1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/IR/DebugLoc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 #include <limits> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "aarch64-ldst-opt" 46 47 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 48 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 49 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 50 STATISTIC(NumUnscaledPairCreated, 51 "Number of load/store from unscaled generated"); 52 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 53 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 54 55 // The LdStLimit limits how far we search for load/store pairs. 56 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 57 cl::init(20), cl::Hidden); 58 59 // The UpdateLimit limits how far we search for update instructions when we form 60 // pre-/post-index instructions. 61 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 62 cl::Hidden); 63 64 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 65 66 namespace { 67 68 using LdStPairFlags = struct LdStPairFlags { 69 // If a matching instruction is found, MergeForward is set to true if the 70 // merge is to remove the first instruction and replace the second with 71 // a pair-wise insn, and false if the reverse is true. 72 bool MergeForward = false; 73 74 // SExtIdx gives the index of the result of the load pair that must be 75 // extended. The value of SExtIdx assumes that the paired load produces the 76 // value in this order: (I, returned iterator), i.e., -1 means no value has 77 // to be extended, 0 means I, and 1 means the returned iterator. 78 int SExtIdx = -1; 79 80 LdStPairFlags() = default; 81 82 void setMergeForward(bool V = true) { MergeForward = V; } 83 bool getMergeForward() const { return MergeForward; } 84 85 void setSExtIdx(int V) { SExtIdx = V; } 86 int getSExtIdx() const { return SExtIdx; } 87 }; 88 89 struct AArch64LoadStoreOpt : public MachineFunctionPass { 90 static char ID; 91 92 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 93 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 94 } 95 96 AliasAnalysis *AA; 97 const AArch64InstrInfo *TII; 98 const TargetRegisterInfo *TRI; 99 const AArch64Subtarget *Subtarget; 100 101 // Track which registers have been modified and used. 102 BitVector ModifiedRegs, UsedRegs; 103 104 void getAnalysisUsage(AnalysisUsage &AU) const override { 105 AU.addRequired<AAResultsWrapperPass>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 109 // Scan the instructions looking for a load/store that can be combined 110 // with the current instruction into a load/store pair. 111 // Return the matching instruction if one is found, else MBB->end(). 112 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 113 LdStPairFlags &Flags, 114 unsigned Limit, 115 bool FindNarrowMerge); 116 117 // Scan the instructions looking for a store that writes to the address from 118 // which the current load instruction reads. Return true if one is found. 119 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 120 MachineBasicBlock::iterator &StoreI); 121 122 // Merge the two instructions indicated into a wider narrow store instruction. 123 MachineBasicBlock::iterator 124 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 125 MachineBasicBlock::iterator MergeMI, 126 const LdStPairFlags &Flags); 127 128 // Merge the two instructions indicated into a single pair-wise instruction. 129 MachineBasicBlock::iterator 130 mergePairedInsns(MachineBasicBlock::iterator I, 131 MachineBasicBlock::iterator Paired, 132 const LdStPairFlags &Flags); 133 134 // Promote the load that reads directly from the address stored to. 135 MachineBasicBlock::iterator 136 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 137 MachineBasicBlock::iterator StoreI); 138 139 // Scan the instruction list to find a base register update that can 140 // be combined with the current instruction (a load or store) using 141 // pre or post indexed addressing with writeback. Scan forwards. 142 MachineBasicBlock::iterator 143 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 144 int UnscaledOffset, unsigned Limit); 145 146 // Scan the instruction list to find a base register update that can 147 // be combined with the current instruction (a load or store) using 148 // pre or post indexed addressing with writeback. Scan backwards. 149 MachineBasicBlock::iterator 150 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 151 152 // Find an instruction that updates the base register of the ld/st 153 // instruction. 154 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 155 unsigned BaseReg, int Offset); 156 157 // Merge a pre- or post-index base register update into a ld/st instruction. 158 MachineBasicBlock::iterator 159 mergeUpdateInsn(MachineBasicBlock::iterator I, 160 MachineBasicBlock::iterator Update, bool IsPreIdx); 161 162 // Find and merge zero store instructions. 163 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 164 165 // Find and pair ldr/str instructions. 166 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 167 168 // Find and promote load instructions which read directly from store. 169 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 170 171 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 172 173 bool runOnMachineFunction(MachineFunction &Fn) override; 174 175 MachineFunctionProperties getRequiredProperties() const override { 176 return MachineFunctionProperties().set( 177 MachineFunctionProperties::Property::NoVRegs); 178 } 179 180 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 181 }; 182 183 char AArch64LoadStoreOpt::ID = 0; 184 185 } // end anonymous namespace 186 187 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 188 AARCH64_LOAD_STORE_OPT_NAME, false, false) 189 190 static bool isNarrowStore(unsigned Opc) { 191 switch (Opc) { 192 default: 193 return false; 194 case AArch64::STRBBui: 195 case AArch64::STURBBi: 196 case AArch64::STRHHui: 197 case AArch64::STURHHi: 198 return true; 199 } 200 } 201 202 // Scaling factor for unscaled load or store. 203 static int getMemScale(MachineInstr &MI) { 204 switch (MI.getOpcode()) { 205 default: 206 llvm_unreachable("Opcode has unknown scale!"); 207 case AArch64::LDRBBui: 208 case AArch64::LDURBBi: 209 case AArch64::LDRSBWui: 210 case AArch64::LDURSBWi: 211 case AArch64::STRBBui: 212 case AArch64::STURBBi: 213 return 1; 214 case AArch64::LDRHHui: 215 case AArch64::LDURHHi: 216 case AArch64::LDRSHWui: 217 case AArch64::LDURSHWi: 218 case AArch64::STRHHui: 219 case AArch64::STURHHi: 220 return 2; 221 case AArch64::LDRSui: 222 case AArch64::LDURSi: 223 case AArch64::LDRSWui: 224 case AArch64::LDURSWi: 225 case AArch64::LDRWui: 226 case AArch64::LDURWi: 227 case AArch64::STRSui: 228 case AArch64::STURSi: 229 case AArch64::STRWui: 230 case AArch64::STURWi: 231 case AArch64::LDPSi: 232 case AArch64::LDPSWi: 233 case AArch64::LDPWi: 234 case AArch64::STPSi: 235 case AArch64::STPWi: 236 return 4; 237 case AArch64::LDRDui: 238 case AArch64::LDURDi: 239 case AArch64::LDRXui: 240 case AArch64::LDURXi: 241 case AArch64::STRDui: 242 case AArch64::STURDi: 243 case AArch64::STRXui: 244 case AArch64::STURXi: 245 case AArch64::LDPDi: 246 case AArch64::LDPXi: 247 case AArch64::STPDi: 248 case AArch64::STPXi: 249 return 8; 250 case AArch64::LDRQui: 251 case AArch64::LDURQi: 252 case AArch64::STRQui: 253 case AArch64::STURQi: 254 case AArch64::LDPQi: 255 case AArch64::STPQi: 256 return 16; 257 } 258 } 259 260 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 261 bool *IsValidLdStrOpc = nullptr) { 262 if (IsValidLdStrOpc) 263 *IsValidLdStrOpc = true; 264 switch (Opc) { 265 default: 266 if (IsValidLdStrOpc) 267 *IsValidLdStrOpc = false; 268 return std::numeric_limits<unsigned>::max(); 269 case AArch64::STRDui: 270 case AArch64::STURDi: 271 case AArch64::STRQui: 272 case AArch64::STURQi: 273 case AArch64::STRBBui: 274 case AArch64::STURBBi: 275 case AArch64::STRHHui: 276 case AArch64::STURHHi: 277 case AArch64::STRWui: 278 case AArch64::STURWi: 279 case AArch64::STRXui: 280 case AArch64::STURXi: 281 case AArch64::LDRDui: 282 case AArch64::LDURDi: 283 case AArch64::LDRQui: 284 case AArch64::LDURQi: 285 case AArch64::LDRWui: 286 case AArch64::LDURWi: 287 case AArch64::LDRXui: 288 case AArch64::LDURXi: 289 case AArch64::STRSui: 290 case AArch64::STURSi: 291 case AArch64::LDRSui: 292 case AArch64::LDURSi: 293 return Opc; 294 case AArch64::LDRSWui: 295 return AArch64::LDRWui; 296 case AArch64::LDURSWi: 297 return AArch64::LDURWi; 298 } 299 } 300 301 static unsigned getMatchingWideOpcode(unsigned Opc) { 302 switch (Opc) { 303 default: 304 llvm_unreachable("Opcode has no wide equivalent!"); 305 case AArch64::STRBBui: 306 return AArch64::STRHHui; 307 case AArch64::STRHHui: 308 return AArch64::STRWui; 309 case AArch64::STURBBi: 310 return AArch64::STURHHi; 311 case AArch64::STURHHi: 312 return AArch64::STURWi; 313 case AArch64::STURWi: 314 return AArch64::STURXi; 315 case AArch64::STRWui: 316 return AArch64::STRXui; 317 } 318 } 319 320 static unsigned getMatchingPairOpcode(unsigned Opc) { 321 switch (Opc) { 322 default: 323 llvm_unreachable("Opcode has no pairwise equivalent!"); 324 case AArch64::STRSui: 325 case AArch64::STURSi: 326 return AArch64::STPSi; 327 case AArch64::STRDui: 328 case AArch64::STURDi: 329 return AArch64::STPDi; 330 case AArch64::STRQui: 331 case AArch64::STURQi: 332 return AArch64::STPQi; 333 case AArch64::STRWui: 334 case AArch64::STURWi: 335 return AArch64::STPWi; 336 case AArch64::STRXui: 337 case AArch64::STURXi: 338 return AArch64::STPXi; 339 case AArch64::LDRSui: 340 case AArch64::LDURSi: 341 return AArch64::LDPSi; 342 case AArch64::LDRDui: 343 case AArch64::LDURDi: 344 return AArch64::LDPDi; 345 case AArch64::LDRQui: 346 case AArch64::LDURQi: 347 return AArch64::LDPQi; 348 case AArch64::LDRWui: 349 case AArch64::LDURWi: 350 return AArch64::LDPWi; 351 case AArch64::LDRXui: 352 case AArch64::LDURXi: 353 return AArch64::LDPXi; 354 case AArch64::LDRSWui: 355 case AArch64::LDURSWi: 356 return AArch64::LDPSWi; 357 } 358 } 359 360 static unsigned isMatchingStore(MachineInstr &LoadInst, 361 MachineInstr &StoreInst) { 362 unsigned LdOpc = LoadInst.getOpcode(); 363 unsigned StOpc = StoreInst.getOpcode(); 364 switch (LdOpc) { 365 default: 366 llvm_unreachable("Unsupported load instruction!"); 367 case AArch64::LDRBBui: 368 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 369 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 370 case AArch64::LDURBBi: 371 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 372 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 373 case AArch64::LDRHHui: 374 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 375 StOpc == AArch64::STRXui; 376 case AArch64::LDURHHi: 377 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 378 StOpc == AArch64::STURXi; 379 case AArch64::LDRWui: 380 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 381 case AArch64::LDURWi: 382 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 383 case AArch64::LDRXui: 384 return StOpc == AArch64::STRXui; 385 case AArch64::LDURXi: 386 return StOpc == AArch64::STURXi; 387 } 388 } 389 390 static unsigned getPreIndexedOpcode(unsigned Opc) { 391 // FIXME: We don't currently support creating pre-indexed loads/stores when 392 // the load or store is the unscaled version. If we decide to perform such an 393 // optimization in the future the cases for the unscaled loads/stores will 394 // need to be added here. 395 switch (Opc) { 396 default: 397 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 398 case AArch64::STRSui: 399 return AArch64::STRSpre; 400 case AArch64::STRDui: 401 return AArch64::STRDpre; 402 case AArch64::STRQui: 403 return AArch64::STRQpre; 404 case AArch64::STRBBui: 405 return AArch64::STRBBpre; 406 case AArch64::STRHHui: 407 return AArch64::STRHHpre; 408 case AArch64::STRWui: 409 return AArch64::STRWpre; 410 case AArch64::STRXui: 411 return AArch64::STRXpre; 412 case AArch64::LDRSui: 413 return AArch64::LDRSpre; 414 case AArch64::LDRDui: 415 return AArch64::LDRDpre; 416 case AArch64::LDRQui: 417 return AArch64::LDRQpre; 418 case AArch64::LDRBBui: 419 return AArch64::LDRBBpre; 420 case AArch64::LDRHHui: 421 return AArch64::LDRHHpre; 422 case AArch64::LDRWui: 423 return AArch64::LDRWpre; 424 case AArch64::LDRXui: 425 return AArch64::LDRXpre; 426 case AArch64::LDRSWui: 427 return AArch64::LDRSWpre; 428 case AArch64::LDPSi: 429 return AArch64::LDPSpre; 430 case AArch64::LDPSWi: 431 return AArch64::LDPSWpre; 432 case AArch64::LDPDi: 433 return AArch64::LDPDpre; 434 case AArch64::LDPQi: 435 return AArch64::LDPQpre; 436 case AArch64::LDPWi: 437 return AArch64::LDPWpre; 438 case AArch64::LDPXi: 439 return AArch64::LDPXpre; 440 case AArch64::STPSi: 441 return AArch64::STPSpre; 442 case AArch64::STPDi: 443 return AArch64::STPDpre; 444 case AArch64::STPQi: 445 return AArch64::STPQpre; 446 case AArch64::STPWi: 447 return AArch64::STPWpre; 448 case AArch64::STPXi: 449 return AArch64::STPXpre; 450 } 451 } 452 453 static unsigned getPostIndexedOpcode(unsigned Opc) { 454 switch (Opc) { 455 default: 456 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 457 case AArch64::STRSui: 458 case AArch64::STURSi: 459 return AArch64::STRSpost; 460 case AArch64::STRDui: 461 case AArch64::STURDi: 462 return AArch64::STRDpost; 463 case AArch64::STRQui: 464 case AArch64::STURQi: 465 return AArch64::STRQpost; 466 case AArch64::STRBBui: 467 return AArch64::STRBBpost; 468 case AArch64::STRHHui: 469 return AArch64::STRHHpost; 470 case AArch64::STRWui: 471 case AArch64::STURWi: 472 return AArch64::STRWpost; 473 case AArch64::STRXui: 474 case AArch64::STURXi: 475 return AArch64::STRXpost; 476 case AArch64::LDRSui: 477 case AArch64::LDURSi: 478 return AArch64::LDRSpost; 479 case AArch64::LDRDui: 480 case AArch64::LDURDi: 481 return AArch64::LDRDpost; 482 case AArch64::LDRQui: 483 case AArch64::LDURQi: 484 return AArch64::LDRQpost; 485 case AArch64::LDRBBui: 486 return AArch64::LDRBBpost; 487 case AArch64::LDRHHui: 488 return AArch64::LDRHHpost; 489 case AArch64::LDRWui: 490 case AArch64::LDURWi: 491 return AArch64::LDRWpost; 492 case AArch64::LDRXui: 493 case AArch64::LDURXi: 494 return AArch64::LDRXpost; 495 case AArch64::LDRSWui: 496 return AArch64::LDRSWpost; 497 case AArch64::LDPSi: 498 return AArch64::LDPSpost; 499 case AArch64::LDPSWi: 500 return AArch64::LDPSWpost; 501 case AArch64::LDPDi: 502 return AArch64::LDPDpost; 503 case AArch64::LDPQi: 504 return AArch64::LDPQpost; 505 case AArch64::LDPWi: 506 return AArch64::LDPWpost; 507 case AArch64::LDPXi: 508 return AArch64::LDPXpost; 509 case AArch64::STPSi: 510 return AArch64::STPSpost; 511 case AArch64::STPDi: 512 return AArch64::STPDpost; 513 case AArch64::STPQi: 514 return AArch64::STPQpost; 515 case AArch64::STPWi: 516 return AArch64::STPWpost; 517 case AArch64::STPXi: 518 return AArch64::STPXpost; 519 } 520 } 521 522 static bool isPairedLdSt(const MachineInstr &MI) { 523 switch (MI.getOpcode()) { 524 default: 525 return false; 526 case AArch64::LDPSi: 527 case AArch64::LDPSWi: 528 case AArch64::LDPDi: 529 case AArch64::LDPQi: 530 case AArch64::LDPWi: 531 case AArch64::LDPXi: 532 case AArch64::STPSi: 533 case AArch64::STPDi: 534 case AArch64::STPQi: 535 case AArch64::STPWi: 536 case AArch64::STPXi: 537 return true; 538 } 539 } 540 541 static const MachineOperand &getLdStRegOp(const MachineInstr &MI, 542 unsigned PairedRegOp = 0) { 543 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 544 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 545 return MI.getOperand(Idx); 546 } 547 548 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 549 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 550 return MI.getOperand(Idx); 551 } 552 553 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 554 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 555 return MI.getOperand(Idx); 556 } 557 558 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 559 MachineInstr &StoreInst, 560 const AArch64InstrInfo *TII) { 561 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 562 int LoadSize = getMemScale(LoadInst); 563 int StoreSize = getMemScale(StoreInst); 564 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 565 ? getLdStOffsetOp(StoreInst).getImm() 566 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 567 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 568 ? getLdStOffsetOp(LoadInst).getImm() 569 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 570 return (UnscaledStOffset <= UnscaledLdOffset) && 571 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 572 } 573 574 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 575 unsigned Opc = MI.getOpcode(); 576 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 577 isNarrowStore(Opc)) && 578 getLdStRegOp(MI).getReg() == AArch64::WZR; 579 } 580 581 MachineBasicBlock::iterator 582 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 583 MachineBasicBlock::iterator MergeMI, 584 const LdStPairFlags &Flags) { 585 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 586 "Expected promotable zero stores."); 587 588 MachineBasicBlock::iterator NextI = I; 589 ++NextI; 590 // If NextI is the second of the two instructions to be merged, we need 591 // to skip one further. Either way we merge will invalidate the iterator, 592 // and we don't need to scan the new instruction, as it's a pairwise 593 // instruction, which we're not considering for further action anyway. 594 if (NextI == MergeMI) 595 ++NextI; 596 597 unsigned Opc = I->getOpcode(); 598 bool IsScaled = !TII->isUnscaledLdSt(Opc); 599 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 600 601 bool MergeForward = Flags.getMergeForward(); 602 // Insert our new paired instruction after whichever of the paired 603 // instructions MergeForward indicates. 604 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 605 // Also based on MergeForward is from where we copy the base register operand 606 // so we get the flags compatible with the input code. 607 const MachineOperand &BaseRegOp = 608 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 609 610 // Which register is Rt and which is Rt2 depends on the offset order. 611 MachineInstr *RtMI; 612 if (getLdStOffsetOp(*I).getImm() == 613 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 614 RtMI = &*MergeMI; 615 else 616 RtMI = &*I; 617 618 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 619 // Change the scaled offset from small to large type. 620 if (IsScaled) { 621 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 622 OffsetImm /= 2; 623 } 624 625 // Construct the new instruction. 626 DebugLoc DL = I->getDebugLoc(); 627 MachineBasicBlock *MBB = I->getParent(); 628 MachineInstrBuilder MIB; 629 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 630 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 631 .add(BaseRegOp) 632 .addImm(OffsetImm) 633 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 634 (void)MIB; 635 636 DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 637 DEBUG(I->print(dbgs())); 638 DEBUG(dbgs() << " "); 639 DEBUG(MergeMI->print(dbgs())); 640 DEBUG(dbgs() << " with instruction:\n "); 641 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 642 DEBUG(dbgs() << "\n"); 643 644 // Erase the old instructions. 645 I->eraseFromParent(); 646 MergeMI->eraseFromParent(); 647 return NextI; 648 } 649 650 MachineBasicBlock::iterator 651 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 652 MachineBasicBlock::iterator Paired, 653 const LdStPairFlags &Flags) { 654 MachineBasicBlock::iterator NextI = I; 655 ++NextI; 656 // If NextI is the second of the two instructions to be merged, we need 657 // to skip one further. Either way we merge will invalidate the iterator, 658 // and we don't need to scan the new instruction, as it's a pairwise 659 // instruction, which we're not considering for further action anyway. 660 if (NextI == Paired) 661 ++NextI; 662 663 int SExtIdx = Flags.getSExtIdx(); 664 unsigned Opc = 665 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 666 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 667 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 668 669 bool MergeForward = Flags.getMergeForward(); 670 // Insert our new paired instruction after whichever of the paired 671 // instructions MergeForward indicates. 672 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 673 // Also based on MergeForward is from where we copy the base register operand 674 // so we get the flags compatible with the input code. 675 const MachineOperand &BaseRegOp = 676 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 677 678 int Offset = getLdStOffsetOp(*I).getImm(); 679 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 680 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 681 if (IsUnscaled != PairedIsUnscaled) { 682 // We're trying to pair instructions that differ in how they are scaled. If 683 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 684 // the opposite (i.e., make Paired's offset unscaled). 685 int MemSize = getMemScale(*Paired); 686 if (PairedIsUnscaled) { 687 // If the unscaled offset isn't a multiple of the MemSize, we can't 688 // pair the operations together. 689 assert(!(PairedOffset % getMemScale(*Paired)) && 690 "Offset should be a multiple of the stride!"); 691 PairedOffset /= MemSize; 692 } else { 693 PairedOffset *= MemSize; 694 } 695 } 696 697 // Which register is Rt and which is Rt2 depends on the offset order. 698 MachineInstr *RtMI, *Rt2MI; 699 if (Offset == PairedOffset + OffsetStride) { 700 RtMI = &*Paired; 701 Rt2MI = &*I; 702 // Here we swapped the assumption made for SExtIdx. 703 // I.e., we turn ldp I, Paired into ldp Paired, I. 704 // Update the index accordingly. 705 if (SExtIdx != -1) 706 SExtIdx = (SExtIdx + 1) % 2; 707 } else { 708 RtMI = &*I; 709 Rt2MI = &*Paired; 710 } 711 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 712 // Scale the immediate offset, if necessary. 713 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 714 assert(!(OffsetImm % getMemScale(*RtMI)) && 715 "Unscaled offset cannot be scaled."); 716 OffsetImm /= getMemScale(*RtMI); 717 } 718 719 // Construct the new instruction. 720 MachineInstrBuilder MIB; 721 DebugLoc DL = I->getDebugLoc(); 722 MachineBasicBlock *MBB = I->getParent(); 723 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 724 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 725 // Kill flags may become invalid when moving stores for pairing. 726 if (RegOp0.isUse()) { 727 if (!MergeForward) { 728 // Clear kill flags on store if moving upwards. Example: 729 // STRWui %w0, ... 730 // USE %w1 731 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 732 RegOp0.setIsKill(false); 733 RegOp1.setIsKill(false); 734 } else { 735 // Clear kill flags of the first stores register. Example: 736 // STRWui %w1, ... 737 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 738 // STRW %w0 739 unsigned Reg = getLdStRegOp(*I).getReg(); 740 for (MachineInstr &MI : make_range(std::next(I), Paired)) 741 MI.clearRegisterKills(Reg, TRI); 742 } 743 } 744 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 745 .add(RegOp0) 746 .add(RegOp1) 747 .add(BaseRegOp) 748 .addImm(OffsetImm) 749 .setMemRefs(I->mergeMemRefsWith(*Paired)); 750 751 (void)MIB; 752 753 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 754 DEBUG(I->print(dbgs())); 755 DEBUG(dbgs() << " "); 756 DEBUG(Paired->print(dbgs())); 757 DEBUG(dbgs() << " with instruction:\n "); 758 if (SExtIdx != -1) { 759 // Generate the sign extension for the proper result of the ldp. 760 // I.e., with X1, that would be: 761 // %W1<def> = KILL %W1, %X1<imp-def> 762 // %X1<def> = SBFMXri %X1<kill>, 0, 31 763 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 764 // Right now, DstMO has the extended register, since it comes from an 765 // extended opcode. 766 unsigned DstRegX = DstMO.getReg(); 767 // Get the W variant of that register. 768 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 769 // Update the result of LDP to use the W instead of the X variant. 770 DstMO.setReg(DstRegW); 771 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 772 DEBUG(dbgs() << "\n"); 773 // Make the machine verifier happy by providing a definition for 774 // the X register. 775 // Insert this definition right after the generated LDP, i.e., before 776 // InsertionPoint. 777 MachineInstrBuilder MIBKill = 778 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 779 .addReg(DstRegW) 780 .addReg(DstRegX, RegState::Define); 781 MIBKill->getOperand(2).setImplicit(); 782 // Create the sign extension. 783 MachineInstrBuilder MIBSXTW = 784 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 785 .addReg(DstRegX) 786 .addImm(0) 787 .addImm(31); 788 (void)MIBSXTW; 789 DEBUG(dbgs() << " Extend operand:\n "); 790 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 791 } else { 792 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 793 } 794 DEBUG(dbgs() << "\n"); 795 796 // Erase the old instructions. 797 I->eraseFromParent(); 798 Paired->eraseFromParent(); 799 800 return NextI; 801 } 802 803 MachineBasicBlock::iterator 804 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 805 MachineBasicBlock::iterator StoreI) { 806 MachineBasicBlock::iterator NextI = LoadI; 807 ++NextI; 808 809 int LoadSize = getMemScale(*LoadI); 810 int StoreSize = getMemScale(*StoreI); 811 unsigned LdRt = getLdStRegOp(*LoadI).getReg(); 812 const MachineOperand &StMO = getLdStRegOp(*StoreI); 813 unsigned StRt = getLdStRegOp(*StoreI).getReg(); 814 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 815 816 assert((IsStoreXReg || 817 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 818 "Unexpected RegClass"); 819 820 MachineInstr *BitExtMI; 821 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 822 // Remove the load, if the destination register of the loads is the same 823 // register for stored value. 824 if (StRt == LdRt && LoadSize == 8) { 825 for (MachineInstr &MI : make_range(StoreI->getIterator(), 826 LoadI->getIterator())) { 827 if (MI.killsRegister(StRt, TRI)) { 828 MI.clearRegisterKills(StRt, TRI); 829 break; 830 } 831 } 832 DEBUG(dbgs() << "Remove load instruction:\n "); 833 DEBUG(LoadI->print(dbgs())); 834 DEBUG(dbgs() << "\n"); 835 LoadI->eraseFromParent(); 836 return NextI; 837 } 838 // Replace the load with a mov if the load and store are in the same size. 839 BitExtMI = 840 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 841 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 842 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 843 .add(StMO) 844 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 845 } else { 846 // FIXME: Currently we disable this transformation in big-endian targets as 847 // performance and correctness are verified only in little-endian. 848 if (!Subtarget->isLittleEndian()) 849 return NextI; 850 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 851 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 852 "Unsupported ld/st match"); 853 assert(LoadSize <= StoreSize && "Invalid load size"); 854 int UnscaledLdOffset = IsUnscaled 855 ? getLdStOffsetOp(*LoadI).getImm() 856 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 857 int UnscaledStOffset = IsUnscaled 858 ? getLdStOffsetOp(*StoreI).getImm() 859 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 860 int Width = LoadSize * 8; 861 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 862 int Imms = Immr + Width - 1; 863 unsigned DestReg = IsStoreXReg 864 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 865 &AArch64::GPR64RegClass) 866 : LdRt; 867 868 assert((UnscaledLdOffset >= UnscaledStOffset && 869 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 870 "Invalid offset"); 871 872 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 873 Imms = Immr + Width - 1; 874 if (UnscaledLdOffset == UnscaledStOffset) { 875 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 876 | ((Immr) << 6) // immr 877 | ((Imms) << 0) // imms 878 ; 879 880 BitExtMI = 881 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 882 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 883 DestReg) 884 .add(StMO) 885 .addImm(AndMaskEncoded); 886 } else { 887 BitExtMI = 888 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 889 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 890 DestReg) 891 .add(StMO) 892 .addImm(Immr) 893 .addImm(Imms); 894 } 895 } 896 897 // Clear kill flags between store and load. 898 for (MachineInstr &MI : make_range(StoreI->getIterator(), 899 BitExtMI->getIterator())) 900 if (MI.killsRegister(StRt, TRI)) { 901 MI.clearRegisterKills(StRt, TRI); 902 break; 903 } 904 905 DEBUG(dbgs() << "Promoting load by replacing :\n "); 906 DEBUG(StoreI->print(dbgs())); 907 DEBUG(dbgs() << " "); 908 DEBUG(LoadI->print(dbgs())); 909 DEBUG(dbgs() << " with instructions:\n "); 910 DEBUG(StoreI->print(dbgs())); 911 DEBUG(dbgs() << " "); 912 DEBUG((BitExtMI)->print(dbgs())); 913 DEBUG(dbgs() << "\n"); 914 915 // Erase the old instructions. 916 LoadI->eraseFromParent(); 917 return NextI; 918 } 919 920 /// trackRegDefsUses - Remember what registers the specified instruction uses 921 /// and modifies. 922 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs, 923 BitVector &UsedRegs, 924 const TargetRegisterInfo *TRI) { 925 for (const MachineOperand &MO : MI.operands()) { 926 if (MO.isRegMask()) 927 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 928 929 if (!MO.isReg()) 930 continue; 931 unsigned Reg = MO.getReg(); 932 if (!Reg) 933 continue; 934 if (MO.isDef()) { 935 // WZR/XZR are not modified even when used as a destination register. 936 if (Reg != AArch64::WZR && Reg != AArch64::XZR) 937 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 938 ModifiedRegs.set(*AI); 939 } else { 940 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 941 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 942 UsedRegs.set(*AI); 943 } 944 } 945 } 946 947 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 948 // Convert the byte-offset used by unscaled into an "element" offset used 949 // by the scaled pair load/store instructions. 950 if (IsUnscaled) { 951 // If the byte-offset isn't a multiple of the stride, there's no point 952 // trying to match it. 953 if (Offset % OffsetStride) 954 return false; 955 Offset /= OffsetStride; 956 } 957 return Offset <= 63 && Offset >= -64; 958 } 959 960 // Do alignment, specialized to power of 2 and for signed ints, 961 // avoiding having to do a C-style cast from uint_64t to int when 962 // using alignTo from include/llvm/Support/MathExtras.h. 963 // FIXME: Move this function to include/MathExtras.h? 964 static int alignTo(int Num, int PowOf2) { 965 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 966 } 967 968 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 969 AliasAnalysis *AA) { 970 // One of the instructions must modify memory. 971 if (!MIa.mayStore() && !MIb.mayStore()) 972 return false; 973 974 // Both instructions must be memory operations. 975 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 976 return false; 977 978 return MIa.mayAlias(AA, MIb, /*UseTBAA*/false); 979 } 980 981 static bool mayAlias(MachineInstr &MIa, 982 SmallVectorImpl<MachineInstr *> &MemInsns, 983 AliasAnalysis *AA) { 984 for (MachineInstr *MIb : MemInsns) 985 if (mayAlias(MIa, *MIb, AA)) 986 return true; 987 988 return false; 989 } 990 991 bool AArch64LoadStoreOpt::findMatchingStore( 992 MachineBasicBlock::iterator I, unsigned Limit, 993 MachineBasicBlock::iterator &StoreI) { 994 MachineBasicBlock::iterator B = I->getParent()->begin(); 995 MachineBasicBlock::iterator MBBI = I; 996 MachineInstr &LoadMI = *I; 997 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 998 999 // If the load is the first instruction in the block, there's obviously 1000 // not any matching store. 1001 if (MBBI == B) 1002 return false; 1003 1004 // Track which registers have been modified and used between the first insn 1005 // and the second insn. 1006 ModifiedRegs.reset(); 1007 UsedRegs.reset(); 1008 1009 unsigned Count = 0; 1010 do { 1011 --MBBI; 1012 MachineInstr &MI = *MBBI; 1013 1014 // Don't count transient instructions towards the search limit since there 1015 // may be different numbers of them if e.g. debug information is present. 1016 if (!MI.isTransient()) 1017 ++Count; 1018 1019 // If the load instruction reads directly from the address to which the 1020 // store instruction writes and the stored value is not modified, we can 1021 // promote the load. Since we do not handle stores with pre-/post-index, 1022 // it's unnecessary to check if BaseReg is modified by the store itself. 1023 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1024 BaseReg == getLdStBaseOp(MI).getReg() && 1025 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1026 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1027 StoreI = MBBI; 1028 return true; 1029 } 1030 1031 if (MI.isCall()) 1032 return false; 1033 1034 // Update modified / uses register lists. 1035 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1036 1037 // Otherwise, if the base register is modified, we have no match, so 1038 // return early. 1039 if (ModifiedRegs[BaseReg]) 1040 return false; 1041 1042 // If we encounter a store aliased with the load, return early. 1043 if (MI.mayStore() && mayAlias(LoadMI, MI, AA)) 1044 return false; 1045 } while (MBBI != B && Count < Limit); 1046 return false; 1047 } 1048 1049 // Returns true if FirstMI and MI are candidates for merging or pairing. 1050 // Otherwise, returns false. 1051 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1052 LdStPairFlags &Flags, 1053 const AArch64InstrInfo *TII) { 1054 // If this is volatile or if pairing is suppressed, not a candidate. 1055 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1056 return false; 1057 1058 // We should have already checked FirstMI for pair suppression and volatility. 1059 assert(!FirstMI.hasOrderedMemoryRef() && 1060 !TII->isLdStPairSuppressed(FirstMI) && 1061 "FirstMI shouldn't get here if either of these checks are true."); 1062 1063 unsigned OpcA = FirstMI.getOpcode(); 1064 unsigned OpcB = MI.getOpcode(); 1065 1066 // Opcodes match: nothing more to check. 1067 if (OpcA == OpcB) 1068 return true; 1069 1070 // Try to match a sign-extended load/store with a zero-extended load/store. 1071 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1072 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1073 assert(IsValidLdStrOpc && 1074 "Given Opc should be a Load or Store with an immediate"); 1075 // OpcA will be the first instruction in the pair. 1076 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1077 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1078 return true; 1079 } 1080 1081 // If the second instruction isn't even a mergable/pairable load/store, bail 1082 // out. 1083 if (!PairIsValidLdStrOpc) 1084 return false; 1085 1086 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1087 // offsets. 1088 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1089 return false; 1090 1091 // Try to match an unscaled load/store with a scaled load/store. 1092 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1093 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1094 1095 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1096 } 1097 1098 /// Scan the instructions looking for a load/store that can be combined with the 1099 /// current instruction into a wider equivalent or a load/store pair. 1100 MachineBasicBlock::iterator 1101 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1102 LdStPairFlags &Flags, unsigned Limit, 1103 bool FindNarrowMerge) { 1104 MachineBasicBlock::iterator E = I->getParent()->end(); 1105 MachineBasicBlock::iterator MBBI = I; 1106 MachineInstr &FirstMI = *I; 1107 ++MBBI; 1108 1109 bool MayLoad = FirstMI.mayLoad(); 1110 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1111 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1112 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1113 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1114 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1115 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1116 1117 // Track which registers have been modified and used between the first insn 1118 // (inclusive) and the second insn. 1119 ModifiedRegs.reset(); 1120 UsedRegs.reset(); 1121 1122 // Remember any instructions that read/write memory between FirstMI and MI. 1123 SmallVector<MachineInstr *, 4> MemInsns; 1124 1125 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1126 MachineInstr &MI = *MBBI; 1127 1128 // Don't count transient instructions towards the search limit since there 1129 // may be different numbers of them if e.g. debug information is present. 1130 if (!MI.isTransient()) 1131 ++Count; 1132 1133 Flags.setSExtIdx(-1); 1134 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1135 getLdStOffsetOp(MI).isImm()) { 1136 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1137 // If we've found another instruction with the same opcode, check to see 1138 // if the base and offset are compatible with our starting instruction. 1139 // These instructions all have scaled immediate operands, so we just 1140 // check for +1/-1. Make sure to check the new instruction offset is 1141 // actually an immediate and not a symbolic reference destined for 1142 // a relocation. 1143 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1144 int MIOffset = getLdStOffsetOp(MI).getImm(); 1145 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1146 if (IsUnscaled != MIIsUnscaled) { 1147 // We're trying to pair instructions that differ in how they are scaled. 1148 // If FirstMI is scaled then scale the offset of MI accordingly. 1149 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1150 int MemSize = getMemScale(MI); 1151 if (MIIsUnscaled) { 1152 // If the unscaled offset isn't a multiple of the MemSize, we can't 1153 // pair the operations together: bail and keep looking. 1154 if (MIOffset % MemSize) { 1155 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1156 MemInsns.push_back(&MI); 1157 continue; 1158 } 1159 MIOffset /= MemSize; 1160 } else { 1161 MIOffset *= MemSize; 1162 } 1163 } 1164 1165 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1166 (Offset + OffsetStride == MIOffset))) { 1167 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1168 if (FindNarrowMerge) { 1169 // If the alignment requirements of the scaled wide load/store 1170 // instruction can't express the offset of the scaled narrow input, 1171 // bail and keep looking. For promotable zero stores, allow only when 1172 // the stored value is the same (i.e., WZR). 1173 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1174 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1175 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1176 MemInsns.push_back(&MI); 1177 continue; 1178 } 1179 } else { 1180 // Pairwise instructions have a 7-bit signed offset field. Single 1181 // insns have a 12-bit unsigned offset field. If the resultant 1182 // immediate offset of merging these instructions is out of range for 1183 // a pairwise instruction, bail and keep looking. 1184 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1185 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1186 MemInsns.push_back(&MI); 1187 continue; 1188 } 1189 // If the alignment requirements of the paired (scaled) instruction 1190 // can't express the offset of the unscaled input, bail and keep 1191 // looking. 1192 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1193 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1194 MemInsns.push_back(&MI); 1195 continue; 1196 } 1197 } 1198 // If the destination register of the loads is the same register, bail 1199 // and keep looking. A load-pair instruction with both destination 1200 // registers the same is UNPREDICTABLE and will result in an exception. 1201 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1202 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1203 MemInsns.push_back(&MI); 1204 continue; 1205 } 1206 1207 // If the Rt of the second instruction was not modified or used between 1208 // the two instructions and none of the instructions between the second 1209 // and first alias with the second, we can combine the second into the 1210 // first. 1211 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1212 !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1213 !mayAlias(MI, MemInsns, AA)) { 1214 Flags.setMergeForward(false); 1215 return MBBI; 1216 } 1217 1218 // Likewise, if the Rt of the first instruction is not modified or used 1219 // between the two instructions and none of the instructions between the 1220 // first and the second alias with the first, we can combine the first 1221 // into the second. 1222 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1223 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1224 !mayAlias(FirstMI, MemInsns, AA)) { 1225 Flags.setMergeForward(true); 1226 return MBBI; 1227 } 1228 // Unable to combine these instructions due to interference in between. 1229 // Keep looking. 1230 } 1231 } 1232 1233 // If the instruction wasn't a matching load or store. Stop searching if we 1234 // encounter a call instruction that might modify memory. 1235 if (MI.isCall()) 1236 return E; 1237 1238 // Update modified / uses register lists. 1239 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1240 1241 // Otherwise, if the base register is modified, we have no match, so 1242 // return early. 1243 if (ModifiedRegs[BaseReg]) 1244 return E; 1245 1246 // Update list of instructions that read/write memory. 1247 if (MI.mayLoadOrStore()) 1248 MemInsns.push_back(&MI); 1249 } 1250 return E; 1251 } 1252 1253 MachineBasicBlock::iterator 1254 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1255 MachineBasicBlock::iterator Update, 1256 bool IsPreIdx) { 1257 assert((Update->getOpcode() == AArch64::ADDXri || 1258 Update->getOpcode() == AArch64::SUBXri) && 1259 "Unexpected base register update instruction to merge!"); 1260 MachineBasicBlock::iterator NextI = I; 1261 // Return the instruction following the merged instruction, which is 1262 // the instruction following our unmerged load. Unless that's the add/sub 1263 // instruction we're merging, in which case it's the one after that. 1264 if (++NextI == Update) 1265 ++NextI; 1266 1267 int Value = Update->getOperand(2).getImm(); 1268 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1269 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1270 if (Update->getOpcode() == AArch64::SUBXri) 1271 Value = -Value; 1272 1273 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1274 : getPostIndexedOpcode(I->getOpcode()); 1275 MachineInstrBuilder MIB; 1276 if (!isPairedLdSt(*I)) { 1277 // Non-paired instruction. 1278 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1279 .add(getLdStRegOp(*Update)) 1280 .add(getLdStRegOp(*I)) 1281 .add(getLdStBaseOp(*I)) 1282 .addImm(Value) 1283 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1284 } else { 1285 // Paired instruction. 1286 int Scale = getMemScale(*I); 1287 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1288 .add(getLdStRegOp(*Update)) 1289 .add(getLdStRegOp(*I, 0)) 1290 .add(getLdStRegOp(*I, 1)) 1291 .add(getLdStBaseOp(*I)) 1292 .addImm(Value / Scale) 1293 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1294 } 1295 (void)MIB; 1296 1297 if (IsPreIdx) 1298 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1299 else 1300 DEBUG(dbgs() << "Creating post-indexed load/store."); 1301 DEBUG(dbgs() << " Replacing instructions:\n "); 1302 DEBUG(I->print(dbgs())); 1303 DEBUG(dbgs() << " "); 1304 DEBUG(Update->print(dbgs())); 1305 DEBUG(dbgs() << " with instruction:\n "); 1306 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1307 DEBUG(dbgs() << "\n"); 1308 1309 // Erase the old instructions for the block. 1310 I->eraseFromParent(); 1311 Update->eraseFromParent(); 1312 1313 return NextI; 1314 } 1315 1316 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1317 MachineInstr &MI, 1318 unsigned BaseReg, int Offset) { 1319 switch (MI.getOpcode()) { 1320 default: 1321 break; 1322 case AArch64::SUBXri: 1323 case AArch64::ADDXri: 1324 // Make sure it's a vanilla immediate operand, not a relocation or 1325 // anything else we can't handle. 1326 if (!MI.getOperand(2).isImm()) 1327 break; 1328 // Watch out for 1 << 12 shifted value. 1329 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1330 break; 1331 1332 // The update instruction source and destination register must be the 1333 // same as the load/store base register. 1334 if (MI.getOperand(0).getReg() != BaseReg || 1335 MI.getOperand(1).getReg() != BaseReg) 1336 break; 1337 1338 bool IsPairedInsn = isPairedLdSt(MemMI); 1339 int UpdateOffset = MI.getOperand(2).getImm(); 1340 if (MI.getOpcode() == AArch64::SUBXri) 1341 UpdateOffset = -UpdateOffset; 1342 1343 // For non-paired load/store instructions, the immediate must fit in a 1344 // signed 9-bit integer. 1345 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1346 break; 1347 1348 // For paired load/store instructions, the immediate must be a multiple of 1349 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1350 // integer. 1351 if (IsPairedInsn) { 1352 int Scale = getMemScale(MemMI); 1353 if (UpdateOffset % Scale != 0) 1354 break; 1355 1356 int ScaledOffset = UpdateOffset / Scale; 1357 if (ScaledOffset > 63 || ScaledOffset < -64) 1358 break; 1359 } 1360 1361 // If we have a non-zero Offset, we check that it matches the amount 1362 // we're adding to the register. 1363 if (!Offset || Offset == UpdateOffset) 1364 return true; 1365 break; 1366 } 1367 return false; 1368 } 1369 1370 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1371 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1372 MachineBasicBlock::iterator E = I->getParent()->end(); 1373 MachineInstr &MemMI = *I; 1374 MachineBasicBlock::iterator MBBI = I; 1375 1376 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1377 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1378 1379 // Scan forward looking for post-index opportunities. Updating instructions 1380 // can't be formed if the memory instruction doesn't have the offset we're 1381 // looking for. 1382 if (MIUnscaledOffset != UnscaledOffset) 1383 return E; 1384 1385 // If the base register overlaps a destination register, we can't 1386 // merge the update. 1387 bool IsPairedInsn = isPairedLdSt(MemMI); 1388 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1389 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1390 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1391 return E; 1392 } 1393 1394 // Track which registers have been modified and used between the first insn 1395 // (inclusive) and the second insn. 1396 ModifiedRegs.reset(); 1397 UsedRegs.reset(); 1398 ++MBBI; 1399 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1400 MachineInstr &MI = *MBBI; 1401 1402 // Don't count transient instructions towards the search limit since there 1403 // may be different numbers of them if e.g. debug information is present. 1404 if (!MI.isTransient()) 1405 ++Count; 1406 1407 // If we found a match, return it. 1408 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1409 return MBBI; 1410 1411 // Update the status of what the instruction clobbered and used. 1412 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1413 1414 // Otherwise, if the base register is used or modified, we have no match, so 1415 // return early. 1416 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1417 return E; 1418 } 1419 return E; 1420 } 1421 1422 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1423 MachineBasicBlock::iterator I, unsigned Limit) { 1424 MachineBasicBlock::iterator B = I->getParent()->begin(); 1425 MachineBasicBlock::iterator E = I->getParent()->end(); 1426 MachineInstr &MemMI = *I; 1427 MachineBasicBlock::iterator MBBI = I; 1428 1429 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1430 int Offset = getLdStOffsetOp(MemMI).getImm(); 1431 1432 // If the load/store is the first instruction in the block, there's obviously 1433 // not any matching update. Ditto if the memory offset isn't zero. 1434 if (MBBI == B || Offset != 0) 1435 return E; 1436 // If the base register overlaps a destination register, we can't 1437 // merge the update. 1438 bool IsPairedInsn = isPairedLdSt(MemMI); 1439 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1440 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1441 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1442 return E; 1443 } 1444 1445 // Track which registers have been modified and used between the first insn 1446 // (inclusive) and the second insn. 1447 ModifiedRegs.reset(); 1448 UsedRegs.reset(); 1449 unsigned Count = 0; 1450 do { 1451 --MBBI; 1452 MachineInstr &MI = *MBBI; 1453 1454 // Don't count transient instructions towards the search limit since there 1455 // may be different numbers of them if e.g. debug information is present. 1456 if (!MI.isTransient()) 1457 ++Count; 1458 1459 // If we found a match, return it. 1460 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1461 return MBBI; 1462 1463 // Update the status of what the instruction clobbered and used. 1464 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1465 1466 // Otherwise, if the base register is used or modified, we have no match, so 1467 // return early. 1468 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1469 return E; 1470 } while (MBBI != B && Count < Limit); 1471 return E; 1472 } 1473 1474 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1475 MachineBasicBlock::iterator &MBBI) { 1476 MachineInstr &MI = *MBBI; 1477 // If this is a volatile load, don't mess with it. 1478 if (MI.hasOrderedMemoryRef()) 1479 return false; 1480 1481 // Make sure this is a reg+imm. 1482 // FIXME: It is possible to extend it to handle reg+reg cases. 1483 if (!getLdStOffsetOp(MI).isImm()) 1484 return false; 1485 1486 // Look backward up to LdStLimit instructions. 1487 MachineBasicBlock::iterator StoreI; 1488 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1489 ++NumLoadsFromStoresPromoted; 1490 // Promote the load. Keeping the iterator straight is a 1491 // pain, so we let the merge routine tell us what the next instruction 1492 // is after it's done mucking about. 1493 MBBI = promoteLoadFromStore(MBBI, StoreI); 1494 return true; 1495 } 1496 return false; 1497 } 1498 1499 // Merge adjacent zero stores into a wider store. 1500 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1501 MachineBasicBlock::iterator &MBBI) { 1502 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1503 MachineInstr &MI = *MBBI; 1504 MachineBasicBlock::iterator E = MI.getParent()->end(); 1505 1506 if (!TII->isCandidateToMergeOrPair(MI)) 1507 return false; 1508 1509 // Look ahead up to LdStLimit instructions for a mergable instruction. 1510 LdStPairFlags Flags; 1511 MachineBasicBlock::iterator MergeMI = 1512 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1513 if (MergeMI != E) { 1514 ++NumZeroStoresPromoted; 1515 1516 // Keeping the iterator straight is a pain, so we let the merge routine tell 1517 // us what the next instruction is after it's done mucking about. 1518 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1519 return true; 1520 } 1521 return false; 1522 } 1523 1524 // Find loads and stores that can be merged into a single load or store pair 1525 // instruction. 1526 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1527 MachineInstr &MI = *MBBI; 1528 MachineBasicBlock::iterator E = MI.getParent()->end(); 1529 1530 if (!TII->isCandidateToMergeOrPair(MI)) 1531 return false; 1532 1533 // Early exit if the offset is not possible to match. (6 bits of positive 1534 // range, plus allow an extra one in case we find a later insn that matches 1535 // with Offset-1) 1536 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1537 int Offset = getLdStOffsetOp(MI).getImm(); 1538 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1539 // Allow one more for offset. 1540 if (Offset > 0) 1541 Offset -= OffsetStride; 1542 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1543 return false; 1544 1545 // Look ahead up to LdStLimit instructions for a pairable instruction. 1546 LdStPairFlags Flags; 1547 MachineBasicBlock::iterator Paired = 1548 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1549 if (Paired != E) { 1550 ++NumPairCreated; 1551 if (TII->isUnscaledLdSt(MI)) 1552 ++NumUnscaledPairCreated; 1553 // Keeping the iterator straight is a pain, so we let the merge routine tell 1554 // us what the next instruction is after it's done mucking about. 1555 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1556 return true; 1557 } 1558 return false; 1559 } 1560 1561 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1562 bool EnableNarrowZeroStOpt) { 1563 bool Modified = false; 1564 // Four tranformations to do here: 1565 // 1) Find loads that directly read from stores and promote them by 1566 // replacing with mov instructions. If the store is wider than the load, 1567 // the load will be replaced with a bitfield extract. 1568 // e.g., 1569 // str w1, [x0, #4] 1570 // ldrh w2, [x0, #6] 1571 // ; becomes 1572 // str w1, [x0, #4] 1573 // lsr w2, w1, #16 1574 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1575 MBBI != E;) { 1576 MachineInstr &MI = *MBBI; 1577 switch (MI.getOpcode()) { 1578 default: 1579 // Just move on to the next instruction. 1580 ++MBBI; 1581 break; 1582 // Scaled instructions. 1583 case AArch64::LDRBBui: 1584 case AArch64::LDRHHui: 1585 case AArch64::LDRWui: 1586 case AArch64::LDRXui: 1587 // Unscaled instructions. 1588 case AArch64::LDURBBi: 1589 case AArch64::LDURHHi: 1590 case AArch64::LDURWi: 1591 case AArch64::LDURXi: 1592 if (tryToPromoteLoadFromStore(MBBI)) { 1593 Modified = true; 1594 break; 1595 } 1596 ++MBBI; 1597 break; 1598 } 1599 } 1600 // 2) Merge adjacent zero stores into a wider store. 1601 // e.g., 1602 // strh wzr, [x0] 1603 // strh wzr, [x0, #2] 1604 // ; becomes 1605 // str wzr, [x0] 1606 // e.g., 1607 // str wzr, [x0] 1608 // str wzr, [x0, #4] 1609 // ; becomes 1610 // str xzr, [x0] 1611 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1612 EnableNarrowZeroStOpt && MBBI != E;) { 1613 if (isPromotableZeroStoreInst(*MBBI)) { 1614 if (tryToMergeZeroStInst(MBBI)) { 1615 Modified = true; 1616 } else 1617 ++MBBI; 1618 } else 1619 ++MBBI; 1620 } 1621 1622 // 3) Find loads and stores that can be merged into a single load or store 1623 // pair instruction. 1624 // e.g., 1625 // ldr x0, [x2] 1626 // ldr x1, [x2, #8] 1627 // ; becomes 1628 // ldp x0, x1, [x2] 1629 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1630 MBBI != E;) { 1631 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 1632 Modified = true; 1633 else 1634 ++MBBI; 1635 } 1636 // 4) Find base register updates that can be merged into the load or store 1637 // as a base-reg writeback. 1638 // e.g., 1639 // ldr x0, [x2] 1640 // add x2, x2, #4 1641 // ; becomes 1642 // ldr x0, [x2], #4 1643 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1644 MBBI != E;) { 1645 MachineInstr &MI = *MBBI; 1646 // Do update merging. It's simpler to keep this separate from the above 1647 // switchs, though not strictly necessary. 1648 unsigned Opc = MI.getOpcode(); 1649 switch (Opc) { 1650 default: 1651 // Just move on to the next instruction. 1652 ++MBBI; 1653 break; 1654 // Scaled instructions. 1655 case AArch64::STRSui: 1656 case AArch64::STRDui: 1657 case AArch64::STRQui: 1658 case AArch64::STRXui: 1659 case AArch64::STRWui: 1660 case AArch64::STRHHui: 1661 case AArch64::STRBBui: 1662 case AArch64::LDRSui: 1663 case AArch64::LDRDui: 1664 case AArch64::LDRQui: 1665 case AArch64::LDRXui: 1666 case AArch64::LDRWui: 1667 case AArch64::LDRHHui: 1668 case AArch64::LDRBBui: 1669 // Unscaled instructions. 1670 case AArch64::STURSi: 1671 case AArch64::STURDi: 1672 case AArch64::STURQi: 1673 case AArch64::STURWi: 1674 case AArch64::STURXi: 1675 case AArch64::LDURSi: 1676 case AArch64::LDURDi: 1677 case AArch64::LDURQi: 1678 case AArch64::LDURWi: 1679 case AArch64::LDURXi: 1680 // Paired instructions. 1681 case AArch64::LDPSi: 1682 case AArch64::LDPSWi: 1683 case AArch64::LDPDi: 1684 case AArch64::LDPQi: 1685 case AArch64::LDPWi: 1686 case AArch64::LDPXi: 1687 case AArch64::STPSi: 1688 case AArch64::STPDi: 1689 case AArch64::STPQi: 1690 case AArch64::STPWi: 1691 case AArch64::STPXi: { 1692 // Make sure this is a reg+imm (as opposed to an address reloc). 1693 if (!getLdStOffsetOp(MI).isImm()) { 1694 ++MBBI; 1695 break; 1696 } 1697 // Look forward to try to form a post-index instruction. For example, 1698 // ldr x0, [x20] 1699 // add x20, x20, #32 1700 // merged into: 1701 // ldr x0, [x20], #32 1702 MachineBasicBlock::iterator Update = 1703 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1704 if (Update != E) { 1705 // Merge the update into the ld/st. 1706 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1707 Modified = true; 1708 ++NumPostFolded; 1709 break; 1710 } 1711 1712 // Don't know how to handle unscaled pre/post-index versions below, so 1713 // move to the next instruction. 1714 if (TII->isUnscaledLdSt(Opc)) { 1715 ++MBBI; 1716 break; 1717 } 1718 1719 // Look back to try to find a pre-index instruction. For example, 1720 // add x0, x0, #8 1721 // ldr x1, [x0] 1722 // merged into: 1723 // ldr x1, [x0, #8]! 1724 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1725 if (Update != E) { 1726 // Merge the update into the ld/st. 1727 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1728 Modified = true; 1729 ++NumPreFolded; 1730 break; 1731 } 1732 // The immediate in the load/store is scaled by the size of the memory 1733 // operation. The immediate in the add we're looking for, 1734 // however, is not, so adjust here. 1735 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1736 1737 // Look forward to try to find a post-index instruction. For example, 1738 // ldr x1, [x0, #64] 1739 // add x0, x0, #64 1740 // merged into: 1741 // ldr x1, [x0, #64]! 1742 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1743 if (Update != E) { 1744 // Merge the update into the ld/st. 1745 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1746 Modified = true; 1747 ++NumPreFolded; 1748 break; 1749 } 1750 1751 // Nothing found. Just move to the next instruction. 1752 ++MBBI; 1753 break; 1754 } 1755 } 1756 } 1757 1758 return Modified; 1759 } 1760 1761 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1762 if (skipFunction(*Fn.getFunction())) 1763 return false; 1764 1765 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1766 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1767 TRI = Subtarget->getRegisterInfo(); 1768 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1769 1770 // Resize the modified and used register bitfield trackers. We do this once 1771 // per function and then clear the bitfield each time we optimize a load or 1772 // store. 1773 ModifiedRegs.resize(TRI->getNumRegs()); 1774 UsedRegs.resize(TRI->getNumRegs()); 1775 1776 bool Modified = false; 1777 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 1778 for (auto &MBB : Fn) 1779 Modified |= optimizeBlock(MBB, enableNarrowZeroStOpt); 1780 1781 return Modified; 1782 } 1783 1784 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 1785 // stores near one another? Note: The pre-RA instruction scheduler already has 1786 // hooks to try and schedule pairable loads/stores together to improve pairing 1787 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 1788 1789 // FIXME: When pairing store instructions it's very possible for this pass to 1790 // hoist a store with a KILL marker above another use (without a KILL marker). 1791 // The resulting IR is invalid, but nothing uses the KILL markers after this 1792 // pass, so it's never caused a problem in practice. 1793 1794 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1795 /// load / store optimization pass. 1796 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1797 return new AArch64LoadStoreOpt(); 1798 } 1799