1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 #include <limits> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "aarch64-ldst-opt" 46 47 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 48 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 49 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 50 STATISTIC(NumUnscaledPairCreated, 51 "Number of load/store from unscaled generated"); 52 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 53 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 54 55 // The LdStLimit limits how far we search for load/store pairs. 56 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 57 cl::init(20), cl::Hidden); 58 59 // The UpdateLimit limits how far we search for update instructions when we form 60 // pre-/post-index instructions. 61 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 62 cl::Hidden); 63 64 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 65 66 namespace { 67 68 using LdStPairFlags = struct LdStPairFlags { 69 // If a matching instruction is found, MergeForward is set to true if the 70 // merge is to remove the first instruction and replace the second with 71 // a pair-wise insn, and false if the reverse is true. 72 bool MergeForward = false; 73 74 // SExtIdx gives the index of the result of the load pair that must be 75 // extended. The value of SExtIdx assumes that the paired load produces the 76 // value in this order: (I, returned iterator), i.e., -1 means no value has 77 // to be extended, 0 means I, and 1 means the returned iterator. 78 int SExtIdx = -1; 79 80 LdStPairFlags() = default; 81 82 void setMergeForward(bool V = true) { MergeForward = V; } 83 bool getMergeForward() const { return MergeForward; } 84 85 void setSExtIdx(int V) { SExtIdx = V; } 86 int getSExtIdx() const { return SExtIdx; } 87 }; 88 89 struct AArch64LoadStoreOpt : public MachineFunctionPass { 90 static char ID; 91 92 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 93 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 94 } 95 96 AliasAnalysis *AA; 97 const AArch64InstrInfo *TII; 98 const TargetRegisterInfo *TRI; 99 const AArch64Subtarget *Subtarget; 100 101 // Track which registers have been modified and used. 102 BitVector ModifiedRegs, UsedRegs; 103 104 void getAnalysisUsage(AnalysisUsage &AU) const override { 105 AU.addRequired<AAResultsWrapperPass>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 109 // Scan the instructions looking for a load/store that can be combined 110 // with the current instruction into a load/store pair. 111 // Return the matching instruction if one is found, else MBB->end(). 112 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 113 LdStPairFlags &Flags, 114 unsigned Limit, 115 bool FindNarrowMerge); 116 117 // Scan the instructions looking for a store that writes to the address from 118 // which the current load instruction reads. Return true if one is found. 119 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 120 MachineBasicBlock::iterator &StoreI); 121 122 // Merge the two instructions indicated into a wider narrow store instruction. 123 MachineBasicBlock::iterator 124 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 125 MachineBasicBlock::iterator MergeMI, 126 const LdStPairFlags &Flags); 127 128 // Merge the two instructions indicated into a single pair-wise instruction. 129 MachineBasicBlock::iterator 130 mergePairedInsns(MachineBasicBlock::iterator I, 131 MachineBasicBlock::iterator Paired, 132 const LdStPairFlags &Flags); 133 134 // Promote the load that reads directly from the address stored to. 135 MachineBasicBlock::iterator 136 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 137 MachineBasicBlock::iterator StoreI); 138 139 // Scan the instruction list to find a base register update that can 140 // be combined with the current instruction (a load or store) using 141 // pre or post indexed addressing with writeback. Scan forwards. 142 MachineBasicBlock::iterator 143 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 144 int UnscaledOffset, unsigned Limit); 145 146 // Scan the instruction list to find a base register update that can 147 // be combined with the current instruction (a load or store) using 148 // pre or post indexed addressing with writeback. Scan backwards. 149 MachineBasicBlock::iterator 150 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 151 152 // Find an instruction that updates the base register of the ld/st 153 // instruction. 154 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 155 unsigned BaseReg, int Offset); 156 157 // Merge a pre- or post-index base register update into a ld/st instruction. 158 MachineBasicBlock::iterator 159 mergeUpdateInsn(MachineBasicBlock::iterator I, 160 MachineBasicBlock::iterator Update, bool IsPreIdx); 161 162 // Find and merge zero store instructions. 163 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 164 165 // Find and pair ldr/str instructions. 166 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 167 168 // Find and promote load instructions which read directly from store. 169 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 170 171 // Find and merge a base register updates before or after a ld/st instruction. 172 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 173 174 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 175 176 bool runOnMachineFunction(MachineFunction &Fn) override; 177 178 MachineFunctionProperties getRequiredProperties() const override { 179 return MachineFunctionProperties().set( 180 MachineFunctionProperties::Property::NoVRegs); 181 } 182 183 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 184 }; 185 186 char AArch64LoadStoreOpt::ID = 0; 187 188 } // end anonymous namespace 189 190 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 191 AARCH64_LOAD_STORE_OPT_NAME, false, false) 192 193 static bool isNarrowStore(unsigned Opc) { 194 switch (Opc) { 195 default: 196 return false; 197 case AArch64::STRBBui: 198 case AArch64::STURBBi: 199 case AArch64::STRHHui: 200 case AArch64::STURHHi: 201 return true; 202 } 203 } 204 205 // Scaling factor for unscaled load or store. 206 static int getMemScale(MachineInstr &MI) { 207 switch (MI.getOpcode()) { 208 default: 209 llvm_unreachable("Opcode has unknown scale!"); 210 case AArch64::LDRBBui: 211 case AArch64::LDURBBi: 212 case AArch64::LDRSBWui: 213 case AArch64::LDURSBWi: 214 case AArch64::STRBBui: 215 case AArch64::STURBBi: 216 return 1; 217 case AArch64::LDRHHui: 218 case AArch64::LDURHHi: 219 case AArch64::LDRSHWui: 220 case AArch64::LDURSHWi: 221 case AArch64::STRHHui: 222 case AArch64::STURHHi: 223 return 2; 224 case AArch64::LDRSui: 225 case AArch64::LDURSi: 226 case AArch64::LDRSWui: 227 case AArch64::LDURSWi: 228 case AArch64::LDRWui: 229 case AArch64::LDURWi: 230 case AArch64::STRSui: 231 case AArch64::STURSi: 232 case AArch64::STRWui: 233 case AArch64::STURWi: 234 case AArch64::LDPSi: 235 case AArch64::LDPSWi: 236 case AArch64::LDPWi: 237 case AArch64::STPSi: 238 case AArch64::STPWi: 239 return 4; 240 case AArch64::LDRDui: 241 case AArch64::LDURDi: 242 case AArch64::LDRXui: 243 case AArch64::LDURXi: 244 case AArch64::STRDui: 245 case AArch64::STURDi: 246 case AArch64::STRXui: 247 case AArch64::STURXi: 248 case AArch64::LDPDi: 249 case AArch64::LDPXi: 250 case AArch64::STPDi: 251 case AArch64::STPXi: 252 return 8; 253 case AArch64::LDRQui: 254 case AArch64::LDURQi: 255 case AArch64::STRQui: 256 case AArch64::STURQi: 257 case AArch64::LDPQi: 258 case AArch64::STPQi: 259 return 16; 260 } 261 } 262 263 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 264 bool *IsValidLdStrOpc = nullptr) { 265 if (IsValidLdStrOpc) 266 *IsValidLdStrOpc = true; 267 switch (Opc) { 268 default: 269 if (IsValidLdStrOpc) 270 *IsValidLdStrOpc = false; 271 return std::numeric_limits<unsigned>::max(); 272 case AArch64::STRDui: 273 case AArch64::STURDi: 274 case AArch64::STRQui: 275 case AArch64::STURQi: 276 case AArch64::STRBBui: 277 case AArch64::STURBBi: 278 case AArch64::STRHHui: 279 case AArch64::STURHHi: 280 case AArch64::STRWui: 281 case AArch64::STURWi: 282 case AArch64::STRXui: 283 case AArch64::STURXi: 284 case AArch64::LDRDui: 285 case AArch64::LDURDi: 286 case AArch64::LDRQui: 287 case AArch64::LDURQi: 288 case AArch64::LDRWui: 289 case AArch64::LDURWi: 290 case AArch64::LDRXui: 291 case AArch64::LDURXi: 292 case AArch64::STRSui: 293 case AArch64::STURSi: 294 case AArch64::LDRSui: 295 case AArch64::LDURSi: 296 return Opc; 297 case AArch64::LDRSWui: 298 return AArch64::LDRWui; 299 case AArch64::LDURSWi: 300 return AArch64::LDURWi; 301 } 302 } 303 304 static unsigned getMatchingWideOpcode(unsigned Opc) { 305 switch (Opc) { 306 default: 307 llvm_unreachable("Opcode has no wide equivalent!"); 308 case AArch64::STRBBui: 309 return AArch64::STRHHui; 310 case AArch64::STRHHui: 311 return AArch64::STRWui; 312 case AArch64::STURBBi: 313 return AArch64::STURHHi; 314 case AArch64::STURHHi: 315 return AArch64::STURWi; 316 case AArch64::STURWi: 317 return AArch64::STURXi; 318 case AArch64::STRWui: 319 return AArch64::STRXui; 320 } 321 } 322 323 static unsigned getMatchingPairOpcode(unsigned Opc) { 324 switch (Opc) { 325 default: 326 llvm_unreachable("Opcode has no pairwise equivalent!"); 327 case AArch64::STRSui: 328 case AArch64::STURSi: 329 return AArch64::STPSi; 330 case AArch64::STRDui: 331 case AArch64::STURDi: 332 return AArch64::STPDi; 333 case AArch64::STRQui: 334 case AArch64::STURQi: 335 return AArch64::STPQi; 336 case AArch64::STRWui: 337 case AArch64::STURWi: 338 return AArch64::STPWi; 339 case AArch64::STRXui: 340 case AArch64::STURXi: 341 return AArch64::STPXi; 342 case AArch64::LDRSui: 343 case AArch64::LDURSi: 344 return AArch64::LDPSi; 345 case AArch64::LDRDui: 346 case AArch64::LDURDi: 347 return AArch64::LDPDi; 348 case AArch64::LDRQui: 349 case AArch64::LDURQi: 350 return AArch64::LDPQi; 351 case AArch64::LDRWui: 352 case AArch64::LDURWi: 353 return AArch64::LDPWi; 354 case AArch64::LDRXui: 355 case AArch64::LDURXi: 356 return AArch64::LDPXi; 357 case AArch64::LDRSWui: 358 case AArch64::LDURSWi: 359 return AArch64::LDPSWi; 360 } 361 } 362 363 static unsigned isMatchingStore(MachineInstr &LoadInst, 364 MachineInstr &StoreInst) { 365 unsigned LdOpc = LoadInst.getOpcode(); 366 unsigned StOpc = StoreInst.getOpcode(); 367 switch (LdOpc) { 368 default: 369 llvm_unreachable("Unsupported load instruction!"); 370 case AArch64::LDRBBui: 371 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 372 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 373 case AArch64::LDURBBi: 374 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 375 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 376 case AArch64::LDRHHui: 377 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 378 StOpc == AArch64::STRXui; 379 case AArch64::LDURHHi: 380 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 381 StOpc == AArch64::STURXi; 382 case AArch64::LDRWui: 383 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 384 case AArch64::LDURWi: 385 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 386 case AArch64::LDRXui: 387 return StOpc == AArch64::STRXui; 388 case AArch64::LDURXi: 389 return StOpc == AArch64::STURXi; 390 } 391 } 392 393 static unsigned getPreIndexedOpcode(unsigned Opc) { 394 // FIXME: We don't currently support creating pre-indexed loads/stores when 395 // the load or store is the unscaled version. If we decide to perform such an 396 // optimization in the future the cases for the unscaled loads/stores will 397 // need to be added here. 398 switch (Opc) { 399 default: 400 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 401 case AArch64::STRSui: 402 return AArch64::STRSpre; 403 case AArch64::STRDui: 404 return AArch64::STRDpre; 405 case AArch64::STRQui: 406 return AArch64::STRQpre; 407 case AArch64::STRBBui: 408 return AArch64::STRBBpre; 409 case AArch64::STRHHui: 410 return AArch64::STRHHpre; 411 case AArch64::STRWui: 412 return AArch64::STRWpre; 413 case AArch64::STRXui: 414 return AArch64::STRXpre; 415 case AArch64::LDRSui: 416 return AArch64::LDRSpre; 417 case AArch64::LDRDui: 418 return AArch64::LDRDpre; 419 case AArch64::LDRQui: 420 return AArch64::LDRQpre; 421 case AArch64::LDRBBui: 422 return AArch64::LDRBBpre; 423 case AArch64::LDRHHui: 424 return AArch64::LDRHHpre; 425 case AArch64::LDRWui: 426 return AArch64::LDRWpre; 427 case AArch64::LDRXui: 428 return AArch64::LDRXpre; 429 case AArch64::LDRSWui: 430 return AArch64::LDRSWpre; 431 case AArch64::LDPSi: 432 return AArch64::LDPSpre; 433 case AArch64::LDPSWi: 434 return AArch64::LDPSWpre; 435 case AArch64::LDPDi: 436 return AArch64::LDPDpre; 437 case AArch64::LDPQi: 438 return AArch64::LDPQpre; 439 case AArch64::LDPWi: 440 return AArch64::LDPWpre; 441 case AArch64::LDPXi: 442 return AArch64::LDPXpre; 443 case AArch64::STPSi: 444 return AArch64::STPSpre; 445 case AArch64::STPDi: 446 return AArch64::STPDpre; 447 case AArch64::STPQi: 448 return AArch64::STPQpre; 449 case AArch64::STPWi: 450 return AArch64::STPWpre; 451 case AArch64::STPXi: 452 return AArch64::STPXpre; 453 } 454 } 455 456 static unsigned getPostIndexedOpcode(unsigned Opc) { 457 switch (Opc) { 458 default: 459 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 460 case AArch64::STRSui: 461 case AArch64::STURSi: 462 return AArch64::STRSpost; 463 case AArch64::STRDui: 464 case AArch64::STURDi: 465 return AArch64::STRDpost; 466 case AArch64::STRQui: 467 case AArch64::STURQi: 468 return AArch64::STRQpost; 469 case AArch64::STRBBui: 470 return AArch64::STRBBpost; 471 case AArch64::STRHHui: 472 return AArch64::STRHHpost; 473 case AArch64::STRWui: 474 case AArch64::STURWi: 475 return AArch64::STRWpost; 476 case AArch64::STRXui: 477 case AArch64::STURXi: 478 return AArch64::STRXpost; 479 case AArch64::LDRSui: 480 case AArch64::LDURSi: 481 return AArch64::LDRSpost; 482 case AArch64::LDRDui: 483 case AArch64::LDURDi: 484 return AArch64::LDRDpost; 485 case AArch64::LDRQui: 486 case AArch64::LDURQi: 487 return AArch64::LDRQpost; 488 case AArch64::LDRBBui: 489 return AArch64::LDRBBpost; 490 case AArch64::LDRHHui: 491 return AArch64::LDRHHpost; 492 case AArch64::LDRWui: 493 case AArch64::LDURWi: 494 return AArch64::LDRWpost; 495 case AArch64::LDRXui: 496 case AArch64::LDURXi: 497 return AArch64::LDRXpost; 498 case AArch64::LDRSWui: 499 return AArch64::LDRSWpost; 500 case AArch64::LDPSi: 501 return AArch64::LDPSpost; 502 case AArch64::LDPSWi: 503 return AArch64::LDPSWpost; 504 case AArch64::LDPDi: 505 return AArch64::LDPDpost; 506 case AArch64::LDPQi: 507 return AArch64::LDPQpost; 508 case AArch64::LDPWi: 509 return AArch64::LDPWpost; 510 case AArch64::LDPXi: 511 return AArch64::LDPXpost; 512 case AArch64::STPSi: 513 return AArch64::STPSpost; 514 case AArch64::STPDi: 515 return AArch64::STPDpost; 516 case AArch64::STPQi: 517 return AArch64::STPQpost; 518 case AArch64::STPWi: 519 return AArch64::STPWpost; 520 case AArch64::STPXi: 521 return AArch64::STPXpost; 522 } 523 } 524 525 static bool isPairedLdSt(const MachineInstr &MI) { 526 switch (MI.getOpcode()) { 527 default: 528 return false; 529 case AArch64::LDPSi: 530 case AArch64::LDPSWi: 531 case AArch64::LDPDi: 532 case AArch64::LDPQi: 533 case AArch64::LDPWi: 534 case AArch64::LDPXi: 535 case AArch64::STPSi: 536 case AArch64::STPDi: 537 case AArch64::STPQi: 538 case AArch64::STPWi: 539 case AArch64::STPXi: 540 return true; 541 } 542 } 543 544 static const MachineOperand &getLdStRegOp(const MachineInstr &MI, 545 unsigned PairedRegOp = 0) { 546 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 547 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 548 return MI.getOperand(Idx); 549 } 550 551 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 552 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 553 return MI.getOperand(Idx); 554 } 555 556 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 557 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 558 return MI.getOperand(Idx); 559 } 560 561 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 562 MachineInstr &StoreInst, 563 const AArch64InstrInfo *TII) { 564 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 565 int LoadSize = getMemScale(LoadInst); 566 int StoreSize = getMemScale(StoreInst); 567 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 568 ? getLdStOffsetOp(StoreInst).getImm() 569 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 570 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 571 ? getLdStOffsetOp(LoadInst).getImm() 572 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 573 return (UnscaledStOffset <= UnscaledLdOffset) && 574 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 575 } 576 577 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 578 unsigned Opc = MI.getOpcode(); 579 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 580 isNarrowStore(Opc)) && 581 getLdStRegOp(MI).getReg() == AArch64::WZR; 582 } 583 584 static bool isPromotableLoadFromStore(MachineInstr &MI) { 585 switch (MI.getOpcode()) { 586 default: 587 return false; 588 // Scaled instructions. 589 case AArch64::LDRBBui: 590 case AArch64::LDRHHui: 591 case AArch64::LDRWui: 592 case AArch64::LDRXui: 593 // Unscaled instructions. 594 case AArch64::LDURBBi: 595 case AArch64::LDURHHi: 596 case AArch64::LDURWi: 597 case AArch64::LDURXi: 598 return true; 599 } 600 } 601 602 static bool isMergeableLdStUpdate(MachineInstr &MI) { 603 unsigned Opc = MI.getOpcode(); 604 switch (Opc) { 605 default: 606 return false; 607 // Scaled instructions. 608 case AArch64::STRSui: 609 case AArch64::STRDui: 610 case AArch64::STRQui: 611 case AArch64::STRXui: 612 case AArch64::STRWui: 613 case AArch64::STRHHui: 614 case AArch64::STRBBui: 615 case AArch64::LDRSui: 616 case AArch64::LDRDui: 617 case AArch64::LDRQui: 618 case AArch64::LDRXui: 619 case AArch64::LDRWui: 620 case AArch64::LDRHHui: 621 case AArch64::LDRBBui: 622 // Unscaled instructions. 623 case AArch64::STURSi: 624 case AArch64::STURDi: 625 case AArch64::STURQi: 626 case AArch64::STURWi: 627 case AArch64::STURXi: 628 case AArch64::LDURSi: 629 case AArch64::LDURDi: 630 case AArch64::LDURQi: 631 case AArch64::LDURWi: 632 case AArch64::LDURXi: 633 // Paired instructions. 634 case AArch64::LDPSi: 635 case AArch64::LDPSWi: 636 case AArch64::LDPDi: 637 case AArch64::LDPQi: 638 case AArch64::LDPWi: 639 case AArch64::LDPXi: 640 case AArch64::STPSi: 641 case AArch64::STPDi: 642 case AArch64::STPQi: 643 case AArch64::STPWi: 644 case AArch64::STPXi: 645 // Make sure this is a reg+imm (as opposed to an address reloc). 646 if (!getLdStOffsetOp(MI).isImm()) 647 return false; 648 649 return true; 650 } 651 } 652 653 MachineBasicBlock::iterator 654 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 655 MachineBasicBlock::iterator MergeMI, 656 const LdStPairFlags &Flags) { 657 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 658 "Expected promotable zero stores."); 659 660 MachineBasicBlock::iterator NextI = I; 661 ++NextI; 662 // If NextI is the second of the two instructions to be merged, we need 663 // to skip one further. Either way we merge will invalidate the iterator, 664 // and we don't need to scan the new instruction, as it's a pairwise 665 // instruction, which we're not considering for further action anyway. 666 if (NextI == MergeMI) 667 ++NextI; 668 669 unsigned Opc = I->getOpcode(); 670 bool IsScaled = !TII->isUnscaledLdSt(Opc); 671 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 672 673 bool MergeForward = Flags.getMergeForward(); 674 // Insert our new paired instruction after whichever of the paired 675 // instructions MergeForward indicates. 676 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 677 // Also based on MergeForward is from where we copy the base register operand 678 // so we get the flags compatible with the input code. 679 const MachineOperand &BaseRegOp = 680 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 681 682 // Which register is Rt and which is Rt2 depends on the offset order. 683 MachineInstr *RtMI; 684 if (getLdStOffsetOp(*I).getImm() == 685 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 686 RtMI = &*MergeMI; 687 else 688 RtMI = &*I; 689 690 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 691 // Change the scaled offset from small to large type. 692 if (IsScaled) { 693 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 694 OffsetImm /= 2; 695 } 696 697 // Construct the new instruction. 698 DebugLoc DL = I->getDebugLoc(); 699 MachineBasicBlock *MBB = I->getParent(); 700 MachineInstrBuilder MIB; 701 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 702 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 703 .add(BaseRegOp) 704 .addImm(OffsetImm) 705 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 706 (void)MIB; 707 708 DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 709 DEBUG(I->print(dbgs())); 710 DEBUG(dbgs() << " "); 711 DEBUG(MergeMI->print(dbgs())); 712 DEBUG(dbgs() << " with instruction:\n "); 713 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 714 DEBUG(dbgs() << "\n"); 715 716 // Erase the old instructions. 717 I->eraseFromParent(); 718 MergeMI->eraseFromParent(); 719 return NextI; 720 } 721 722 MachineBasicBlock::iterator 723 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 724 MachineBasicBlock::iterator Paired, 725 const LdStPairFlags &Flags) { 726 MachineBasicBlock::iterator NextI = I; 727 ++NextI; 728 // If NextI is the second of the two instructions to be merged, we need 729 // to skip one further. Either way we merge will invalidate the iterator, 730 // and we don't need to scan the new instruction, as it's a pairwise 731 // instruction, which we're not considering for further action anyway. 732 if (NextI == Paired) 733 ++NextI; 734 735 int SExtIdx = Flags.getSExtIdx(); 736 unsigned Opc = 737 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 738 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 739 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 740 741 bool MergeForward = Flags.getMergeForward(); 742 // Insert our new paired instruction after whichever of the paired 743 // instructions MergeForward indicates. 744 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 745 // Also based on MergeForward is from where we copy the base register operand 746 // so we get the flags compatible with the input code. 747 const MachineOperand &BaseRegOp = 748 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 749 750 int Offset = getLdStOffsetOp(*I).getImm(); 751 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 752 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 753 if (IsUnscaled != PairedIsUnscaled) { 754 // We're trying to pair instructions that differ in how they are scaled. If 755 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 756 // the opposite (i.e., make Paired's offset unscaled). 757 int MemSize = getMemScale(*Paired); 758 if (PairedIsUnscaled) { 759 // If the unscaled offset isn't a multiple of the MemSize, we can't 760 // pair the operations together. 761 assert(!(PairedOffset % getMemScale(*Paired)) && 762 "Offset should be a multiple of the stride!"); 763 PairedOffset /= MemSize; 764 } else { 765 PairedOffset *= MemSize; 766 } 767 } 768 769 // Which register is Rt and which is Rt2 depends on the offset order. 770 MachineInstr *RtMI, *Rt2MI; 771 if (Offset == PairedOffset + OffsetStride) { 772 RtMI = &*Paired; 773 Rt2MI = &*I; 774 // Here we swapped the assumption made for SExtIdx. 775 // I.e., we turn ldp I, Paired into ldp Paired, I. 776 // Update the index accordingly. 777 if (SExtIdx != -1) 778 SExtIdx = (SExtIdx + 1) % 2; 779 } else { 780 RtMI = &*I; 781 Rt2MI = &*Paired; 782 } 783 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 784 // Scale the immediate offset, if necessary. 785 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 786 assert(!(OffsetImm % getMemScale(*RtMI)) && 787 "Unscaled offset cannot be scaled."); 788 OffsetImm /= getMemScale(*RtMI); 789 } 790 791 // Construct the new instruction. 792 MachineInstrBuilder MIB; 793 DebugLoc DL = I->getDebugLoc(); 794 MachineBasicBlock *MBB = I->getParent(); 795 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 796 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 797 // Kill flags may become invalid when moving stores for pairing. 798 if (RegOp0.isUse()) { 799 if (!MergeForward) { 800 // Clear kill flags on store if moving upwards. Example: 801 // STRWui %w0, ... 802 // USE %w1 803 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 804 RegOp0.setIsKill(false); 805 RegOp1.setIsKill(false); 806 } else { 807 // Clear kill flags of the first stores register. Example: 808 // STRWui %w1, ... 809 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 810 // STRW %w0 811 unsigned Reg = getLdStRegOp(*I).getReg(); 812 for (MachineInstr &MI : make_range(std::next(I), Paired)) 813 MI.clearRegisterKills(Reg, TRI); 814 } 815 } 816 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 817 .add(RegOp0) 818 .add(RegOp1) 819 .add(BaseRegOp) 820 .addImm(OffsetImm) 821 .setMemRefs(I->mergeMemRefsWith(*Paired)); 822 823 (void)MIB; 824 825 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 826 DEBUG(I->print(dbgs())); 827 DEBUG(dbgs() << " "); 828 DEBUG(Paired->print(dbgs())); 829 DEBUG(dbgs() << " with instruction:\n "); 830 if (SExtIdx != -1) { 831 // Generate the sign extension for the proper result of the ldp. 832 // I.e., with X1, that would be: 833 // %w1 = KILL %w1, implicit-def %x1 834 // %x1 = SBFMXri killed %x1, 0, 31 835 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 836 // Right now, DstMO has the extended register, since it comes from an 837 // extended opcode. 838 unsigned DstRegX = DstMO.getReg(); 839 // Get the W variant of that register. 840 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 841 // Update the result of LDP to use the W instead of the X variant. 842 DstMO.setReg(DstRegW); 843 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 844 DEBUG(dbgs() << "\n"); 845 // Make the machine verifier happy by providing a definition for 846 // the X register. 847 // Insert this definition right after the generated LDP, i.e., before 848 // InsertionPoint. 849 MachineInstrBuilder MIBKill = 850 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 851 .addReg(DstRegW) 852 .addReg(DstRegX, RegState::Define); 853 MIBKill->getOperand(2).setImplicit(); 854 // Create the sign extension. 855 MachineInstrBuilder MIBSXTW = 856 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 857 .addReg(DstRegX) 858 .addImm(0) 859 .addImm(31); 860 (void)MIBSXTW; 861 DEBUG(dbgs() << " Extend operand:\n "); 862 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 863 } else { 864 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 865 } 866 DEBUG(dbgs() << "\n"); 867 868 // Erase the old instructions. 869 I->eraseFromParent(); 870 Paired->eraseFromParent(); 871 872 return NextI; 873 } 874 875 MachineBasicBlock::iterator 876 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 877 MachineBasicBlock::iterator StoreI) { 878 MachineBasicBlock::iterator NextI = LoadI; 879 ++NextI; 880 881 int LoadSize = getMemScale(*LoadI); 882 int StoreSize = getMemScale(*StoreI); 883 unsigned LdRt = getLdStRegOp(*LoadI).getReg(); 884 const MachineOperand &StMO = getLdStRegOp(*StoreI); 885 unsigned StRt = getLdStRegOp(*StoreI).getReg(); 886 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 887 888 assert((IsStoreXReg || 889 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 890 "Unexpected RegClass"); 891 892 MachineInstr *BitExtMI; 893 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 894 // Remove the load, if the destination register of the loads is the same 895 // register for stored value. 896 if (StRt == LdRt && LoadSize == 8) { 897 for (MachineInstr &MI : make_range(StoreI->getIterator(), 898 LoadI->getIterator())) { 899 if (MI.killsRegister(StRt, TRI)) { 900 MI.clearRegisterKills(StRt, TRI); 901 break; 902 } 903 } 904 DEBUG(dbgs() << "Remove load instruction:\n "); 905 DEBUG(LoadI->print(dbgs())); 906 DEBUG(dbgs() << "\n"); 907 LoadI->eraseFromParent(); 908 return NextI; 909 } 910 // Replace the load with a mov if the load and store are in the same size. 911 BitExtMI = 912 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 913 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 914 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 915 .add(StMO) 916 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 917 } else { 918 // FIXME: Currently we disable this transformation in big-endian targets as 919 // performance and correctness are verified only in little-endian. 920 if (!Subtarget->isLittleEndian()) 921 return NextI; 922 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 923 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 924 "Unsupported ld/st match"); 925 assert(LoadSize <= StoreSize && "Invalid load size"); 926 int UnscaledLdOffset = IsUnscaled 927 ? getLdStOffsetOp(*LoadI).getImm() 928 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 929 int UnscaledStOffset = IsUnscaled 930 ? getLdStOffsetOp(*StoreI).getImm() 931 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 932 int Width = LoadSize * 8; 933 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 934 int Imms = Immr + Width - 1; 935 unsigned DestReg = IsStoreXReg 936 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 937 &AArch64::GPR64RegClass) 938 : LdRt; 939 940 assert((UnscaledLdOffset >= UnscaledStOffset && 941 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 942 "Invalid offset"); 943 944 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 945 Imms = Immr + Width - 1; 946 if (UnscaledLdOffset == UnscaledStOffset) { 947 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 948 | ((Immr) << 6) // immr 949 | ((Imms) << 0) // imms 950 ; 951 952 BitExtMI = 953 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 954 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 955 DestReg) 956 .add(StMO) 957 .addImm(AndMaskEncoded); 958 } else { 959 BitExtMI = 960 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 961 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 962 DestReg) 963 .add(StMO) 964 .addImm(Immr) 965 .addImm(Imms); 966 } 967 } 968 969 // Clear kill flags between store and load. 970 for (MachineInstr &MI : make_range(StoreI->getIterator(), 971 BitExtMI->getIterator())) 972 if (MI.killsRegister(StRt, TRI)) { 973 MI.clearRegisterKills(StRt, TRI); 974 break; 975 } 976 977 DEBUG(dbgs() << "Promoting load by replacing :\n "); 978 DEBUG(StoreI->print(dbgs())); 979 DEBUG(dbgs() << " "); 980 DEBUG(LoadI->print(dbgs())); 981 DEBUG(dbgs() << " with instructions:\n "); 982 DEBUG(StoreI->print(dbgs())); 983 DEBUG(dbgs() << " "); 984 DEBUG((BitExtMI)->print(dbgs())); 985 DEBUG(dbgs() << "\n"); 986 987 // Erase the old instructions. 988 LoadI->eraseFromParent(); 989 return NextI; 990 } 991 992 /// trackRegDefsUses - Remember what registers the specified instruction uses 993 /// and modifies. 994 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs, 995 BitVector &UsedRegs, 996 const TargetRegisterInfo *TRI) { 997 for (const MachineOperand &MO : MI.operands()) { 998 if (MO.isRegMask()) 999 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 1000 1001 if (!MO.isReg()) 1002 continue; 1003 unsigned Reg = MO.getReg(); 1004 if (!Reg) 1005 continue; 1006 if (MO.isDef()) { 1007 // WZR/XZR are not modified even when used as a destination register. 1008 if (Reg != AArch64::WZR && Reg != AArch64::XZR) 1009 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1010 ModifiedRegs.set(*AI); 1011 } else { 1012 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 1013 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1014 UsedRegs.set(*AI); 1015 } 1016 } 1017 } 1018 1019 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1020 // Convert the byte-offset used by unscaled into an "element" offset used 1021 // by the scaled pair load/store instructions. 1022 if (IsUnscaled) { 1023 // If the byte-offset isn't a multiple of the stride, there's no point 1024 // trying to match it. 1025 if (Offset % OffsetStride) 1026 return false; 1027 Offset /= OffsetStride; 1028 } 1029 return Offset <= 63 && Offset >= -64; 1030 } 1031 1032 // Do alignment, specialized to power of 2 and for signed ints, 1033 // avoiding having to do a C-style cast from uint_64t to int when 1034 // using alignTo from include/llvm/Support/MathExtras.h. 1035 // FIXME: Move this function to include/MathExtras.h? 1036 static int alignTo(int Num, int PowOf2) { 1037 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1038 } 1039 1040 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 1041 AliasAnalysis *AA) { 1042 // One of the instructions must modify memory. 1043 if (!MIa.mayStore() && !MIb.mayStore()) 1044 return false; 1045 1046 // Both instructions must be memory operations. 1047 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 1048 return false; 1049 1050 return MIa.mayAlias(AA, MIb, /*UseTBAA*/false); 1051 } 1052 1053 static bool mayAlias(MachineInstr &MIa, 1054 SmallVectorImpl<MachineInstr *> &MemInsns, 1055 AliasAnalysis *AA) { 1056 for (MachineInstr *MIb : MemInsns) 1057 if (mayAlias(MIa, *MIb, AA)) 1058 return true; 1059 1060 return false; 1061 } 1062 1063 bool AArch64LoadStoreOpt::findMatchingStore( 1064 MachineBasicBlock::iterator I, unsigned Limit, 1065 MachineBasicBlock::iterator &StoreI) { 1066 MachineBasicBlock::iterator B = I->getParent()->begin(); 1067 MachineBasicBlock::iterator MBBI = I; 1068 MachineInstr &LoadMI = *I; 1069 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 1070 1071 // If the load is the first instruction in the block, there's obviously 1072 // not any matching store. 1073 if (MBBI == B) 1074 return false; 1075 1076 // Track which registers have been modified and used between the first insn 1077 // and the second insn. 1078 ModifiedRegs.reset(); 1079 UsedRegs.reset(); 1080 1081 unsigned Count = 0; 1082 do { 1083 --MBBI; 1084 MachineInstr &MI = *MBBI; 1085 1086 // Don't count transient instructions towards the search limit since there 1087 // may be different numbers of them if e.g. debug information is present. 1088 if (!MI.isTransient()) 1089 ++Count; 1090 1091 // If the load instruction reads directly from the address to which the 1092 // store instruction writes and the stored value is not modified, we can 1093 // promote the load. Since we do not handle stores with pre-/post-index, 1094 // it's unnecessary to check if BaseReg is modified by the store itself. 1095 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1096 BaseReg == getLdStBaseOp(MI).getReg() && 1097 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1098 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1099 StoreI = MBBI; 1100 return true; 1101 } 1102 1103 if (MI.isCall()) 1104 return false; 1105 1106 // Update modified / uses register lists. 1107 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1108 1109 // Otherwise, if the base register is modified, we have no match, so 1110 // return early. 1111 if (ModifiedRegs[BaseReg]) 1112 return false; 1113 1114 // If we encounter a store aliased with the load, return early. 1115 if (MI.mayStore() && mayAlias(LoadMI, MI, AA)) 1116 return false; 1117 } while (MBBI != B && Count < Limit); 1118 return false; 1119 } 1120 1121 // Returns true if FirstMI and MI are candidates for merging or pairing. 1122 // Otherwise, returns false. 1123 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1124 LdStPairFlags &Flags, 1125 const AArch64InstrInfo *TII) { 1126 // If this is volatile or if pairing is suppressed, not a candidate. 1127 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1128 return false; 1129 1130 // We should have already checked FirstMI for pair suppression and volatility. 1131 assert(!FirstMI.hasOrderedMemoryRef() && 1132 !TII->isLdStPairSuppressed(FirstMI) && 1133 "FirstMI shouldn't get here if either of these checks are true."); 1134 1135 unsigned OpcA = FirstMI.getOpcode(); 1136 unsigned OpcB = MI.getOpcode(); 1137 1138 // Opcodes match: nothing more to check. 1139 if (OpcA == OpcB) 1140 return true; 1141 1142 // Try to match a sign-extended load/store with a zero-extended load/store. 1143 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1144 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1145 assert(IsValidLdStrOpc && 1146 "Given Opc should be a Load or Store with an immediate"); 1147 // OpcA will be the first instruction in the pair. 1148 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1149 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1150 return true; 1151 } 1152 1153 // If the second instruction isn't even a mergable/pairable load/store, bail 1154 // out. 1155 if (!PairIsValidLdStrOpc) 1156 return false; 1157 1158 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1159 // offsets. 1160 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1161 return false; 1162 1163 // Try to match an unscaled load/store with a scaled load/store. 1164 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1165 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1166 1167 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1168 } 1169 1170 /// Scan the instructions looking for a load/store that can be combined with the 1171 /// current instruction into a wider equivalent or a load/store pair. 1172 MachineBasicBlock::iterator 1173 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1174 LdStPairFlags &Flags, unsigned Limit, 1175 bool FindNarrowMerge) { 1176 MachineBasicBlock::iterator E = I->getParent()->end(); 1177 MachineBasicBlock::iterator MBBI = I; 1178 MachineInstr &FirstMI = *I; 1179 ++MBBI; 1180 1181 bool MayLoad = FirstMI.mayLoad(); 1182 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1183 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1184 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1185 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1186 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1187 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1188 1189 // Track which registers have been modified and used between the first insn 1190 // (inclusive) and the second insn. 1191 ModifiedRegs.reset(); 1192 UsedRegs.reset(); 1193 1194 // Remember any instructions that read/write memory between FirstMI and MI. 1195 SmallVector<MachineInstr *, 4> MemInsns; 1196 1197 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1198 MachineInstr &MI = *MBBI; 1199 1200 // Don't count transient instructions towards the search limit since there 1201 // may be different numbers of them if e.g. debug information is present. 1202 if (!MI.isTransient()) 1203 ++Count; 1204 1205 Flags.setSExtIdx(-1); 1206 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1207 getLdStOffsetOp(MI).isImm()) { 1208 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1209 // If we've found another instruction with the same opcode, check to see 1210 // if the base and offset are compatible with our starting instruction. 1211 // These instructions all have scaled immediate operands, so we just 1212 // check for +1/-1. Make sure to check the new instruction offset is 1213 // actually an immediate and not a symbolic reference destined for 1214 // a relocation. 1215 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1216 int MIOffset = getLdStOffsetOp(MI).getImm(); 1217 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1218 if (IsUnscaled != MIIsUnscaled) { 1219 // We're trying to pair instructions that differ in how they are scaled. 1220 // If FirstMI is scaled then scale the offset of MI accordingly. 1221 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1222 int MemSize = getMemScale(MI); 1223 if (MIIsUnscaled) { 1224 // If the unscaled offset isn't a multiple of the MemSize, we can't 1225 // pair the operations together: bail and keep looking. 1226 if (MIOffset % MemSize) { 1227 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1228 MemInsns.push_back(&MI); 1229 continue; 1230 } 1231 MIOffset /= MemSize; 1232 } else { 1233 MIOffset *= MemSize; 1234 } 1235 } 1236 1237 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1238 (Offset + OffsetStride == MIOffset))) { 1239 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1240 if (FindNarrowMerge) { 1241 // If the alignment requirements of the scaled wide load/store 1242 // instruction can't express the offset of the scaled narrow input, 1243 // bail and keep looking. For promotable zero stores, allow only when 1244 // the stored value is the same (i.e., WZR). 1245 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1246 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1247 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1248 MemInsns.push_back(&MI); 1249 continue; 1250 } 1251 } else { 1252 // Pairwise instructions have a 7-bit signed offset field. Single 1253 // insns have a 12-bit unsigned offset field. If the resultant 1254 // immediate offset of merging these instructions is out of range for 1255 // a pairwise instruction, bail and keep looking. 1256 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1257 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1258 MemInsns.push_back(&MI); 1259 continue; 1260 } 1261 // If the alignment requirements of the paired (scaled) instruction 1262 // can't express the offset of the unscaled input, bail and keep 1263 // looking. 1264 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1265 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1266 MemInsns.push_back(&MI); 1267 continue; 1268 } 1269 } 1270 // If the destination register of the loads is the same register, bail 1271 // and keep looking. A load-pair instruction with both destination 1272 // registers the same is UNPREDICTABLE and will result in an exception. 1273 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1274 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1275 MemInsns.push_back(&MI); 1276 continue; 1277 } 1278 1279 // If the Rt of the second instruction was not modified or used between 1280 // the two instructions and none of the instructions between the second 1281 // and first alias with the second, we can combine the second into the 1282 // first. 1283 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1284 !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1285 !mayAlias(MI, MemInsns, AA)) { 1286 Flags.setMergeForward(false); 1287 return MBBI; 1288 } 1289 1290 // Likewise, if the Rt of the first instruction is not modified or used 1291 // between the two instructions and none of the instructions between the 1292 // first and the second alias with the first, we can combine the first 1293 // into the second. 1294 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1295 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1296 !mayAlias(FirstMI, MemInsns, AA)) { 1297 Flags.setMergeForward(true); 1298 return MBBI; 1299 } 1300 // Unable to combine these instructions due to interference in between. 1301 // Keep looking. 1302 } 1303 } 1304 1305 // If the instruction wasn't a matching load or store. Stop searching if we 1306 // encounter a call instruction that might modify memory. 1307 if (MI.isCall()) 1308 return E; 1309 1310 // Update modified / uses register lists. 1311 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1312 1313 // Otherwise, if the base register is modified, we have no match, so 1314 // return early. 1315 if (ModifiedRegs[BaseReg]) 1316 return E; 1317 1318 // Update list of instructions that read/write memory. 1319 if (MI.mayLoadOrStore()) 1320 MemInsns.push_back(&MI); 1321 } 1322 return E; 1323 } 1324 1325 MachineBasicBlock::iterator 1326 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1327 MachineBasicBlock::iterator Update, 1328 bool IsPreIdx) { 1329 assert((Update->getOpcode() == AArch64::ADDXri || 1330 Update->getOpcode() == AArch64::SUBXri) && 1331 "Unexpected base register update instruction to merge!"); 1332 MachineBasicBlock::iterator NextI = I; 1333 // Return the instruction following the merged instruction, which is 1334 // the instruction following our unmerged load. Unless that's the add/sub 1335 // instruction we're merging, in which case it's the one after that. 1336 if (++NextI == Update) 1337 ++NextI; 1338 1339 int Value = Update->getOperand(2).getImm(); 1340 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1341 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1342 if (Update->getOpcode() == AArch64::SUBXri) 1343 Value = -Value; 1344 1345 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1346 : getPostIndexedOpcode(I->getOpcode()); 1347 MachineInstrBuilder MIB; 1348 if (!isPairedLdSt(*I)) { 1349 // Non-paired instruction. 1350 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1351 .add(getLdStRegOp(*Update)) 1352 .add(getLdStRegOp(*I)) 1353 .add(getLdStBaseOp(*I)) 1354 .addImm(Value) 1355 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1356 } else { 1357 // Paired instruction. 1358 int Scale = getMemScale(*I); 1359 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1360 .add(getLdStRegOp(*Update)) 1361 .add(getLdStRegOp(*I, 0)) 1362 .add(getLdStRegOp(*I, 1)) 1363 .add(getLdStBaseOp(*I)) 1364 .addImm(Value / Scale) 1365 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1366 } 1367 (void)MIB; 1368 1369 if (IsPreIdx) { 1370 ++NumPreFolded; 1371 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1372 } else { 1373 ++NumPostFolded; 1374 DEBUG(dbgs() << "Creating post-indexed load/store."); 1375 } 1376 DEBUG(dbgs() << " Replacing instructions:\n "); 1377 DEBUG(I->print(dbgs())); 1378 DEBUG(dbgs() << " "); 1379 DEBUG(Update->print(dbgs())); 1380 DEBUG(dbgs() << " with instruction:\n "); 1381 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1382 DEBUG(dbgs() << "\n"); 1383 1384 // Erase the old instructions for the block. 1385 I->eraseFromParent(); 1386 Update->eraseFromParent(); 1387 1388 return NextI; 1389 } 1390 1391 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1392 MachineInstr &MI, 1393 unsigned BaseReg, int Offset) { 1394 switch (MI.getOpcode()) { 1395 default: 1396 break; 1397 case AArch64::SUBXri: 1398 case AArch64::ADDXri: 1399 // Make sure it's a vanilla immediate operand, not a relocation or 1400 // anything else we can't handle. 1401 if (!MI.getOperand(2).isImm()) 1402 break; 1403 // Watch out for 1 << 12 shifted value. 1404 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1405 break; 1406 1407 // The update instruction source and destination register must be the 1408 // same as the load/store base register. 1409 if (MI.getOperand(0).getReg() != BaseReg || 1410 MI.getOperand(1).getReg() != BaseReg) 1411 break; 1412 1413 bool IsPairedInsn = isPairedLdSt(MemMI); 1414 int UpdateOffset = MI.getOperand(2).getImm(); 1415 if (MI.getOpcode() == AArch64::SUBXri) 1416 UpdateOffset = -UpdateOffset; 1417 1418 // For non-paired load/store instructions, the immediate must fit in a 1419 // signed 9-bit integer. 1420 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1421 break; 1422 1423 // For paired load/store instructions, the immediate must be a multiple of 1424 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1425 // integer. 1426 if (IsPairedInsn) { 1427 int Scale = getMemScale(MemMI); 1428 if (UpdateOffset % Scale != 0) 1429 break; 1430 1431 int ScaledOffset = UpdateOffset / Scale; 1432 if (ScaledOffset > 63 || ScaledOffset < -64) 1433 break; 1434 } 1435 1436 // If we have a non-zero Offset, we check that it matches the amount 1437 // we're adding to the register. 1438 if (!Offset || Offset == UpdateOffset) 1439 return true; 1440 break; 1441 } 1442 return false; 1443 } 1444 1445 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1446 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1447 MachineBasicBlock::iterator E = I->getParent()->end(); 1448 MachineInstr &MemMI = *I; 1449 MachineBasicBlock::iterator MBBI = I; 1450 1451 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1452 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1453 1454 // Scan forward looking for post-index opportunities. Updating instructions 1455 // can't be formed if the memory instruction doesn't have the offset we're 1456 // looking for. 1457 if (MIUnscaledOffset != UnscaledOffset) 1458 return E; 1459 1460 // If the base register overlaps a destination register, we can't 1461 // merge the update. 1462 bool IsPairedInsn = isPairedLdSt(MemMI); 1463 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1464 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1465 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1466 return E; 1467 } 1468 1469 // Track which registers have been modified and used between the first insn 1470 // (inclusive) and the second insn. 1471 ModifiedRegs.reset(); 1472 UsedRegs.reset(); 1473 ++MBBI; 1474 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1475 MachineInstr &MI = *MBBI; 1476 1477 // Don't count transient instructions towards the search limit since there 1478 // may be different numbers of them if e.g. debug information is present. 1479 if (!MI.isTransient()) 1480 ++Count; 1481 1482 // If we found a match, return it. 1483 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1484 return MBBI; 1485 1486 // Update the status of what the instruction clobbered and used. 1487 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1488 1489 // Otherwise, if the base register is used or modified, we have no match, so 1490 // return early. 1491 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1492 return E; 1493 } 1494 return E; 1495 } 1496 1497 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1498 MachineBasicBlock::iterator I, unsigned Limit) { 1499 MachineBasicBlock::iterator B = I->getParent()->begin(); 1500 MachineBasicBlock::iterator E = I->getParent()->end(); 1501 MachineInstr &MemMI = *I; 1502 MachineBasicBlock::iterator MBBI = I; 1503 1504 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1505 int Offset = getLdStOffsetOp(MemMI).getImm(); 1506 1507 // If the load/store is the first instruction in the block, there's obviously 1508 // not any matching update. Ditto if the memory offset isn't zero. 1509 if (MBBI == B || Offset != 0) 1510 return E; 1511 // If the base register overlaps a destination register, we can't 1512 // merge the update. 1513 bool IsPairedInsn = isPairedLdSt(MemMI); 1514 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1515 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1516 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1517 return E; 1518 } 1519 1520 // Track which registers have been modified and used between the first insn 1521 // (inclusive) and the second insn. 1522 ModifiedRegs.reset(); 1523 UsedRegs.reset(); 1524 unsigned Count = 0; 1525 do { 1526 --MBBI; 1527 MachineInstr &MI = *MBBI; 1528 1529 // Don't count transient instructions towards the search limit since there 1530 // may be different numbers of them if e.g. debug information is present. 1531 if (!MI.isTransient()) 1532 ++Count; 1533 1534 // If we found a match, return it. 1535 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1536 return MBBI; 1537 1538 // Update the status of what the instruction clobbered and used. 1539 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1540 1541 // Otherwise, if the base register is used or modified, we have no match, so 1542 // return early. 1543 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1544 return E; 1545 } while (MBBI != B && Count < Limit); 1546 return E; 1547 } 1548 1549 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1550 MachineBasicBlock::iterator &MBBI) { 1551 MachineInstr &MI = *MBBI; 1552 // If this is a volatile load, don't mess with it. 1553 if (MI.hasOrderedMemoryRef()) 1554 return false; 1555 1556 // Make sure this is a reg+imm. 1557 // FIXME: It is possible to extend it to handle reg+reg cases. 1558 if (!getLdStOffsetOp(MI).isImm()) 1559 return false; 1560 1561 // Look backward up to LdStLimit instructions. 1562 MachineBasicBlock::iterator StoreI; 1563 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1564 ++NumLoadsFromStoresPromoted; 1565 // Promote the load. Keeping the iterator straight is a 1566 // pain, so we let the merge routine tell us what the next instruction 1567 // is after it's done mucking about. 1568 MBBI = promoteLoadFromStore(MBBI, StoreI); 1569 return true; 1570 } 1571 return false; 1572 } 1573 1574 // Merge adjacent zero stores into a wider store. 1575 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1576 MachineBasicBlock::iterator &MBBI) { 1577 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1578 MachineInstr &MI = *MBBI; 1579 MachineBasicBlock::iterator E = MI.getParent()->end(); 1580 1581 if (!TII->isCandidateToMergeOrPair(MI)) 1582 return false; 1583 1584 // Look ahead up to LdStLimit instructions for a mergable instruction. 1585 LdStPairFlags Flags; 1586 MachineBasicBlock::iterator MergeMI = 1587 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1588 if (MergeMI != E) { 1589 ++NumZeroStoresPromoted; 1590 1591 // Keeping the iterator straight is a pain, so we let the merge routine tell 1592 // us what the next instruction is after it's done mucking about. 1593 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1594 return true; 1595 } 1596 return false; 1597 } 1598 1599 // Find loads and stores that can be merged into a single load or store pair 1600 // instruction. 1601 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1602 MachineInstr &MI = *MBBI; 1603 MachineBasicBlock::iterator E = MI.getParent()->end(); 1604 1605 if (!TII->isCandidateToMergeOrPair(MI)) 1606 return false; 1607 1608 // Early exit if the offset is not possible to match. (6 bits of positive 1609 // range, plus allow an extra one in case we find a later insn that matches 1610 // with Offset-1) 1611 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1612 int Offset = getLdStOffsetOp(MI).getImm(); 1613 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1614 // Allow one more for offset. 1615 if (Offset > 0) 1616 Offset -= OffsetStride; 1617 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1618 return false; 1619 1620 // Look ahead up to LdStLimit instructions for a pairable instruction. 1621 LdStPairFlags Flags; 1622 MachineBasicBlock::iterator Paired = 1623 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1624 if (Paired != E) { 1625 ++NumPairCreated; 1626 if (TII->isUnscaledLdSt(MI)) 1627 ++NumUnscaledPairCreated; 1628 // Keeping the iterator straight is a pain, so we let the merge routine tell 1629 // us what the next instruction is after it's done mucking about. 1630 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1631 return true; 1632 } 1633 return false; 1634 } 1635 1636 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 1637 (MachineBasicBlock::iterator &MBBI) { 1638 MachineInstr &MI = *MBBI; 1639 MachineBasicBlock::iterator E = MI.getParent()->end(); 1640 MachineBasicBlock::iterator Update; 1641 1642 // Look forward to try to form a post-index instruction. For example, 1643 // ldr x0, [x20] 1644 // add x20, x20, #32 1645 // merged into: 1646 // ldr x0, [x20], #32 1647 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1648 if (Update != E) { 1649 // Merge the update into the ld/st. 1650 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1651 return true; 1652 } 1653 1654 // Don't know how to handle unscaled pre/post-index versions below, so bail. 1655 if (TII->isUnscaledLdSt(MI.getOpcode())) 1656 return false; 1657 1658 // Look back to try to find a pre-index instruction. For example, 1659 // add x0, x0, #8 1660 // ldr x1, [x0] 1661 // merged into: 1662 // ldr x1, [x0, #8]! 1663 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1664 if (Update != E) { 1665 // Merge the update into the ld/st. 1666 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1667 return true; 1668 } 1669 1670 // The immediate in the load/store is scaled by the size of the memory 1671 // operation. The immediate in the add we're looking for, 1672 // however, is not, so adjust here. 1673 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1674 1675 // Look forward to try to find a post-index instruction. For example, 1676 // ldr x1, [x0, #64] 1677 // add x0, x0, #64 1678 // merged into: 1679 // ldr x1, [x0, #64]! 1680 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1681 if (Update != E) { 1682 // Merge the update into the ld/st. 1683 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1684 return true; 1685 } 1686 1687 return false; 1688 } 1689 1690 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1691 bool EnableNarrowZeroStOpt) { 1692 bool Modified = false; 1693 // Four tranformations to do here: 1694 // 1) Find loads that directly read from stores and promote them by 1695 // replacing with mov instructions. If the store is wider than the load, 1696 // the load will be replaced with a bitfield extract. 1697 // e.g., 1698 // str w1, [x0, #4] 1699 // ldrh w2, [x0, #6] 1700 // ; becomes 1701 // str w1, [x0, #4] 1702 // lsr w2, w1, #16 1703 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1704 MBBI != E;) { 1705 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 1706 Modified = true; 1707 else 1708 ++MBBI; 1709 } 1710 // 2) Merge adjacent zero stores into a wider store. 1711 // e.g., 1712 // strh wzr, [x0] 1713 // strh wzr, [x0, #2] 1714 // ; becomes 1715 // str wzr, [x0] 1716 // e.g., 1717 // str wzr, [x0] 1718 // str wzr, [x0, #4] 1719 // ; becomes 1720 // str xzr, [x0] 1721 if (EnableNarrowZeroStOpt) 1722 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1723 MBBI != E;) { 1724 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 1725 Modified = true; 1726 else 1727 ++MBBI; 1728 } 1729 // 3) Find loads and stores that can be merged into a single load or store 1730 // pair instruction. 1731 // e.g., 1732 // ldr x0, [x2] 1733 // ldr x1, [x2, #8] 1734 // ; becomes 1735 // ldp x0, x1, [x2] 1736 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1737 MBBI != E;) { 1738 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 1739 Modified = true; 1740 else 1741 ++MBBI; 1742 } 1743 // 4) Find base register updates that can be merged into the load or store 1744 // as a base-reg writeback. 1745 // e.g., 1746 // ldr x0, [x2] 1747 // add x2, x2, #4 1748 // ; becomes 1749 // ldr x0, [x2], #4 1750 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1751 MBBI != E;) { 1752 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 1753 Modified = true; 1754 else 1755 ++MBBI; 1756 } 1757 1758 return Modified; 1759 } 1760 1761 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1762 if (skipFunction(Fn.getFunction())) 1763 return false; 1764 1765 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1766 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1767 TRI = Subtarget->getRegisterInfo(); 1768 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1769 1770 // Resize the modified and used register bitfield trackers. We do this once 1771 // per function and then clear the bitfield each time we optimize a load or 1772 // store. 1773 ModifiedRegs.resize(TRI->getNumRegs()); 1774 UsedRegs.resize(TRI->getNumRegs()); 1775 1776 bool Modified = false; 1777 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 1778 for (auto &MBB : Fn) 1779 Modified |= optimizeBlock(MBB, enableNarrowZeroStOpt); 1780 1781 return Modified; 1782 } 1783 1784 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 1785 // stores near one another? Note: The pre-RA instruction scheduler already has 1786 // hooks to try and schedule pairable loads/stores together to improve pairing 1787 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 1788 1789 // FIXME: When pairing store instructions it's very possible for this pass to 1790 // hoist a store with a KILL marker above another use (without a KILL marker). 1791 // The resulting IR is invalid, but nothing uses the KILL markers after this 1792 // pass, so it's never caused a problem in practice. 1793 1794 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1795 /// load / store optimization pass. 1796 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1797 return new AArch64LoadStoreOpt(); 1798 } 1799