEBUG(dbgs() << "\n"); 756 757 // Erase the old instructions. 758 I->eraseFromParent(); 759 Paired->eraseFromParent(); 760 return NextI; 761 } 762 763 // Construct the new instruction. 764 MachineInstrBuilder MIB; 765 if (isNarrowStore(Opc)) { 766 // Change the scaled offset from small to large type. 767 if (!IsUnscaled) { 768 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 769 OffsetImm /= 2; 770 } 771 MIB = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 772 TII->get(NewOpc)) 773 .addOperand(getLdStRegOp(I)) 774 .addOperand(BaseRegOp) 775 .addImm(OffsetImm) 776 .setMemRefs(I->mergeMemRefsWith(*Paired)); 777 } else { 778 // Handle Unscaled 779 if (IsUnscaled) 780 OffsetImm /= OffsetStride; 781 MIB = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 782 TII->get(NewOpc)) 783 .addOperand(getLdStRegOp(RtMI)) 784 .addOperand(getLdStRegOp(Rt2MI)) 785 .addOperand(BaseRegOp) 786 .addImm(OffsetImm); 787 } 788 789 (void)MIB; 790 791 // FIXME: Do we need/want to copy the mem operands from the source 792 // instructions? Probably. What uses them after this? 793 794 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 795 DEBUG(I->print(dbgs())); 796 DEBUG(dbgs() << " "); 797 DEBUG(Paired->print(dbgs())); 798 DEBUG(dbgs() << " with instruction:\n "); 799 800 if (SExtIdx != -1) { 801 // Generate the sign extension for the proper result of the ldp. 802 // I.e., with X1, that would be: 803 // %W1<def> = KILL %W1, %X1<imp-def> 804 // %X1<def> = SBFMXri %X1<kill>, 0, 31 805 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 806 // Right now, DstMO has the extended register, since it comes from an 807 // extended opcode. 808 unsigned DstRegX = DstMO.getReg(); 809 // Get the W variant of that register. 810 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 811 // Update the result of LDP to use the W instead of the X variant. 812 DstMO.setReg(DstRegW); 813 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 814 DEBUG(dbgs() << "\n"); 815 // Make the machine verifier happy by providing a definition for 816 // the X register. 817 // Insert this definition right after the generated LDP, i.e., before 818 // InsertionPoint. 819 MachineInstrBuilder MIBKill = 820 BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 821 TII->get(TargetOpcode::KILL), DstRegW) 822 .addReg(DstRegW) 823 .addReg(DstRegX, RegState::Define); 824 MIBKill->getOperand(2).setImplicit(); 825 // Create the sign extension. 826 MachineInstrBuilder MIBSXTW = 827 BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 828 TII->get(AArch64::SBFMXri), DstRegX) 829 .addReg(DstRegX) 830 .addImm(0) 831 .addImm(31); 832 (void)MIBSXTW; 833 DEBUG(dbgs() << " Extend operand:\n "); 834 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 835 DEBUG(dbgs() << "\n"); 836 } else { 837 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 838 DEBUG(dbgs() << "\n"); 839 } 840 841 // Erase the old instructions. 842 I->eraseFromParent(); 843 Paired->eraseFromParent(); 844 845 return NextI; 846 } 847 848 MachineBasicBlock::iterator 849 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 850 MachineBasicBlock::iterator StoreI) { 851 MachineBasicBlock::iterator NextI = LoadI; 852 ++NextI; 853 854 int LoadSize = getMemScale(LoadI); 855 int StoreSize = getMemScale(StoreI); 856 unsigned LdRt = getLdStRegOp(LoadI).getReg(); 857 unsigned StRt = getLdStRegOp(StoreI).getReg(); 858 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 859 860 assert((IsStoreXReg || 861 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 862 "Unexpected RegClass"); 863 864 MachineInstr *BitExtMI; 865 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 866 // Remove the load, if the destination register of the loads is the same 867 // register for stored value. 868 if (StRt == LdRt && LoadSize == 8) { 869 DEBUG(dbgs() << "Remove load instruction:\n "); 870 DEBUG(LoadI->print(dbgs())); 871 DEBUG(dbgs() << "\n"); 872 LoadI->eraseFromParent(); 873 return NextI; 874 } 875 // Replace the load with a mov if the load and store are in the same size. 876 BitExtMI = 877 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 878 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 879 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 880 .addReg(StRt) 881 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 882 } else { 883 // FIXME: Currently we disable this transformation in big-endian targets as 884 // performance and correctness are verified only in little-endian. 885 if (!Subtarget->isLittleEndian()) 886 return NextI; 887 bool IsUnscaled = isUnscaledLdSt(LoadI); 888 assert(IsUnscaled == isUnscaledLdSt(StoreI) && "Unsupported ld/st match"); 889 assert(LoadSize <= StoreSize && "Invalid load size"); 890 int UnscaledLdOffset = IsUnscaled 891 ? getLdStOffsetOp(LoadI).getImm() 892 : getLdStOffsetOp(LoadI).getImm() * LoadSize; 893 int UnscaledStOffset = IsUnscaled 894 ? getLdStOffsetOp(StoreI).getImm() 895 : getLdStOffsetOp(StoreI).getImm() * StoreSize; 896 int Width = LoadSize * 8; 897 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 898 int Imms = Immr + Width - 1; 899 unsigned DestReg = IsStoreXReg 900 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 901 &AArch64::GPR64RegClass) 902 : LdRt; 903 904 assert((UnscaledLdOffset >= UnscaledStOffset && 905 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 906 "Invalid offset"); 907 908 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 909 Imms = Immr + Width - 1; 910 if (UnscaledLdOffset == UnscaledStOffset) { 911 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 912 | ((Immr) << 6) // immr 913 | ((Imms) << 0) // imms 914 ; 915 916 BitExtMI = 917 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 918 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 919 DestReg) 920 .addReg(StRt) 921 .addImm(AndMaskEncoded); 922 } else { 923 BitExtMI = 924 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 925 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 926 DestReg) 927 .addReg(StRt) 928 .addImm(Immr) 929 .addImm(Imms); 930 } 931 } 932 933 DEBUG(dbgs() << "Promoting load by replacing :\n "); 934 DEBUG(StoreI->print(dbgs())); 935 DEBUG(dbgs() << " "); 936 DEBUG(LoadI->print(dbgs())); 937 DEBUG(dbgs() << " with instructions:\n "); 938 DEBUG(StoreI->print(dbgs())); 939 DEBUG(dbgs() << " "); 940 DEBUG((BitExtMI)->print(dbgs())); 941 DEBUG(dbgs() << "\n"); 942 943 // Erase the old instructions. 944 LoadI->eraseFromParent(); 945 return NextI; 946 } 947 948 /// trackRegDefsUses - Remember what registers the specified instruction uses 949 /// and modifies. 950 static void trackRegDefsUses(const MachineInstr *MI, BitVector &ModifiedRegs, 951 BitVector &UsedRegs, 952 const TargetRegisterInfo *TRI) { 953 for (const MachineOperand &MO : MI->operands()) { 954 if (MO.isRegMask()) 955 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 956 957 if (!MO.isReg()) 958 continue; 959 unsigned Reg = MO.getReg(); 960 if (MO.isDef()) { 961 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 962 ModifiedRegs.set(*AI); 963 } else { 964 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 965 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 966 UsedRegs.set(*AI); 967 } 968 } 969 } 970 971 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 972 // Convert the byte-offset used by unscaled into an "element" offset used 973 // by the scaled pair load/store instructions. 974 if (IsUnscaled) 975 Offset /= OffsetStride; 976 977 return Offset <= 63 && Offset >= -64; 978 } 979 980 // Do alignment, specialized to power of 2 and for signed ints, 981 // avoiding having to do a C-style cast from uint_64t to int when 982 // using alignTo from include/llvm/Support/MathExtras.h. 983 // FIXME: Move this function to include/MathExtras.h? 984 static int alignTo(int Num, int PowOf2) { 985 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 986 } 987 988 static bool mayAlias(MachineInstr *MIa, MachineInstr *MIb, 989 const AArch64InstrInfo *TII) { 990 // One of the instructions must modify memory. 991 if (!MIa->mayStore() && !MIb->mayStore()) 992 return false; 993 994 // Both instructions must be memory operations. 995 if (!MIa->mayLoadOrStore() && !MIb->mayLoadOrStore()) 996 return false; 997 998 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 999 } 1000 1001 static bool mayAlias(MachineInstr *MIa, 1002 SmallVectorImpl<MachineInstr *> &MemInsns, 1003 const AArch64InstrInfo *TII) { 1004 for (auto &MIb : MemInsns) 1005 if (mayAlias(MIa, MIb, TII)) 1006 return true; 1007 1008 return false; 1009 } 1010 1011 bool AArch64LoadStoreOpt::findMatchingStore( 1012 MachineBasicBlock::iterator I, unsigned Limit, 1013 MachineBasicBlock::iterator &StoreI) { 1014 MachineBasicBlock::iterator E = I->getParent()->begin(); 1015 MachineBasicBlock::iterator MBBI = I; 1016 MachineInstr *FirstMI = I; 1017 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1018 1019 // Track which registers have been modified and used between the first insn 1020 // and the second insn. 1021 ModifiedRegs.reset(); 1022 UsedRegs.reset(); 1023 1024 // FIXME: We miss the case where the matching store is the first instruction 1025 // in the basic block. 1026 for (unsigned Count = 0; MBBI != E && Count < Limit;) { 1027 --MBBI; 1028 MachineInstr *MI = MBBI; 1029 // Skip DBG_VALUE instructions. Otherwise debug info can affect the 1030 // optimization by changing how far we scan. 1031 if (MI->isDebugValue()) 1032 continue; 1033 // Now that we know this is a real instruction, count it. 1034 ++Count; 1035 1036 // If the load instruction reads directly from the address to which the 1037 // store instruction writes and the stored value is not modified, we can 1038 // promote the load. Since we do not handle stores with pre-/post-index, 1039 // it's unnecessary to check if BaseReg is modified by the store itself. 1040 if (MI->mayStore() && isMatchingStore(FirstMI, MI) && 1041 BaseReg == getLdStBaseOp(MI).getReg() && 1042 isLdOffsetInRangeOfSt(FirstMI, MI) && 1043 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1044 StoreI = MBBI; 1045 return true; 1046 } 1047 1048 if (MI->isCall()) 1049 return false; 1050 1051 // Update modified / uses register lists. 1052 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1053 1054 // Otherwise, if the base register is modified, we have no match, so 1055 // return early. 1056 if (ModifiedRegs[BaseReg]) 1057 return false; 1058 1059 // If we encounter a store aliased with the load, return early. 1060 if (MI->mayStore() && mayAlias(FirstMI, MI, TII)) 1061 return false; 1062 } 1063 return false; 1064 } 1065 1066 /// findMatchingInsn - Scan the instructions looking for a load/store that can 1067 /// be combined with the current instruction into a load/store pair. 1068 MachineBasicBlock::iterator 1069 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1070 LdStPairFlags &Flags, unsigned Limit) { 1071 MachineBasicBlock::iterator E = I->getParent()->end(); 1072 MachineBasicBlock::iterator MBBI = I; 1073 MachineInstr *FirstMI = I; 1074 ++MBBI; 1075 1076 unsigned Opc = FirstMI->getOpcode(); 1077 bool MayLoad = FirstMI->mayLoad(); 1078 bool IsUnscaled = isUnscaledLdSt(FirstMI); 1079 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1080 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1081 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1082 bool IsNarrowStore = isNarrowStore(Opc); 1083 1084 // For narrow stores, find only the case where the stored value is WZR. 1085 if (IsNarrowStore && Reg != AArch64::WZR) 1086 return E; 1087 1088 // Early exit if the first instruction modifies the base register. 1089 // e.g., ldr x0, [x0] 1090 if (FirstMI->modifiesRegister(BaseReg, TRI)) 1091 return E; 1092 1093 // Early exit if the offset if not possible to match. (6 bits of positive 1094 // range, plus allow an extra one in case we find a later insn that matches 1095 // with Offset-1) 1096 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1097 if (!(isNarrowLoad(Opc) || IsNarrowStore) && 1098 !inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1099 return E; 1100 1101 // Track which registers have been modified and used between the first insn 1102 // (inclusive) and the second insn. 1103 ModifiedRegs.reset(); 1104 UsedRegs.reset(); 1105 1106 // Remember any instructions that read/write memory between FirstMI and MI. 1107 SmallVector<MachineInstr *, 4> MemInsns; 1108 1109 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1110 MachineInstr *MI = MBBI; 1111 // Skip DBG_VALUE instructions. Otherwise debug info can affect the 1112 // optimization by changing how far we scan. 1113 if (MI->isDebugValue()) 1114 continue; 1115 1116 // Now that we know this is a real instruction, count it. 1117 ++Count; 1118 1119 bool CanMergeOpc = Opc == MI->getOpcode(); 1120 Flags.setSExtIdx(-1); 1121 if (!CanMergeOpc) { 1122 bool IsValidLdStrOpc; 1123 unsigned NonSExtOpc = getMatchingNonSExtOpcode(Opc, &IsValidLdStrOpc); 1124 assert(IsValidLdStrOpc && 1125 "Given Opc should be a Load or Store with an immediate"); 1126 // Opc will be the first instruction in the pair. 1127 Flags.setSExtIdx(NonSExtOpc == (unsigned)Opc ? 1 : 0); 1128 CanMergeOpc = NonSExtOpc == getMatchingNonSExtOpcode(MI->getOpcode()); 1129 } 1130 1131 if (CanMergeOpc && getLdStOffsetOp(MI).isImm()) { 1132 assert(MI->mayLoadOrStore() && "Expected memory operation."); 1133 // If we've found another instruction with the same opcode, check to see 1134 // if the base and offset are compatible with our starting instruction. 1135 // These instructions all have scaled immediate operands, so we just 1136 // check for +1/-1. Make sure to check the new instruction offset is 1137 // actually an immediate and not a symbolic reference destined for 1138 // a relocation. 1139 // 1140 // Pairwise instructions have a 7-bit signed offset field. Single insns 1141 // have a 12-bit unsigned offset field. To be a valid combine, the 1142 // final offset must be in range. 1143 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1144 int MIOffset = getLdStOffsetOp(MI).getImm(); 1145 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1146 (Offset + OffsetStride == MIOffset))) { 1147 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1148 // If this is a volatile load/store that otherwise matched, stop looking 1149 // as something is going on that we don't have enough information to 1150 // safely transform. Similarly, stop if we see a hint to avoid pairs. 1151 if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1152 return E; 1153 // If the resultant immediate offset of merging these instructions 1154 // is out of range for a pairwise instruction, bail and keep looking. 1155 bool MIIsUnscaled = isUnscaledLdSt(MI); 1156 bool IsNarrowLoad = isNarrowLoad(MI->getOpcode()); 1157 if (!IsNarrowLoad && 1158 !inBoundsForPair(MIIsUnscaled, MinOffset, OffsetStride)) { 1159 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1160 MemInsns.push_back(MI); 1161 continue; 1162 } 1163 1164 if (IsNarrowLoad || IsNarrowStore) { 1165 // If the alignment requirements of the scaled wide load/store 1166 // instruction can't express the offset of the scaled narrow 1167 // input, bail and keep looking. 1168 if (!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) { 1169 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1170 MemInsns.push_back(MI); 1171 continue; 1172 } 1173 } else { 1174 // If the alignment requirements of the paired (scaled) instruction 1175 // can't express the offset of the unscaled input, bail and keep 1176 // looking. 1177 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1178 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1179 MemInsns.push_back(MI); 1180 continue; 1181 } 1182 } 1183 // If the destination register of the loads is the same register, bail 1184 // and keep looking. A load-pair instruction with both destination 1185 // registers the same is UNPREDICTABLE and will result in an exception. 1186 // For narrow stores, allow only when the stored value is the same 1187 // (i.e., WZR). 1188 if ((MayLoad && Reg == getLdStRegOp(MI).getReg()) || 1189 (IsNarrowStore && Reg != getLdStRegOp(MI).getReg())) { 1190 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1191 MemInsns.push_back(MI); 1192 continue; 1193 } 1194 1195 // If the Rt of the second instruction was not modified or used between 1196 // the two instructions and none of the instructions between the second 1197 // and first alias with the second, we can combine the second into the 1198 // first. 1199 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1200 !(MI->mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1201 !mayAlias(MI, MemInsns, TII)) { 1202 Flags.setMergeForward(false); 1203 return MBBI; 1204 } 1205 1206 // Likewise, if the Rt of the first instruction is not modified or used 1207 // between the two instructions and none of the instructions between the 1208 // first and the second alias with the first, we can combine the first 1209 // into the second. 1210 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1211 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1212 !mayAlias(FirstMI, MemInsns, TII)) { 1213 Flags.setMergeForward(true); 1214 return MBBI; 1215 } 1216 // Unable to combine these instructions due to interference in between. 1217 // Keep looking. 1218 } 1219 } 1220 1221 // If the instruction wasn't a matching load or store. Stop searching if we 1222 // encounter a call instruction that might modify memory. 1223 if (MI->isCall()) 1224 return E; 1225 1226 // Update modified / uses register lists. 1227 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1228 1229 // Otherwise, if the base register is modified, we have no match, so 1230 // return early. 1231 if (ModifiedRegs[BaseReg]) 1232 return E; 1233 1234 // Update list of instructions that read/write memory. 1235 if (MI->mayLoadOrStore()) 1236 MemInsns.push_back(MI); 1237 } 1238 return E; 1239 } 1240 1241 MachineBasicBlock::iterator 1242 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1243 MachineBasicBlock::iterator Update, 1244 bool IsPreIdx) { 1245 assert((Update->getOpcode() == AArch64::ADDXri || 1246 Update->getOpcode() == AArch64::SUBXri) && 1247 "Unexpected base register update instruction to merge!"); 1248 MachineBasicBlock::iterator NextI = I; 1249 // Return the instruction following the merged instruction, which is 1250 // the instruction following our unmerged load. Unless that's the add/sub 1251 // instruction we're merging, in which case it's the one after that. 1252 if (++NextI == Update) 1253 ++NextI; 1254 1255 int Value = Update->getOperand(2).getImm(); 1256 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1257 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1258 if (Update->getOpcode() == AArch64::SUBXri) 1259 Value = -Value; 1260 1261 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1262 : getPostIndexedOpcode(I->getOpcode()); 1263 MachineInstrBuilder MIB; 1264 if (!isPairedLdSt(I)) { 1265 // Non-paired instruction. 1266 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1267 .addOperand(getLdStRegOp(Update)) 1268 .addOperand(getLdStRegOp(I)) 1269 .addOperand(getLdStBaseOp(I)) 1270 .addImm(Value) 1271 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1272 } else { 1273 // Paired instruction. 1274 int Scale = getMemScale(I); 1275 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1276 .addOperand(getLdStRegOp(Update)) 1277 .addOperand(getLdStRegOp(I, 0)) 1278 .addOperand(getLdStRegOp(I, 1)) 1279 .addOperand(getLdStBaseOp(I)) 1280 .addImm(Value / Scale) 1281 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1282 } 1283 (void)MIB; 1284 1285 if (IsPreIdx) 1286 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1287 else 1288 DEBUG(dbgs() << "Creating post-indexed load/store."); 1289 DEBUG(dbgs() << " Replacing instructions:\n "); 1290 DEBUG(I->print(dbgs())); 1291 DEBUG(dbgs() << " "); 1292 DEBUG(Update->print(dbgs())); 1293 DEBUG(dbgs() << " with instruction:\n "); 1294 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1295 DEBUG(dbgs() << "\n"); 1296 1297 // Erase the old instructions for the block. 1298 I->eraseFromParent(); 1299 Update->eraseFromParent(); 1300 1301 return NextI; 1302 } 1303 1304 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr *MemMI, 1305 MachineInstr *MI, 1306 unsigned BaseReg, int Offset) { 1307 switch (MI->getOpcode()) { 1308 default: 1309 break; 1310 case AArch64::SUBXri: 1311 // Negate the offset for a SUB instruction. 1312 Offset *= -1; 1313 // FALLTHROUGH 1314 case AArch64::ADDXri: 1315 // Make sure it's a vanilla immediate operand, not a relocation or 1316 // anything else we can't handle. 1317 if (!MI->getOperand(2).isImm()) 1318 break; 1319 // Watch out for 1 << 12 shifted value. 1320 if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm())) 1321 break; 1322 1323 // The update instruction source and destination register must be the 1324 // same as the load/store base register. 1325 if (MI->getOperand(0).getReg() != BaseReg || 1326 MI->getOperand(1).getReg() != BaseReg) 1327 break; 1328 1329 bool IsPairedInsn = isPairedLdSt(MemMI); 1330 int UpdateOffset = MI->getOperand(2).getImm(); 1331 // For non-paired load/store instructions, the immediate must fit in a 1332 // signed 9-bit integer. 1333 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1334 break; 1335 1336 // For paired load/store instructions, the immediate must be a multiple of 1337 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1338 // integer. 1339 if (IsPairedInsn) { 1340 int Scale = getMemScale(MemMI); 1341 if (UpdateOffset % Scale != 0) 1342 break; 1343 1344 int ScaledOffset = UpdateOffset / Scale; 1345 if (ScaledOffset > 64 || ScaledOffset < -64) 1346 break; 1347 } 1348 1349 // If we have a non-zero Offset, we check that it matches the amount 1350 // we're adding to the register. 1351 if (!Offset || Offset == MI->getOperand(2).getImm()) 1352 return true; 1353 break; 1354 } 1355 return false; 1356 } 1357 1358 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1359 MachineBasicBlock::iterator I, int UnscaledOffset) { 1360 MachineBasicBlock::iterator E = I->getParent()->end(); 1361 MachineInstr *MemMI = I; 1362 MachineBasicBlock::iterator MBBI = I; 1363 1364 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1365 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1366 1367 // Scan forward looking for post-index opportunities. Updating instructions 1368 // can't be formed if the memory instruction doesn't have the offset we're 1369 // looking for. 1370 if (MIUnscaledOffset != UnscaledOffset) 1371 return E; 1372 1373 // If the base register overlaps a destination register, we can't 1374 // merge the update. 1375 bool IsPairedInsn = isPairedLdSt(MemMI); 1376 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1377 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1378 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1379 return E; 1380 } 1381 1382 // Track which registers have been modified and used between the first insn 1383 // (inclusive) and the second insn. 1384 ModifiedRegs.reset(); 1385 UsedRegs.reset(); 1386 ++MBBI; 1387 for (; MBBI != E; ++MBBI) { 1388 MachineInstr *MI = MBBI; 1389 // Skip DBG_VALUE instructions. 1390 if (MI->isDebugValue()) 1391 continue; 1392 1393 // If we found a match, return it. 1394 if (isMatchingUpdateInsn(I, MI, BaseReg, UnscaledOffset)) 1395 return MBBI; 1396 1397 // Update the status of what the instruction clobbered and used. 1398 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1399 1400 // Otherwise, if the base register is used or modified, we have no match, so 1401 // return early. 1402 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1403 return E; 1404 } 1405 return E; 1406 } 1407 1408 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1409 MachineBasicBlock::iterator I) { 1410 MachineBasicBlock::iterator B = I->getParent()->begin(); 1411 MachineBasicBlock::iterator E = I->getParent()->end(); 1412 MachineInstr *MemMI = I; 1413 MachineBasicBlock::iterator MBBI = I; 1414 1415 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1416 int Offset = getLdStOffsetOp(MemMI).getImm(); 1417 1418 // If the load/store is the first instruction in the block, there's obviously 1419 // not any matching update. Ditto if the memory offset isn't zero. 1420 if (MBBI == B || Offset != 0) 1421 return E; 1422 // If the base register overlaps a destination register, we can't 1423 // merge the update. 1424 bool IsPairedInsn = isPairedLdSt(MemMI); 1425 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1426 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1427 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1428 return E; 1429 } 1430 1431 // Track which registers have been modified and used between the first insn 1432 // (inclusive) and the second insn. 1433 ModifiedRegs.reset(); 1434 UsedRegs.reset(); 1435 --MBBI; 1436 for (; MBBI != B; --MBBI) { 1437 MachineInstr *MI = MBBI; 1438 // Skip DBG_VALUE instructions. 1439 if (MI->isDebugValue()) 1440 continue; 1441 1442 // If we found a match, return it. 1443 if (isMatchingUpdateInsn(I, MI, BaseReg, Offset)) 1444 return MBBI; 1445 1446 // Update the status of what the instruction clobbered and used. 1447 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1448 1449 // Otherwise, if the base register is used or modified, we have no match, so 1450 // return early. 1451 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1452 return E; 1453 } 1454 return E; 1455 } 1456 1457 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1458 MachineBasicBlock::iterator &MBBI) { 1459 MachineInstr *MI = MBBI; 1460 // If this is a volatile load, don't mess with it. 1461 if (MI->hasOrderedMemoryRef()) 1462 return false; 1463 1464 // Make sure this is a reg+imm. 1465 // FIXME: It is possible to extend it to handle reg+reg cases. 1466 if (!getLdStOffsetOp(MI).isImm()) 1467 return false; 1468 1469 // Look backward up to ScanLimit instructions. 1470 MachineBasicBlock::iterator StoreI; 1471 if (findMatchingStore(MBBI, ScanLimit, StoreI)) { 1472 ++NumLoadsFromStoresPromoted; 1473 // Promote the load. Keeping the iterator straight is a 1474 // pain, so we let the merge routine tell us what the next instruction 1475 // is after it's done mucking about. 1476 MBBI = promoteLoadFromStore(MBBI, StoreI); 1477 return true; 1478 } 1479 return false; 1480 } 1481 1482 bool AArch64LoadStoreOpt::tryToMergeLdStInst( 1483 MachineBasicBlock::iterator &MBBI) { 1484 MachineInstr *MI = MBBI; 1485 MachineBasicBlock::iterator E = MI->getParent()->end(); 1486 // If this is a volatile load/store, don't mess with it. 1487 if (MI->hasOrderedMemoryRef()) 1488 return false; 1489 1490 // Make sure this is a reg+imm (as opposed to an address reloc). 1491 if (!getLdStOffsetOp(MI).isImm()) 1492 return false; 1493 1494 // Check if this load/store has a hint to avoid pair formation. 1495 // MachineMemOperands hints are set by the AArch64StorePairSuppress pass. 1496 if (TII->isLdStPairSuppressed(MI)) 1497 return false; 1498 1499 // Look ahead up to ScanLimit instructions for a pairable instruction. 1500 LdStPairFlags Flags; 1501 MachineBasicBlock::iterator Paired = findMatchingInsn(MBBI, Flags, ScanLimit); 1502 if (Paired != E) { 1503 if (isNarrowLoad(MI)) { 1504 ++NumNarrowLoadsPromoted; 1505 } else if (isNarrowStore(MI)) { 1506 ++NumZeroStoresPromoted; 1507 } else { 1508 ++NumPairCreated; 1509 if (isUnscaledLdSt(MI)) 1510 ++NumUnscaledPairCreated; 1511 } 1512 1513 // Merge the loads into a pair. Keeping the iterator straight is a 1514 // pain, so we let the merge routine tell us what the next instruction 1515 // is after it's done mucking about. 1516 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1517 return true; 1518 } 1519 return false; 1520 } 1521 1522 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1523 bool enableNarrowLdOpt) { 1524 bool Modified = false; 1525 // Four tranformations to do here: 1526 // 1) Find loads that directly read from stores and promote them by 1527 // replacing with mov instructions. If the store is wider than the load, 1528 // the load will be replaced with a bitfield extract. 1529 // e.g., 1530 // str w1, [x0, #4] 1531 // ldrh w2, [x0, #6] 1532 // ; becomes 1533 // str w1, [x0, #4] 1534 // lsr w2, w1, #16 1535 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1536 MBBI != E;) { 1537 MachineInstr *MI = MBBI; 1538 switch (MI->getOpcode()) { 1539 default: 1540 // Just move on to the next instruction. 1541 ++MBBI; 1542 break; 1543 // Scaled instructions. 1544 case AArch64::LDRBBui: 1545 case AArch64::LDRHHui: 1546 case AArch64::LDRWui: 1547 case AArch64::LDRXui: 1548 // Unscaled instructions. 1549 case AArch64::LDURBBi: 1550 case AArch64::LDURHHi: 1551 case AArch64::LDURWi: 1552 case AArch64::LDURXi: { 1553 if (tryToPromoteLoadFromStore(MBBI)) { 1554 Modified = true; 1555 break; 1556 } 1557 ++MBBI; 1558 break; 1559 } 1560 } 1561 } 1562 // 2) Find narrow loads that can be converted into a single wider load 1563 // with bitfield extract instructions. 1564 // e.g., 1565 // ldrh w0, [x2] 1566 // ldrh w1, [x2, #2] 1567 // ; becomes 1568 // ldr w0, [x2] 1569 // ubfx w1, w0, #16, #16 1570 // and w0, w0, #ffff 1571 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1572 enableNarrowLdOpt && MBBI != E;) { 1573 MachineInstr *MI = MBBI; 1574 switch (MI->getOpcode()) { 1575 default: 1576 // Just move on to the next instruction. 1577 ++MBBI; 1578 break; 1579 // Scaled instructions. 1580 case AArch64::LDRBBui: 1581 case AArch64::LDRHHui: 1582 case AArch64::LDRSBWui: 1583 case AArch64::LDRSHWui: 1584 case AArch64::STRBBui: 1585 case AArch64::STRHHui: 1586 // Unscaled instructions. 1587 case AArch64::LDURBBi: 1588 case AArch64::LDURHHi: 1589 case AArch64::LDURSBWi: 1590 case AArch64::LDURSHWi: 1591 case AArch64::STURBBi: 1592 case AArch64::STURHHi: { 1593 if (tryToMergeLdStInst(MBBI)) { 1594 Modified = true; 1595 break; 1596 } 1597 ++MBBI; 1598 break; 1599 } 1600 } 1601 } 1602 // 3) Find loads and stores that can be merged into a single load or store 1603 // pair instruction. 1604 // e.g., 1605 // ldr x0, [x2] 1606 // ldr x1, [x2, #8] 1607 // ; becomes 1608 // ldp x0, x1, [x2] 1609 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1610 MBBI != E;) { 1611 MachineInstr *MI = MBBI; 1612 switch (MI->getOpcode()) { 1613 default: 1614 // Just move on to the next instruction. 1615 ++MBBI; 1616 break; 1617 // Scaled instructions. 1618 case AArch64::STRSui: 1619 case AArch64::STRDui: 1620 case AArch64::STRQui: 1621 case AArch64::STRXui: 1622 case AArch64::STRWui: 1623 case AArch64::LDRSui: 1624 case AArch64::LDRDui: 1625 case AArch64::LDRQui: 1626 case AArch64::LDRXui: 1627 case AArch64::LDRWui: 1628 case AArch64::LDRSWui: 1629 // Unscaled instructions. 1630 case AArch64::STURSi: 1631 case AArch64::STURDi: 1632 case AArch64::STURQi: 1633 case AArch64::STURWi: 1634 case AArch64::STURXi: 1635 case AArch64::LDURSi: 1636 case AArch64::LDURDi: 1637 case AArch64::LDURQi: 1638 case AArch64::LDURWi: 1639 case AArch64::LDURXi: 1640 case AArch64::LDURSWi: { 1641 if (tryToMergeLdStInst(MBBI)) { 1642 Modified = true; 1643 break; 1644 } 1645 ++MBBI; 1646 break; 1647 } 1648 } 1649 } 1650 // 4) Find base register updates that can be merged into the load or store 1651 // as a base-reg writeback. 1652 // e.g., 1653 // ldr x0, [x2] 1654 // add x2, x2, #4 1655 // ; becomes 1656 // ldr x0, [x2], #4 1657 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1658 MBBI != E;) { 1659 MachineInstr *MI = MBBI; 1660 // Do update merging. It's simpler to keep this separate from the above 1661 // switchs, though not strictly necessary. 1662 unsigned Opc = MI->getOpcode(); 1663 switch (Opc) { 1664 default: 1665 // Just move on to the next instruction. 1666 ++MBBI; 1667 break; 1668 // Scaled instructions. 1669 case AArch64::STRSui: 1670 case AArch64::STRDui: 1671 case AArch64::STRQui: 1672 case AArch64::STRXui: 1673 case AArch64::STRWui: 1674 case AArch64::STRHHui: 1675 case AArch64::STRBBui: 1676 case AArch64::LDRSui: 1677 case AArch64::LDRDui: 1678 case AArch64::LDRQui: 1679 case AArch64::LDRXui: 1680 case AArch64::LDRWui: 1681 case AArch64::LDRHHui: 1682 case AArch64::LDRBBui: 1683 // Unscaled instructions. 1684 case AArch64::STURSi: 1685 case AArch64::STURDi: 1686 case AArch64::STURQi: 1687 case AArch64::STURWi: 1688 case AArch64::STURXi: 1689 case AArch64::LDURSi: 1690 case AArch64::LDURDi: 1691 case AArch64::LDURQi: 1692 case AArch64::LDURWi: 1693 case AArch64::LDURXi: 1694 // Paired instructions. 1695 case AArch64::LDPSi: 1696 case AArch64::LDPSWi: 1697 case AArch64::LDPDi: 1698 case AArch64::LDPQi: 1699 case AArch64::LDPWi: 1700 case AArch64::LDPXi: 1701 case AArch64::STPSi: 1702 case AArch64::STPDi: 1703 case AArch64::STPQi: 1704 case AArch64::STPWi: 1705 case AArch64::STPXi: { 1706 // Make sure this is a reg+imm (as opposed to an address reloc). 1707 if (!getLdStOffsetOp(MI).isImm()) { 1708 ++MBBI; 1709 break; 1710 } 1711 // Look forward to try to form a post-index instruction. For example, 1712 // ldr x0, [x20] 1713 // add x20, x20, #32 1714 // merged into: 1715 // ldr x0, [x20], #32 1716 MachineBasicBlock::iterator Update = 1717 findMatchingUpdateInsnForward(MBBI, 0); 1718 if (Update != E) { 1719 // Merge the update into the ld/st. 1720 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1721 Modified = true; 1722 ++NumPostFolded; 1723 break; 1724 } 1725 // Don't know how to handle pre/post-index versions, so move to the next 1726 // instruction. 1727 if (isUnscaledLdSt(Opc)) { 1728 ++MBBI; 1729 break; 1730 } 1731 1732 // Look back to try to find a pre-index instruction. For example, 1733 // add x0, x0, #8 1734 // ldr x1, [x0] 1735 // merged into: 1736 // ldr x1, [x0, #8]! 1737 Update = findMatchingUpdateInsnBackward(MBBI); 1738 if (Update != E) { 1739 // Merge the update into the ld/st. 1740 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1741 Modified = true; 1742 ++NumPreFolded; 1743 break; 1744 } 1745 // The immediate in the load/store is scaled by the size of the memory 1746 // operation. The immediate in the add we're looking for, 1747 // however, is not, so adjust here. 1748 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1749 1750 // Look forward to try to find a post-index instruction. For example, 1751 // ldr x1, [x0, #64] 1752 // add x0, x0, #64 1753 // merged into: 1754 // ldr x1, [x0, #64]! 1755 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset); 1756 if (Update != E) { 1757 // Merge the update into the ld/st. 1758 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1759 Modified = true; 1760 ++NumPreFolded; 1761 break; 1762 } 1763 1764 // Nothing found. Just move to the next instruction. 1765 ++MBBI; 1766 break; 1767 } 1768 } 1769 } 1770 1771 return Modified; 1772 } 1773 1774 bool AArch64LoadStoreOpt::enableNarrowLdMerge(MachineFunction &Fn) { 1775 bool ProfitableArch = Subtarget->isCortexA57(); 1776 // FIXME: The benefit from converting narrow loads into a wider load could be 1777 // microarchitectural as it assumes that a single load with two bitfield 1778 // extracts is cheaper than two narrow loads. Currently, this conversion is 1779 // enabled only in cortex-a57 on which performance benefits were verified. 1780 return ProfitableArch && !Subtarget->requiresStrictAlign(); 1781 } 1782 1783 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1784 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1785 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1786 TRI = Subtarget->getRegisterInfo(); 1787 1788 // Resize the modified and used register bitfield trackers. We do this once 1789 // per function and then clear the bitfield each time we optimize a load or 1790 // store. 1791 ModifiedRegs.resize(TRI->getNumRegs()); 1792 UsedRegs.resize(TRI->getNumRegs()); 1793 1794 bool Modified = false; 1795 bool enableNarrowLdOpt = enableNarrowLdMerge(Fn); 1796 for (auto &MBB : Fn) 1797 Modified |= optimizeBlock(MBB, enableNarrowLdOpt); 1798 1799 return Modified; 1800 } 1801 1802 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep 1803 // loads and stores near one another? 1804 1805 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1806 /// load / store optimization pass. 1807 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1808 return new AArch64LoadStoreOpt(); 1809 } 1810