1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that performs load / store related peephole 10 // optimizations. This pass should be run after register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64InstrInfo.h" 15 #include "AArch64MachineFunctionInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <cstdint> 43 #include <functional> 44 #include <iterator> 45 #include <limits> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "aarch64-ldst-opt" 50 51 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 52 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 53 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 54 STATISTIC(NumUnscaledPairCreated, 55 "Number of load/store from unscaled generated"); 56 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 57 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 58 59 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", 60 "Controls which pairs are considered for renaming"); 61 62 // The LdStLimit limits how far we search for load/store pairs. 63 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 64 cl::init(20), cl::Hidden); 65 66 // The UpdateLimit limits how far we search for update instructions when we form 67 // pre-/post-index instructions. 68 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 69 cl::Hidden); 70 71 // Enable register renaming to find additional store pairing opportunities. 72 static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming", 73 cl::init(true), cl::Hidden); 74 75 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 76 77 namespace { 78 79 using LdStPairFlags = struct LdStPairFlags { 80 // If a matching instruction is found, MergeForward is set to true if the 81 // merge is to remove the first instruction and replace the second with 82 // a pair-wise insn, and false if the reverse is true. 83 bool MergeForward = false; 84 85 // SExtIdx gives the index of the result of the load pair that must be 86 // extended. The value of SExtIdx assumes that the paired load produces the 87 // value in this order: (I, returned iterator), i.e., -1 means no value has 88 // to be extended, 0 means I, and 1 means the returned iterator. 89 int SExtIdx = -1; 90 91 // If not none, RenameReg can be used to rename the result register of the 92 // first store in a pair. Currently this only works when merging stores 93 // forward. 94 Optional<MCPhysReg> RenameReg = None; 95 96 LdStPairFlags() = default; 97 98 void setMergeForward(bool V = true) { MergeForward = V; } 99 bool getMergeForward() const { return MergeForward; } 100 101 void setSExtIdx(int V) { SExtIdx = V; } 102 int getSExtIdx() const { return SExtIdx; } 103 104 void setRenameReg(MCPhysReg R) { RenameReg = R; } 105 void clearRenameReg() { RenameReg = None; } 106 Optional<MCPhysReg> getRenameReg() const { return RenameReg; } 107 }; 108 109 struct AArch64LoadStoreOpt : public MachineFunctionPass { 110 static char ID; 111 112 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 113 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 114 } 115 116 AliasAnalysis *AA; 117 const AArch64InstrInfo *TII; 118 const TargetRegisterInfo *TRI; 119 const AArch64Subtarget *Subtarget; 120 121 // Track which register units have been modified and used. 122 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 123 LiveRegUnits DefinedInBB; 124 125 void getAnalysisUsage(AnalysisUsage &AU) const override { 126 AU.addRequired<AAResultsWrapperPass>(); 127 MachineFunctionPass::getAnalysisUsage(AU); 128 } 129 130 // Scan the instructions looking for a load/store that can be combined 131 // with the current instruction into a load/store pair. 132 // Return the matching instruction if one is found, else MBB->end(). 133 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 134 LdStPairFlags &Flags, 135 unsigned Limit, 136 bool FindNarrowMerge); 137 138 // Scan the instructions looking for a store that writes to the address from 139 // which the current load instruction reads. Return true if one is found. 140 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 141 MachineBasicBlock::iterator &StoreI); 142 143 // Merge the two instructions indicated into a wider narrow store instruction. 144 MachineBasicBlock::iterator 145 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 146 MachineBasicBlock::iterator MergeMI, 147 const LdStPairFlags &Flags); 148 149 // Merge the two instructions indicated into a single pair-wise instruction. 150 MachineBasicBlock::iterator 151 mergePairedInsns(MachineBasicBlock::iterator I, 152 MachineBasicBlock::iterator Paired, 153 const LdStPairFlags &Flags); 154 155 // Promote the load that reads directly from the address stored to. 156 MachineBasicBlock::iterator 157 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 158 MachineBasicBlock::iterator StoreI); 159 160 // Scan the instruction list to find a base register update that can 161 // be combined with the current instruction (a load or store) using 162 // pre or post indexed addressing with writeback. Scan forwards. 163 MachineBasicBlock::iterator 164 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 165 int UnscaledOffset, unsigned Limit); 166 167 // Scan the instruction list to find a base register update that can 168 // be combined with the current instruction (a load or store) using 169 // pre or post indexed addressing with writeback. Scan backwards. 170 MachineBasicBlock::iterator 171 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 172 173 // Find an instruction that updates the base register of the ld/st 174 // instruction. 175 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 176 unsigned BaseReg, int Offset); 177 178 // Merge a pre- or post-index base register update into a ld/st instruction. 179 MachineBasicBlock::iterator 180 mergeUpdateInsn(MachineBasicBlock::iterator I, 181 MachineBasicBlock::iterator Update, bool IsPreIdx); 182 183 // Find and merge zero store instructions. 184 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 185 186 // Find and pair ldr/str instructions. 187 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 188 189 // Find and promote load instructions which read directly from store. 190 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 191 192 // Find and merge a base register updates before or after a ld/st instruction. 193 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 194 195 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 196 197 bool runOnMachineFunction(MachineFunction &Fn) override; 198 199 MachineFunctionProperties getRequiredProperties() const override { 200 return MachineFunctionProperties().set( 201 MachineFunctionProperties::Property::NoVRegs); 202 } 203 204 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 205 }; 206 207 char AArch64LoadStoreOpt::ID = 0; 208 209 } // end anonymous namespace 210 211 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 212 AARCH64_LOAD_STORE_OPT_NAME, false, false) 213 214 static bool isNarrowStore(unsigned Opc) { 215 switch (Opc) { 216 default: 217 return false; 218 case AArch64::STRBBui: 219 case AArch64::STURBBi: 220 case AArch64::STRHHui: 221 case AArch64::STURHHi: 222 return true; 223 } 224 } 225 226 // These instruction set memory tag and either keep memory contents unchanged or 227 // set it to zero, ignoring the address part of the source register. 228 static bool isTagStore(const MachineInstr &MI) { 229 switch (MI.getOpcode()) { 230 default: 231 return false; 232 case AArch64::STGOffset: 233 case AArch64::STZGOffset: 234 case AArch64::ST2GOffset: 235 case AArch64::STZ2GOffset: 236 return true; 237 } 238 } 239 240 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 241 bool *IsValidLdStrOpc = nullptr) { 242 if (IsValidLdStrOpc) 243 *IsValidLdStrOpc = true; 244 switch (Opc) { 245 default: 246 if (IsValidLdStrOpc) 247 *IsValidLdStrOpc = false; 248 return std::numeric_limits<unsigned>::max(); 249 case AArch64::STRDui: 250 case AArch64::STURDi: 251 case AArch64::STRQui: 252 case AArch64::STURQi: 253 case AArch64::STRBBui: 254 case AArch64::STURBBi: 255 case AArch64::STRHHui: 256 case AArch64::STURHHi: 257 case AArch64::STRWui: 258 case AArch64::STURWi: 259 case AArch64::STRXui: 260 case AArch64::STURXi: 261 case AArch64::LDRDui: 262 case AArch64::LDURDi: 263 case AArch64::LDRQui: 264 case AArch64::LDURQi: 265 case AArch64::LDRWui: 266 case AArch64::LDURWi: 267 case AArch64::LDRXui: 268 case AArch64::LDURXi: 269 case AArch64::STRSui: 270 case AArch64::STURSi: 271 case AArch64::LDRSui: 272 case AArch64::LDURSi: 273 return Opc; 274 case AArch64::LDRSWui: 275 return AArch64::LDRWui; 276 case AArch64::LDURSWi: 277 return AArch64::LDURWi; 278 } 279 } 280 281 static unsigned getMatchingWideOpcode(unsigned Opc) { 282 switch (Opc) { 283 default: 284 llvm_unreachable("Opcode has no wide equivalent!"); 285 case AArch64::STRBBui: 286 return AArch64::STRHHui; 287 case AArch64::STRHHui: 288 return AArch64::STRWui; 289 case AArch64::STURBBi: 290 return AArch64::STURHHi; 291 case AArch64::STURHHi: 292 return AArch64::STURWi; 293 case AArch64::STURWi: 294 return AArch64::STURXi; 295 case AArch64::STRWui: 296 return AArch64::STRXui; 297 } 298 } 299 300 static unsigned getMatchingPairOpcode(unsigned Opc) { 301 switch (Opc) { 302 default: 303 llvm_unreachable("Opcode has no pairwise equivalent!"); 304 case AArch64::STRSui: 305 case AArch64::STURSi: 306 return AArch64::STPSi; 307 case AArch64::STRDui: 308 case AArch64::STURDi: 309 return AArch64::STPDi; 310 case AArch64::STRQui: 311 case AArch64::STURQi: 312 return AArch64::STPQi; 313 case AArch64::STRWui: 314 case AArch64::STURWi: 315 return AArch64::STPWi; 316 case AArch64::STRXui: 317 case AArch64::STURXi: 318 return AArch64::STPXi; 319 case AArch64::LDRSui: 320 case AArch64::LDURSi: 321 return AArch64::LDPSi; 322 case AArch64::LDRDui: 323 case AArch64::LDURDi: 324 return AArch64::LDPDi; 325 case AArch64::LDRQui: 326 case AArch64::LDURQi: 327 return AArch64::LDPQi; 328 case AArch64::LDRWui: 329 case AArch64::LDURWi: 330 return AArch64::LDPWi; 331 case AArch64::LDRXui: 332 case AArch64::LDURXi: 333 return AArch64::LDPXi; 334 case AArch64::LDRSWui: 335 case AArch64::LDURSWi: 336 return AArch64::LDPSWi; 337 } 338 } 339 340 static unsigned isMatchingStore(MachineInstr &LoadInst, 341 MachineInstr &StoreInst) { 342 unsigned LdOpc = LoadInst.getOpcode(); 343 unsigned StOpc = StoreInst.getOpcode(); 344 switch (LdOpc) { 345 default: 346 llvm_unreachable("Unsupported load instruction!"); 347 case AArch64::LDRBBui: 348 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 349 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 350 case AArch64::LDURBBi: 351 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 352 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 353 case AArch64::LDRHHui: 354 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 355 StOpc == AArch64::STRXui; 356 case AArch64::LDURHHi: 357 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 358 StOpc == AArch64::STURXi; 359 case AArch64::LDRWui: 360 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 361 case AArch64::LDURWi: 362 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 363 case AArch64::LDRXui: 364 return StOpc == AArch64::STRXui; 365 case AArch64::LDURXi: 366 return StOpc == AArch64::STURXi; 367 } 368 } 369 370 static unsigned getPreIndexedOpcode(unsigned Opc) { 371 // FIXME: We don't currently support creating pre-indexed loads/stores when 372 // the load or store is the unscaled version. If we decide to perform such an 373 // optimization in the future the cases for the unscaled loads/stores will 374 // need to be added here. 375 switch (Opc) { 376 default: 377 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 378 case AArch64::STRSui: 379 return AArch64::STRSpre; 380 case AArch64::STRDui: 381 return AArch64::STRDpre; 382 case AArch64::STRQui: 383 return AArch64::STRQpre; 384 case AArch64::STRBBui: 385 return AArch64::STRBBpre; 386 case AArch64::STRHHui: 387 return AArch64::STRHHpre; 388 case AArch64::STRWui: 389 return AArch64::STRWpre; 390 case AArch64::STRXui: 391 return AArch64::STRXpre; 392 case AArch64::LDRSui: 393 return AArch64::LDRSpre; 394 case AArch64::LDRDui: 395 return AArch64::LDRDpre; 396 case AArch64::LDRQui: 397 return AArch64::LDRQpre; 398 case AArch64::LDRBBui: 399 return AArch64::LDRBBpre; 400 case AArch64::LDRHHui: 401 return AArch64::LDRHHpre; 402 case AArch64::LDRWui: 403 return AArch64::LDRWpre; 404 case AArch64::LDRXui: 405 return AArch64::LDRXpre; 406 case AArch64::LDRSWui: 407 return AArch64::LDRSWpre; 408 case AArch64::LDPSi: 409 return AArch64::LDPSpre; 410 case AArch64::LDPSWi: 411 return AArch64::LDPSWpre; 412 case AArch64::LDPDi: 413 return AArch64::LDPDpre; 414 case AArch64::LDPQi: 415 return AArch64::LDPQpre; 416 case AArch64::LDPWi: 417 return AArch64::LDPWpre; 418 case AArch64::LDPXi: 419 return AArch64::LDPXpre; 420 case AArch64::STPSi: 421 return AArch64::STPSpre; 422 case AArch64::STPDi: 423 return AArch64::STPDpre; 424 case AArch64::STPQi: 425 return AArch64::STPQpre; 426 case AArch64::STPWi: 427 return AArch64::STPWpre; 428 case AArch64::STPXi: 429 return AArch64::STPXpre; 430 case AArch64::STGOffset: 431 return AArch64::STGPreIndex; 432 case AArch64::STZGOffset: 433 return AArch64::STZGPreIndex; 434 case AArch64::ST2GOffset: 435 return AArch64::ST2GPreIndex; 436 case AArch64::STZ2GOffset: 437 return AArch64::STZ2GPreIndex; 438 case AArch64::STGPi: 439 return AArch64::STGPpre; 440 } 441 } 442 443 static unsigned getPostIndexedOpcode(unsigned Opc) { 444 switch (Opc) { 445 default: 446 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 447 case AArch64::STRSui: 448 case AArch64::STURSi: 449 return AArch64::STRSpost; 450 case AArch64::STRDui: 451 case AArch64::STURDi: 452 return AArch64::STRDpost; 453 case AArch64::STRQui: 454 case AArch64::STURQi: 455 return AArch64::STRQpost; 456 case AArch64::STRBBui: 457 return AArch64::STRBBpost; 458 case AArch64::STRHHui: 459 return AArch64::STRHHpost; 460 case AArch64::STRWui: 461 case AArch64::STURWi: 462 return AArch64::STRWpost; 463 case AArch64::STRXui: 464 case AArch64::STURXi: 465 return AArch64::STRXpost; 466 case AArch64::LDRSui: 467 case AArch64::LDURSi: 468 return AArch64::LDRSpost; 469 case AArch64::LDRDui: 470 case AArch64::LDURDi: 471 return AArch64::LDRDpost; 472 case AArch64::LDRQui: 473 case AArch64::LDURQi: 474 return AArch64::LDRQpost; 475 case AArch64::LDRBBui: 476 return AArch64::LDRBBpost; 477 case AArch64::LDRHHui: 478 return AArch64::LDRHHpost; 479 case AArch64::LDRWui: 480 case AArch64::LDURWi: 481 return AArch64::LDRWpost; 482 case AArch64::LDRXui: 483 case AArch64::LDURXi: 484 return AArch64::LDRXpost; 485 case AArch64::LDRSWui: 486 return AArch64::LDRSWpost; 487 case AArch64::LDPSi: 488 return AArch64::LDPSpost; 489 case AArch64::LDPSWi: 490 return AArch64::LDPSWpost; 491 case AArch64::LDPDi: 492 return AArch64::LDPDpost; 493 case AArch64::LDPQi: 494 return AArch64::LDPQpost; 495 case AArch64::LDPWi: 496 return AArch64::LDPWpost; 497 case AArch64::LDPXi: 498 return AArch64::LDPXpost; 499 case AArch64::STPSi: 500 return AArch64::STPSpost; 501 case AArch64::STPDi: 502 return AArch64::STPDpost; 503 case AArch64::STPQi: 504 return AArch64::STPQpost; 505 case AArch64::STPWi: 506 return AArch64::STPWpost; 507 case AArch64::STPXi: 508 return AArch64::STPXpost; 509 case AArch64::STGOffset: 510 return AArch64::STGPostIndex; 511 case AArch64::STZGOffset: 512 return AArch64::STZGPostIndex; 513 case AArch64::ST2GOffset: 514 return AArch64::ST2GPostIndex; 515 case AArch64::STZ2GOffset: 516 return AArch64::STZ2GPostIndex; 517 case AArch64::STGPi: 518 return AArch64::STGPpost; 519 } 520 } 521 522 static bool isPairedLdSt(const MachineInstr &MI) { 523 switch (MI.getOpcode()) { 524 default: 525 return false; 526 case AArch64::LDPSi: 527 case AArch64::LDPSWi: 528 case AArch64::LDPDi: 529 case AArch64::LDPQi: 530 case AArch64::LDPWi: 531 case AArch64::LDPXi: 532 case AArch64::STPSi: 533 case AArch64::STPDi: 534 case AArch64::STPQi: 535 case AArch64::STPWi: 536 case AArch64::STPXi: 537 case AArch64::STGPi: 538 return true; 539 } 540 } 541 542 // Returns the scale and offset range of pre/post indexed variants of MI. 543 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, 544 int &MinOffset, int &MaxOffset) { 545 bool IsPaired = isPairedLdSt(MI); 546 bool IsTagStore = isTagStore(MI); 547 // ST*G and all paired ldst have the same scale in pre/post-indexed variants 548 // as in the "unsigned offset" variant. 549 // All other pre/post indexed ldst instructions are unscaled. 550 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; 551 552 if (IsPaired) { 553 MinOffset = -64; 554 MaxOffset = 63; 555 } else { 556 MinOffset = -256; 557 MaxOffset = 255; 558 } 559 } 560 561 static MachineOperand &getLdStRegOp(MachineInstr &MI, 562 unsigned PairedRegOp = 0) { 563 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 564 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 565 return MI.getOperand(Idx); 566 } 567 568 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 569 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 570 return MI.getOperand(Idx); 571 } 572 573 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 574 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 575 return MI.getOperand(Idx); 576 } 577 578 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 579 MachineInstr &StoreInst, 580 const AArch64InstrInfo *TII) { 581 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 582 int LoadSize = TII->getMemScale(LoadInst); 583 int StoreSize = TII->getMemScale(StoreInst); 584 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 585 ? getLdStOffsetOp(StoreInst).getImm() 586 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 587 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 588 ? getLdStOffsetOp(LoadInst).getImm() 589 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 590 return (UnscaledStOffset <= UnscaledLdOffset) && 591 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 592 } 593 594 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 595 unsigned Opc = MI.getOpcode(); 596 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 597 isNarrowStore(Opc)) && 598 getLdStRegOp(MI).getReg() == AArch64::WZR; 599 } 600 601 static bool isPromotableLoadFromStore(MachineInstr &MI) { 602 switch (MI.getOpcode()) { 603 default: 604 return false; 605 // Scaled instructions. 606 case AArch64::LDRBBui: 607 case AArch64::LDRHHui: 608 case AArch64::LDRWui: 609 case AArch64::LDRXui: 610 // Unscaled instructions. 611 case AArch64::LDURBBi: 612 case AArch64::LDURHHi: 613 case AArch64::LDURWi: 614 case AArch64::LDURXi: 615 return true; 616 } 617 } 618 619 static bool isMergeableLdStUpdate(MachineInstr &MI) { 620 unsigned Opc = MI.getOpcode(); 621 switch (Opc) { 622 default: 623 return false; 624 // Scaled instructions. 625 case AArch64::STRSui: 626 case AArch64::STRDui: 627 case AArch64::STRQui: 628 case AArch64::STRXui: 629 case AArch64::STRWui: 630 case AArch64::STRHHui: 631 case AArch64::STRBBui: 632 case AArch64::LDRSui: 633 case AArch64::LDRDui: 634 case AArch64::LDRQui: 635 case AArch64::LDRXui: 636 case AArch64::LDRWui: 637 case AArch64::LDRHHui: 638 case AArch64::LDRBBui: 639 case AArch64::STGOffset: 640 case AArch64::STZGOffset: 641 case AArch64::ST2GOffset: 642 case AArch64::STZ2GOffset: 643 case AArch64::STGPi: 644 // Unscaled instructions. 645 case AArch64::STURSi: 646 case AArch64::STURDi: 647 case AArch64::STURQi: 648 case AArch64::STURWi: 649 case AArch64::STURXi: 650 case AArch64::LDURSi: 651 case AArch64::LDURDi: 652 case AArch64::LDURQi: 653 case AArch64::LDURWi: 654 case AArch64::LDURXi: 655 // Paired instructions. 656 case AArch64::LDPSi: 657 case AArch64::LDPSWi: 658 case AArch64::LDPDi: 659 case AArch64::LDPQi: 660 case AArch64::LDPWi: 661 case AArch64::LDPXi: 662 case AArch64::STPSi: 663 case AArch64::STPDi: 664 case AArch64::STPQi: 665 case AArch64::STPWi: 666 case AArch64::STPXi: 667 // Make sure this is a reg+imm (as opposed to an address reloc). 668 if (!getLdStOffsetOp(MI).isImm()) 669 return false; 670 671 return true; 672 } 673 } 674 675 MachineBasicBlock::iterator 676 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 677 MachineBasicBlock::iterator MergeMI, 678 const LdStPairFlags &Flags) { 679 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 680 "Expected promotable zero stores."); 681 682 MachineBasicBlock::iterator E = I->getParent()->end(); 683 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 684 // If NextI is the second of the two instructions to be merged, we need 685 // to skip one further. Either way we merge will invalidate the iterator, 686 // and we don't need to scan the new instruction, as it's a pairwise 687 // instruction, which we're not considering for further action anyway. 688 if (NextI == MergeMI) 689 NextI = next_nodbg(NextI, E); 690 691 unsigned Opc = I->getOpcode(); 692 bool IsScaled = !TII->isUnscaledLdSt(Opc); 693 int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I); 694 695 bool MergeForward = Flags.getMergeForward(); 696 // Insert our new paired instruction after whichever of the paired 697 // instructions MergeForward indicates. 698 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 699 // Also based on MergeForward is from where we copy the base register operand 700 // so we get the flags compatible with the input code. 701 const MachineOperand &BaseRegOp = 702 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 703 704 // Which register is Rt and which is Rt2 depends on the offset order. 705 MachineInstr *RtMI; 706 if (getLdStOffsetOp(*I).getImm() == 707 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 708 RtMI = &*MergeMI; 709 else 710 RtMI = &*I; 711 712 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 713 // Change the scaled offset from small to large type. 714 if (IsScaled) { 715 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 716 OffsetImm /= 2; 717 } 718 719 // Construct the new instruction. 720 DebugLoc DL = I->getDebugLoc(); 721 MachineBasicBlock *MBB = I->getParent(); 722 MachineInstrBuilder MIB; 723 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 724 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 725 .add(BaseRegOp) 726 .addImm(OffsetImm) 727 .cloneMergedMemRefs({&*I, &*MergeMI}) 728 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 729 (void)MIB; 730 731 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 732 LLVM_DEBUG(I->print(dbgs())); 733 LLVM_DEBUG(dbgs() << " "); 734 LLVM_DEBUG(MergeMI->print(dbgs())); 735 LLVM_DEBUG(dbgs() << " with instruction:\n "); 736 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 737 LLVM_DEBUG(dbgs() << "\n"); 738 739 // Erase the old instructions. 740 I->eraseFromParent(); 741 MergeMI->eraseFromParent(); 742 return NextI; 743 } 744 745 // Apply Fn to all instructions between MI and the beginning of the block, until 746 // a def for DefReg is reached. Returns true, iff Fn returns true for all 747 // visited instructions. Stop after visiting Limit iterations. 748 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, 749 const TargetRegisterInfo *TRI, unsigned Limit, 750 std::function<bool(MachineInstr &, bool)> &Fn) { 751 auto MBB = MI.getParent(); 752 for (MachineInstr &I : 753 instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) { 754 if (!Limit) 755 return false; 756 --Limit; 757 758 bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) { 759 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && 760 TRI->regsOverlap(MOP.getReg(), DefReg); 761 }); 762 if (!Fn(I, isDef)) 763 return false; 764 if (isDef) 765 break; 766 } 767 return true; 768 } 769 770 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, 771 const TargetRegisterInfo *TRI) { 772 773 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 774 if (MOP.isReg() && MOP.isKill()) 775 Units.removeReg(MOP.getReg()); 776 777 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 778 if (MOP.isReg() && !MOP.isKill()) 779 Units.addReg(MOP.getReg()); 780 } 781 782 MachineBasicBlock::iterator 783 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 784 MachineBasicBlock::iterator Paired, 785 const LdStPairFlags &Flags) { 786 MachineBasicBlock::iterator E = I->getParent()->end(); 787 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 788 // If NextI is the second of the two instructions to be merged, we need 789 // to skip one further. Either way we merge will invalidate the iterator, 790 // and we don't need to scan the new instruction, as it's a pairwise 791 // instruction, which we're not considering for further action anyway. 792 if (NextI == Paired) 793 NextI = next_nodbg(NextI, E); 794 795 int SExtIdx = Flags.getSExtIdx(); 796 unsigned Opc = 797 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 798 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 799 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; 800 801 bool MergeForward = Flags.getMergeForward(); 802 803 Optional<MCPhysReg> RenameReg = Flags.getRenameReg(); 804 if (MergeForward && RenameReg) { 805 MCRegister RegToRename = getLdStRegOp(*I).getReg(); 806 DefinedInBB.addReg(*RenameReg); 807 808 // Return the sub/super register for RenameReg, matching the size of 809 // OriginalReg. 810 auto GetMatchingSubReg = [this, 811 RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { 812 for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) 813 if (TRI->getMinimalPhysRegClass(OriginalReg) == 814 TRI->getMinimalPhysRegClass(SubOrSuper)) 815 return SubOrSuper; 816 llvm_unreachable("Should have found matching sub or super register!"); 817 }; 818 819 std::function<bool(MachineInstr &, bool)> UpdateMIs = 820 [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { 821 if (IsDef) { 822 bool SeenDef = false; 823 for (auto &MOP : MI.operands()) { 824 // Rename the first explicit definition and all implicit 825 // definitions matching RegToRename. 826 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 827 (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && 828 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 829 assert((MOP.isImplicit() || 830 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 831 "Need renamable operands"); 832 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 833 SeenDef = true; 834 } 835 } 836 } else { 837 for (auto &MOP : MI.operands()) { 838 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 839 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 840 assert((MOP.isImplicit() || 841 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 842 "Need renamable operands"); 843 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 844 } 845 } 846 } 847 LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); 848 return true; 849 }; 850 forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); 851 852 #if !defined(NDEBUG) 853 // Make sure the register used for renaming is not used between the paired 854 // instructions. That would trash the content before the new paired 855 // instruction. 856 for (auto &MI : 857 iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( 858 std::next(I), std::next(Paired))) 859 assert(all_of(MI.operands(), 860 [this, &RenameReg](const MachineOperand &MOP) { 861 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 862 !TRI->regsOverlap(MOP.getReg(), *RenameReg); 863 }) && 864 "Rename register used between paired instruction, trashing the " 865 "content"); 866 #endif 867 } 868 869 // Insert our new paired instruction after whichever of the paired 870 // instructions MergeForward indicates. 871 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 872 // Also based on MergeForward is from where we copy the base register operand 873 // so we get the flags compatible with the input code. 874 const MachineOperand &BaseRegOp = 875 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 876 877 int Offset = getLdStOffsetOp(*I).getImm(); 878 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 879 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 880 if (IsUnscaled != PairedIsUnscaled) { 881 // We're trying to pair instructions that differ in how they are scaled. If 882 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 883 // the opposite (i.e., make Paired's offset unscaled). 884 int MemSize = TII->getMemScale(*Paired); 885 if (PairedIsUnscaled) { 886 // If the unscaled offset isn't a multiple of the MemSize, we can't 887 // pair the operations together. 888 assert(!(PairedOffset % TII->getMemScale(*Paired)) && 889 "Offset should be a multiple of the stride!"); 890 PairedOffset /= MemSize; 891 } else { 892 PairedOffset *= MemSize; 893 } 894 } 895 896 // Which register is Rt and which is Rt2 depends on the offset order. 897 MachineInstr *RtMI, *Rt2MI; 898 if (Offset == PairedOffset + OffsetStride) { 899 RtMI = &*Paired; 900 Rt2MI = &*I; 901 // Here we swapped the assumption made for SExtIdx. 902 // I.e., we turn ldp I, Paired into ldp Paired, I. 903 // Update the index accordingly. 904 if (SExtIdx != -1) 905 SExtIdx = (SExtIdx + 1) % 2; 906 } else { 907 RtMI = &*I; 908 Rt2MI = &*Paired; 909 } 910 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 911 // Scale the immediate offset, if necessary. 912 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 913 assert(!(OffsetImm % TII->getMemScale(*RtMI)) && 914 "Unscaled offset cannot be scaled."); 915 OffsetImm /= TII->getMemScale(*RtMI); 916 } 917 918 // Construct the new instruction. 919 MachineInstrBuilder MIB; 920 DebugLoc DL = I->getDebugLoc(); 921 MachineBasicBlock *MBB = I->getParent(); 922 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 923 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 924 // Kill flags may become invalid when moving stores for pairing. 925 if (RegOp0.isUse()) { 926 if (!MergeForward) { 927 // Clear kill flags on store if moving upwards. Example: 928 // STRWui %w0, ... 929 // USE %w1 930 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 931 RegOp0.setIsKill(false); 932 RegOp1.setIsKill(false); 933 } else { 934 // Clear kill flags of the first stores register. Example: 935 // STRWui %w1, ... 936 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 937 // STRW %w0 938 Register Reg = getLdStRegOp(*I).getReg(); 939 for (MachineInstr &MI : make_range(std::next(I), Paired)) 940 MI.clearRegisterKills(Reg, TRI); 941 } 942 } 943 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 944 .add(RegOp0) 945 .add(RegOp1) 946 .add(BaseRegOp) 947 .addImm(OffsetImm) 948 .cloneMergedMemRefs({&*I, &*Paired}) 949 .setMIFlags(I->mergeFlagsWith(*Paired)); 950 951 (void)MIB; 952 953 LLVM_DEBUG( 954 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 955 LLVM_DEBUG(I->print(dbgs())); 956 LLVM_DEBUG(dbgs() << " "); 957 LLVM_DEBUG(Paired->print(dbgs())); 958 LLVM_DEBUG(dbgs() << " with instruction:\n "); 959 if (SExtIdx != -1) { 960 // Generate the sign extension for the proper result of the ldp. 961 // I.e., with X1, that would be: 962 // %w1 = KILL %w1, implicit-def %x1 963 // %x1 = SBFMXri killed %x1, 0, 31 964 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 965 // Right now, DstMO has the extended register, since it comes from an 966 // extended opcode. 967 Register DstRegX = DstMO.getReg(); 968 // Get the W variant of that register. 969 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 970 // Update the result of LDP to use the W instead of the X variant. 971 DstMO.setReg(DstRegW); 972 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 973 LLVM_DEBUG(dbgs() << "\n"); 974 // Make the machine verifier happy by providing a definition for 975 // the X register. 976 // Insert this definition right after the generated LDP, i.e., before 977 // InsertionPoint. 978 MachineInstrBuilder MIBKill = 979 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 980 .addReg(DstRegW) 981 .addReg(DstRegX, RegState::Define); 982 MIBKill->getOperand(2).setImplicit(); 983 // Create the sign extension. 984 MachineInstrBuilder MIBSXTW = 985 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 986 .addReg(DstRegX) 987 .addImm(0) 988 .addImm(31); 989 (void)MIBSXTW; 990 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 991 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 992 } else { 993 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 994 } 995 LLVM_DEBUG(dbgs() << "\n"); 996 997 if (MergeForward) 998 for (const MachineOperand &MOP : phys_regs_and_masks(*I)) 999 if (MOP.isReg() && MOP.isKill()) 1000 DefinedInBB.addReg(MOP.getReg()); 1001 1002 // Erase the old instructions. 1003 I->eraseFromParent(); 1004 Paired->eraseFromParent(); 1005 1006 return NextI; 1007 } 1008 1009 MachineBasicBlock::iterator 1010 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 1011 MachineBasicBlock::iterator StoreI) { 1012 MachineBasicBlock::iterator NextI = 1013 next_nodbg(LoadI, LoadI->getParent()->end()); 1014 1015 int LoadSize = TII->getMemScale(*LoadI); 1016 int StoreSize = TII->getMemScale(*StoreI); 1017 Register LdRt = getLdStRegOp(*LoadI).getReg(); 1018 const MachineOperand &StMO = getLdStRegOp(*StoreI); 1019 Register StRt = getLdStRegOp(*StoreI).getReg(); 1020 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 1021 1022 assert((IsStoreXReg || 1023 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 1024 "Unexpected RegClass"); 1025 1026 MachineInstr *BitExtMI; 1027 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 1028 // Remove the load, if the destination register of the loads is the same 1029 // register for stored value. 1030 if (StRt == LdRt && LoadSize == 8) { 1031 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1032 LoadI->getIterator())) { 1033 if (MI.killsRegister(StRt, TRI)) { 1034 MI.clearRegisterKills(StRt, TRI); 1035 break; 1036 } 1037 } 1038 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 1039 LLVM_DEBUG(LoadI->print(dbgs())); 1040 LLVM_DEBUG(dbgs() << "\n"); 1041 LoadI->eraseFromParent(); 1042 return NextI; 1043 } 1044 // Replace the load with a mov if the load and store are in the same size. 1045 BitExtMI = 1046 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1047 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 1048 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 1049 .add(StMO) 1050 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1051 .setMIFlags(LoadI->getFlags()); 1052 } else { 1053 // FIXME: Currently we disable this transformation in big-endian targets as 1054 // performance and correctness are verified only in little-endian. 1055 if (!Subtarget->isLittleEndian()) 1056 return NextI; 1057 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 1058 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 1059 "Unsupported ld/st match"); 1060 assert(LoadSize <= StoreSize && "Invalid load size"); 1061 int UnscaledLdOffset = IsUnscaled 1062 ? getLdStOffsetOp(*LoadI).getImm() 1063 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 1064 int UnscaledStOffset = IsUnscaled 1065 ? getLdStOffsetOp(*StoreI).getImm() 1066 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 1067 int Width = LoadSize * 8; 1068 unsigned DestReg = 1069 IsStoreXReg ? Register(TRI->getMatchingSuperReg( 1070 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) 1071 : LdRt; 1072 1073 assert((UnscaledLdOffset >= UnscaledStOffset && 1074 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 1075 "Invalid offset"); 1076 1077 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 1078 int Imms = Immr + Width - 1; 1079 if (UnscaledLdOffset == UnscaledStOffset) { 1080 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 1081 | ((Immr) << 6) // immr 1082 | ((Imms) << 0) // imms 1083 ; 1084 1085 BitExtMI = 1086 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1087 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1088 DestReg) 1089 .add(StMO) 1090 .addImm(AndMaskEncoded) 1091 .setMIFlags(LoadI->getFlags()); 1092 } else { 1093 BitExtMI = 1094 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1095 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1096 DestReg) 1097 .add(StMO) 1098 .addImm(Immr) 1099 .addImm(Imms) 1100 .setMIFlags(LoadI->getFlags()); 1101 } 1102 } 1103 1104 // Clear kill flags between store and load. 1105 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1106 BitExtMI->getIterator())) 1107 if (MI.killsRegister(StRt, TRI)) { 1108 MI.clearRegisterKills(StRt, TRI); 1109 break; 1110 } 1111 1112 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 1113 LLVM_DEBUG(StoreI->print(dbgs())); 1114 LLVM_DEBUG(dbgs() << " "); 1115 LLVM_DEBUG(LoadI->print(dbgs())); 1116 LLVM_DEBUG(dbgs() << " with instructions:\n "); 1117 LLVM_DEBUG(StoreI->print(dbgs())); 1118 LLVM_DEBUG(dbgs() << " "); 1119 LLVM_DEBUG((BitExtMI)->print(dbgs())); 1120 LLVM_DEBUG(dbgs() << "\n"); 1121 1122 // Erase the old instructions. 1123 LoadI->eraseFromParent(); 1124 return NextI; 1125 } 1126 1127 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1128 // Convert the byte-offset used by unscaled into an "element" offset used 1129 // by the scaled pair load/store instructions. 1130 if (IsUnscaled) { 1131 // If the byte-offset isn't a multiple of the stride, there's no point 1132 // trying to match it. 1133 if (Offset % OffsetStride) 1134 return false; 1135 Offset /= OffsetStride; 1136 } 1137 return Offset <= 63 && Offset >= -64; 1138 } 1139 1140 // Do alignment, specialized to power of 2 and for signed ints, 1141 // avoiding having to do a C-style cast from uint_64t to int when 1142 // using alignTo from include/llvm/Support/MathExtras.h. 1143 // FIXME: Move this function to include/MathExtras.h? 1144 static int alignTo(int Num, int PowOf2) { 1145 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1146 } 1147 1148 static bool mayAlias(MachineInstr &MIa, 1149 SmallVectorImpl<MachineInstr *> &MemInsns, 1150 AliasAnalysis *AA) { 1151 for (MachineInstr *MIb : MemInsns) 1152 if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) 1153 return true; 1154 1155 return false; 1156 } 1157 1158 bool AArch64LoadStoreOpt::findMatchingStore( 1159 MachineBasicBlock::iterator I, unsigned Limit, 1160 MachineBasicBlock::iterator &StoreI) { 1161 MachineBasicBlock::iterator B = I->getParent()->begin(); 1162 MachineBasicBlock::iterator MBBI = I; 1163 MachineInstr &LoadMI = *I; 1164 Register BaseReg = getLdStBaseOp(LoadMI).getReg(); 1165 1166 // If the load is the first instruction in the block, there's obviously 1167 // not any matching store. 1168 if (MBBI == B) 1169 return false; 1170 1171 // Track which register units have been modified and used between the first 1172 // insn and the second insn. 1173 ModifiedRegUnits.clear(); 1174 UsedRegUnits.clear(); 1175 1176 unsigned Count = 0; 1177 do { 1178 MBBI = prev_nodbg(MBBI, B); 1179 MachineInstr &MI = *MBBI; 1180 1181 // Don't count transient instructions towards the search limit since there 1182 // may be different numbers of them if e.g. debug information is present. 1183 if (!MI.isTransient()) 1184 ++Count; 1185 1186 // If the load instruction reads directly from the address to which the 1187 // store instruction writes and the stored value is not modified, we can 1188 // promote the load. Since we do not handle stores with pre-/post-index, 1189 // it's unnecessary to check if BaseReg is modified by the store itself. 1190 // Also we can't handle stores without an immediate offset operand, 1191 // while the operand might be the address for a global variable. 1192 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1193 BaseReg == getLdStBaseOp(MI).getReg() && getLdStOffsetOp(MI).isImm() && 1194 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1195 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1196 StoreI = MBBI; 1197 return true; 1198 } 1199 1200 if (MI.isCall()) 1201 return false; 1202 1203 // Update modified / uses register units. 1204 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1205 1206 // Otherwise, if the base register is modified, we have no match, so 1207 // return early. 1208 if (!ModifiedRegUnits.available(BaseReg)) 1209 return false; 1210 1211 // If we encounter a store aliased with the load, return early. 1212 if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false)) 1213 return false; 1214 } while (MBBI != B && Count < Limit); 1215 return false; 1216 } 1217 1218 // Returns true if FirstMI and MI are candidates for merging or pairing. 1219 // Otherwise, returns false. 1220 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1221 LdStPairFlags &Flags, 1222 const AArch64InstrInfo *TII) { 1223 // If this is volatile or if pairing is suppressed, not a candidate. 1224 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1225 return false; 1226 1227 // We should have already checked FirstMI for pair suppression and volatility. 1228 assert(!FirstMI.hasOrderedMemoryRef() && 1229 !TII->isLdStPairSuppressed(FirstMI) && 1230 "FirstMI shouldn't get here if either of these checks are true."); 1231 1232 unsigned OpcA = FirstMI.getOpcode(); 1233 unsigned OpcB = MI.getOpcode(); 1234 1235 // Opcodes match: nothing more to check. 1236 if (OpcA == OpcB) 1237 return true; 1238 1239 // Try to match a sign-extended load/store with a zero-extended load/store. 1240 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1241 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1242 assert(IsValidLdStrOpc && 1243 "Given Opc should be a Load or Store with an immediate"); 1244 // OpcA will be the first instruction in the pair. 1245 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1246 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1247 return true; 1248 } 1249 1250 // If the second instruction isn't even a mergable/pairable load/store, bail 1251 // out. 1252 if (!PairIsValidLdStrOpc) 1253 return false; 1254 1255 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1256 // offsets. 1257 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1258 return false; 1259 1260 // Try to match an unscaled load/store with a scaled load/store. 1261 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1262 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1263 1264 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1265 } 1266 1267 static bool 1268 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, 1269 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1270 const TargetRegisterInfo *TRI) { 1271 if (!FirstMI.mayStore()) 1272 return false; 1273 1274 // Check if we can find an unused register which we can use to rename 1275 // the register used by the first load/store. 1276 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1277 MachineFunction &MF = *FirstMI.getParent()->getParent(); 1278 if (!RegClass || !MF.getRegInfo().tracksLiveness()) 1279 return false; 1280 1281 auto RegToRename = getLdStRegOp(FirstMI).getReg(); 1282 // For now, we only rename if the store operand gets killed at the store. 1283 if (!getLdStRegOp(FirstMI).isKill() && 1284 !any_of(FirstMI.operands(), 1285 [TRI, RegToRename](const MachineOperand &MOP) { 1286 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 1287 MOP.isImplicit() && MOP.isKill() && 1288 TRI->regsOverlap(RegToRename, MOP.getReg()); 1289 })) { 1290 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); 1291 return false; 1292 } 1293 auto canRenameMOP = [TRI](const MachineOperand &MOP) { 1294 if (MOP.isReg()) { 1295 auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg()); 1296 // Renaming registers with multiple disjunct sub-registers (e.g. the 1297 // result of a LD3) means that all sub-registers are renamed, potentially 1298 // impacting other instructions we did not check. Bail out. 1299 // Note that this relies on the structure of the AArch64 register file. In 1300 // particular, a subregister cannot be written without overwriting the 1301 // whole register. 1302 if (RegClass->HasDisjunctSubRegs) { 1303 LLVM_DEBUG( 1304 dbgs() 1305 << " Cannot rename operands with multiple disjunct subregisters (" 1306 << MOP << ")\n"); 1307 return false; 1308 } 1309 } 1310 return MOP.isImplicit() || 1311 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); 1312 }; 1313 1314 bool FoundDef = false; 1315 1316 // For each instruction between FirstMI and the previous def for RegToRename, 1317 // we 1318 // * check if we can rename RegToRename in this instruction 1319 // * collect the registers used and required register classes for RegToRename. 1320 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, 1321 bool IsDef) { 1322 LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); 1323 // Currently we do not try to rename across frame-setup instructions. 1324 if (MI.getFlag(MachineInstr::FrameSetup)) { 1325 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" 1326 << MI << ")\n"); 1327 return false; 1328 } 1329 1330 UsedInBetween.accumulate(MI); 1331 1332 // For a definition, check that we can rename the definition and exit the 1333 // loop. 1334 FoundDef = IsDef; 1335 1336 // For defs, check if we can rename the first def of RegToRename. 1337 if (FoundDef) { 1338 // For some pseudo instructions, we might not generate code in the end 1339 // (e.g. KILL) and we would end up without a correct def for the rename 1340 // register. 1341 // TODO: This might be overly conservative and we could handle those cases 1342 // in multiple ways: 1343 // 1. Insert an extra copy, to materialize the def. 1344 // 2. Skip pseudo-defs until we find an non-pseudo def. 1345 if (MI.isPseudo()) { 1346 LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI 1347 << "\n"); 1348 return false; 1349 } 1350 1351 for (auto &MOP : MI.operands()) { 1352 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || 1353 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1354 continue; 1355 if (!canRenameMOP(MOP)) { 1356 LLVM_DEBUG(dbgs() 1357 << " Cannot rename " << MOP << " in " << MI << "\n"); 1358 return false; 1359 } 1360 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1361 } 1362 return true; 1363 } else { 1364 for (auto &MOP : MI.operands()) { 1365 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 1366 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1367 continue; 1368 1369 if (!canRenameMOP(MOP)) { 1370 LLVM_DEBUG(dbgs() 1371 << " Cannot rename " << MOP << " in " << MI << "\n"); 1372 return false; 1373 } 1374 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1375 } 1376 } 1377 return true; 1378 }; 1379 1380 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) 1381 return false; 1382 1383 if (!FoundDef) { 1384 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); 1385 return false; 1386 } 1387 return true; 1388 } 1389 1390 // Check if we can find a physical register for renaming. This register must: 1391 // * not be defined up to FirstMI (checking DefinedInBB) 1392 // * not used between the MI and the defining instruction of the register to 1393 // rename (checked using UsedInBetween). 1394 // * is available in all used register classes (checked using RequiredClasses). 1395 static Optional<MCPhysReg> tryToFindRegisterToRename( 1396 MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB, 1397 LiveRegUnits &UsedInBetween, 1398 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1399 const TargetRegisterInfo *TRI) { 1400 auto &MF = *FirstMI.getParent()->getParent(); 1401 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1402 1403 // Checks if any sub- or super-register of PR is callee saved. 1404 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { 1405 return any_of(TRI->sub_and_superregs_inclusive(PR), 1406 [&MF, TRI](MCPhysReg SubOrSuper) { 1407 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); 1408 }); 1409 }; 1410 1411 // Check if PR or one of its sub- or super-registers can be used for all 1412 // required register classes. 1413 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { 1414 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { 1415 return any_of(TRI->sub_and_superregs_inclusive(PR), 1416 [C, TRI](MCPhysReg SubOrSuper) { 1417 return C == TRI->getMinimalPhysRegClass(SubOrSuper); 1418 }); 1419 }); 1420 }; 1421 1422 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1423 for (const MCPhysReg &PR : *RegClass) { 1424 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && 1425 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && 1426 CanBeUsedForAllClasses(PR)) { 1427 DefinedInBB.addReg(PR); 1428 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) 1429 << "\n"); 1430 return {PR}; 1431 } 1432 } 1433 LLVM_DEBUG(dbgs() << "No rename register found from " 1434 << TRI->getRegClassName(RegClass) << "\n"); 1435 return None; 1436 } 1437 1438 /// Scan the instructions looking for a load/store that can be combined with the 1439 /// current instruction into a wider equivalent or a load/store pair. 1440 MachineBasicBlock::iterator 1441 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1442 LdStPairFlags &Flags, unsigned Limit, 1443 bool FindNarrowMerge) { 1444 MachineBasicBlock::iterator E = I->getParent()->end(); 1445 MachineBasicBlock::iterator MBBI = I; 1446 MachineBasicBlock::iterator MBBIWithRenameReg; 1447 MachineInstr &FirstMI = *I; 1448 MBBI = next_nodbg(MBBI, E); 1449 1450 bool MayLoad = FirstMI.mayLoad(); 1451 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1452 Register Reg = getLdStRegOp(FirstMI).getReg(); 1453 Register BaseReg = getLdStBaseOp(FirstMI).getReg(); 1454 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1455 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; 1456 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1457 1458 Optional<bool> MaybeCanRename = None; 1459 if (!EnableRenaming) 1460 MaybeCanRename = {false}; 1461 1462 SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; 1463 LiveRegUnits UsedInBetween; 1464 UsedInBetween.init(*TRI); 1465 1466 Flags.clearRenameReg(); 1467 1468 // Track which register units have been modified and used between the first 1469 // insn (inclusive) and the second insn. 1470 ModifiedRegUnits.clear(); 1471 UsedRegUnits.clear(); 1472 1473 // Remember any instructions that read/write memory between FirstMI and MI. 1474 SmallVector<MachineInstr *, 4> MemInsns; 1475 1476 for (unsigned Count = 0; MBBI != E && Count < Limit; 1477 MBBI = next_nodbg(MBBI, E)) { 1478 MachineInstr &MI = *MBBI; 1479 1480 UsedInBetween.accumulate(MI); 1481 1482 // Don't count transient instructions towards the search limit since there 1483 // may be different numbers of them if e.g. debug information is present. 1484 if (!MI.isTransient()) 1485 ++Count; 1486 1487 Flags.setSExtIdx(-1); 1488 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1489 getLdStOffsetOp(MI).isImm()) { 1490 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1491 // If we've found another instruction with the same opcode, check to see 1492 // if the base and offset are compatible with our starting instruction. 1493 // These instructions all have scaled immediate operands, so we just 1494 // check for +1/-1. Make sure to check the new instruction offset is 1495 // actually an immediate and not a symbolic reference destined for 1496 // a relocation. 1497 Register MIBaseReg = getLdStBaseOp(MI).getReg(); 1498 int MIOffset = getLdStOffsetOp(MI).getImm(); 1499 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1500 if (IsUnscaled != MIIsUnscaled) { 1501 // We're trying to pair instructions that differ in how they are scaled. 1502 // If FirstMI is scaled then scale the offset of MI accordingly. 1503 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1504 int MemSize = TII->getMemScale(MI); 1505 if (MIIsUnscaled) { 1506 // If the unscaled offset isn't a multiple of the MemSize, we can't 1507 // pair the operations together: bail and keep looking. 1508 if (MIOffset % MemSize) { 1509 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1510 UsedRegUnits, TRI); 1511 MemInsns.push_back(&MI); 1512 continue; 1513 } 1514 MIOffset /= MemSize; 1515 } else { 1516 MIOffset *= MemSize; 1517 } 1518 } 1519 1520 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1521 (Offset + OffsetStride == MIOffset))) { 1522 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1523 if (FindNarrowMerge) { 1524 // If the alignment requirements of the scaled wide load/store 1525 // instruction can't express the offset of the scaled narrow input, 1526 // bail and keep looking. For promotable zero stores, allow only when 1527 // the stored value is the same (i.e., WZR). 1528 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1529 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1530 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1531 UsedRegUnits, TRI); 1532 MemInsns.push_back(&MI); 1533 continue; 1534 } 1535 } else { 1536 // Pairwise instructions have a 7-bit signed offset field. Single 1537 // insns have a 12-bit unsigned offset field. If the resultant 1538 // immediate offset of merging these instructions is out of range for 1539 // a pairwise instruction, bail and keep looking. 1540 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1541 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1542 UsedRegUnits, TRI); 1543 MemInsns.push_back(&MI); 1544 continue; 1545 } 1546 // If the alignment requirements of the paired (scaled) instruction 1547 // can't express the offset of the unscaled input, bail and keep 1548 // looking. 1549 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1550 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1551 UsedRegUnits, TRI); 1552 MemInsns.push_back(&MI); 1553 continue; 1554 } 1555 } 1556 // If the destination register of one load is the same register or a 1557 // sub/super register of the other load, bail and keep looking. A 1558 // load-pair instruction with both destination registers the same is 1559 // UNPREDICTABLE and will result in an exception. 1560 if (MayLoad && 1561 TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) { 1562 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1563 TRI); 1564 MemInsns.push_back(&MI); 1565 continue; 1566 } 1567 1568 // If the BaseReg has been modified, then we cannot do the optimization. 1569 // For example, in the following pattern 1570 // ldr x1 [x2] 1571 // ldr x2 [x3] 1572 // ldr x4 [x2, #8], 1573 // the first and third ldr cannot be converted to ldp x1, x4, [x2] 1574 if (!ModifiedRegUnits.available(BaseReg)) 1575 return E; 1576 1577 // If the Rt of the second instruction was not modified or used between 1578 // the two instructions and none of the instructions between the second 1579 // and first alias with the second, we can combine the second into the 1580 // first. 1581 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1582 !(MI.mayLoad() && 1583 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1584 !mayAlias(MI, MemInsns, AA)) { 1585 1586 Flags.setMergeForward(false); 1587 Flags.clearRenameReg(); 1588 return MBBI; 1589 } 1590 1591 // Likewise, if the Rt of the first instruction is not modified or used 1592 // between the two instructions and none of the instructions between the 1593 // first and the second alias with the first, we can combine the first 1594 // into the second. 1595 if (!(MayLoad && 1596 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1597 !mayAlias(FirstMI, MemInsns, AA)) { 1598 1599 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { 1600 Flags.setMergeForward(true); 1601 Flags.clearRenameReg(); 1602 return MBBI; 1603 } 1604 1605 if (DebugCounter::shouldExecute(RegRenamingCounter)) { 1606 if (!MaybeCanRename) 1607 MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween, 1608 RequiredClasses, TRI)}; 1609 1610 if (*MaybeCanRename) { 1611 Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename( 1612 FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses, 1613 TRI); 1614 if (MaybeRenameReg) { 1615 Flags.setRenameReg(*MaybeRenameReg); 1616 Flags.setMergeForward(true); 1617 MBBIWithRenameReg = MBBI; 1618 } 1619 } 1620 } 1621 } 1622 // Unable to combine these instructions due to interference in between. 1623 // Keep looking. 1624 } 1625 } 1626 1627 if (Flags.getRenameReg()) 1628 return MBBIWithRenameReg; 1629 1630 // If the instruction wasn't a matching load or store. Stop searching if we 1631 // encounter a call instruction that might modify memory. 1632 if (MI.isCall()) 1633 return E; 1634 1635 // Update modified / uses register units. 1636 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1637 1638 // Otherwise, if the base register is modified, we have no match, so 1639 // return early. 1640 if (!ModifiedRegUnits.available(BaseReg)) 1641 return E; 1642 1643 // Update list of instructions that read/write memory. 1644 if (MI.mayLoadOrStore()) 1645 MemInsns.push_back(&MI); 1646 } 1647 return E; 1648 } 1649 1650 MachineBasicBlock::iterator 1651 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1652 MachineBasicBlock::iterator Update, 1653 bool IsPreIdx) { 1654 assert((Update->getOpcode() == AArch64::ADDXri || 1655 Update->getOpcode() == AArch64::SUBXri) && 1656 "Unexpected base register update instruction to merge!"); 1657 MachineBasicBlock::iterator E = I->getParent()->end(); 1658 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 1659 // Return the instruction following the merged instruction, which is 1660 // the instruction following our unmerged load. Unless that's the add/sub 1661 // instruction we're merging, in which case it's the one after that. 1662 if (NextI == Update) 1663 NextI = next_nodbg(NextI, E); 1664 1665 int Value = Update->getOperand(2).getImm(); 1666 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1667 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1668 if (Update->getOpcode() == AArch64::SUBXri) 1669 Value = -Value; 1670 1671 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1672 : getPostIndexedOpcode(I->getOpcode()); 1673 MachineInstrBuilder MIB; 1674 int Scale, MinOffset, MaxOffset; 1675 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); 1676 if (!isPairedLdSt(*I)) { 1677 // Non-paired instruction. 1678 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1679 .add(getLdStRegOp(*Update)) 1680 .add(getLdStRegOp(*I)) 1681 .add(getLdStBaseOp(*I)) 1682 .addImm(Value / Scale) 1683 .setMemRefs(I->memoperands()) 1684 .setMIFlags(I->mergeFlagsWith(*Update)); 1685 } else { 1686 // Paired instruction. 1687 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1688 .add(getLdStRegOp(*Update)) 1689 .add(getLdStRegOp(*I, 0)) 1690 .add(getLdStRegOp(*I, 1)) 1691 .add(getLdStBaseOp(*I)) 1692 .addImm(Value / Scale) 1693 .setMemRefs(I->memoperands()) 1694 .setMIFlags(I->mergeFlagsWith(*Update)); 1695 } 1696 (void)MIB; 1697 1698 if (IsPreIdx) { 1699 ++NumPreFolded; 1700 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1701 } else { 1702 ++NumPostFolded; 1703 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1704 } 1705 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1706 LLVM_DEBUG(I->print(dbgs())); 1707 LLVM_DEBUG(dbgs() << " "); 1708 LLVM_DEBUG(Update->print(dbgs())); 1709 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1710 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1711 LLVM_DEBUG(dbgs() << "\n"); 1712 1713 // Erase the old instructions for the block. 1714 I->eraseFromParent(); 1715 Update->eraseFromParent(); 1716 1717 return NextI; 1718 } 1719 1720 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1721 MachineInstr &MI, 1722 unsigned BaseReg, int Offset) { 1723 switch (MI.getOpcode()) { 1724 default: 1725 break; 1726 case AArch64::SUBXri: 1727 case AArch64::ADDXri: 1728 // Make sure it's a vanilla immediate operand, not a relocation or 1729 // anything else we can't handle. 1730 if (!MI.getOperand(2).isImm()) 1731 break; 1732 // Watch out for 1 << 12 shifted value. 1733 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1734 break; 1735 1736 // The update instruction source and destination register must be the 1737 // same as the load/store base register. 1738 if (MI.getOperand(0).getReg() != BaseReg || 1739 MI.getOperand(1).getReg() != BaseReg) 1740 break; 1741 1742 int UpdateOffset = MI.getOperand(2).getImm(); 1743 if (MI.getOpcode() == AArch64::SUBXri) 1744 UpdateOffset = -UpdateOffset; 1745 1746 // The immediate must be a multiple of the scaling factor of the pre/post 1747 // indexed instruction. 1748 int Scale, MinOffset, MaxOffset; 1749 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); 1750 if (UpdateOffset % Scale != 0) 1751 break; 1752 1753 // Scaled offset must fit in the instruction immediate. 1754 int ScaledOffset = UpdateOffset / Scale; 1755 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) 1756 break; 1757 1758 // If we have a non-zero Offset, we check that it matches the amount 1759 // we're adding to the register. 1760 if (!Offset || Offset == UpdateOffset) 1761 return true; 1762 break; 1763 } 1764 return false; 1765 } 1766 1767 static bool needsWinCFI(const MachineFunction *MF) { 1768 return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() && 1769 MF->getFunction().needsUnwindTableEntry(); 1770 } 1771 1772 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1773 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1774 MachineBasicBlock::iterator E = I->getParent()->end(); 1775 MachineInstr &MemMI = *I; 1776 MachineBasicBlock::iterator MBBI = I; 1777 1778 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1779 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI); 1780 1781 // Scan forward looking for post-index opportunities. Updating instructions 1782 // can't be formed if the memory instruction doesn't have the offset we're 1783 // looking for. 1784 if (MIUnscaledOffset != UnscaledOffset) 1785 return E; 1786 1787 // If the base register overlaps a source/destination register, we can't 1788 // merge the update. This does not apply to tag store instructions which 1789 // ignore the address part of the source register. 1790 // This does not apply to STGPi as well, which does not have unpredictable 1791 // behavior in this case unlike normal stores, and always performs writeback 1792 // after reading the source register value. 1793 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { 1794 bool IsPairedInsn = isPairedLdSt(MemMI); 1795 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1796 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1797 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1798 return E; 1799 } 1800 } 1801 1802 // Track which register units have been modified and used between the first 1803 // insn (inclusive) and the second insn. 1804 ModifiedRegUnits.clear(); 1805 UsedRegUnits.clear(); 1806 MBBI = next_nodbg(MBBI, E); 1807 1808 // We can't post-increment the stack pointer if any instruction between 1809 // the memory access (I) and the increment (MBBI) can access the memory 1810 // region defined by [SP, MBBI]. 1811 const bool BaseRegSP = BaseReg == AArch64::SP; 1812 if (BaseRegSP && needsWinCFI(I->getMF())) { 1813 // FIXME: For now, we always block the optimization over SP in windows 1814 // targets as it requires to adjust the unwind/debug info, messing up 1815 // the unwind info can actually cause a miscompile. 1816 return E; 1817 } 1818 1819 for (unsigned Count = 0; MBBI != E && Count < Limit; 1820 MBBI = next_nodbg(MBBI, E)) { 1821 MachineInstr &MI = *MBBI; 1822 1823 // Don't count transient instructions towards the search limit since there 1824 // may be different numbers of them if e.g. debug information is present. 1825 if (!MI.isTransient()) 1826 ++Count; 1827 1828 // If we found a match, return it. 1829 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1830 return MBBI; 1831 1832 // Update the status of what the instruction clobbered and used. 1833 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1834 1835 // Otherwise, if the base register is used or modified, we have no match, so 1836 // return early. 1837 // If we are optimizing SP, do not allow instructions that may load or store 1838 // in between the load and the optimized value update. 1839 if (!ModifiedRegUnits.available(BaseReg) || 1840 !UsedRegUnits.available(BaseReg) || 1841 (BaseRegSP && MBBI->mayLoadOrStore())) 1842 return E; 1843 } 1844 return E; 1845 } 1846 1847 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1848 MachineBasicBlock::iterator I, unsigned Limit) { 1849 MachineBasicBlock::iterator B = I->getParent()->begin(); 1850 MachineBasicBlock::iterator E = I->getParent()->end(); 1851 MachineInstr &MemMI = *I; 1852 MachineBasicBlock::iterator MBBI = I; 1853 MachineFunction &MF = *MemMI.getMF(); 1854 1855 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1856 int Offset = getLdStOffsetOp(MemMI).getImm(); 1857 1858 // If the load/store is the first instruction in the block, there's obviously 1859 // not any matching update. Ditto if the memory offset isn't zero. 1860 if (MBBI == B || Offset != 0) 1861 return E; 1862 // If the base register overlaps a destination register, we can't 1863 // merge the update. 1864 if (!isTagStore(MemMI)) { 1865 bool IsPairedInsn = isPairedLdSt(MemMI); 1866 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1867 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1868 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1869 return E; 1870 } 1871 } 1872 1873 const bool BaseRegSP = BaseReg == AArch64::SP; 1874 if (BaseRegSP && needsWinCFI(I->getMF())) { 1875 // FIXME: For now, we always block the optimization over SP in windows 1876 // targets as it requires to adjust the unwind/debug info, messing up 1877 // the unwind info can actually cause a miscompile. 1878 return E; 1879 } 1880 1881 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1882 unsigned RedZoneSize = 1883 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); 1884 1885 // Track which register units have been modified and used between the first 1886 // insn (inclusive) and the second insn. 1887 ModifiedRegUnits.clear(); 1888 UsedRegUnits.clear(); 1889 unsigned Count = 0; 1890 bool MemAcessBeforeSPPreInc = false; 1891 do { 1892 MBBI = prev_nodbg(MBBI, B); 1893 MachineInstr &MI = *MBBI; 1894 1895 // Don't count transient instructions towards the search limit since there 1896 // may be different numbers of them if e.g. debug information is present. 1897 if (!MI.isTransient()) 1898 ++Count; 1899 1900 // If we found a match, return it. 1901 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) { 1902 // Check that the update value is within our red zone limit (which may be 1903 // zero). 1904 if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize) 1905 return E; 1906 return MBBI; 1907 } 1908 1909 // Update the status of what the instruction clobbered and used. 1910 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1911 1912 // Otherwise, if the base register is used or modified, we have no match, so 1913 // return early. 1914 if (!ModifiedRegUnits.available(BaseReg) || 1915 !UsedRegUnits.available(BaseReg)) 1916 return E; 1917 // Keep track if we have a memory access before an SP pre-increment, in this 1918 // case we need to validate later that the update amount respects the red 1919 // zone. 1920 if (BaseRegSP && MBBI->mayLoadOrStore()) 1921 MemAcessBeforeSPPreInc = true; 1922 } while (MBBI != B && Count < Limit); 1923 return E; 1924 } 1925 1926 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1927 MachineBasicBlock::iterator &MBBI) { 1928 MachineInstr &MI = *MBBI; 1929 // If this is a volatile load, don't mess with it. 1930 if (MI.hasOrderedMemoryRef()) 1931 return false; 1932 1933 // Make sure this is a reg+imm. 1934 // FIXME: It is possible to extend it to handle reg+reg cases. 1935 if (!getLdStOffsetOp(MI).isImm()) 1936 return false; 1937 1938 // Look backward up to LdStLimit instructions. 1939 MachineBasicBlock::iterator StoreI; 1940 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1941 ++NumLoadsFromStoresPromoted; 1942 // Promote the load. Keeping the iterator straight is a 1943 // pain, so we let the merge routine tell us what the next instruction 1944 // is after it's done mucking about. 1945 MBBI = promoteLoadFromStore(MBBI, StoreI); 1946 return true; 1947 } 1948 return false; 1949 } 1950 1951 // Merge adjacent zero stores into a wider store. 1952 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1953 MachineBasicBlock::iterator &MBBI) { 1954 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1955 MachineInstr &MI = *MBBI; 1956 MachineBasicBlock::iterator E = MI.getParent()->end(); 1957 1958 if (!TII->isCandidateToMergeOrPair(MI)) 1959 return false; 1960 1961 // Look ahead up to LdStLimit instructions for a mergable instruction. 1962 LdStPairFlags Flags; 1963 MachineBasicBlock::iterator MergeMI = 1964 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1965 if (MergeMI != E) { 1966 ++NumZeroStoresPromoted; 1967 1968 // Keeping the iterator straight is a pain, so we let the merge routine tell 1969 // us what the next instruction is after it's done mucking about. 1970 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1971 return true; 1972 } 1973 return false; 1974 } 1975 1976 // Find loads and stores that can be merged into a single load or store pair 1977 // instruction. 1978 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1979 MachineInstr &MI = *MBBI; 1980 MachineBasicBlock::iterator E = MI.getParent()->end(); 1981 1982 if (!TII->isCandidateToMergeOrPair(MI)) 1983 return false; 1984 1985 // Early exit if the offset is not possible to match. (6 bits of positive 1986 // range, plus allow an extra one in case we find a later insn that matches 1987 // with Offset-1) 1988 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1989 int Offset = getLdStOffsetOp(MI).getImm(); 1990 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; 1991 // Allow one more for offset. 1992 if (Offset > 0) 1993 Offset -= OffsetStride; 1994 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1995 return false; 1996 1997 // Look ahead up to LdStLimit instructions for a pairable instruction. 1998 LdStPairFlags Flags; 1999 MachineBasicBlock::iterator Paired = 2000 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 2001 if (Paired != E) { 2002 ++NumPairCreated; 2003 if (TII->isUnscaledLdSt(MI)) 2004 ++NumUnscaledPairCreated; 2005 // Keeping the iterator straight is a pain, so we let the merge routine tell 2006 // us what the next instruction is after it's done mucking about. 2007 auto Prev = std::prev(MBBI); 2008 MBBI = mergePairedInsns(MBBI, Paired, Flags); 2009 // Collect liveness info for instructions between Prev and the new position 2010 // MBBI. 2011 for (auto I = std::next(Prev); I != MBBI; I++) 2012 updateDefinedRegisters(*I, DefinedInBB, TRI); 2013 2014 return true; 2015 } 2016 return false; 2017 } 2018 2019 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 2020 (MachineBasicBlock::iterator &MBBI) { 2021 MachineInstr &MI = *MBBI; 2022 MachineBasicBlock::iterator E = MI.getParent()->end(); 2023 MachineBasicBlock::iterator Update; 2024 2025 // Look forward to try to form a post-index instruction. For example, 2026 // ldr x0, [x20] 2027 // add x20, x20, #32 2028 // merged into: 2029 // ldr x0, [x20], #32 2030 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 2031 if (Update != E) { 2032 // Merge the update into the ld/st. 2033 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 2034 return true; 2035 } 2036 2037 // Don't know how to handle unscaled pre/post-index versions below, so bail. 2038 if (TII->isUnscaledLdSt(MI.getOpcode())) 2039 return false; 2040 2041 // Look back to try to find a pre-index instruction. For example, 2042 // add x0, x0, #8 2043 // ldr x1, [x0] 2044 // merged into: 2045 // ldr x1, [x0, #8]! 2046 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 2047 if (Update != E) { 2048 // Merge the update into the ld/st. 2049 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2050 return true; 2051 } 2052 2053 // The immediate in the load/store is scaled by the size of the memory 2054 // operation. The immediate in the add we're looking for, 2055 // however, is not, so adjust here. 2056 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); 2057 2058 // Look forward to try to find a pre-index instruction. For example, 2059 // ldr x1, [x0, #64] 2060 // add x0, x0, #64 2061 // merged into: 2062 // ldr x1, [x0, #64]! 2063 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 2064 if (Update != E) { 2065 // Merge the update into the ld/st. 2066 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2067 return true; 2068 } 2069 2070 return false; 2071 } 2072 2073 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 2074 bool EnableNarrowZeroStOpt) { 2075 2076 bool Modified = false; 2077 // Four tranformations to do here: 2078 // 1) Find loads that directly read from stores and promote them by 2079 // replacing with mov instructions. If the store is wider than the load, 2080 // the load will be replaced with a bitfield extract. 2081 // e.g., 2082 // str w1, [x0, #4] 2083 // ldrh w2, [x0, #6] 2084 // ; becomes 2085 // str w1, [x0, #4] 2086 // lsr w2, w1, #16 2087 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2088 MBBI != E;) { 2089 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 2090 Modified = true; 2091 else 2092 ++MBBI; 2093 } 2094 // 2) Merge adjacent zero stores into a wider store. 2095 // e.g., 2096 // strh wzr, [x0] 2097 // strh wzr, [x0, #2] 2098 // ; becomes 2099 // str wzr, [x0] 2100 // e.g., 2101 // str wzr, [x0] 2102 // str wzr, [x0, #4] 2103 // ; becomes 2104 // str xzr, [x0] 2105 if (EnableNarrowZeroStOpt) 2106 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2107 MBBI != E;) { 2108 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 2109 Modified = true; 2110 else 2111 ++MBBI; 2112 } 2113 // 3) Find loads and stores that can be merged into a single load or store 2114 // pair instruction. 2115 // e.g., 2116 // ldr x0, [x2] 2117 // ldr x1, [x2, #8] 2118 // ; becomes 2119 // ldp x0, x1, [x2] 2120 2121 if (MBB.getParent()->getRegInfo().tracksLiveness()) { 2122 DefinedInBB.clear(); 2123 DefinedInBB.addLiveIns(MBB); 2124 } 2125 2126 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2127 MBBI != E;) { 2128 // Track currently live registers up to this point, to help with 2129 // searching for a rename register on demand. 2130 updateDefinedRegisters(*MBBI, DefinedInBB, TRI); 2131 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 2132 Modified = true; 2133 else 2134 ++MBBI; 2135 } 2136 // 4) Find base register updates that can be merged into the load or store 2137 // as a base-reg writeback. 2138 // e.g., 2139 // ldr x0, [x2] 2140 // add x2, x2, #4 2141 // ; becomes 2142 // ldr x0, [x2], #4 2143 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2144 MBBI != E;) { 2145 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 2146 Modified = true; 2147 else 2148 ++MBBI; 2149 } 2150 2151 return Modified; 2152 } 2153 2154 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2155 if (skipFunction(Fn.getFunction())) 2156 return false; 2157 2158 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 2159 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 2160 TRI = Subtarget->getRegisterInfo(); 2161 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2162 2163 // Resize the modified and used register unit trackers. We do this once 2164 // per function and then clear the register units each time we optimize a load 2165 // or store. 2166 ModifiedRegUnits.init(*TRI); 2167 UsedRegUnits.init(*TRI); 2168 DefinedInBB.init(*TRI); 2169 2170 bool Modified = false; 2171 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 2172 for (auto &MBB : Fn) { 2173 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); 2174 Modified |= M; 2175 } 2176 2177 return Modified; 2178 } 2179 2180 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 2181 // stores near one another? Note: The pre-RA instruction scheduler already has 2182 // hooks to try and schedule pairable loads/stores together to improve pairing 2183 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 2184 2185 // FIXME: When pairing store instructions it's very possible for this pass to 2186 // hoist a store with a KILL marker above another use (without a KILL marker). 2187 // The resulting IR is invalid, but nothing uses the KILL markers after this 2188 // pass, so it's never caused a problem in practice. 2189 2190 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 2191 /// load / store optimization pass. 2192 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 2193 return new AArch64LoadStoreOpt(); 2194 } 2195