1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that performs load / store related peephole
10 // optimizations. This pass should be run after register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64InstrInfo.h"
15 #include "AArch64MachineFunctionInfo.h"
16 #include "AArch64Subtarget.h"
17 #include "MCTargetDesc/AArch64AddressingModes.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCRegisterInfo.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/DebugCounter.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <cstdint>
43 #include <functional>
44 #include <iterator>
45 #include <limits>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "aarch64-ldst-opt"
50 
51 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
52 STATISTIC(NumPostFolded, "Number of post-index updates folded");
53 STATISTIC(NumPreFolded, "Number of pre-index updates folded");
54 STATISTIC(NumUnscaledPairCreated,
55           "Number of load/store from unscaled generated");
56 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
57 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
58 
59 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming",
60               "Controls which pairs are considered for renaming");
61 
62 // The LdStLimit limits how far we search for load/store pairs.
63 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
64                                    cl::init(20), cl::Hidden);
65 
66 // The UpdateLimit limits how far we search for update instructions when we form
67 // pre-/post-index instructions.
68 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
69                                      cl::Hidden);
70 
71 // Enable register renaming to find additional store pairing opportunities.
72 static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming",
73                                     cl::init(true), cl::Hidden);
74 
75 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
76 
77 namespace {
78 
79 using LdStPairFlags = struct LdStPairFlags {
80   // If a matching instruction is found, MergeForward is set to true if the
81   // merge is to remove the first instruction and replace the second with
82   // a pair-wise insn, and false if the reverse is true.
83   bool MergeForward = false;
84 
85   // SExtIdx gives the index of the result of the load pair that must be
86   // extended. The value of SExtIdx assumes that the paired load produces the
87   // value in this order: (I, returned iterator), i.e., -1 means no value has
88   // to be extended, 0 means I, and 1 means the returned iterator.
89   int SExtIdx = -1;
90 
91   // If not none, RenameReg can be used to rename the result register of the
92   // first store in a pair. Currently this only works when merging stores
93   // forward.
94   Optional<MCPhysReg> RenameReg = None;
95 
96   LdStPairFlags() = default;
97 
98   void setMergeForward(bool V = true) { MergeForward = V; }
99   bool getMergeForward() const { return MergeForward; }
100 
101   void setSExtIdx(int V) { SExtIdx = V; }
102   int getSExtIdx() const { return SExtIdx; }
103 
104   void setRenameReg(MCPhysReg R) { RenameReg = R; }
105   void clearRenameReg() { RenameReg = None; }
106   Optional<MCPhysReg> getRenameReg() const { return RenameReg; }
107 };
108 
109 struct AArch64LoadStoreOpt : public MachineFunctionPass {
110   static char ID;
111 
112   AArch64LoadStoreOpt() : MachineFunctionPass(ID) {
113     initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry());
114   }
115 
116   AliasAnalysis *AA;
117   const AArch64InstrInfo *TII;
118   const TargetRegisterInfo *TRI;
119   const AArch64Subtarget *Subtarget;
120 
121   // Track which register units have been modified and used.
122   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
123   LiveRegUnits DefinedInBB;
124 
125   void getAnalysisUsage(AnalysisUsage &AU) const override {
126     AU.addRequired<AAResultsWrapperPass>();
127     MachineFunctionPass::getAnalysisUsage(AU);
128   }
129 
130   // Scan the instructions looking for a load/store that can be combined
131   // with the current instruction into a load/store pair.
132   // Return the matching instruction if one is found, else MBB->end().
133   MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
134                                                LdStPairFlags &Flags,
135                                                unsigned Limit,
136                                                bool FindNarrowMerge);
137 
138   // Scan the instructions looking for a store that writes to the address from
139   // which the current load instruction reads. Return true if one is found.
140   bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
141                          MachineBasicBlock::iterator &StoreI);
142 
143   // Merge the two instructions indicated into a wider narrow store instruction.
144   MachineBasicBlock::iterator
145   mergeNarrowZeroStores(MachineBasicBlock::iterator I,
146                         MachineBasicBlock::iterator MergeMI,
147                         const LdStPairFlags &Flags);
148 
149   // Merge the two instructions indicated into a single pair-wise instruction.
150   MachineBasicBlock::iterator
151   mergePairedInsns(MachineBasicBlock::iterator I,
152                    MachineBasicBlock::iterator Paired,
153                    const LdStPairFlags &Flags);
154 
155   // Promote the load that reads directly from the address stored to.
156   MachineBasicBlock::iterator
157   promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
158                        MachineBasicBlock::iterator StoreI);
159 
160   // Scan the instruction list to find a base register update that can
161   // be combined with the current instruction (a load or store) using
162   // pre or post indexed addressing with writeback. Scan forwards.
163   MachineBasicBlock::iterator
164   findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
165                                 int UnscaledOffset, unsigned Limit);
166 
167   // Scan the instruction list to find a base register update that can
168   // be combined with the current instruction (a load or store) using
169   // pre or post indexed addressing with writeback. Scan backwards.
170   MachineBasicBlock::iterator
171   findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
172 
173   // Find an instruction that updates the base register of the ld/st
174   // instruction.
175   bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI,
176                             unsigned BaseReg, int Offset);
177 
178   // Merge a pre- or post-index base register update into a ld/st instruction.
179   MachineBasicBlock::iterator
180   mergeUpdateInsn(MachineBasicBlock::iterator I,
181                   MachineBasicBlock::iterator Update, bool IsPreIdx);
182 
183   // Find and merge zero store instructions.
184   bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI);
185 
186   // Find and pair ldr/str instructions.
187   bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
188 
189   // Find and promote load instructions which read directly from store.
190   bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
191 
192   // Find and merge a base register updates before or after a ld/st instruction.
193   bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI);
194 
195   bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt);
196 
197   bool runOnMachineFunction(MachineFunction &Fn) override;
198 
199   MachineFunctionProperties getRequiredProperties() const override {
200     return MachineFunctionProperties().set(
201         MachineFunctionProperties::Property::NoVRegs);
202   }
203 
204   StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; }
205 };
206 
207 char AArch64LoadStoreOpt::ID = 0;
208 
209 } // end anonymous namespace
210 
211 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
212                 AARCH64_LOAD_STORE_OPT_NAME, false, false)
213 
214 static bool isNarrowStore(unsigned Opc) {
215   switch (Opc) {
216   default:
217     return false;
218   case AArch64::STRBBui:
219   case AArch64::STURBBi:
220   case AArch64::STRHHui:
221   case AArch64::STURHHi:
222     return true;
223   }
224 }
225 
226 // These instruction set memory tag and either keep memory contents unchanged or
227 // set it to zero, ignoring the address part of the source register.
228 static bool isTagStore(const MachineInstr &MI) {
229   switch (MI.getOpcode()) {
230   default:
231     return false;
232   case AArch64::STGOffset:
233   case AArch64::STZGOffset:
234   case AArch64::ST2GOffset:
235   case AArch64::STZ2GOffset:
236     return true;
237   }
238 }
239 
240 static unsigned getMatchingNonSExtOpcode(unsigned Opc,
241                                          bool *IsValidLdStrOpc = nullptr) {
242   if (IsValidLdStrOpc)
243     *IsValidLdStrOpc = true;
244   switch (Opc) {
245   default:
246     if (IsValidLdStrOpc)
247       *IsValidLdStrOpc = false;
248     return std::numeric_limits<unsigned>::max();
249   case AArch64::STRDui:
250   case AArch64::STURDi:
251   case AArch64::STRDpre:
252   case AArch64::STRQui:
253   case AArch64::STURQi:
254   case AArch64::STRQpre:
255   case AArch64::STRBBui:
256   case AArch64::STURBBi:
257   case AArch64::STRHHui:
258   case AArch64::STURHHi:
259   case AArch64::STRWui:
260   case AArch64::STRWpre:
261   case AArch64::STURWi:
262   case AArch64::STRXui:
263   case AArch64::STRXpre:
264   case AArch64::STURXi:
265   case AArch64::LDRDui:
266   case AArch64::LDURDi:
267   case AArch64::LDRDpre:
268   case AArch64::LDRQui:
269   case AArch64::LDURQi:
270   case AArch64::LDRQpre:
271   case AArch64::LDRWui:
272   case AArch64::LDURWi:
273   case AArch64::LDRWpre:
274   case AArch64::LDRXui:
275   case AArch64::LDURXi:
276   case AArch64::LDRXpre:
277   case AArch64::STRSui:
278   case AArch64::STURSi:
279   case AArch64::STRSpre:
280   case AArch64::LDRSui:
281   case AArch64::LDURSi:
282   case AArch64::LDRSpre:
283     return Opc;
284   case AArch64::LDRSWui:
285     return AArch64::LDRWui;
286   case AArch64::LDURSWi:
287     return AArch64::LDURWi;
288   }
289 }
290 
291 static unsigned getMatchingWideOpcode(unsigned Opc) {
292   switch (Opc) {
293   default:
294     llvm_unreachable("Opcode has no wide equivalent!");
295   case AArch64::STRBBui:
296     return AArch64::STRHHui;
297   case AArch64::STRHHui:
298     return AArch64::STRWui;
299   case AArch64::STURBBi:
300     return AArch64::STURHHi;
301   case AArch64::STURHHi:
302     return AArch64::STURWi;
303   case AArch64::STURWi:
304     return AArch64::STURXi;
305   case AArch64::STRWui:
306     return AArch64::STRXui;
307   }
308 }
309 
310 static unsigned getMatchingPairOpcode(unsigned Opc) {
311   switch (Opc) {
312   default:
313     llvm_unreachable("Opcode has no pairwise equivalent!");
314   case AArch64::STRSui:
315   case AArch64::STURSi:
316     return AArch64::STPSi;
317   case AArch64::STRSpre:
318     return AArch64::STPSpre;
319   case AArch64::STRDui:
320   case AArch64::STURDi:
321     return AArch64::STPDi;
322   case AArch64::STRDpre:
323     return AArch64::STPDpre;
324   case AArch64::STRQui:
325   case AArch64::STURQi:
326     return AArch64::STPQi;
327   case AArch64::STRQpre:
328     return AArch64::STPQpre;
329   case AArch64::STRWui:
330   case AArch64::STURWi:
331     return AArch64::STPWi;
332   case AArch64::STRWpre:
333     return AArch64::STPWpre;
334   case AArch64::STRXui:
335   case AArch64::STURXi:
336     return AArch64::STPXi;
337   case AArch64::STRXpre:
338     return AArch64::STPXpre;
339   case AArch64::LDRSui:
340   case AArch64::LDURSi:
341     return AArch64::LDPSi;
342   case AArch64::LDRSpre:
343     return AArch64::LDPSpre;
344   case AArch64::LDRDui:
345   case AArch64::LDURDi:
346     return AArch64::LDPDi;
347   case AArch64::LDRDpre:
348     return AArch64::LDPDpre;
349   case AArch64::LDRQui:
350   case AArch64::LDURQi:
351     return AArch64::LDPQi;
352   case AArch64::LDRQpre:
353     return AArch64::LDPQpre;
354   case AArch64::LDRWui:
355   case AArch64::LDURWi:
356     return AArch64::LDPWi;
357   case AArch64::LDRWpre:
358     return AArch64::LDPWpre;
359   case AArch64::LDRXui:
360   case AArch64::LDURXi:
361     return AArch64::LDPXi;
362   case AArch64::LDRXpre:
363     return AArch64::LDPXpre;
364   case AArch64::LDRSWui:
365   case AArch64::LDURSWi:
366     return AArch64::LDPSWi;
367   }
368 }
369 
370 static unsigned isMatchingStore(MachineInstr &LoadInst,
371                                 MachineInstr &StoreInst) {
372   unsigned LdOpc = LoadInst.getOpcode();
373   unsigned StOpc = StoreInst.getOpcode();
374   switch (LdOpc) {
375   default:
376     llvm_unreachable("Unsupported load instruction!");
377   case AArch64::LDRBBui:
378     return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
379            StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
380   case AArch64::LDURBBi:
381     return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
382            StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
383   case AArch64::LDRHHui:
384     return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
385            StOpc == AArch64::STRXui;
386   case AArch64::LDURHHi:
387     return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
388            StOpc == AArch64::STURXi;
389   case AArch64::LDRWui:
390     return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
391   case AArch64::LDURWi:
392     return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
393   case AArch64::LDRXui:
394     return StOpc == AArch64::STRXui;
395   case AArch64::LDURXi:
396     return StOpc == AArch64::STURXi;
397   }
398 }
399 
400 static unsigned getPreIndexedOpcode(unsigned Opc) {
401   // FIXME: We don't currently support creating pre-indexed loads/stores when
402   // the load or store is the unscaled version.  If we decide to perform such an
403   // optimization in the future the cases for the unscaled loads/stores will
404   // need to be added here.
405   switch (Opc) {
406   default:
407     llvm_unreachable("Opcode has no pre-indexed equivalent!");
408   case AArch64::STRSui:
409     return AArch64::STRSpre;
410   case AArch64::STRDui:
411     return AArch64::STRDpre;
412   case AArch64::STRQui:
413     return AArch64::STRQpre;
414   case AArch64::STRBBui:
415     return AArch64::STRBBpre;
416   case AArch64::STRHHui:
417     return AArch64::STRHHpre;
418   case AArch64::STRWui:
419     return AArch64::STRWpre;
420   case AArch64::STRXui:
421     return AArch64::STRXpre;
422   case AArch64::LDRSui:
423     return AArch64::LDRSpre;
424   case AArch64::LDRDui:
425     return AArch64::LDRDpre;
426   case AArch64::LDRQui:
427     return AArch64::LDRQpre;
428   case AArch64::LDRBBui:
429     return AArch64::LDRBBpre;
430   case AArch64::LDRHHui:
431     return AArch64::LDRHHpre;
432   case AArch64::LDRWui:
433     return AArch64::LDRWpre;
434   case AArch64::LDRXui:
435     return AArch64::LDRXpre;
436   case AArch64::LDRSWui:
437     return AArch64::LDRSWpre;
438   case AArch64::LDPSi:
439     return AArch64::LDPSpre;
440   case AArch64::LDPSWi:
441     return AArch64::LDPSWpre;
442   case AArch64::LDPDi:
443     return AArch64::LDPDpre;
444   case AArch64::LDPQi:
445     return AArch64::LDPQpre;
446   case AArch64::LDPWi:
447     return AArch64::LDPWpre;
448   case AArch64::LDPXi:
449     return AArch64::LDPXpre;
450   case AArch64::STPSi:
451     return AArch64::STPSpre;
452   case AArch64::STPDi:
453     return AArch64::STPDpre;
454   case AArch64::STPQi:
455     return AArch64::STPQpre;
456   case AArch64::STPWi:
457     return AArch64::STPWpre;
458   case AArch64::STPXi:
459     return AArch64::STPXpre;
460   case AArch64::STGOffset:
461     return AArch64::STGPreIndex;
462   case AArch64::STZGOffset:
463     return AArch64::STZGPreIndex;
464   case AArch64::ST2GOffset:
465     return AArch64::ST2GPreIndex;
466   case AArch64::STZ2GOffset:
467     return AArch64::STZ2GPreIndex;
468   case AArch64::STGPi:
469     return AArch64::STGPpre;
470   }
471 }
472 
473 static unsigned getPostIndexedOpcode(unsigned Opc) {
474   switch (Opc) {
475   default:
476     llvm_unreachable("Opcode has no post-indexed wise equivalent!");
477   case AArch64::STRSui:
478   case AArch64::STURSi:
479     return AArch64::STRSpost;
480   case AArch64::STRDui:
481   case AArch64::STURDi:
482     return AArch64::STRDpost;
483   case AArch64::STRQui:
484   case AArch64::STURQi:
485     return AArch64::STRQpost;
486   case AArch64::STRBBui:
487     return AArch64::STRBBpost;
488   case AArch64::STRHHui:
489     return AArch64::STRHHpost;
490   case AArch64::STRWui:
491   case AArch64::STURWi:
492     return AArch64::STRWpost;
493   case AArch64::STRXui:
494   case AArch64::STURXi:
495     return AArch64::STRXpost;
496   case AArch64::LDRSui:
497   case AArch64::LDURSi:
498     return AArch64::LDRSpost;
499   case AArch64::LDRDui:
500   case AArch64::LDURDi:
501     return AArch64::LDRDpost;
502   case AArch64::LDRQui:
503   case AArch64::LDURQi:
504     return AArch64::LDRQpost;
505   case AArch64::LDRBBui:
506     return AArch64::LDRBBpost;
507   case AArch64::LDRHHui:
508     return AArch64::LDRHHpost;
509   case AArch64::LDRWui:
510   case AArch64::LDURWi:
511     return AArch64::LDRWpost;
512   case AArch64::LDRXui:
513   case AArch64::LDURXi:
514     return AArch64::LDRXpost;
515   case AArch64::LDRSWui:
516     return AArch64::LDRSWpost;
517   case AArch64::LDPSi:
518     return AArch64::LDPSpost;
519   case AArch64::LDPSWi:
520     return AArch64::LDPSWpost;
521   case AArch64::LDPDi:
522     return AArch64::LDPDpost;
523   case AArch64::LDPQi:
524     return AArch64::LDPQpost;
525   case AArch64::LDPWi:
526     return AArch64::LDPWpost;
527   case AArch64::LDPXi:
528     return AArch64::LDPXpost;
529   case AArch64::STPSi:
530     return AArch64::STPSpost;
531   case AArch64::STPDi:
532     return AArch64::STPDpost;
533   case AArch64::STPQi:
534     return AArch64::STPQpost;
535   case AArch64::STPWi:
536     return AArch64::STPWpost;
537   case AArch64::STPXi:
538     return AArch64::STPXpost;
539   case AArch64::STGOffset:
540     return AArch64::STGPostIndex;
541   case AArch64::STZGOffset:
542     return AArch64::STZGPostIndex;
543   case AArch64::ST2GOffset:
544     return AArch64::ST2GPostIndex;
545   case AArch64::STZ2GOffset:
546     return AArch64::STZ2GPostIndex;
547   case AArch64::STGPi:
548     return AArch64::STGPpost;
549   }
550 }
551 
552 static bool isPairedLdSt(const MachineInstr &MI) {
553   switch (MI.getOpcode()) {
554   default:
555     return false;
556   case AArch64::LDPSi:
557   case AArch64::LDPSWi:
558   case AArch64::LDPDi:
559   case AArch64::LDPQi:
560   case AArch64::LDPWi:
561   case AArch64::LDPXi:
562   case AArch64::STPSi:
563   case AArch64::STPDi:
564   case AArch64::STPQi:
565   case AArch64::STPWi:
566   case AArch64::STPXi:
567   case AArch64::STGPi:
568     return true;
569   }
570 }
571 
572 static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI) {
573 
574   unsigned OpcA = FirstMI.getOpcode();
575   unsigned OpcB = MI.getOpcode();
576 
577   switch (OpcA) {
578   default:
579     return false;
580   case AArch64::STRSpre:
581     return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi);
582   case AArch64::STRDpre:
583     return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi);
584   case AArch64::STRQpre:
585     return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi);
586   case AArch64::STRWpre:
587     return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi);
588   case AArch64::STRXpre:
589     return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi);
590   case AArch64::LDRSpre:
591     return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi);
592   case AArch64::LDRDpre:
593     return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi);
594   case AArch64::LDRQpre:
595     return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi);
596   case AArch64::LDRWpre:
597     return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi);
598   case AArch64::LDRXpre:
599     return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi);
600   }
601 }
602 
603 // Returns the scale and offset range of pre/post indexed variants of MI.
604 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale,
605                                        int &MinOffset, int &MaxOffset) {
606   bool IsPaired = isPairedLdSt(MI);
607   bool IsTagStore = isTagStore(MI);
608   // ST*G and all paired ldst have the same scale in pre/post-indexed variants
609   // as in the "unsigned offset" variant.
610   // All other pre/post indexed ldst instructions are unscaled.
611   Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1;
612 
613   if (IsPaired) {
614     MinOffset = -64;
615     MaxOffset = 63;
616   } else {
617     MinOffset = -256;
618     MaxOffset = 255;
619   }
620 }
621 
622 static MachineOperand &getLdStRegOp(MachineInstr &MI,
623                                     unsigned PairedRegOp = 0) {
624   assert(PairedRegOp < 2 && "Unexpected register operand idx.");
625   bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI);
626   if (IsPreLdSt)
627     PairedRegOp += 1;
628   unsigned Idx = isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0;
629   return MI.getOperand(Idx);
630 }
631 
632 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) {
633   unsigned Idx = isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 2 : 1;
634   return MI.getOperand(Idx);
635 }
636 
637 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) {
638   unsigned Idx = isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 3 : 2;
639   return MI.getOperand(Idx);
640 }
641 
642 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst,
643                                   MachineInstr &StoreInst,
644                                   const AArch64InstrInfo *TII) {
645   assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
646   int LoadSize = TII->getMemScale(LoadInst);
647   int StoreSize = TII->getMemScale(StoreInst);
648   int UnscaledStOffset = TII->hasUnscaledLdStOffset(StoreInst)
649                              ? getLdStOffsetOp(StoreInst).getImm()
650                              : getLdStOffsetOp(StoreInst).getImm() * StoreSize;
651   int UnscaledLdOffset = TII->hasUnscaledLdStOffset(LoadInst)
652                              ? getLdStOffsetOp(LoadInst).getImm()
653                              : getLdStOffsetOp(LoadInst).getImm() * LoadSize;
654   return (UnscaledStOffset <= UnscaledLdOffset) &&
655          (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
656 }
657 
658 static bool isPromotableZeroStoreInst(MachineInstr &MI) {
659   unsigned Opc = MI.getOpcode();
660   return (Opc == AArch64::STRWui || Opc == AArch64::STURWi ||
661           isNarrowStore(Opc)) &&
662          getLdStRegOp(MI).getReg() == AArch64::WZR;
663 }
664 
665 static bool isPromotableLoadFromStore(MachineInstr &MI) {
666   switch (MI.getOpcode()) {
667   default:
668     return false;
669   // Scaled instructions.
670   case AArch64::LDRBBui:
671   case AArch64::LDRHHui:
672   case AArch64::LDRWui:
673   case AArch64::LDRXui:
674   // Unscaled instructions.
675   case AArch64::LDURBBi:
676   case AArch64::LDURHHi:
677   case AArch64::LDURWi:
678   case AArch64::LDURXi:
679     return true;
680   }
681 }
682 
683 static bool isMergeableLdStUpdate(MachineInstr &MI) {
684   unsigned Opc = MI.getOpcode();
685   switch (Opc) {
686   default:
687     return false;
688   // Scaled instructions.
689   case AArch64::STRSui:
690   case AArch64::STRDui:
691   case AArch64::STRQui:
692   case AArch64::STRXui:
693   case AArch64::STRWui:
694   case AArch64::STRHHui:
695   case AArch64::STRBBui:
696   case AArch64::LDRSui:
697   case AArch64::LDRDui:
698   case AArch64::LDRQui:
699   case AArch64::LDRXui:
700   case AArch64::LDRWui:
701   case AArch64::LDRHHui:
702   case AArch64::LDRBBui:
703   case AArch64::STGOffset:
704   case AArch64::STZGOffset:
705   case AArch64::ST2GOffset:
706   case AArch64::STZ2GOffset:
707   case AArch64::STGPi:
708   // Unscaled instructions.
709   case AArch64::STURSi:
710   case AArch64::STURDi:
711   case AArch64::STURQi:
712   case AArch64::STURWi:
713   case AArch64::STURXi:
714   case AArch64::LDURSi:
715   case AArch64::LDURDi:
716   case AArch64::LDURQi:
717   case AArch64::LDURWi:
718   case AArch64::LDURXi:
719   // Paired instructions.
720   case AArch64::LDPSi:
721   case AArch64::LDPSWi:
722   case AArch64::LDPDi:
723   case AArch64::LDPQi:
724   case AArch64::LDPWi:
725   case AArch64::LDPXi:
726   case AArch64::STPSi:
727   case AArch64::STPDi:
728   case AArch64::STPQi:
729   case AArch64::STPWi:
730   case AArch64::STPXi:
731     // Make sure this is a reg+imm (as opposed to an address reloc).
732     if (!getLdStOffsetOp(MI).isImm())
733       return false;
734 
735     return true;
736   }
737 }
738 
739 MachineBasicBlock::iterator
740 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I,
741                                            MachineBasicBlock::iterator MergeMI,
742                                            const LdStPairFlags &Flags) {
743   assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) &&
744          "Expected promotable zero stores.");
745 
746   MachineBasicBlock::iterator E = I->getParent()->end();
747   MachineBasicBlock::iterator NextI = next_nodbg(I, E);
748   // If NextI is the second of the two instructions to be merged, we need
749   // to skip one further. Either way we merge will invalidate the iterator,
750   // and we don't need to scan the new instruction, as it's a pairwise
751   // instruction, which we're not considering for further action anyway.
752   if (NextI == MergeMI)
753     NextI = next_nodbg(NextI, E);
754 
755   unsigned Opc = I->getOpcode();
756   bool IsScaled = !TII->hasUnscaledLdStOffset(Opc);
757   int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I);
758 
759   bool MergeForward = Flags.getMergeForward();
760   // Insert our new paired instruction after whichever of the paired
761   // instructions MergeForward indicates.
762   MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
763   // Also based on MergeForward is from where we copy the base register operand
764   // so we get the flags compatible with the input code.
765   const MachineOperand &BaseRegOp =
766       MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I);
767 
768   // Which register is Rt and which is Rt2 depends on the offset order.
769   MachineInstr *RtMI;
770   if (getLdStOffsetOp(*I).getImm() ==
771       getLdStOffsetOp(*MergeMI).getImm() + OffsetStride)
772     RtMI = &*MergeMI;
773   else
774     RtMI = &*I;
775 
776   int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
777   // Change the scaled offset from small to large type.
778   if (IsScaled) {
779     assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge");
780     OffsetImm /= 2;
781   }
782 
783   // Construct the new instruction.
784   DebugLoc DL = I->getDebugLoc();
785   MachineBasicBlock *MBB = I->getParent();
786   MachineInstrBuilder MIB;
787   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
788             .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
789             .add(BaseRegOp)
790             .addImm(OffsetImm)
791             .cloneMergedMemRefs({&*I, &*MergeMI})
792             .setMIFlags(I->mergeFlagsWith(*MergeMI));
793   (void)MIB;
794 
795   LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n    ");
796   LLVM_DEBUG(I->print(dbgs()));
797   LLVM_DEBUG(dbgs() << "    ");
798   LLVM_DEBUG(MergeMI->print(dbgs()));
799   LLVM_DEBUG(dbgs() << "  with instruction:\n    ");
800   LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
801   LLVM_DEBUG(dbgs() << "\n");
802 
803   // Erase the old instructions.
804   I->eraseFromParent();
805   MergeMI->eraseFromParent();
806   return NextI;
807 }
808 
809 // Apply Fn to all instructions between MI and the beginning of the block, until
810 // a def for DefReg is reached. Returns true, iff Fn returns true for all
811 // visited instructions. Stop after visiting Limit iterations.
812 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg,
813                               const TargetRegisterInfo *TRI, unsigned Limit,
814                               std::function<bool(MachineInstr &, bool)> &Fn) {
815   auto MBB = MI.getParent();
816   for (MachineInstr &I :
817        instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) {
818     if (!Limit)
819       return false;
820     --Limit;
821 
822     bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) {
823       return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() &&
824              TRI->regsOverlap(MOP.getReg(), DefReg);
825     });
826     if (!Fn(I, isDef))
827       return false;
828     if (isDef)
829       break;
830   }
831   return true;
832 }
833 
834 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units,
835                                    const TargetRegisterInfo *TRI) {
836 
837   for (const MachineOperand &MOP : phys_regs_and_masks(MI))
838     if (MOP.isReg() && MOP.isKill())
839       Units.removeReg(MOP.getReg());
840 
841   for (const MachineOperand &MOP : phys_regs_and_masks(MI))
842     if (MOP.isReg() && !MOP.isKill())
843       Units.addReg(MOP.getReg());
844 }
845 
846 MachineBasicBlock::iterator
847 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
848                                       MachineBasicBlock::iterator Paired,
849                                       const LdStPairFlags &Flags) {
850   MachineBasicBlock::iterator E = I->getParent()->end();
851   MachineBasicBlock::iterator NextI = next_nodbg(I, E);
852   // If NextI is the second of the two instructions to be merged, we need
853   // to skip one further. Either way we merge will invalidate the iterator,
854   // and we don't need to scan the new instruction, as it's a pairwise
855   // instruction, which we're not considering for further action anyway.
856   if (NextI == Paired)
857     NextI = next_nodbg(NextI, E);
858 
859   int SExtIdx = Flags.getSExtIdx();
860   unsigned Opc =
861       SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
862   bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc);
863   int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1;
864 
865   bool MergeForward = Flags.getMergeForward();
866 
867   Optional<MCPhysReg> RenameReg = Flags.getRenameReg();
868   if (MergeForward && RenameReg) {
869     MCRegister RegToRename = getLdStRegOp(*I).getReg();
870     DefinedInBB.addReg(*RenameReg);
871 
872     // Return the sub/super register for RenameReg, matching the size of
873     // OriginalReg.
874     auto GetMatchingSubReg = [this,
875                               RenameReg](MCPhysReg OriginalReg) -> MCPhysReg {
876       for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg))
877         if (TRI->getMinimalPhysRegClass(OriginalReg) ==
878             TRI->getMinimalPhysRegClass(SubOrSuper))
879           return SubOrSuper;
880       llvm_unreachable("Should have found matching sub or super register!");
881     };
882 
883     std::function<bool(MachineInstr &, bool)> UpdateMIs =
884         [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) {
885           if (IsDef) {
886             bool SeenDef = false;
887             for (auto &MOP : MI.operands()) {
888               // Rename the first explicit definition and all implicit
889               // definitions matching RegToRename.
890               if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
891                   (!SeenDef || (MOP.isDef() && MOP.isImplicit())) &&
892                   TRI->regsOverlap(MOP.getReg(), RegToRename)) {
893                 assert((MOP.isImplicit() ||
894                         (MOP.isRenamable() && !MOP.isEarlyClobber())) &&
895                        "Need renamable operands");
896                 MOP.setReg(GetMatchingSubReg(MOP.getReg()));
897                 SeenDef = true;
898               }
899             }
900           } else {
901             for (auto &MOP : MI.operands()) {
902               if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
903                   TRI->regsOverlap(MOP.getReg(), RegToRename)) {
904                 assert((MOP.isImplicit() ||
905                         (MOP.isRenamable() && !MOP.isEarlyClobber())) &&
906                            "Need renamable operands");
907                 MOP.setReg(GetMatchingSubReg(MOP.getReg()));
908               }
909             }
910           }
911           LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n");
912           return true;
913         };
914     forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs);
915 
916 #if !defined(NDEBUG)
917     // Make sure the register used for renaming is not used between the paired
918     // instructions. That would trash the content before the new paired
919     // instruction.
920     for (auto &MI :
921          iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>(
922              std::next(I), std::next(Paired)))
923       assert(all_of(MI.operands(),
924                     [this, &RenameReg](const MachineOperand &MOP) {
925                       return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
926                              MOP.isUndef() ||
927                              !TRI->regsOverlap(MOP.getReg(), *RenameReg);
928                     }) &&
929              "Rename register used between paired instruction, trashing the "
930              "content");
931 #endif
932   }
933 
934   // Insert our new paired instruction after whichever of the paired
935   // instructions MergeForward indicates.
936   MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
937   // Also based on MergeForward is from where we copy the base register operand
938   // so we get the flags compatible with the input code.
939   const MachineOperand &BaseRegOp =
940       MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I);
941 
942   int Offset = getLdStOffsetOp(*I).getImm();
943   int PairedOffset = getLdStOffsetOp(*Paired).getImm();
944   bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode());
945   if (IsUnscaled != PairedIsUnscaled) {
946     // We're trying to pair instructions that differ in how they are scaled.  If
947     // I is scaled then scale the offset of Paired accordingly.  Otherwise, do
948     // the opposite (i.e., make Paired's offset unscaled).
949     int MemSize = TII->getMemScale(*Paired);
950     if (PairedIsUnscaled) {
951       // If the unscaled offset isn't a multiple of the MemSize, we can't
952       // pair the operations together.
953       assert(!(PairedOffset % TII->getMemScale(*Paired)) &&
954              "Offset should be a multiple of the stride!");
955       PairedOffset /= MemSize;
956     } else {
957       PairedOffset *= MemSize;
958     }
959   }
960 
961   // Which register is Rt and which is Rt2 depends on the offset order.
962   // However, for pre load/stores the Rt should be the one of the pre
963   // load/store.
964   MachineInstr *RtMI, *Rt2MI;
965   if (Offset == PairedOffset + OffsetStride &&
966       !AArch64InstrInfo::isPreLdSt(*I)) {
967     RtMI = &*Paired;
968     Rt2MI = &*I;
969     // Here we swapped the assumption made for SExtIdx.
970     // I.e., we turn ldp I, Paired into ldp Paired, I.
971     // Update the index accordingly.
972     if (SExtIdx != -1)
973       SExtIdx = (SExtIdx + 1) % 2;
974   } else {
975     RtMI = &*I;
976     Rt2MI = &*Paired;
977   }
978   int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
979   // Scale the immediate offset, if necessary.
980   if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) {
981     assert(!(OffsetImm % TII->getMemScale(*RtMI)) &&
982            "Unscaled offset cannot be scaled.");
983     OffsetImm /= TII->getMemScale(*RtMI);
984   }
985 
986   // Construct the new instruction.
987   MachineInstrBuilder MIB;
988   DebugLoc DL = I->getDebugLoc();
989   MachineBasicBlock *MBB = I->getParent();
990   MachineOperand RegOp0 = getLdStRegOp(*RtMI);
991   MachineOperand RegOp1 = getLdStRegOp(*Rt2MI);
992   // Kill flags may become invalid when moving stores for pairing.
993   if (RegOp0.isUse()) {
994     if (!MergeForward) {
995       // Clear kill flags on store if moving upwards. Example:
996       //   STRWui %w0, ...
997       //   USE %w1
998       //   STRWui kill %w1  ; need to clear kill flag when moving STRWui upwards
999       RegOp0.setIsKill(false);
1000       RegOp1.setIsKill(false);
1001     } else {
1002       // Clear kill flags of the first stores register. Example:
1003       //   STRWui %w1, ...
1004       //   USE kill %w1   ; need to clear kill flag when moving STRWui downwards
1005       //   STRW %w0
1006       Register Reg = getLdStRegOp(*I).getReg();
1007       for (MachineInstr &MI : make_range(std::next(I), Paired))
1008         MI.clearRegisterKills(Reg, TRI);
1009     }
1010   }
1011 
1012   unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc);
1013   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode));
1014 
1015   // Adds the pre-index operand for pre-indexed ld/st pairs.
1016   if (AArch64InstrInfo::isPreLdSt(*RtMI))
1017     MIB.addReg(BaseRegOp.getReg(), RegState::Define);
1018 
1019   MIB.add(RegOp0)
1020       .add(RegOp1)
1021       .add(BaseRegOp)
1022       .addImm(OffsetImm)
1023       .cloneMergedMemRefs({&*I, &*Paired})
1024       .setMIFlags(I->mergeFlagsWith(*Paired));
1025 
1026   (void)MIB;
1027 
1028   LLVM_DEBUG(
1029       dbgs() << "Creating pair load/store. Replacing instructions:\n    ");
1030   LLVM_DEBUG(I->print(dbgs()));
1031   LLVM_DEBUG(dbgs() << "    ");
1032   LLVM_DEBUG(Paired->print(dbgs()));
1033   LLVM_DEBUG(dbgs() << "  with instruction:\n    ");
1034   if (SExtIdx != -1) {
1035     // Generate the sign extension for the proper result of the ldp.
1036     // I.e., with X1, that would be:
1037     // %w1 = KILL %w1, implicit-def %x1
1038     // %x1 = SBFMXri killed %x1, 0, 31
1039     MachineOperand &DstMO = MIB->getOperand(SExtIdx);
1040     // Right now, DstMO has the extended register, since it comes from an
1041     // extended opcode.
1042     Register DstRegX = DstMO.getReg();
1043     // Get the W variant of that register.
1044     Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
1045     // Update the result of LDP to use the W instead of the X variant.
1046     DstMO.setReg(DstRegW);
1047     LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1048     LLVM_DEBUG(dbgs() << "\n");
1049     // Make the machine verifier happy by providing a definition for
1050     // the X register.
1051     // Insert this definition right after the generated LDP, i.e., before
1052     // InsertionPoint.
1053     MachineInstrBuilder MIBKill =
1054         BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
1055             .addReg(DstRegW)
1056             .addReg(DstRegX, RegState::Define);
1057     MIBKill->getOperand(2).setImplicit();
1058     // Create the sign extension.
1059     MachineInstrBuilder MIBSXTW =
1060         BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
1061             .addReg(DstRegX)
1062             .addImm(0)
1063             .addImm(31);
1064     (void)MIBSXTW;
1065     LLVM_DEBUG(dbgs() << "  Extend operand:\n    ");
1066     LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
1067   } else {
1068     LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1069   }
1070   LLVM_DEBUG(dbgs() << "\n");
1071 
1072   if (MergeForward)
1073     for (const MachineOperand &MOP : phys_regs_and_masks(*I))
1074       if (MOP.isReg() && MOP.isKill())
1075         DefinedInBB.addReg(MOP.getReg());
1076 
1077   // Erase the old instructions.
1078   I->eraseFromParent();
1079   Paired->eraseFromParent();
1080 
1081   return NextI;
1082 }
1083 
1084 MachineBasicBlock::iterator
1085 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
1086                                           MachineBasicBlock::iterator StoreI) {
1087   MachineBasicBlock::iterator NextI =
1088       next_nodbg(LoadI, LoadI->getParent()->end());
1089 
1090   int LoadSize = TII->getMemScale(*LoadI);
1091   int StoreSize = TII->getMemScale(*StoreI);
1092   Register LdRt = getLdStRegOp(*LoadI).getReg();
1093   const MachineOperand &StMO = getLdStRegOp(*StoreI);
1094   Register StRt = getLdStRegOp(*StoreI).getReg();
1095   bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
1096 
1097   assert((IsStoreXReg ||
1098           TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
1099          "Unexpected RegClass");
1100 
1101   MachineInstr *BitExtMI;
1102   if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
1103     // Remove the load, if the destination register of the loads is the same
1104     // register for stored value.
1105     if (StRt == LdRt && LoadSize == 8) {
1106       for (MachineInstr &MI : make_range(StoreI->getIterator(),
1107                                          LoadI->getIterator())) {
1108         if (MI.killsRegister(StRt, TRI)) {
1109           MI.clearRegisterKills(StRt, TRI);
1110           break;
1111         }
1112       }
1113       LLVM_DEBUG(dbgs() << "Remove load instruction:\n    ");
1114       LLVM_DEBUG(LoadI->print(dbgs()));
1115       LLVM_DEBUG(dbgs() << "\n");
1116       LoadI->eraseFromParent();
1117       return NextI;
1118     }
1119     // Replace the load with a mov if the load and store are in the same size.
1120     BitExtMI =
1121         BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1122                 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
1123             .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
1124             .add(StMO)
1125             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1126             .setMIFlags(LoadI->getFlags());
1127   } else {
1128     // FIXME: Currently we disable this transformation in big-endian targets as
1129     // performance and correctness are verified only in little-endian.
1130     if (!Subtarget->isLittleEndian())
1131       return NextI;
1132     bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI);
1133     assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) &&
1134            "Unsupported ld/st match");
1135     assert(LoadSize <= StoreSize && "Invalid load size");
1136     int UnscaledLdOffset = IsUnscaled
1137                                ? getLdStOffsetOp(*LoadI).getImm()
1138                                : getLdStOffsetOp(*LoadI).getImm() * LoadSize;
1139     int UnscaledStOffset = IsUnscaled
1140                                ? getLdStOffsetOp(*StoreI).getImm()
1141                                : getLdStOffsetOp(*StoreI).getImm() * StoreSize;
1142     int Width = LoadSize * 8;
1143     Register DestReg =
1144         IsStoreXReg ? Register(TRI->getMatchingSuperReg(
1145                           LdRt, AArch64::sub_32, &AArch64::GPR64RegClass))
1146                     : LdRt;
1147 
1148     assert((UnscaledLdOffset >= UnscaledStOffset &&
1149             (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
1150            "Invalid offset");
1151 
1152     int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
1153     int Imms = Immr + Width - 1;
1154     if (UnscaledLdOffset == UnscaledStOffset) {
1155       uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
1156                                 | ((Immr) << 6)               // immr
1157                                 | ((Imms) << 0)               // imms
1158           ;
1159 
1160       BitExtMI =
1161           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1162                   TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
1163                   DestReg)
1164               .add(StMO)
1165               .addImm(AndMaskEncoded)
1166               .setMIFlags(LoadI->getFlags());
1167     } else {
1168       BitExtMI =
1169           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1170                   TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
1171                   DestReg)
1172               .add(StMO)
1173               .addImm(Immr)
1174               .addImm(Imms)
1175               .setMIFlags(LoadI->getFlags());
1176     }
1177   }
1178 
1179   // Clear kill flags between store and load.
1180   for (MachineInstr &MI : make_range(StoreI->getIterator(),
1181                                      BitExtMI->getIterator()))
1182     if (MI.killsRegister(StRt, TRI)) {
1183       MI.clearRegisterKills(StRt, TRI);
1184       break;
1185     }
1186 
1187   LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n    ");
1188   LLVM_DEBUG(StoreI->print(dbgs()));
1189   LLVM_DEBUG(dbgs() << "    ");
1190   LLVM_DEBUG(LoadI->print(dbgs()));
1191   LLVM_DEBUG(dbgs() << "  with instructions:\n    ");
1192   LLVM_DEBUG(StoreI->print(dbgs()));
1193   LLVM_DEBUG(dbgs() << "    ");
1194   LLVM_DEBUG((BitExtMI)->print(dbgs()));
1195   LLVM_DEBUG(dbgs() << "\n");
1196 
1197   // Erase the old instructions.
1198   LoadI->eraseFromParent();
1199   return NextI;
1200 }
1201 
1202 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
1203   // Convert the byte-offset used by unscaled into an "element" offset used
1204   // by the scaled pair load/store instructions.
1205   if (IsUnscaled) {
1206     // If the byte-offset isn't a multiple of the stride, there's no point
1207     // trying to match it.
1208     if (Offset % OffsetStride)
1209       return false;
1210     Offset /= OffsetStride;
1211   }
1212   return Offset <= 63 && Offset >= -64;
1213 }
1214 
1215 // Do alignment, specialized to power of 2 and for signed ints,
1216 // avoiding having to do a C-style cast from uint_64t to int when
1217 // using alignTo from include/llvm/Support/MathExtras.h.
1218 // FIXME: Move this function to include/MathExtras.h?
1219 static int alignTo(int Num, int PowOf2) {
1220   return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
1221 }
1222 
1223 static bool mayAlias(MachineInstr &MIa,
1224                      SmallVectorImpl<MachineInstr *> &MemInsns,
1225                      AliasAnalysis *AA) {
1226   for (MachineInstr *MIb : MemInsns)
1227     if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false))
1228       return true;
1229 
1230   return false;
1231 }
1232 
1233 bool AArch64LoadStoreOpt::findMatchingStore(
1234     MachineBasicBlock::iterator I, unsigned Limit,
1235     MachineBasicBlock::iterator &StoreI) {
1236   MachineBasicBlock::iterator B = I->getParent()->begin();
1237   MachineBasicBlock::iterator MBBI = I;
1238   MachineInstr &LoadMI = *I;
1239   Register BaseReg = getLdStBaseOp(LoadMI).getReg();
1240 
1241   // If the load is the first instruction in the block, there's obviously
1242   // not any matching store.
1243   if (MBBI == B)
1244     return false;
1245 
1246   // Track which register units have been modified and used between the first
1247   // insn and the second insn.
1248   ModifiedRegUnits.clear();
1249   UsedRegUnits.clear();
1250 
1251   unsigned Count = 0;
1252   do {
1253     MBBI = prev_nodbg(MBBI, B);
1254     MachineInstr &MI = *MBBI;
1255 
1256     // Don't count transient instructions towards the search limit since there
1257     // may be different numbers of them if e.g. debug information is present.
1258     if (!MI.isTransient())
1259       ++Count;
1260 
1261     // If the load instruction reads directly from the address to which the
1262     // store instruction writes and the stored value is not modified, we can
1263     // promote the load. Since we do not handle stores with pre-/post-index,
1264     // it's unnecessary to check if BaseReg is modified by the store itself.
1265     // Also we can't handle stores without an immediate offset operand,
1266     // while the operand might be the address for a global variable.
1267     if (MI.mayStore() && isMatchingStore(LoadMI, MI) &&
1268         BaseReg == getLdStBaseOp(MI).getReg() && getLdStOffsetOp(MI).isImm() &&
1269         isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
1270         ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) {
1271       StoreI = MBBI;
1272       return true;
1273     }
1274 
1275     if (MI.isCall())
1276       return false;
1277 
1278     // Update modified / uses register units.
1279     LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
1280 
1281     // Otherwise, if the base register is modified, we have no match, so
1282     // return early.
1283     if (!ModifiedRegUnits.available(BaseReg))
1284       return false;
1285 
1286     // If we encounter a store aliased with the load, return early.
1287     if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false))
1288       return false;
1289   } while (MBBI != B && Count < Limit);
1290   return false;
1291 }
1292 
1293 // Returns true if FirstMI and MI are candidates for merging or pairing.
1294 // Otherwise, returns false.
1295 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI,
1296                                        LdStPairFlags &Flags,
1297                                        const AArch64InstrInfo *TII) {
1298   // If this is volatile or if pairing is suppressed, not a candidate.
1299   if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
1300     return false;
1301 
1302   // We should have already checked FirstMI for pair suppression and volatility.
1303   assert(!FirstMI.hasOrderedMemoryRef() &&
1304          !TII->isLdStPairSuppressed(FirstMI) &&
1305          "FirstMI shouldn't get here if either of these checks are true.");
1306 
1307   unsigned OpcA = FirstMI.getOpcode();
1308   unsigned OpcB = MI.getOpcode();
1309 
1310   // Opcodes match: If the opcodes are pre ld/st there is nothing more to check.
1311   if (OpcA == OpcB)
1312     return !AArch64InstrInfo::isPreLdSt(FirstMI);
1313 
1314   // Try to match a sign-extended load/store with a zero-extended load/store.
1315   bool IsValidLdStrOpc, PairIsValidLdStrOpc;
1316   unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
1317   assert(IsValidLdStrOpc &&
1318          "Given Opc should be a Load or Store with an immediate");
1319   // OpcA will be the first instruction in the pair.
1320   if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
1321     Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0);
1322     return true;
1323   }
1324 
1325   // If the second instruction isn't even a mergable/pairable load/store, bail
1326   // out.
1327   if (!PairIsValidLdStrOpc)
1328     return false;
1329 
1330   // FIXME: We don't support merging narrow stores with mixed scaled/unscaled
1331   // offsets.
1332   if (isNarrowStore(OpcA) || isNarrowStore(OpcB))
1333     return false;
1334 
1335   // The STR<S,D,Q,W,X>pre - STR<S,D,Q,W,X>ui and
1336   // LDR<S,D,Q,W,X>pre-LDR<S,D,Q,W,X>ui
1337   // are candidate pairs that can be merged.
1338   if (isPreLdStPairCandidate(FirstMI, MI))
1339     return true;
1340 
1341   // Try to match an unscaled load/store with a scaled load/store.
1342   return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) &&
1343          getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB);
1344 
1345   // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
1346 }
1347 
1348 static bool
1349 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween,
1350                  SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
1351                  const TargetRegisterInfo *TRI) {
1352   if (!FirstMI.mayStore())
1353     return false;
1354 
1355   // Check if we can find an unused register which we can use to rename
1356   // the register used by the first load/store.
1357   auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg());
1358   MachineFunction &MF = *FirstMI.getParent()->getParent();
1359   if (!RegClass || !MF.getRegInfo().tracksLiveness())
1360     return false;
1361 
1362   auto RegToRename = getLdStRegOp(FirstMI).getReg();
1363   // For now, we only rename if the store operand gets killed at the store.
1364   if (!getLdStRegOp(FirstMI).isKill() &&
1365       !any_of(FirstMI.operands(),
1366               [TRI, RegToRename](const MachineOperand &MOP) {
1367                 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
1368                        MOP.isImplicit() && MOP.isKill() &&
1369                        TRI->regsOverlap(RegToRename, MOP.getReg());
1370               })) {
1371     LLVM_DEBUG(dbgs() << "  Operand not killed at " << FirstMI << "\n");
1372     return false;
1373   }
1374   auto canRenameMOP = [TRI](const MachineOperand &MOP) {
1375     if (MOP.isReg()) {
1376       auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg());
1377       // Renaming registers with multiple disjunct sub-registers (e.g. the
1378       // result of a LD3) means that all sub-registers are renamed, potentially
1379       // impacting other instructions we did not check. Bail out.
1380       // Note that this relies on the structure of the AArch64 register file. In
1381       // particular, a subregister cannot be written without overwriting the
1382       // whole register.
1383       if (RegClass->HasDisjunctSubRegs) {
1384         LLVM_DEBUG(
1385             dbgs()
1386             << "  Cannot rename operands with multiple disjunct subregisters ("
1387             << MOP << ")\n");
1388         return false;
1389       }
1390     }
1391     return MOP.isImplicit() ||
1392            (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied());
1393   };
1394 
1395   bool FoundDef = false;
1396 
1397   // For each instruction between FirstMI and the previous def for RegToRename,
1398   // we
1399   // * check if we can rename RegToRename in this instruction
1400   // * collect the registers used and required register classes for RegToRename.
1401   std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI,
1402                                                            bool IsDef) {
1403     LLVM_DEBUG(dbgs() << "Checking " << MI << "\n");
1404     // Currently we do not try to rename across frame-setup instructions.
1405     if (MI.getFlag(MachineInstr::FrameSetup)) {
1406       LLVM_DEBUG(dbgs() << "  Cannot rename framesetup instructions currently ("
1407                         << MI << ")\n");
1408       return false;
1409     }
1410 
1411     UsedInBetween.accumulate(MI);
1412 
1413     // For a definition, check that we can rename the definition and exit the
1414     // loop.
1415     FoundDef = IsDef;
1416 
1417     // For defs, check if we can rename the first def of RegToRename.
1418     if (FoundDef) {
1419       // For some pseudo instructions, we might not generate code in the end
1420       // (e.g. KILL) and we would end up without a correct def for the rename
1421       // register.
1422       // TODO: This might be overly conservative and we could handle those cases
1423       // in multiple ways:
1424       //       1. Insert an extra copy, to materialize the def.
1425       //       2. Skip pseudo-defs until we find an non-pseudo def.
1426       if (MI.isPseudo()) {
1427         LLVM_DEBUG(dbgs() << "  Cannot rename pseudo instruction " << MI
1428                           << "\n");
1429         return false;
1430       }
1431 
1432       for (auto &MOP : MI.operands()) {
1433         if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() ||
1434             !TRI->regsOverlap(MOP.getReg(), RegToRename))
1435           continue;
1436         if (!canRenameMOP(MOP)) {
1437           LLVM_DEBUG(dbgs()
1438                      << "  Cannot rename " << MOP << " in " << MI << "\n");
1439           return false;
1440         }
1441         RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1442       }
1443       return true;
1444     } else {
1445       for (auto &MOP : MI.operands()) {
1446         if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
1447             !TRI->regsOverlap(MOP.getReg(), RegToRename))
1448           continue;
1449 
1450         if (!canRenameMOP(MOP)) {
1451           LLVM_DEBUG(dbgs()
1452                      << "  Cannot rename " << MOP << " in " << MI << "\n");
1453           return false;
1454         }
1455         RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1456       }
1457     }
1458     return true;
1459   };
1460 
1461   if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs))
1462     return false;
1463 
1464   if (!FoundDef) {
1465     LLVM_DEBUG(dbgs() << "  Did not find definition for register in BB\n");
1466     return false;
1467   }
1468   return true;
1469 }
1470 
1471 // Check if we can find a physical register for renaming. This register must:
1472 // * not be defined up to FirstMI (checking DefinedInBB)
1473 // * not used between the MI and the defining instruction of the register to
1474 //   rename (checked using UsedInBetween).
1475 // * is available in all used register classes (checked using RequiredClasses).
1476 static Optional<MCPhysReg> tryToFindRegisterToRename(
1477     MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB,
1478     LiveRegUnits &UsedInBetween,
1479     SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
1480     const TargetRegisterInfo *TRI) {
1481   auto &MF = *FirstMI.getParent()->getParent();
1482   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1483 
1484   // Checks if any sub- or super-register of PR is callee saved.
1485   auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) {
1486     return any_of(TRI->sub_and_superregs_inclusive(PR),
1487                   [&MF, TRI](MCPhysReg SubOrSuper) {
1488                     return TRI->isCalleeSavedPhysReg(SubOrSuper, MF);
1489                   });
1490   };
1491 
1492   // Check if PR or one of its sub- or super-registers can be used for all
1493   // required register classes.
1494   auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) {
1495     return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) {
1496       return any_of(TRI->sub_and_superregs_inclusive(PR),
1497                     [C, TRI](MCPhysReg SubOrSuper) {
1498                       return C == TRI->getMinimalPhysRegClass(SubOrSuper);
1499                     });
1500     });
1501   };
1502 
1503   auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg());
1504   for (const MCPhysReg &PR : *RegClass) {
1505     if (DefinedInBB.available(PR) && UsedInBetween.available(PR) &&
1506         !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) &&
1507         CanBeUsedForAllClasses(PR)) {
1508       DefinedInBB.addReg(PR);
1509       LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI)
1510                         << "\n");
1511       return {PR};
1512     }
1513   }
1514   LLVM_DEBUG(dbgs() << "No rename register found from "
1515                     << TRI->getRegClassName(RegClass) << "\n");
1516   return None;
1517 }
1518 
1519 /// Scan the instructions looking for a load/store that can be combined with the
1520 /// current instruction into a wider equivalent or a load/store pair.
1521 MachineBasicBlock::iterator
1522 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
1523                                       LdStPairFlags &Flags, unsigned Limit,
1524                                       bool FindNarrowMerge) {
1525   MachineBasicBlock::iterator E = I->getParent()->end();
1526   MachineBasicBlock::iterator MBBI = I;
1527   MachineBasicBlock::iterator MBBIWithRenameReg;
1528   MachineInstr &FirstMI = *I;
1529   MBBI = next_nodbg(MBBI, E);
1530 
1531   bool MayLoad = FirstMI.mayLoad();
1532   bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI);
1533   Register Reg = getLdStRegOp(FirstMI).getReg();
1534   Register BaseReg = getLdStBaseOp(FirstMI).getReg();
1535   int Offset = getLdStOffsetOp(FirstMI).getImm();
1536   int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1;
1537   bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
1538 
1539   Optional<bool> MaybeCanRename = None;
1540   if (!EnableRenaming)
1541     MaybeCanRename = {false};
1542 
1543   SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses;
1544   LiveRegUnits UsedInBetween;
1545   UsedInBetween.init(*TRI);
1546 
1547   Flags.clearRenameReg();
1548 
1549   // Track which register units have been modified and used between the first
1550   // insn (inclusive) and the second insn.
1551   ModifiedRegUnits.clear();
1552   UsedRegUnits.clear();
1553 
1554   // Remember any instructions that read/write memory between FirstMI and MI.
1555   SmallVector<MachineInstr *, 4> MemInsns;
1556 
1557   for (unsigned Count = 0; MBBI != E && Count < Limit;
1558        MBBI = next_nodbg(MBBI, E)) {
1559     MachineInstr &MI = *MBBI;
1560 
1561     UsedInBetween.accumulate(MI);
1562 
1563     // Don't count transient instructions towards the search limit since there
1564     // may be different numbers of them if e.g. debug information is present.
1565     if (!MI.isTransient())
1566       ++Count;
1567 
1568     Flags.setSExtIdx(-1);
1569     if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) &&
1570         getLdStOffsetOp(MI).isImm()) {
1571       assert(MI.mayLoadOrStore() && "Expected memory operation.");
1572       // If we've found another instruction with the same opcode, check to see
1573       // if the base and offset are compatible with our starting instruction.
1574       // These instructions all have scaled immediate operands, so we just
1575       // check for +1/-1. Make sure to check the new instruction offset is
1576       // actually an immediate and not a symbolic reference destined for
1577       // a relocation.
1578       Register MIBaseReg = getLdStBaseOp(MI).getReg();
1579       int MIOffset = getLdStOffsetOp(MI).getImm();
1580       bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI);
1581       if (IsUnscaled != MIIsUnscaled) {
1582         // We're trying to pair instructions that differ in how they are scaled.
1583         // If FirstMI is scaled then scale the offset of MI accordingly.
1584         // Otherwise, do the opposite (i.e., make MI's offset unscaled).
1585         int MemSize = TII->getMemScale(MI);
1586         if (MIIsUnscaled) {
1587           // If the unscaled offset isn't a multiple of the MemSize, we can't
1588           // pair the operations together: bail and keep looking.
1589           if (MIOffset % MemSize) {
1590             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1591                                               UsedRegUnits, TRI);
1592             MemInsns.push_back(&MI);
1593             continue;
1594           }
1595           MIOffset /= MemSize;
1596         } else {
1597           MIOffset *= MemSize;
1598         }
1599       }
1600 
1601       bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI);
1602 
1603       if (BaseReg == MIBaseReg) {
1604         // If the offset of the second ld/st is not equal to the size of the
1605         // destination register it can’t be paired with a pre-index ld/st
1606         // pair. Additionally if the base reg is used or modified the operations
1607         // can't be paired: bail and keep looking.
1608         if (IsPreLdSt) {
1609           bool IsOutOfBounds = MIOffset != TII->getMemScale(MI);
1610           bool IsBaseRegUsed =
1611               !UsedRegUnits.available(getLdStBaseOp(MI).getReg());
1612           bool IsBaseRegModified =
1613               !ModifiedRegUnits.available(getLdStBaseOp(MI).getReg());
1614           // If the stored value and the address of the second instruction is
1615           // the same, it needs to be using the updated register and therefore
1616           // it must not be folded.
1617           bool IsMIRegTheSame = TRI->regsOverlap(getLdStRegOp(MI).getReg(),
1618                                                  getLdStBaseOp(MI).getReg());
1619           if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified ||
1620               IsMIRegTheSame) {
1621             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1622                                               UsedRegUnits, TRI);
1623             MemInsns.push_back(&MI);
1624             continue;
1625           }
1626         } else {
1627           if ((Offset != MIOffset + OffsetStride) &&
1628               (Offset + OffsetStride != MIOffset)) {
1629             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1630                                               UsedRegUnits, TRI);
1631             MemInsns.push_back(&MI);
1632             continue;
1633           }
1634         }
1635 
1636         int MinOffset = Offset < MIOffset ? Offset : MIOffset;
1637         if (FindNarrowMerge) {
1638           // If the alignment requirements of the scaled wide load/store
1639           // instruction can't express the offset of the scaled narrow input,
1640           // bail and keep looking. For promotable zero stores, allow only when
1641           // the stored value is the same (i.e., WZR).
1642           if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
1643               (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
1644             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1645                                               UsedRegUnits, TRI);
1646             MemInsns.push_back(&MI);
1647             continue;
1648           }
1649         } else {
1650           // Pairwise instructions have a 7-bit signed offset field. Single
1651           // insns have a 12-bit unsigned offset field.  If the resultant
1652           // immediate offset of merging these instructions is out of range for
1653           // a pairwise instruction, bail and keep looking.
1654           if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
1655             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1656                                               UsedRegUnits, TRI);
1657             MemInsns.push_back(&MI);
1658             continue;
1659           }
1660           // If the alignment requirements of the paired (scaled) instruction
1661           // can't express the offset of the unscaled input, bail and keep
1662           // looking.
1663           if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
1664             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1665                                               UsedRegUnits, TRI);
1666             MemInsns.push_back(&MI);
1667             continue;
1668           }
1669         }
1670         // If the destination register of one load is the same register or a
1671         // sub/super register of the other load, bail and keep looking. A
1672         // load-pair instruction with both destination registers the same is
1673         // UNPREDICTABLE and will result in an exception.
1674         if (MayLoad &&
1675             TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) {
1676           LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
1677                                             TRI);
1678           MemInsns.push_back(&MI);
1679           continue;
1680         }
1681 
1682         // If the BaseReg has been modified, then we cannot do the optimization.
1683         // For example, in the following pattern
1684         //   ldr x1 [x2]
1685         //   ldr x2 [x3]
1686         //   ldr x4 [x2, #8],
1687         // the first and third ldr cannot be converted to ldp x1, x4, [x2]
1688         if (!ModifiedRegUnits.available(BaseReg))
1689           return E;
1690 
1691         // If the Rt of the second instruction was not modified or used between
1692         // the two instructions and none of the instructions between the second
1693         // and first alias with the second, we can combine the second into the
1694         // first.
1695         if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) &&
1696             !(MI.mayLoad() &&
1697               !UsedRegUnits.available(getLdStRegOp(MI).getReg())) &&
1698             !mayAlias(MI, MemInsns, AA)) {
1699 
1700           Flags.setMergeForward(false);
1701           Flags.clearRenameReg();
1702           return MBBI;
1703         }
1704 
1705         // Likewise, if the Rt of the first instruction is not modified or used
1706         // between the two instructions and none of the instructions between the
1707         // first and the second alias with the first, we can combine the first
1708         // into the second.
1709         if (!(MayLoad &&
1710               !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) &&
1711             !mayAlias(FirstMI, MemInsns, AA)) {
1712 
1713           if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) {
1714             Flags.setMergeForward(true);
1715             Flags.clearRenameReg();
1716             return MBBI;
1717           }
1718 
1719           if (DebugCounter::shouldExecute(RegRenamingCounter)) {
1720             if (!MaybeCanRename)
1721               MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween,
1722                                                  RequiredClasses, TRI)};
1723 
1724             if (*MaybeCanRename) {
1725               Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename(
1726                   FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses,
1727                   TRI);
1728               if (MaybeRenameReg) {
1729                 Flags.setRenameReg(*MaybeRenameReg);
1730                 Flags.setMergeForward(true);
1731                 MBBIWithRenameReg = MBBI;
1732               }
1733             }
1734           }
1735         }
1736         // Unable to combine these instructions due to interference in between.
1737         // Keep looking.
1738       }
1739     }
1740 
1741     if (Flags.getRenameReg())
1742       return MBBIWithRenameReg;
1743 
1744     // If the instruction wasn't a matching load or store.  Stop searching if we
1745     // encounter a call instruction that might modify memory.
1746     if (MI.isCall())
1747       return E;
1748 
1749     // Update modified / uses register units.
1750     LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
1751 
1752     // Otherwise, if the base register is modified, we have no match, so
1753     // return early.
1754     if (!ModifiedRegUnits.available(BaseReg))
1755       return E;
1756 
1757     // Update list of instructions that read/write memory.
1758     if (MI.mayLoadOrStore())
1759       MemInsns.push_back(&MI);
1760   }
1761   return E;
1762 }
1763 
1764 MachineBasicBlock::iterator
1765 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I,
1766                                      MachineBasicBlock::iterator Update,
1767                                      bool IsPreIdx) {
1768   assert((Update->getOpcode() == AArch64::ADDXri ||
1769           Update->getOpcode() == AArch64::SUBXri) &&
1770          "Unexpected base register update instruction to merge!");
1771   MachineBasicBlock::iterator E = I->getParent()->end();
1772   MachineBasicBlock::iterator NextI = next_nodbg(I, E);
1773   // Return the instruction following the merged instruction, which is
1774   // the instruction following our unmerged load. Unless that's the add/sub
1775   // instruction we're merging, in which case it's the one after that.
1776   if (NextI == Update)
1777     NextI = next_nodbg(NextI, E);
1778 
1779   int Value = Update->getOperand(2).getImm();
1780   assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
1781          "Can't merge 1 << 12 offset into pre-/post-indexed load / store");
1782   if (Update->getOpcode() == AArch64::SUBXri)
1783     Value = -Value;
1784 
1785   unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
1786                              : getPostIndexedOpcode(I->getOpcode());
1787   MachineInstrBuilder MIB;
1788   int Scale, MinOffset, MaxOffset;
1789   getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset);
1790   if (!isPairedLdSt(*I)) {
1791     // Non-paired instruction.
1792     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
1793               .add(getLdStRegOp(*Update))
1794               .add(getLdStRegOp(*I))
1795               .add(getLdStBaseOp(*I))
1796               .addImm(Value / Scale)
1797               .setMemRefs(I->memoperands())
1798               .setMIFlags(I->mergeFlagsWith(*Update));
1799   } else {
1800     // Paired instruction.
1801     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
1802               .add(getLdStRegOp(*Update))
1803               .add(getLdStRegOp(*I, 0))
1804               .add(getLdStRegOp(*I, 1))
1805               .add(getLdStBaseOp(*I))
1806               .addImm(Value / Scale)
1807               .setMemRefs(I->memoperands())
1808               .setMIFlags(I->mergeFlagsWith(*Update));
1809   }
1810   (void)MIB;
1811 
1812   if (IsPreIdx) {
1813     ++NumPreFolded;
1814     LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store.");
1815   } else {
1816     ++NumPostFolded;
1817     LLVM_DEBUG(dbgs() << "Creating post-indexed load/store.");
1818   }
1819   LLVM_DEBUG(dbgs() << "    Replacing instructions:\n    ");
1820   LLVM_DEBUG(I->print(dbgs()));
1821   LLVM_DEBUG(dbgs() << "    ");
1822   LLVM_DEBUG(Update->print(dbgs()));
1823   LLVM_DEBUG(dbgs() << "  with instruction:\n    ");
1824   LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1825   LLVM_DEBUG(dbgs() << "\n");
1826 
1827   // Erase the old instructions for the block.
1828   I->eraseFromParent();
1829   Update->eraseFromParent();
1830 
1831   return NextI;
1832 }
1833 
1834 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
1835                                                MachineInstr &MI,
1836                                                unsigned BaseReg, int Offset) {
1837   switch (MI.getOpcode()) {
1838   default:
1839     break;
1840   case AArch64::SUBXri:
1841   case AArch64::ADDXri:
1842     // Make sure it's a vanilla immediate operand, not a relocation or
1843     // anything else we can't handle.
1844     if (!MI.getOperand(2).isImm())
1845       break;
1846     // Watch out for 1 << 12 shifted value.
1847     if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm()))
1848       break;
1849 
1850     // The update instruction source and destination register must be the
1851     // same as the load/store base register.
1852     if (MI.getOperand(0).getReg() != BaseReg ||
1853         MI.getOperand(1).getReg() != BaseReg)
1854       break;
1855 
1856     int UpdateOffset = MI.getOperand(2).getImm();
1857     if (MI.getOpcode() == AArch64::SUBXri)
1858       UpdateOffset = -UpdateOffset;
1859 
1860     // The immediate must be a multiple of the scaling factor of the pre/post
1861     // indexed instruction.
1862     int Scale, MinOffset, MaxOffset;
1863     getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset);
1864     if (UpdateOffset % Scale != 0)
1865       break;
1866 
1867     // Scaled offset must fit in the instruction immediate.
1868     int ScaledOffset = UpdateOffset / Scale;
1869     if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset)
1870       break;
1871 
1872     // If we have a non-zero Offset, we check that it matches the amount
1873     // we're adding to the register.
1874     if (!Offset || Offset == UpdateOffset)
1875       return true;
1876     break;
1877   }
1878   return false;
1879 }
1880 
1881 static bool needsWinCFI(const MachineFunction *MF) {
1882   return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() &&
1883          MF->getFunction().needsUnwindTableEntry();
1884 }
1885 
1886 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
1887     MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
1888   MachineBasicBlock::iterator E = I->getParent()->end();
1889   MachineInstr &MemMI = *I;
1890   MachineBasicBlock::iterator MBBI = I;
1891 
1892   Register BaseReg = getLdStBaseOp(MemMI).getReg();
1893   int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI);
1894 
1895   // Scan forward looking for post-index opportunities.  Updating instructions
1896   // can't be formed if the memory instruction doesn't have the offset we're
1897   // looking for.
1898   if (MIUnscaledOffset != UnscaledOffset)
1899     return E;
1900 
1901   // If the base register overlaps a source/destination register, we can't
1902   // merge the update. This does not apply to tag store instructions which
1903   // ignore the address part of the source register.
1904   // This does not apply to STGPi as well, which does not have unpredictable
1905   // behavior in this case unlike normal stores, and always performs writeback
1906   // after reading the source register value.
1907   if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) {
1908     bool IsPairedInsn = isPairedLdSt(MemMI);
1909     for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
1910       Register DestReg = getLdStRegOp(MemMI, i).getReg();
1911       if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
1912         return E;
1913     }
1914   }
1915 
1916   // Track which register units have been modified and used between the first
1917   // insn (inclusive) and the second insn.
1918   ModifiedRegUnits.clear();
1919   UsedRegUnits.clear();
1920   MBBI = next_nodbg(MBBI, E);
1921 
1922   // We can't post-increment the stack pointer if any instruction between
1923   // the memory access (I) and the increment (MBBI) can access the memory
1924   // region defined by [SP, MBBI].
1925   const bool BaseRegSP = BaseReg == AArch64::SP;
1926   if (BaseRegSP && needsWinCFI(I->getMF())) {
1927     // FIXME: For now, we always block the optimization over SP in windows
1928     // targets as it requires to adjust the unwind/debug info, messing up
1929     // the unwind info can actually cause a miscompile.
1930     return E;
1931   }
1932 
1933   for (unsigned Count = 0; MBBI != E && Count < Limit;
1934        MBBI = next_nodbg(MBBI, E)) {
1935     MachineInstr &MI = *MBBI;
1936 
1937     // Don't count transient instructions towards the search limit since there
1938     // may be different numbers of them if e.g. debug information is present.
1939     if (!MI.isTransient())
1940       ++Count;
1941 
1942     // If we found a match, return it.
1943     if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset))
1944       return MBBI;
1945 
1946     // Update the status of what the instruction clobbered and used.
1947     LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
1948 
1949     // Otherwise, if the base register is used or modified, we have no match, so
1950     // return early.
1951     // If we are optimizing SP, do not allow instructions that may load or store
1952     // in between the load and the optimized value update.
1953     if (!ModifiedRegUnits.available(BaseReg) ||
1954         !UsedRegUnits.available(BaseReg) ||
1955         (BaseRegSP && MBBI->mayLoadOrStore()))
1956       return E;
1957   }
1958   return E;
1959 }
1960 
1961 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
1962     MachineBasicBlock::iterator I, unsigned Limit) {
1963   MachineBasicBlock::iterator B = I->getParent()->begin();
1964   MachineBasicBlock::iterator E = I->getParent()->end();
1965   MachineInstr &MemMI = *I;
1966   MachineBasicBlock::iterator MBBI = I;
1967   MachineFunction &MF = *MemMI.getMF();
1968 
1969   Register BaseReg = getLdStBaseOp(MemMI).getReg();
1970   int Offset = getLdStOffsetOp(MemMI).getImm();
1971 
1972   // If the load/store is the first instruction in the block, there's obviously
1973   // not any matching update. Ditto if the memory offset isn't zero.
1974   if (MBBI == B || Offset != 0)
1975     return E;
1976   // If the base register overlaps a destination register, we can't
1977   // merge the update.
1978   if (!isTagStore(MemMI)) {
1979     bool IsPairedInsn = isPairedLdSt(MemMI);
1980     for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
1981       Register DestReg = getLdStRegOp(MemMI, i).getReg();
1982       if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
1983         return E;
1984     }
1985   }
1986 
1987   const bool BaseRegSP = BaseReg == AArch64::SP;
1988   if (BaseRegSP && needsWinCFI(I->getMF())) {
1989     // FIXME: For now, we always block the optimization over SP in windows
1990     // targets as it requires to adjust the unwind/debug info, messing up
1991     // the unwind info can actually cause a miscompile.
1992     return E;
1993   }
1994 
1995   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1996   unsigned RedZoneSize =
1997       Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
1998 
1999   // Track which register units have been modified and used between the first
2000   // insn (inclusive) and the second insn.
2001   ModifiedRegUnits.clear();
2002   UsedRegUnits.clear();
2003   unsigned Count = 0;
2004   bool MemAcessBeforeSPPreInc = false;
2005   do {
2006     MBBI = prev_nodbg(MBBI, B);
2007     MachineInstr &MI = *MBBI;
2008 
2009     // Don't count transient instructions towards the search limit since there
2010     // may be different numbers of them if e.g. debug information is present.
2011     if (!MI.isTransient())
2012       ++Count;
2013 
2014     // If we found a match, return it.
2015     if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) {
2016       // Check that the update value is within our red zone limit (which may be
2017       // zero).
2018       if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize)
2019         return E;
2020       return MBBI;
2021     }
2022 
2023     // Update the status of what the instruction clobbered and used.
2024     LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2025 
2026     // Otherwise, if the base register is used or modified, we have no match, so
2027     // return early.
2028     if (!ModifiedRegUnits.available(BaseReg) ||
2029         !UsedRegUnits.available(BaseReg))
2030       return E;
2031     // Keep track if we have a memory access before an SP pre-increment, in this
2032     // case we need to validate later that the update amount respects the red
2033     // zone.
2034     if (BaseRegSP && MBBI->mayLoadOrStore())
2035       MemAcessBeforeSPPreInc = true;
2036   } while (MBBI != B && Count < Limit);
2037   return E;
2038 }
2039 
2040 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
2041     MachineBasicBlock::iterator &MBBI) {
2042   MachineInstr &MI = *MBBI;
2043   // If this is a volatile load, don't mess with it.
2044   if (MI.hasOrderedMemoryRef())
2045     return false;
2046 
2047   // Make sure this is a reg+imm.
2048   // FIXME: It is possible to extend it to handle reg+reg cases.
2049   if (!getLdStOffsetOp(MI).isImm())
2050     return false;
2051 
2052   // Look backward up to LdStLimit instructions.
2053   MachineBasicBlock::iterator StoreI;
2054   if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
2055     ++NumLoadsFromStoresPromoted;
2056     // Promote the load. Keeping the iterator straight is a
2057     // pain, so we let the merge routine tell us what the next instruction
2058     // is after it's done mucking about.
2059     MBBI = promoteLoadFromStore(MBBI, StoreI);
2060     return true;
2061   }
2062   return false;
2063 }
2064 
2065 // Merge adjacent zero stores into a wider store.
2066 bool AArch64LoadStoreOpt::tryToMergeZeroStInst(
2067     MachineBasicBlock::iterator &MBBI) {
2068   assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store.");
2069   MachineInstr &MI = *MBBI;
2070   MachineBasicBlock::iterator E = MI.getParent()->end();
2071 
2072   if (!TII->isCandidateToMergeOrPair(MI))
2073     return false;
2074 
2075   // Look ahead up to LdStLimit instructions for a mergable instruction.
2076   LdStPairFlags Flags;
2077   MachineBasicBlock::iterator MergeMI =
2078       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
2079   if (MergeMI != E) {
2080     ++NumZeroStoresPromoted;
2081 
2082     // Keeping the iterator straight is a pain, so we let the merge routine tell
2083     // us what the next instruction is after it's done mucking about.
2084     MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags);
2085     return true;
2086   }
2087   return false;
2088 }
2089 
2090 // Find loads and stores that can be merged into a single load or store pair
2091 // instruction.
2092 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
2093   MachineInstr &MI = *MBBI;
2094   MachineBasicBlock::iterator E = MI.getParent()->end();
2095 
2096   if (!TII->isCandidateToMergeOrPair(MI))
2097     return false;
2098 
2099   // Early exit if the offset is not possible to match. (6 bits of positive
2100   // range, plus allow an extra one in case we find a later insn that matches
2101   // with Offset-1)
2102   bool IsUnscaled = TII->hasUnscaledLdStOffset(MI);
2103   int Offset = getLdStOffsetOp(MI).getImm();
2104   int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1;
2105   // Allow one more for offset.
2106   if (Offset > 0)
2107     Offset -= OffsetStride;
2108   if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
2109     return false;
2110 
2111   // Look ahead up to LdStLimit instructions for a pairable instruction.
2112   LdStPairFlags Flags;
2113   MachineBasicBlock::iterator Paired =
2114       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
2115   if (Paired != E) {
2116     ++NumPairCreated;
2117     if (TII->hasUnscaledLdStOffset(MI))
2118       ++NumUnscaledPairCreated;
2119     // Keeping the iterator straight is a pain, so we let the merge routine tell
2120     // us what the next instruction is after it's done mucking about.
2121     auto Prev = std::prev(MBBI);
2122     MBBI = mergePairedInsns(MBBI, Paired, Flags);
2123     // Collect liveness info for instructions between Prev and the new position
2124     // MBBI.
2125     for (auto I = std::next(Prev); I != MBBI; I++)
2126       updateDefinedRegisters(*I, DefinedInBB, TRI);
2127 
2128     return true;
2129   }
2130   return false;
2131 }
2132 
2133 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate
2134     (MachineBasicBlock::iterator &MBBI) {
2135   MachineInstr &MI = *MBBI;
2136   MachineBasicBlock::iterator E = MI.getParent()->end();
2137   MachineBasicBlock::iterator Update;
2138 
2139   // Look forward to try to form a post-index instruction. For example,
2140   // ldr x0, [x20]
2141   // add x20, x20, #32
2142   //   merged into:
2143   // ldr x0, [x20], #32
2144   Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
2145   if (Update != E) {
2146     // Merge the update into the ld/st.
2147     MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false);
2148     return true;
2149   }
2150 
2151   // Don't know how to handle unscaled pre/post-index versions below, so bail.
2152   if (TII->hasUnscaledLdStOffset(MI.getOpcode()))
2153     return false;
2154 
2155   // Look back to try to find a pre-index instruction. For example,
2156   // add x0, x0, #8
2157   // ldr x1, [x0]
2158   //   merged into:
2159   // ldr x1, [x0, #8]!
2160   Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit);
2161   if (Update != E) {
2162     // Merge the update into the ld/st.
2163     MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
2164     return true;
2165   }
2166 
2167   // The immediate in the load/store is scaled by the size of the memory
2168   // operation. The immediate in the add we're looking for,
2169   // however, is not, so adjust here.
2170   int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI);
2171 
2172   // Look forward to try to find a pre-index instruction. For example,
2173   // ldr x1, [x0, #64]
2174   // add x0, x0, #64
2175   //   merged into:
2176   // ldr x1, [x0, #64]!
2177   Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
2178   if (Update != E) {
2179     // Merge the update into the ld/st.
2180     MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
2181     return true;
2182   }
2183 
2184   return false;
2185 }
2186 
2187 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
2188                                         bool EnableNarrowZeroStOpt) {
2189 
2190   bool Modified = false;
2191   // Four tranformations to do here:
2192   // 1) Find loads that directly read from stores and promote them by
2193   //    replacing with mov instructions. If the store is wider than the load,
2194   //    the load will be replaced with a bitfield extract.
2195   //      e.g.,
2196   //        str w1, [x0, #4]
2197   //        ldrh w2, [x0, #6]
2198   //        ; becomes
2199   //        str w1, [x0, #4]
2200   //        lsr w2, w1, #16
2201   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
2202        MBBI != E;) {
2203     if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI))
2204       Modified = true;
2205     else
2206       ++MBBI;
2207   }
2208   // 2) Merge adjacent zero stores into a wider store.
2209   //      e.g.,
2210   //        strh wzr, [x0]
2211   //        strh wzr, [x0, #2]
2212   //        ; becomes
2213   //        str wzr, [x0]
2214   //      e.g.,
2215   //        str wzr, [x0]
2216   //        str wzr, [x0, #4]
2217   //        ; becomes
2218   //        str xzr, [x0]
2219   if (EnableNarrowZeroStOpt)
2220     for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
2221          MBBI != E;) {
2222       if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI))
2223         Modified = true;
2224       else
2225         ++MBBI;
2226     }
2227   // 3) Find loads and stores that can be merged into a single load or store
2228   //    pair instruction.
2229   //      e.g.,
2230   //        ldr x0, [x2]
2231   //        ldr x1, [x2, #8]
2232   //        ; becomes
2233   //        ldp x0, x1, [x2]
2234 
2235   if (MBB.getParent()->getRegInfo().tracksLiveness()) {
2236     DefinedInBB.clear();
2237     DefinedInBB.addLiveIns(MBB);
2238   }
2239 
2240   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
2241        MBBI != E;) {
2242     // Track currently live registers up to this point, to help with
2243     // searching for a rename register on demand.
2244     updateDefinedRegisters(*MBBI, DefinedInBB, TRI);
2245     if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI))
2246       Modified = true;
2247     else
2248       ++MBBI;
2249   }
2250   // 4) Find base register updates that can be merged into the load or store
2251   //    as a base-reg writeback.
2252   //      e.g.,
2253   //        ldr x0, [x2]
2254   //        add x2, x2, #4
2255   //        ; becomes
2256   //        ldr x0, [x2], #4
2257   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
2258        MBBI != E;) {
2259     if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI))
2260       Modified = true;
2261     else
2262       ++MBBI;
2263   }
2264 
2265   return Modified;
2266 }
2267 
2268 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
2269   if (skipFunction(Fn.getFunction()))
2270     return false;
2271 
2272   Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget());
2273   TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo());
2274   TRI = Subtarget->getRegisterInfo();
2275   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2276 
2277   // Resize the modified and used register unit trackers.  We do this once
2278   // per function and then clear the register units each time we optimize a load
2279   // or store.
2280   ModifiedRegUnits.init(*TRI);
2281   UsedRegUnits.init(*TRI);
2282   DefinedInBB.init(*TRI);
2283 
2284   bool Modified = false;
2285   bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign();
2286   for (auto &MBB : Fn) {
2287     auto M = optimizeBlock(MBB, enableNarrowZeroStOpt);
2288     Modified |= M;
2289   }
2290 
2291   return Modified;
2292 }
2293 
2294 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and
2295 // stores near one another?  Note: The pre-RA instruction scheduler already has
2296 // hooks to try and schedule pairable loads/stores together to improve pairing
2297 // opportunities.  Thus, pre-RA pairing pass may not be worth the effort.
2298 
2299 // FIXME: When pairing store instructions it's very possible for this pass to
2300 // hoist a store with a KILL marker above another use (without a KILL marker).
2301 // The resulting IR is invalid, but nothing uses the KILL markers after this
2302 // pass, so it's never caused a problem in practice.
2303 
2304 /// createAArch64LoadStoreOptimizationPass - returns an instance of the
2305 /// load / store optimization pass.
2306 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
2307   return new AArch64LoadStoreOpt();
2308 }
2309