1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 37 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 38 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 39 STATISTIC(NumUnscaledPairCreated, 40 "Number of load/store from unscaled generated"); 41 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted"); 42 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 43 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 44 45 // The LdStLimit limits how far we search for load/store pairs. 46 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 47 cl::init(20), cl::Hidden); 48 49 // The UpdateLimit limits how far we search for update instructions when we form 50 // pre-/post-index instructions. 51 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 52 cl::Hidden); 53 54 static cl::opt<bool> EnableNarrowLdMerge("enable-narrow-ld-merge", cl::Hidden, 55 cl::init(false), 56 cl::desc("Enable narrow load merge")); 57 58 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 59 60 namespace { 61 62 typedef struct LdStPairFlags { 63 // If a matching instruction is found, MergeForward is set to true if the 64 // merge is to remove the first instruction and replace the second with 65 // a pair-wise insn, and false if the reverse is true. 66 bool MergeForward; 67 68 // SExtIdx gives the index of the result of the load pair that must be 69 // extended. The value of SExtIdx assumes that the paired load produces the 70 // value in this order: (I, returned iterator), i.e., -1 means no value has 71 // to be extended, 0 means I, and 1 means the returned iterator. 72 int SExtIdx; 73 74 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 75 76 void setMergeForward(bool V = true) { MergeForward = V; } 77 bool getMergeForward() const { return MergeForward; } 78 79 void setSExtIdx(int V) { SExtIdx = V; } 80 int getSExtIdx() const { return SExtIdx; } 81 82 } LdStPairFlags; 83 84 struct AArch64LoadStoreOpt : public MachineFunctionPass { 85 static char ID; 86 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 87 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 88 } 89 90 const AArch64InstrInfo *TII; 91 const TargetRegisterInfo *TRI; 92 const AArch64Subtarget *Subtarget; 93 94 // Track which registers have been modified and used. 95 BitVector ModifiedRegs, UsedRegs; 96 97 // Scan the instructions looking for a load/store that can be combined 98 // with the current instruction into a load/store pair. 99 // Return the matching instruction if one is found, else MBB->end(). 100 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 101 LdStPairFlags &Flags, 102 unsigned Limit, 103 bool FindNarrowMerge); 104 105 // Scan the instructions looking for a store that writes to the address from 106 // which the current load instruction reads. Return true if one is found. 107 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 108 MachineBasicBlock::iterator &StoreI); 109 110 // Merge the two instructions indicated into a wider instruction. 111 MachineBasicBlock::iterator 112 mergeNarrowInsns(MachineBasicBlock::iterator I, 113 MachineBasicBlock::iterator MergeMI, 114 const LdStPairFlags &Flags); 115 116 // Merge the two instructions indicated into a single pair-wise instruction. 117 MachineBasicBlock::iterator 118 mergePairedInsns(MachineBasicBlock::iterator I, 119 MachineBasicBlock::iterator Paired, 120 const LdStPairFlags &Flags); 121 122 // Promote the load that reads directly from the address stored to. 123 MachineBasicBlock::iterator 124 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 125 MachineBasicBlock::iterator StoreI); 126 127 // Scan the instruction list to find a base register update that can 128 // be combined with the current instruction (a load or store) using 129 // pre or post indexed addressing with writeback. Scan forwards. 130 MachineBasicBlock::iterator 131 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 132 int UnscaledOffset, unsigned Limit); 133 134 // Scan the instruction list to find a base register update that can 135 // be combined with the current instruction (a load or store) using 136 // pre or post indexed addressing with writeback. Scan backwards. 137 MachineBasicBlock::iterator 138 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 139 140 // Find an instruction that updates the base register of the ld/st 141 // instruction. 142 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 143 unsigned BaseReg, int Offset); 144 145 // Merge a pre- or post-index base register update into a ld/st instruction. 146 MachineBasicBlock::iterator 147 mergeUpdateInsn(MachineBasicBlock::iterator I, 148 MachineBasicBlock::iterator Update, bool IsPreIdx); 149 150 // Find and merge foldable ldr/str instructions. 151 bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI); 152 153 // Find and pair ldr/str instructions. 154 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 155 156 // Find and promote load instructions which read directly from store. 157 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 158 159 bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt); 160 161 bool runOnMachineFunction(MachineFunction &Fn) override; 162 163 MachineFunctionProperties getRequiredProperties() const override { 164 return MachineFunctionProperties().set( 165 MachineFunctionProperties::Property::NoVRegs); 166 } 167 168 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 169 }; 170 char AArch64LoadStoreOpt::ID = 0; 171 } // namespace 172 173 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 174 AARCH64_LOAD_STORE_OPT_NAME, false, false) 175 176 static unsigned getBitExtrOpcode(MachineInstr &MI) { 177 switch (MI.getOpcode()) { 178 default: 179 llvm_unreachable("Unexpected opcode."); 180 case AArch64::LDRBBui: 181 case AArch64::LDURBBi: 182 case AArch64::LDRHHui: 183 case AArch64::LDURHHi: 184 return AArch64::UBFMWri; 185 case AArch64::LDRSBWui: 186 case AArch64::LDURSBWi: 187 case AArch64::LDRSHWui: 188 case AArch64::LDURSHWi: 189 return AArch64::SBFMWri; 190 } 191 } 192 193 static bool isNarrowStore(unsigned Opc) { 194 switch (Opc) { 195 default: 196 return false; 197 case AArch64::STRBBui: 198 case AArch64::STURBBi: 199 case AArch64::STRHHui: 200 case AArch64::STURHHi: 201 return true; 202 } 203 } 204 205 static bool isNarrowLoad(unsigned Opc) { 206 switch (Opc) { 207 default: 208 return false; 209 case AArch64::LDRHHui: 210 case AArch64::LDURHHi: 211 case AArch64::LDRBBui: 212 case AArch64::LDURBBi: 213 case AArch64::LDRSHWui: 214 case AArch64::LDURSHWi: 215 case AArch64::LDRSBWui: 216 case AArch64::LDURSBWi: 217 return true; 218 } 219 } 220 221 static bool isNarrowLoad(MachineInstr &MI) { 222 return isNarrowLoad(MI.getOpcode()); 223 } 224 225 static bool isNarrowLoadOrStore(unsigned Opc) { 226 return isNarrowLoad(Opc) || isNarrowStore(Opc); 227 } 228 229 // Scaling factor for unscaled load or store. 230 static int getMemScale(MachineInstr &MI) { 231 switch (MI.getOpcode()) { 232 default: 233 llvm_unreachable("Opcode has unknown scale!"); 234 case AArch64::LDRBBui: 235 case AArch64::LDURBBi: 236 case AArch64::LDRSBWui: 237 case AArch64::LDURSBWi: 238 case AArch64::STRBBui: 239 case AArch64::STURBBi: 240 return 1; 241 case AArch64::LDRHHui: 242 case AArch64::LDURHHi: 243 case AArch64::LDRSHWui: 244 case AArch64::LDURSHWi: 245 case AArch64::STRHHui: 246 case AArch64::STURHHi: 247 return 2; 248 case AArch64::LDRSui: 249 case AArch64::LDURSi: 250 case AArch64::LDRSWui: 251 case AArch64::LDURSWi: 252 case AArch64::LDRWui: 253 case AArch64::LDURWi: 254 case AArch64::STRSui: 255 case AArch64::STURSi: 256 case AArch64::STRWui: 257 case AArch64::STURWi: 258 case AArch64::LDPSi: 259 case AArch64::LDPSWi: 260 case AArch64::LDPWi: 261 case AArch64::STPSi: 262 case AArch64::STPWi: 263 return 4; 264 case AArch64::LDRDui: 265 case AArch64::LDURDi: 266 case AArch64::LDRXui: 267 case AArch64::LDURXi: 268 case AArch64::STRDui: 269 case AArch64::STURDi: 270 case AArch64::STRXui: 271 case AArch64::STURXi: 272 case AArch64::LDPDi: 273 case AArch64::LDPXi: 274 case AArch64::STPDi: 275 case AArch64::STPXi: 276 return 8; 277 case AArch64::LDRQui: 278 case AArch64::LDURQi: 279 case AArch64::STRQui: 280 case AArch64::STURQi: 281 case AArch64::LDPQi: 282 case AArch64::STPQi: 283 return 16; 284 } 285 } 286 287 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 288 bool *IsValidLdStrOpc = nullptr) { 289 if (IsValidLdStrOpc) 290 *IsValidLdStrOpc = true; 291 switch (Opc) { 292 default: 293 if (IsValidLdStrOpc) 294 *IsValidLdStrOpc = false; 295 return UINT_MAX; 296 case AArch64::STRDui: 297 case AArch64::STURDi: 298 case AArch64::STRQui: 299 case AArch64::STURQi: 300 case AArch64::STRBBui: 301 case AArch64::STURBBi: 302 case AArch64::STRHHui: 303 case AArch64::STURHHi: 304 case AArch64::STRWui: 305 case AArch64::STURWi: 306 case AArch64::STRXui: 307 case AArch64::STURXi: 308 case AArch64::LDRDui: 309 case AArch64::LDURDi: 310 case AArch64::LDRQui: 311 case AArch64::LDURQi: 312 case AArch64::LDRWui: 313 case AArch64::LDURWi: 314 case AArch64::LDRXui: 315 case AArch64::LDURXi: 316 case AArch64::STRSui: 317 case AArch64::STURSi: 318 case AArch64::LDRSui: 319 case AArch64::LDURSi: 320 case AArch64::LDRHHui: 321 case AArch64::LDURHHi: 322 case AArch64::LDRBBui: 323 case AArch64::LDURBBi: 324 return Opc; 325 case AArch64::LDRSWui: 326 return AArch64::LDRWui; 327 case AArch64::LDURSWi: 328 return AArch64::LDURWi; 329 case AArch64::LDRSBWui: 330 return AArch64::LDRBBui; 331 case AArch64::LDRSHWui: 332 return AArch64::LDRHHui; 333 case AArch64::LDURSBWi: 334 return AArch64::LDURBBi; 335 case AArch64::LDURSHWi: 336 return AArch64::LDURHHi; 337 } 338 } 339 340 static unsigned getMatchingWideOpcode(unsigned Opc) { 341 switch (Opc) { 342 default: 343 llvm_unreachable("Opcode has no wide equivalent!"); 344 case AArch64::STRBBui: 345 return AArch64::STRHHui; 346 case AArch64::STRHHui: 347 return AArch64::STRWui; 348 case AArch64::STURBBi: 349 return AArch64::STURHHi; 350 case AArch64::STURHHi: 351 return AArch64::STURWi; 352 case AArch64::STURWi: 353 return AArch64::STURXi; 354 case AArch64::STRWui: 355 return AArch64::STRXui; 356 case AArch64::LDRHHui: 357 case AArch64::LDRSHWui: 358 return AArch64::LDRWui; 359 case AArch64::LDURHHi: 360 case AArch64::LDURSHWi: 361 return AArch64::LDURWi; 362 case AArch64::LDRBBui: 363 case AArch64::LDRSBWui: 364 return AArch64::LDRHHui; 365 case AArch64::LDURBBi: 366 case AArch64::LDURSBWi: 367 return AArch64::LDURHHi; 368 } 369 } 370 371 static unsigned getMatchingPairOpcode(unsigned Opc) { 372 switch (Opc) { 373 default: 374 llvm_unreachable("Opcode has no pairwise equivalent!"); 375 case AArch64::STRSui: 376 case AArch64::STURSi: 377 return AArch64::STPSi; 378 case AArch64::STRDui: 379 case AArch64::STURDi: 380 return AArch64::STPDi; 381 case AArch64::STRQui: 382 case AArch64::STURQi: 383 return AArch64::STPQi; 384 case AArch64::STRWui: 385 case AArch64::STURWi: 386 return AArch64::STPWi; 387 case AArch64::STRXui: 388 case AArch64::STURXi: 389 return AArch64::STPXi; 390 case AArch64::LDRSui: 391 case AArch64::LDURSi: 392 return AArch64::LDPSi; 393 case AArch64::LDRDui: 394 case AArch64::LDURDi: 395 return AArch64::LDPDi; 396 case AArch64::LDRQui: 397 case AArch64::LDURQi: 398 return AArch64::LDPQi; 399 case AArch64::LDRWui: 400 case AArch64::LDURWi: 401 return AArch64::LDPWi; 402 case AArch64::LDRXui: 403 case AArch64::LDURXi: 404 return AArch64::LDPXi; 405 case AArch64::LDRSWui: 406 case AArch64::LDURSWi: 407 return AArch64::LDPSWi; 408 } 409 } 410 411 static unsigned isMatchingStore(MachineInstr &LoadInst, 412 MachineInstr &StoreInst) { 413 unsigned LdOpc = LoadInst.getOpcode(); 414 unsigned StOpc = StoreInst.getOpcode(); 415 switch (LdOpc) { 416 default: 417 llvm_unreachable("Unsupported load instruction!"); 418 case AArch64::LDRBBui: 419 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 420 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 421 case AArch64::LDURBBi: 422 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 423 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 424 case AArch64::LDRHHui: 425 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 426 StOpc == AArch64::STRXui; 427 case AArch64::LDURHHi: 428 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 429 StOpc == AArch64::STURXi; 430 case AArch64::LDRWui: 431 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 432 case AArch64::LDURWi: 433 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 434 case AArch64::LDRXui: 435 return StOpc == AArch64::STRXui; 436 case AArch64::LDURXi: 437 return StOpc == AArch64::STURXi; 438 } 439 } 440 441 static unsigned getPreIndexedOpcode(unsigned Opc) { 442 switch (Opc) { 443 default: 444 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 445 case AArch64::STRSui: 446 return AArch64::STRSpre; 447 case AArch64::STRDui: 448 return AArch64::STRDpre; 449 case AArch64::STRQui: 450 return AArch64::STRQpre; 451 case AArch64::STRBBui: 452 return AArch64::STRBBpre; 453 case AArch64::STRHHui: 454 return AArch64::STRHHpre; 455 case AArch64::STRWui: 456 return AArch64::STRWpre; 457 case AArch64::STRXui: 458 return AArch64::STRXpre; 459 case AArch64::LDRSui: 460 return AArch64::LDRSpre; 461 case AArch64::LDRDui: 462 return AArch64::LDRDpre; 463 case AArch64::LDRQui: 464 return AArch64::LDRQpre; 465 case AArch64::LDRBBui: 466 return AArch64::LDRBBpre; 467 case AArch64::LDRHHui: 468 return AArch64::LDRHHpre; 469 case AArch64::LDRWui: 470 return AArch64::LDRWpre; 471 case AArch64::LDRXui: 472 return AArch64::LDRXpre; 473 case AArch64::LDRSWui: 474 return AArch64::LDRSWpre; 475 case AArch64::LDPSi: 476 return AArch64::LDPSpre; 477 case AArch64::LDPSWi: 478 return AArch64::LDPSWpre; 479 case AArch64::LDPDi: 480 return AArch64::LDPDpre; 481 case AArch64::LDPQi: 482 return AArch64::LDPQpre; 483 case AArch64::LDPWi: 484 return AArch64::LDPWpre; 485 case AArch64::LDPXi: 486 return AArch64::LDPXpre; 487 case AArch64::STPSi: 488 return AArch64::STPSpre; 489 case AArch64::STPDi: 490 return AArch64::STPDpre; 491 case AArch64::STPQi: 492 return AArch64::STPQpre; 493 case AArch64::STPWi: 494 return AArch64::STPWpre; 495 case AArch64::STPXi: 496 return AArch64::STPXpre; 497 } 498 } 499 500 static unsigned getPostIndexedOpcode(unsigned Opc) { 501 switch (Opc) { 502 default: 503 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 504 case AArch64::STRSui: 505 return AArch64::STRSpost; 506 case AArch64::STRDui: 507 return AArch64::STRDpost; 508 case AArch64::STRQui: 509 return AArch64::STRQpost; 510 case AArch64::STRBBui: 511 return AArch64::STRBBpost; 512 case AArch64::STRHHui: 513 return AArch64::STRHHpost; 514 case AArch64::STRWui: 515 return AArch64::STRWpost; 516 case AArch64::STRXui: 517 return AArch64::STRXpost; 518 case AArch64::LDRSui: 519 return AArch64::LDRSpost; 520 case AArch64::LDRDui: 521 return AArch64::LDRDpost; 522 case AArch64::LDRQui: 523 return AArch64::LDRQpost; 524 case AArch64::LDRBBui: 525 return AArch64::LDRBBpost; 526 case AArch64::LDRHHui: 527 return AArch64::LDRHHpost; 528 case AArch64::LDRWui: 529 return AArch64::LDRWpost; 530 case AArch64::LDRXui: 531 return AArch64::LDRXpost; 532 case AArch64::LDRSWui: 533 return AArch64::LDRSWpost; 534 case AArch64::LDPSi: 535 return AArch64::LDPSpost; 536 case AArch64::LDPSWi: 537 return AArch64::LDPSWpost; 538 case AArch64::LDPDi: 539 return AArch64::LDPDpost; 540 case AArch64::LDPQi: 541 return AArch64::LDPQpost; 542 case AArch64::LDPWi: 543 return AArch64::LDPWpost; 544 case AArch64::LDPXi: 545 return AArch64::LDPXpost; 546 case AArch64::STPSi: 547 return AArch64::STPSpost; 548 case AArch64::STPDi: 549 return AArch64::STPDpost; 550 case AArch64::STPQi: 551 return AArch64::STPQpost; 552 case AArch64::STPWi: 553 return AArch64::STPWpost; 554 case AArch64::STPXi: 555 return AArch64::STPXpost; 556 } 557 } 558 559 static bool isPairedLdSt(const MachineInstr &MI) { 560 switch (MI.getOpcode()) { 561 default: 562 return false; 563 case AArch64::LDPSi: 564 case AArch64::LDPSWi: 565 case AArch64::LDPDi: 566 case AArch64::LDPQi: 567 case AArch64::LDPWi: 568 case AArch64::LDPXi: 569 case AArch64::STPSi: 570 case AArch64::STPDi: 571 case AArch64::STPQi: 572 case AArch64::STPWi: 573 case AArch64::STPXi: 574 return true; 575 } 576 } 577 578 static const MachineOperand &getLdStRegOp(const MachineInstr &MI, 579 unsigned PairedRegOp = 0) { 580 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 581 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 582 return MI.getOperand(Idx); 583 } 584 585 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 586 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 587 return MI.getOperand(Idx); 588 } 589 590 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 591 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 592 return MI.getOperand(Idx); 593 } 594 595 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 596 MachineInstr &StoreInst, 597 const AArch64InstrInfo *TII) { 598 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 599 int LoadSize = getMemScale(LoadInst); 600 int StoreSize = getMemScale(StoreInst); 601 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 602 ? getLdStOffsetOp(StoreInst).getImm() 603 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 604 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 605 ? getLdStOffsetOp(LoadInst).getImm() 606 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 607 return (UnscaledStOffset <= UnscaledLdOffset) && 608 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 609 } 610 611 static bool isPromotableZeroStoreOpcode(unsigned Opc) { 612 return isNarrowStore(Opc) || Opc == AArch64::STRWui || Opc == AArch64::STURWi; 613 } 614 615 static bool isPromotableZeroStoreOpcode(MachineInstr &MI) { 616 return isPromotableZeroStoreOpcode(MI.getOpcode()); 617 } 618 619 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 620 return (isPromotableZeroStoreOpcode(MI)) && 621 getLdStRegOp(MI).getReg() == AArch64::WZR; 622 } 623 624 MachineBasicBlock::iterator 625 AArch64LoadStoreOpt::mergeNarrowInsns(MachineBasicBlock::iterator I, 626 MachineBasicBlock::iterator MergeMI, 627 const LdStPairFlags &Flags) { 628 MachineBasicBlock::iterator NextI = I; 629 ++NextI; 630 // If NextI is the second of the two instructions to be merged, we need 631 // to skip one further. Either way we merge will invalidate the iterator, 632 // and we don't need to scan the new instruction, as it's a pairwise 633 // instruction, which we're not considering for further action anyway. 634 if (NextI == MergeMI) 635 ++NextI; 636 637 unsigned Opc = I->getOpcode(); 638 bool IsScaled = !TII->isUnscaledLdSt(Opc); 639 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 640 641 bool MergeForward = Flags.getMergeForward(); 642 // Insert our new paired instruction after whichever of the paired 643 // instructions MergeForward indicates. 644 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 645 // Also based on MergeForward is from where we copy the base register operand 646 // so we get the flags compatible with the input code. 647 const MachineOperand &BaseRegOp = 648 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 649 650 // Which register is Rt and which is Rt2 depends on the offset order. 651 MachineInstr *RtMI, *Rt2MI; 652 if (getLdStOffsetOp(*I).getImm() == 653 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) { 654 RtMI = &*MergeMI; 655 Rt2MI = &*I; 656 } else { 657 RtMI = &*I; 658 Rt2MI = &*MergeMI; 659 } 660 661 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 662 // Change the scaled offset from small to large type. 663 if (IsScaled) { 664 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 665 OffsetImm /= 2; 666 } 667 668 DebugLoc DL = I->getDebugLoc(); 669 MachineBasicBlock *MBB = I->getParent(); 670 if (isNarrowLoad(Opc)) { 671 MachineInstr *RtNewDest = &*(MergeForward ? I : MergeMI); 672 // When merging small (< 32 bit) loads for big-endian targets, the order of 673 // the component parts gets swapped. 674 if (!Subtarget->isLittleEndian()) 675 std::swap(RtMI, Rt2MI); 676 // Construct the new load instruction. 677 MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2; 678 NewMemMI = 679 BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 680 .addOperand(getLdStRegOp(*RtNewDest)) 681 .addOperand(BaseRegOp) 682 .addImm(OffsetImm) 683 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 684 (void)NewMemMI; 685 686 DEBUG( 687 dbgs() 688 << "Creating the new load and extract. Replacing instructions:\n "); 689 DEBUG(I->print(dbgs())); 690 DEBUG(dbgs() << " "); 691 DEBUG(MergeMI->print(dbgs())); 692 DEBUG(dbgs() << " with instructions:\n "); 693 DEBUG((NewMemMI)->print(dbgs())); 694 695 int Width = getMemScale(*I) == 1 ? 8 : 16; 696 int LSBLow = 0; 697 int LSBHigh = Width; 698 int ImmsLow = LSBLow + Width - 1; 699 int ImmsHigh = LSBHigh + Width - 1; 700 MachineInstr *ExtDestMI = &*(MergeForward ? MergeMI : I); 701 if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) { 702 // Create the bitfield extract for high bits. 703 BitExtMI1 = 704 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*Rt2MI))) 705 .addOperand(getLdStRegOp(*Rt2MI)) 706 .addReg(getLdStRegOp(*RtNewDest).getReg()) 707 .addImm(LSBHigh) 708 .addImm(ImmsHigh); 709 // Create the bitfield extract for low bits. 710 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 711 // For unsigned, prefer to use AND for low bits. 712 BitExtMI2 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 713 .addOperand(getLdStRegOp(*RtMI)) 714 .addReg(getLdStRegOp(*RtNewDest).getReg()) 715 .addImm(ImmsLow); 716 } else { 717 BitExtMI2 = 718 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*RtMI))) 719 .addOperand(getLdStRegOp(*RtMI)) 720 .addReg(getLdStRegOp(*RtNewDest).getReg()) 721 .addImm(LSBLow) 722 .addImm(ImmsLow); 723 } 724 } else { 725 // Create the bitfield extract for low bits. 726 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 727 // For unsigned, prefer to use AND for low bits. 728 BitExtMI1 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 729 .addOperand(getLdStRegOp(*RtMI)) 730 .addReg(getLdStRegOp(*RtNewDest).getReg()) 731 .addImm(ImmsLow); 732 } else { 733 BitExtMI1 = 734 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*RtMI))) 735 .addOperand(getLdStRegOp(*RtMI)) 736 .addReg(getLdStRegOp(*RtNewDest).getReg()) 737 .addImm(LSBLow) 738 .addImm(ImmsLow); 739 } 740 741 // Create the bitfield extract for high bits. 742 BitExtMI2 = 743 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*Rt2MI))) 744 .addOperand(getLdStRegOp(*Rt2MI)) 745 .addReg(getLdStRegOp(*RtNewDest).getReg()) 746 .addImm(LSBHigh) 747 .addImm(ImmsHigh); 748 } 749 (void)BitExtMI1; 750 (void)BitExtMI2; 751 752 DEBUG(dbgs() << " "); 753 DEBUG((BitExtMI1)->print(dbgs())); 754 DEBUG(dbgs() << " "); 755 DEBUG((BitExtMI2)->print(dbgs())); 756 DEBUG(dbgs() << "\n"); 757 758 // Erase the old instructions. 759 I->eraseFromParent(); 760 MergeMI->eraseFromParent(); 761 return NextI; 762 } 763 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 764 "Expected promotable zero store"); 765 766 // Construct the new instruction. 767 MachineInstrBuilder MIB; 768 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 769 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 770 .addOperand(BaseRegOp) 771 .addImm(OffsetImm) 772 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 773 (void)MIB; 774 775 DEBUG(dbgs() << "Creating wider load/store. Replacing instructions:\n "); 776 DEBUG(I->print(dbgs())); 777 DEBUG(dbgs() << " "); 778 DEBUG(MergeMI->print(dbgs())); 779 DEBUG(dbgs() << " with instruction:\n "); 780 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 781 DEBUG(dbgs() << "\n"); 782 783 // Erase the old instructions. 784 I->eraseFromParent(); 785 MergeMI->eraseFromParent(); 786 return NextI; 787 } 788 789 MachineBasicBlock::iterator 790 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 791 MachineBasicBlock::iterator Paired, 792 const LdStPairFlags &Flags) { 793 MachineBasicBlock::iterator NextI = I; 794 ++NextI; 795 // If NextI is the second of the two instructions to be merged, we need 796 // to skip one further. Either way we merge will invalidate the iterator, 797 // and we don't need to scan the new instruction, as it's a pairwise 798 // instruction, which we're not considering for further action anyway. 799 if (NextI == Paired) 800 ++NextI; 801 802 int SExtIdx = Flags.getSExtIdx(); 803 unsigned Opc = 804 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 805 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 806 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 807 808 bool MergeForward = Flags.getMergeForward(); 809 // Insert our new paired instruction after whichever of the paired 810 // instructions MergeForward indicates. 811 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 812 // Also based on MergeForward is from where we copy the base register operand 813 // so we get the flags compatible with the input code. 814 const MachineOperand &BaseRegOp = 815 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 816 817 int Offset = getLdStOffsetOp(*I).getImm(); 818 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 819 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 820 if (IsUnscaled != PairedIsUnscaled) { 821 // We're trying to pair instructions that differ in how they are scaled. If 822 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 823 // the opposite (i.e., make Paired's offset unscaled). 824 int MemSize = getMemScale(*Paired); 825 if (PairedIsUnscaled) { 826 // If the unscaled offset isn't a multiple of the MemSize, we can't 827 // pair the operations together. 828 assert(!(PairedOffset % getMemScale(*Paired)) && 829 "Offset should be a multiple of the stride!"); 830 PairedOffset /= MemSize; 831 } else { 832 PairedOffset *= MemSize; 833 } 834 } 835 836 // Which register is Rt and which is Rt2 depends on the offset order. 837 MachineInstr *RtMI, *Rt2MI; 838 if (Offset == PairedOffset + OffsetStride) { 839 RtMI = &*Paired; 840 Rt2MI = &*I; 841 // Here we swapped the assumption made for SExtIdx. 842 // I.e., we turn ldp I, Paired into ldp Paired, I. 843 // Update the index accordingly. 844 if (SExtIdx != -1) 845 SExtIdx = (SExtIdx + 1) % 2; 846 } else { 847 RtMI = &*I; 848 Rt2MI = &*Paired; 849 } 850 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 851 // Scale the immediate offset, if necessary. 852 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 853 assert(!(OffsetImm % getMemScale(*RtMI)) && 854 "Unscaled offset cannot be scaled."); 855 OffsetImm /= getMemScale(*RtMI); 856 } 857 858 // Construct the new instruction. 859 MachineInstrBuilder MIB; 860 DebugLoc DL = I->getDebugLoc(); 861 MachineBasicBlock *MBB = I->getParent(); 862 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 863 .addOperand(getLdStRegOp(*RtMI)) 864 .addOperand(getLdStRegOp(*Rt2MI)) 865 .addOperand(BaseRegOp) 866 .addImm(OffsetImm) 867 .setMemRefs(I->mergeMemRefsWith(*Paired)); 868 869 (void)MIB; 870 871 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 872 DEBUG(I->print(dbgs())); 873 DEBUG(dbgs() << " "); 874 DEBUG(Paired->print(dbgs())); 875 DEBUG(dbgs() << " with instruction:\n "); 876 if (SExtIdx != -1) { 877 // Generate the sign extension for the proper result of the ldp. 878 // I.e., with X1, that would be: 879 // %W1<def> = KILL %W1, %X1<imp-def> 880 // %X1<def> = SBFMXri %X1<kill>, 0, 31 881 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 882 // Right now, DstMO has the extended register, since it comes from an 883 // extended opcode. 884 unsigned DstRegX = DstMO.getReg(); 885 // Get the W variant of that register. 886 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 887 // Update the result of LDP to use the W instead of the X variant. 888 DstMO.setReg(DstRegW); 889 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 890 DEBUG(dbgs() << "\n"); 891 // Make the machine verifier happy by providing a definition for 892 // the X register. 893 // Insert this definition right after the generated LDP, i.e., before 894 // InsertionPoint. 895 MachineInstrBuilder MIBKill = 896 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 897 .addReg(DstRegW) 898 .addReg(DstRegX, RegState::Define); 899 MIBKill->getOperand(2).setImplicit(); 900 // Create the sign extension. 901 MachineInstrBuilder MIBSXTW = 902 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 903 .addReg(DstRegX) 904 .addImm(0) 905 .addImm(31); 906 (void)MIBSXTW; 907 DEBUG(dbgs() << " Extend operand:\n "); 908 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 909 } else { 910 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 911 } 912 DEBUG(dbgs() << "\n"); 913 914 // Erase the old instructions. 915 I->eraseFromParent(); 916 Paired->eraseFromParent(); 917 918 return NextI; 919 } 920 921 MachineBasicBlock::iterator 922 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 923 MachineBasicBlock::iterator StoreI) { 924 MachineBasicBlock::iterator NextI = LoadI; 925 ++NextI; 926 927 int LoadSize = getMemScale(*LoadI); 928 int StoreSize = getMemScale(*StoreI); 929 unsigned LdRt = getLdStRegOp(*LoadI).getReg(); 930 unsigned StRt = getLdStRegOp(*StoreI).getReg(); 931 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 932 933 assert((IsStoreXReg || 934 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 935 "Unexpected RegClass"); 936 937 MachineInstr *BitExtMI; 938 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 939 // Remove the load, if the destination register of the loads is the same 940 // register for stored value. 941 if (StRt == LdRt && LoadSize == 8) { 942 DEBUG(dbgs() << "Remove load instruction:\n "); 943 DEBUG(LoadI->print(dbgs())); 944 DEBUG(dbgs() << "\n"); 945 LoadI->eraseFromParent(); 946 return NextI; 947 } 948 // Replace the load with a mov if the load and store are in the same size. 949 BitExtMI = 950 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 951 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 952 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 953 .addReg(StRt) 954 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 955 } else { 956 // FIXME: Currently we disable this transformation in big-endian targets as 957 // performance and correctness are verified only in little-endian. 958 if (!Subtarget->isLittleEndian()) 959 return NextI; 960 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 961 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 962 "Unsupported ld/st match"); 963 assert(LoadSize <= StoreSize && "Invalid load size"); 964 int UnscaledLdOffset = IsUnscaled 965 ? getLdStOffsetOp(*LoadI).getImm() 966 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 967 int UnscaledStOffset = IsUnscaled 968 ? getLdStOffsetOp(*StoreI).getImm() 969 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 970 int Width = LoadSize * 8; 971 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 972 int Imms = Immr + Width - 1; 973 unsigned DestReg = IsStoreXReg 974 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 975 &AArch64::GPR64RegClass) 976 : LdRt; 977 978 assert((UnscaledLdOffset >= UnscaledStOffset && 979 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 980 "Invalid offset"); 981 982 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 983 Imms = Immr + Width - 1; 984 if (UnscaledLdOffset == UnscaledStOffset) { 985 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 986 | ((Immr) << 6) // immr 987 | ((Imms) << 0) // imms 988 ; 989 990 BitExtMI = 991 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 992 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 993 DestReg) 994 .addReg(StRt) 995 .addImm(AndMaskEncoded); 996 } else { 997 BitExtMI = 998 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 999 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1000 DestReg) 1001 .addReg(StRt) 1002 .addImm(Immr) 1003 .addImm(Imms); 1004 } 1005 } 1006 (void)BitExtMI; 1007 1008 DEBUG(dbgs() << "Promoting load by replacing :\n "); 1009 DEBUG(StoreI->print(dbgs())); 1010 DEBUG(dbgs() << " "); 1011 DEBUG(LoadI->print(dbgs())); 1012 DEBUG(dbgs() << " with instructions:\n "); 1013 DEBUG(StoreI->print(dbgs())); 1014 DEBUG(dbgs() << " "); 1015 DEBUG((BitExtMI)->print(dbgs())); 1016 DEBUG(dbgs() << "\n"); 1017 1018 // Erase the old instructions. 1019 LoadI->eraseFromParent(); 1020 return NextI; 1021 } 1022 1023 /// trackRegDefsUses - Remember what registers the specified instruction uses 1024 /// and modifies. 1025 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs, 1026 BitVector &UsedRegs, 1027 const TargetRegisterInfo *TRI) { 1028 for (const MachineOperand &MO : MI.operands()) { 1029 if (MO.isRegMask()) 1030 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 1031 1032 if (!MO.isReg()) 1033 continue; 1034 unsigned Reg = MO.getReg(); 1035 if (!Reg) 1036 continue; 1037 if (MO.isDef()) { 1038 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1039 ModifiedRegs.set(*AI); 1040 } else { 1041 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 1042 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1043 UsedRegs.set(*AI); 1044 } 1045 } 1046 } 1047 1048 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1049 // Convert the byte-offset used by unscaled into an "element" offset used 1050 // by the scaled pair load/store instructions. 1051 if (IsUnscaled) { 1052 // If the byte-offset isn't a multiple of the stride, there's no point 1053 // trying to match it. 1054 if (Offset % OffsetStride) 1055 return false; 1056 Offset /= OffsetStride; 1057 } 1058 return Offset <= 63 && Offset >= -64; 1059 } 1060 1061 // Do alignment, specialized to power of 2 and for signed ints, 1062 // avoiding having to do a C-style cast from uint_64t to int when 1063 // using alignTo from include/llvm/Support/MathExtras.h. 1064 // FIXME: Move this function to include/MathExtras.h? 1065 static int alignTo(int Num, int PowOf2) { 1066 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1067 } 1068 1069 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 1070 const AArch64InstrInfo *TII) { 1071 // One of the instructions must modify memory. 1072 if (!MIa.mayStore() && !MIb.mayStore()) 1073 return false; 1074 1075 // Both instructions must be memory operations. 1076 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 1077 return false; 1078 1079 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 1080 } 1081 1082 static bool mayAlias(MachineInstr &MIa, 1083 SmallVectorImpl<MachineInstr *> &MemInsns, 1084 const AArch64InstrInfo *TII) { 1085 for (MachineInstr *MIb : MemInsns) 1086 if (mayAlias(MIa, *MIb, TII)) 1087 return true; 1088 1089 return false; 1090 } 1091 1092 bool AArch64LoadStoreOpt::findMatchingStore( 1093 MachineBasicBlock::iterator I, unsigned Limit, 1094 MachineBasicBlock::iterator &StoreI) { 1095 MachineBasicBlock::iterator B = I->getParent()->begin(); 1096 MachineBasicBlock::iterator MBBI = I; 1097 MachineInstr &LoadMI = *I; 1098 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 1099 1100 // If the load is the first instruction in the block, there's obviously 1101 // not any matching store. 1102 if (MBBI == B) 1103 return false; 1104 1105 // Track which registers have been modified and used between the first insn 1106 // and the second insn. 1107 ModifiedRegs.reset(); 1108 UsedRegs.reset(); 1109 1110 unsigned Count = 0; 1111 do { 1112 --MBBI; 1113 MachineInstr &MI = *MBBI; 1114 1115 // Don't count transient instructions towards the search limit since there 1116 // may be different numbers of them if e.g. debug information is present. 1117 if (!MI.isTransient()) 1118 ++Count; 1119 1120 // If the load instruction reads directly from the address to which the 1121 // store instruction writes and the stored value is not modified, we can 1122 // promote the load. Since we do not handle stores with pre-/post-index, 1123 // it's unnecessary to check if BaseReg is modified by the store itself. 1124 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1125 BaseReg == getLdStBaseOp(MI).getReg() && 1126 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1127 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1128 StoreI = MBBI; 1129 return true; 1130 } 1131 1132 if (MI.isCall()) 1133 return false; 1134 1135 // Update modified / uses register lists. 1136 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1137 1138 // Otherwise, if the base register is modified, we have no match, so 1139 // return early. 1140 if (ModifiedRegs[BaseReg]) 1141 return false; 1142 1143 // If we encounter a store aliased with the load, return early. 1144 if (MI.mayStore() && mayAlias(LoadMI, MI, TII)) 1145 return false; 1146 } while (MBBI != B && Count < Limit); 1147 return false; 1148 } 1149 1150 // Returns true if FirstMI and MI are candidates for merging or pairing. 1151 // Otherwise, returns false. 1152 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1153 LdStPairFlags &Flags, 1154 const AArch64InstrInfo *TII) { 1155 // If this is volatile or if pairing is suppressed, not a candidate. 1156 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1157 return false; 1158 1159 // We should have already checked FirstMI for pair suppression and volatility. 1160 assert(!FirstMI.hasOrderedMemoryRef() && 1161 !TII->isLdStPairSuppressed(FirstMI) && 1162 "FirstMI shouldn't get here if either of these checks are true."); 1163 1164 unsigned OpcA = FirstMI.getOpcode(); 1165 unsigned OpcB = MI.getOpcode(); 1166 1167 // Opcodes match: nothing more to check. 1168 if (OpcA == OpcB) 1169 return true; 1170 1171 // Try to match a sign-extended load/store with a zero-extended load/store. 1172 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1173 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1174 assert(IsValidLdStrOpc && 1175 "Given Opc should be a Load or Store with an immediate"); 1176 // OpcA will be the first instruction in the pair. 1177 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1178 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1179 return true; 1180 } 1181 1182 // If the second instruction isn't even a load/store, bail out. 1183 if (!PairIsValidLdStrOpc) 1184 return false; 1185 1186 // FIXME: We don't support merging narrow loads/stores with mixed 1187 // scaled/unscaled offsets. 1188 if (isNarrowLoadOrStore(OpcA) || isNarrowLoadOrStore(OpcB)) 1189 return false; 1190 1191 // Try to match an unscaled load/store with a scaled load/store. 1192 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1193 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1194 1195 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1196 } 1197 1198 /// Scan the instructions looking for a load/store that can be combined with the 1199 /// current instruction into a wider equivalent or a load/store pair. 1200 MachineBasicBlock::iterator 1201 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1202 LdStPairFlags &Flags, unsigned Limit, 1203 bool FindNarrowMerge) { 1204 MachineBasicBlock::iterator E = I->getParent()->end(); 1205 MachineBasicBlock::iterator MBBI = I; 1206 MachineInstr &FirstMI = *I; 1207 ++MBBI; 1208 1209 bool MayLoad = FirstMI.mayLoad(); 1210 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1211 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1212 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1213 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1214 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1215 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1216 1217 // Track which registers have been modified and used between the first insn 1218 // (inclusive) and the second insn. 1219 ModifiedRegs.reset(); 1220 UsedRegs.reset(); 1221 1222 // Remember any instructions that read/write memory between FirstMI and MI. 1223 SmallVector<MachineInstr *, 4> MemInsns; 1224 1225 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1226 MachineInstr &MI = *MBBI; 1227 1228 // Don't count transient instructions towards the search limit since there 1229 // may be different numbers of them if e.g. debug information is present. 1230 if (!MI.isTransient()) 1231 ++Count; 1232 1233 Flags.setSExtIdx(-1); 1234 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1235 getLdStOffsetOp(MI).isImm()) { 1236 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1237 // If we've found another instruction with the same opcode, check to see 1238 // if the base and offset are compatible with our starting instruction. 1239 // These instructions all have scaled immediate operands, so we just 1240 // check for +1/-1. Make sure to check the new instruction offset is 1241 // actually an immediate and not a symbolic reference destined for 1242 // a relocation. 1243 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1244 int MIOffset = getLdStOffsetOp(MI).getImm(); 1245 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1246 if (IsUnscaled != MIIsUnscaled) { 1247 // We're trying to pair instructions that differ in how they are scaled. 1248 // If FirstMI is scaled then scale the offset of MI accordingly. 1249 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1250 int MemSize = getMemScale(MI); 1251 if (MIIsUnscaled) { 1252 // If the unscaled offset isn't a multiple of the MemSize, we can't 1253 // pair the operations together: bail and keep looking. 1254 if (MIOffset % MemSize) { 1255 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1256 MemInsns.push_back(&MI); 1257 continue; 1258 } 1259 MIOffset /= MemSize; 1260 } else { 1261 MIOffset *= MemSize; 1262 } 1263 } 1264 1265 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1266 (Offset + OffsetStride == MIOffset))) { 1267 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1268 if (FindNarrowMerge) { 1269 // If the alignment requirements of the scaled wide load/store 1270 // instruction can't express the offset of the scaled narrow input, 1271 // bail and keep looking. For promotable zero stores, allow only when 1272 // the stored value is the same (i.e., WZR). 1273 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1274 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1275 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1276 MemInsns.push_back(&MI); 1277 continue; 1278 } 1279 } else { 1280 // Pairwise instructions have a 7-bit signed offset field. Single 1281 // insns have a 12-bit unsigned offset field. If the resultant 1282 // immediate offset of merging these instructions is out of range for 1283 // a pairwise instruction, bail and keep looking. 1284 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1285 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1286 MemInsns.push_back(&MI); 1287 continue; 1288 } 1289 // If the alignment requirements of the paired (scaled) instruction 1290 // can't express the offset of the unscaled input, bail and keep 1291 // looking. 1292 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1293 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1294 MemInsns.push_back(&MI); 1295 continue; 1296 } 1297 } 1298 // If the destination register of the loads is the same register, bail 1299 // and keep looking. A load-pair instruction with both destination 1300 // registers the same is UNPREDICTABLE and will result in an exception. 1301 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1302 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1303 MemInsns.push_back(&MI); 1304 continue; 1305 } 1306 1307 // If the Rt of the second instruction was not modified or used between 1308 // the two instructions and none of the instructions between the second 1309 // and first alias with the second, we can combine the second into the 1310 // first. 1311 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1312 !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1313 !mayAlias(MI, MemInsns, TII)) { 1314 Flags.setMergeForward(false); 1315 return MBBI; 1316 } 1317 1318 // Likewise, if the Rt of the first instruction is not modified or used 1319 // between the two instructions and none of the instructions between the 1320 // first and the second alias with the first, we can combine the first 1321 // into the second. 1322 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1323 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1324 !mayAlias(FirstMI, MemInsns, TII)) { 1325 Flags.setMergeForward(true); 1326 return MBBI; 1327 } 1328 // Unable to combine these instructions due to interference in between. 1329 // Keep looking. 1330 } 1331 } 1332 1333 // If the instruction wasn't a matching load or store. Stop searching if we 1334 // encounter a call instruction that might modify memory. 1335 if (MI.isCall()) 1336 return E; 1337 1338 // Update modified / uses register lists. 1339 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1340 1341 // Otherwise, if the base register is modified, we have no match, so 1342 // return early. 1343 if (ModifiedRegs[BaseReg]) 1344 return E; 1345 1346 // Update list of instructions that read/write memory. 1347 if (MI.mayLoadOrStore()) 1348 MemInsns.push_back(&MI); 1349 } 1350 return E; 1351 } 1352 1353 MachineBasicBlock::iterator 1354 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1355 MachineBasicBlock::iterator Update, 1356 bool IsPreIdx) { 1357 assert((Update->getOpcode() == AArch64::ADDXri || 1358 Update->getOpcode() == AArch64::SUBXri) && 1359 "Unexpected base register update instruction to merge!"); 1360 MachineBasicBlock::iterator NextI = I; 1361 // Return the instruction following the merged instruction, which is 1362 // the instruction following our unmerged load. Unless that's the add/sub 1363 // instruction we're merging, in which case it's the one after that. 1364 if (++NextI == Update) 1365 ++NextI; 1366 1367 int Value = Update->getOperand(2).getImm(); 1368 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1369 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1370 if (Update->getOpcode() == AArch64::SUBXri) 1371 Value = -Value; 1372 1373 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1374 : getPostIndexedOpcode(I->getOpcode()); 1375 MachineInstrBuilder MIB; 1376 if (!isPairedLdSt(*I)) { 1377 // Non-paired instruction. 1378 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1379 .addOperand(getLdStRegOp(*Update)) 1380 .addOperand(getLdStRegOp(*I)) 1381 .addOperand(getLdStBaseOp(*I)) 1382 .addImm(Value) 1383 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1384 } else { 1385 // Paired instruction. 1386 int Scale = getMemScale(*I); 1387 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1388 .addOperand(getLdStRegOp(*Update)) 1389 .addOperand(getLdStRegOp(*I, 0)) 1390 .addOperand(getLdStRegOp(*I, 1)) 1391 .addOperand(getLdStBaseOp(*I)) 1392 .addImm(Value / Scale) 1393 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1394 } 1395 (void)MIB; 1396 1397 if (IsPreIdx) 1398 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1399 else 1400 DEBUG(dbgs() << "Creating post-indexed load/store."); 1401 DEBUG(dbgs() << " Replacing instructions:\n "); 1402 DEBUG(I->print(dbgs())); 1403 DEBUG(dbgs() << " "); 1404 DEBUG(Update->print(dbgs())); 1405 DEBUG(dbgs() << " with instruction:\n "); 1406 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1407 DEBUG(dbgs() << "\n"); 1408 1409 // Erase the old instructions for the block. 1410 I->eraseFromParent(); 1411 Update->eraseFromParent(); 1412 1413 return NextI; 1414 } 1415 1416 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1417 MachineInstr &MI, 1418 unsigned BaseReg, int Offset) { 1419 switch (MI.getOpcode()) { 1420 default: 1421 break; 1422 case AArch64::SUBXri: 1423 case AArch64::ADDXri: 1424 // Make sure it's a vanilla immediate operand, not a relocation or 1425 // anything else we can't handle. 1426 if (!MI.getOperand(2).isImm()) 1427 break; 1428 // Watch out for 1 << 12 shifted value. 1429 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1430 break; 1431 1432 // The update instruction source and destination register must be the 1433 // same as the load/store base register. 1434 if (MI.getOperand(0).getReg() != BaseReg || 1435 MI.getOperand(1).getReg() != BaseReg) 1436 break; 1437 1438 bool IsPairedInsn = isPairedLdSt(MemMI); 1439 int UpdateOffset = MI.getOperand(2).getImm(); 1440 if (MI.getOpcode() == AArch64::SUBXri) 1441 UpdateOffset = -UpdateOffset; 1442 1443 // For non-paired load/store instructions, the immediate must fit in a 1444 // signed 9-bit integer. 1445 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1446 break; 1447 1448 // For paired load/store instructions, the immediate must be a multiple of 1449 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1450 // integer. 1451 if (IsPairedInsn) { 1452 int Scale = getMemScale(MemMI); 1453 if (UpdateOffset % Scale != 0) 1454 break; 1455 1456 int ScaledOffset = UpdateOffset / Scale; 1457 if (ScaledOffset > 63 || ScaledOffset < -64) 1458 break; 1459 } 1460 1461 // If we have a non-zero Offset, we check that it matches the amount 1462 // we're adding to the register. 1463 if (!Offset || Offset == UpdateOffset) 1464 return true; 1465 break; 1466 } 1467 return false; 1468 } 1469 1470 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1471 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1472 MachineBasicBlock::iterator E = I->getParent()->end(); 1473 MachineInstr &MemMI = *I; 1474 MachineBasicBlock::iterator MBBI = I; 1475 1476 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1477 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1478 1479 // Scan forward looking for post-index opportunities. Updating instructions 1480 // can't be formed if the memory instruction doesn't have the offset we're 1481 // looking for. 1482 if (MIUnscaledOffset != UnscaledOffset) 1483 return E; 1484 1485 // If the base register overlaps a destination register, we can't 1486 // merge the update. 1487 bool IsPairedInsn = isPairedLdSt(MemMI); 1488 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1489 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1490 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1491 return E; 1492 } 1493 1494 // Track which registers have been modified and used between the first insn 1495 // (inclusive) and the second insn. 1496 ModifiedRegs.reset(); 1497 UsedRegs.reset(); 1498 ++MBBI; 1499 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1500 MachineInstr &MI = *MBBI; 1501 1502 // Don't count transient instructions towards the search limit since there 1503 // may be different numbers of them if e.g. debug information is present. 1504 if (!MI.isTransient()) 1505 ++Count; 1506 1507 // If we found a match, return it. 1508 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1509 return MBBI; 1510 1511 // Update the status of what the instruction clobbered and used. 1512 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1513 1514 // Otherwise, if the base register is used or modified, we have no match, so 1515 // return early. 1516 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1517 return E; 1518 } 1519 return E; 1520 } 1521 1522 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1523 MachineBasicBlock::iterator I, unsigned Limit) { 1524 MachineBasicBlock::iterator B = I->getParent()->begin(); 1525 MachineBasicBlock::iterator E = I->getParent()->end(); 1526 MachineInstr &MemMI = *I; 1527 MachineBasicBlock::iterator MBBI = I; 1528 1529 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1530 int Offset = getLdStOffsetOp(MemMI).getImm(); 1531 1532 // If the load/store is the first instruction in the block, there's obviously 1533 // not any matching update. Ditto if the memory offset isn't zero. 1534 if (MBBI == B || Offset != 0) 1535 return E; 1536 // If the base register overlaps a destination register, we can't 1537 // merge the update. 1538 bool IsPairedInsn = isPairedLdSt(MemMI); 1539 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1540 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1541 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1542 return E; 1543 } 1544 1545 // Track which registers have been modified and used between the first insn 1546 // (inclusive) and the second insn. 1547 ModifiedRegs.reset(); 1548 UsedRegs.reset(); 1549 unsigned Count = 0; 1550 do { 1551 --MBBI; 1552 MachineInstr &MI = *MBBI; 1553 1554 // Don't count transient instructions towards the search limit since there 1555 // may be different numbers of them if e.g. debug information is present. 1556 if (!MI.isTransient()) 1557 ++Count; 1558 1559 // If we found a match, return it. 1560 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1561 return MBBI; 1562 1563 // Update the status of what the instruction clobbered and used. 1564 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1565 1566 // Otherwise, if the base register is used or modified, we have no match, so 1567 // return early. 1568 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1569 return E; 1570 } while (MBBI != B && Count < Limit); 1571 return E; 1572 } 1573 1574 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1575 MachineBasicBlock::iterator &MBBI) { 1576 MachineInstr &MI = *MBBI; 1577 // If this is a volatile load, don't mess with it. 1578 if (MI.hasOrderedMemoryRef()) 1579 return false; 1580 1581 // Make sure this is a reg+imm. 1582 // FIXME: It is possible to extend it to handle reg+reg cases. 1583 if (!getLdStOffsetOp(MI).isImm()) 1584 return false; 1585 1586 // Look backward up to LdStLimit instructions. 1587 MachineBasicBlock::iterator StoreI; 1588 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1589 ++NumLoadsFromStoresPromoted; 1590 // Promote the load. Keeping the iterator straight is a 1591 // pain, so we let the merge routine tell us what the next instruction 1592 // is after it's done mucking about. 1593 MBBI = promoteLoadFromStore(MBBI, StoreI); 1594 return true; 1595 } 1596 return false; 1597 } 1598 1599 // Find narrow loads that can be converted into a single wider load with 1600 // bitfield extract instructions. Also merge adjacent zero stores into a wider 1601 // store. 1602 bool AArch64LoadStoreOpt::tryToMergeLdStInst( 1603 MachineBasicBlock::iterator &MBBI) { 1604 assert((isNarrowLoad(*MBBI) || isPromotableZeroStoreOpcode(*MBBI)) && 1605 "Expected narrow op."); 1606 MachineInstr &MI = *MBBI; 1607 MachineBasicBlock::iterator E = MI.getParent()->end(); 1608 1609 if (!TII->isCandidateToMergeOrPair(MI)) 1610 return false; 1611 1612 // For promotable zero stores, the stored value should be WZR. 1613 if (isPromotableZeroStoreOpcode(MI) && 1614 getLdStRegOp(MI).getReg() != AArch64::WZR) 1615 return false; 1616 1617 // Look ahead up to LdStLimit instructions for a mergable instruction. 1618 LdStPairFlags Flags; 1619 MachineBasicBlock::iterator MergeMI = 1620 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1621 if (MergeMI != E) { 1622 if (isNarrowLoad(MI)) { 1623 ++NumNarrowLoadsPromoted; 1624 } else if (isPromotableZeroStoreInst(MI)) { 1625 ++NumZeroStoresPromoted; 1626 } 1627 // Keeping the iterator straight is a pain, so we let the merge routine tell 1628 // us what the next instruction is after it's done mucking about. 1629 MBBI = mergeNarrowInsns(MBBI, MergeMI, Flags); 1630 return true; 1631 } 1632 return false; 1633 } 1634 1635 // Find loads and stores that can be merged into a single load or store pair 1636 // instruction. 1637 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1638 MachineInstr &MI = *MBBI; 1639 MachineBasicBlock::iterator E = MI.getParent()->end(); 1640 1641 if (!TII->isCandidateToMergeOrPair(MI)) 1642 return false; 1643 1644 // Early exit if the offset is not possible to match. (6 bits of positive 1645 // range, plus allow an extra one in case we find a later insn that matches 1646 // with Offset-1) 1647 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1648 int Offset = getLdStOffsetOp(MI).getImm(); 1649 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1650 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1651 return false; 1652 1653 // Look ahead up to LdStLimit instructions for a pairable instruction. 1654 LdStPairFlags Flags; 1655 MachineBasicBlock::iterator Paired = 1656 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1657 if (Paired != E) { 1658 ++NumPairCreated; 1659 if (TII->isUnscaledLdSt(MI)) 1660 ++NumUnscaledPairCreated; 1661 // Keeping the iterator straight is a pain, so we let the merge routine tell 1662 // us what the next instruction is after it's done mucking about. 1663 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1664 return true; 1665 } 1666 return false; 1667 } 1668 1669 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1670 bool enableNarrowLdOpt) { 1671 bool Modified = false; 1672 // Four tranformations to do here: 1673 // 1) Find loads that directly read from stores and promote them by 1674 // replacing with mov instructions. If the store is wider than the load, 1675 // the load will be replaced with a bitfield extract. 1676 // e.g., 1677 // str w1, [x0, #4] 1678 // ldrh w2, [x0, #6] 1679 // ; becomes 1680 // str w1, [x0, #4] 1681 // lsr w2, w1, #16 1682 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1683 MBBI != E;) { 1684 MachineInstr &MI = *MBBI; 1685 switch (MI.getOpcode()) { 1686 default: 1687 // Just move on to the next instruction. 1688 ++MBBI; 1689 break; 1690 // Scaled instructions. 1691 case AArch64::LDRBBui: 1692 case AArch64::LDRHHui: 1693 case AArch64::LDRWui: 1694 case AArch64::LDRXui: 1695 // Unscaled instructions. 1696 case AArch64::LDURBBi: 1697 case AArch64::LDURHHi: 1698 case AArch64::LDURWi: 1699 case AArch64::LDURXi: { 1700 if (tryToPromoteLoadFromStore(MBBI)) { 1701 Modified = true; 1702 break; 1703 } 1704 ++MBBI; 1705 break; 1706 } 1707 } 1708 } 1709 // 2) Find narrow loads that can be converted into a single wider load 1710 // with bitfield extract instructions. 1711 // e.g., 1712 // ldrh w0, [x2] 1713 // ldrh w1, [x2, #2] 1714 // ; becomes 1715 // ldr w0, [x2] 1716 // ubfx w1, w0, #16, #16 1717 // and w0, w0, #ffff 1718 // 1719 // Also merge adjacent zero stores into a wider store. 1720 // e.g., 1721 // strh wzr, [x0] 1722 // strh wzr, [x0, #2] 1723 // ; becomes 1724 // str wzr, [x0] 1725 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1726 enableNarrowLdOpt && MBBI != E;) { 1727 MachineInstr &MI = *MBBI; 1728 unsigned Opc = MI.getOpcode(); 1729 if (isPromotableZeroStoreOpcode(Opc) || 1730 (EnableNarrowLdMerge && isNarrowLoad(Opc))) { 1731 if (tryToMergeLdStInst(MBBI)) { 1732 Modified = true; 1733 } else 1734 ++MBBI; 1735 } else 1736 ++MBBI; 1737 } 1738 1739 // 3) Find loads and stores that can be merged into a single load or store 1740 // pair instruction. 1741 // e.g., 1742 // ldr x0, [x2] 1743 // ldr x1, [x2, #8] 1744 // ; becomes 1745 // ldp x0, x1, [x2] 1746 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1747 MBBI != E;) { 1748 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 1749 Modified = true; 1750 else 1751 ++MBBI; 1752 } 1753 // 4) Find base register updates that can be merged into the load or store 1754 // as a base-reg writeback. 1755 // e.g., 1756 // ldr x0, [x2] 1757 // add x2, x2, #4 1758 // ; becomes 1759 // ldr x0, [x2], #4 1760 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1761 MBBI != E;) { 1762 MachineInstr &MI = *MBBI; 1763 // Do update merging. It's simpler to keep this separate from the above 1764 // switchs, though not strictly necessary. 1765 unsigned Opc = MI.getOpcode(); 1766 switch (Opc) { 1767 default: 1768 // Just move on to the next instruction. 1769 ++MBBI; 1770 break; 1771 // Scaled instructions. 1772 case AArch64::STRSui: 1773 case AArch64::STRDui: 1774 case AArch64::STRQui: 1775 case AArch64::STRXui: 1776 case AArch64::STRWui: 1777 case AArch64::STRHHui: 1778 case AArch64::STRBBui: 1779 case AArch64::LDRSui: 1780 case AArch64::LDRDui: 1781 case AArch64::LDRQui: 1782 case AArch64::LDRXui: 1783 case AArch64::LDRWui: 1784 case AArch64::LDRHHui: 1785 case AArch64::LDRBBui: 1786 // Unscaled instructions. 1787 case AArch64::STURSi: 1788 case AArch64::STURDi: 1789 case AArch64::STURQi: 1790 case AArch64::STURWi: 1791 case AArch64::STURXi: 1792 case AArch64::LDURSi: 1793 case AArch64::LDURDi: 1794 case AArch64::LDURQi: 1795 case AArch64::LDURWi: 1796 case AArch64::LDURXi: 1797 // Paired instructions. 1798 case AArch64::LDPSi: 1799 case AArch64::LDPSWi: 1800 case AArch64::LDPDi: 1801 case AArch64::LDPQi: 1802 case AArch64::LDPWi: 1803 case AArch64::LDPXi: 1804 case AArch64::STPSi: 1805 case AArch64::STPDi: 1806 case AArch64::STPQi: 1807 case AArch64::STPWi: 1808 case AArch64::STPXi: { 1809 // Make sure this is a reg+imm (as opposed to an address reloc). 1810 if (!getLdStOffsetOp(MI).isImm()) { 1811 ++MBBI; 1812 break; 1813 } 1814 // Look forward to try to form a post-index instruction. For example, 1815 // ldr x0, [x20] 1816 // add x20, x20, #32 1817 // merged into: 1818 // ldr x0, [x20], #32 1819 MachineBasicBlock::iterator Update = 1820 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1821 if (Update != E) { 1822 // Merge the update into the ld/st. 1823 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1824 Modified = true; 1825 ++NumPostFolded; 1826 break; 1827 } 1828 // Don't know how to handle pre/post-index versions, so move to the next 1829 // instruction. 1830 if (TII->isUnscaledLdSt(Opc)) { 1831 ++MBBI; 1832 break; 1833 } 1834 1835 // Look back to try to find a pre-index instruction. For example, 1836 // add x0, x0, #8 1837 // ldr x1, [x0] 1838 // merged into: 1839 // ldr x1, [x0, #8]! 1840 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1841 if (Update != E) { 1842 // Merge the update into the ld/st. 1843 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1844 Modified = true; 1845 ++NumPreFolded; 1846 break; 1847 } 1848 // The immediate in the load/store is scaled by the size of the memory 1849 // operation. The immediate in the add we're looking for, 1850 // however, is not, so adjust here. 1851 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1852 1853 // Look forward to try to find a post-index instruction. For example, 1854 // ldr x1, [x0, #64] 1855 // add x0, x0, #64 1856 // merged into: 1857 // ldr x1, [x0, #64]! 1858 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1859 if (Update != E) { 1860 // Merge the update into the ld/st. 1861 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1862 Modified = true; 1863 ++NumPreFolded; 1864 break; 1865 } 1866 1867 // Nothing found. Just move to the next instruction. 1868 ++MBBI; 1869 break; 1870 } 1871 } 1872 } 1873 1874 return Modified; 1875 } 1876 1877 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1878 if (skipFunction(*Fn.getFunction())) 1879 return false; 1880 1881 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1882 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1883 TRI = Subtarget->getRegisterInfo(); 1884 1885 // Resize the modified and used register bitfield trackers. We do this once 1886 // per function and then clear the bitfield each time we optimize a load or 1887 // store. 1888 ModifiedRegs.resize(TRI->getNumRegs()); 1889 UsedRegs.resize(TRI->getNumRegs()); 1890 1891 bool Modified = false; 1892 bool enableNarrowLdOpt = 1893 Subtarget->mergeNarrowLoads() && !Subtarget->requiresStrictAlign(); 1894 for (auto &MBB : Fn) 1895 Modified |= optimizeBlock(MBB, enableNarrowLdOpt); 1896 1897 return Modified; 1898 } 1899 1900 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep 1901 // loads and stores near one another? 1902 1903 // FIXME: When pairing store instructions it's very possible for this pass to 1904 // hoist a store with a KILL marker above another use (without a KILL marker). 1905 // The resulting IR is invalid, but nothing uses the KILL markers after this 1906 // pass, so it's never caused a problem in practice. 1907 1908 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1909 /// load / store optimization pass. 1910 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1911 return new AArch64LoadStoreOpt(); 1912 } 1913