1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 37 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 38 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 39 STATISTIC(NumUnscaledPairCreated, 40 "Number of load/store from unscaled generated"); 41 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted"); 42 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 43 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 44 45 // The LdStLimit limits how far we search for load/store pairs. 46 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 47 cl::init(20), cl::Hidden); 48 49 // The UpdateLimit limits how far we search for update instructions when we form 50 // pre-/post-index instructions. 51 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 52 cl::Hidden); 53 54 static cl::opt<bool> EnableNarrowLdMerge("enable-narrow-ld-merge", cl::Hidden, 55 cl::init(false), 56 cl::desc("Enable narrow load merge")); 57 58 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 59 60 namespace { 61 62 typedef struct LdStPairFlags { 63 // If a matching instruction is found, MergeForward is set to true if the 64 // merge is to remove the first instruction and replace the second with 65 // a pair-wise insn, and false if the reverse is true. 66 bool MergeForward; 67 68 // SExtIdx gives the index of the result of the load pair that must be 69 // extended. The value of SExtIdx assumes that the paired load produces the 70 // value in this order: (I, returned iterator), i.e., -1 means no value has 71 // to be extended, 0 means I, and 1 means the returned iterator. 72 int SExtIdx; 73 74 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 75 76 void setMergeForward(bool V = true) { MergeForward = V; } 77 bool getMergeForward() const { return MergeForward; } 78 79 void setSExtIdx(int V) { SExtIdx = V; } 80 int getSExtIdx() const { return SExtIdx; } 81 82 } LdStPairFlags; 83 84 struct AArch64LoadStoreOpt : public MachineFunctionPass { 85 static char ID; 86 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 87 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 88 } 89 90 const AArch64InstrInfo *TII; 91 const TargetRegisterInfo *TRI; 92 const AArch64Subtarget *Subtarget; 93 94 // Track which registers have been modified and used. 95 BitVector ModifiedRegs, UsedRegs; 96 97 // Scan the instructions looking for a load/store that can be combined 98 // with the current instruction into a load/store pair. 99 // Return the matching instruction if one is found, else MBB->end(). 100 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 101 LdStPairFlags &Flags, 102 unsigned Limit, 103 bool FindNarrowMerge); 104 105 // Scan the instructions looking for a store that writes to the address from 106 // which the current load instruction reads. Return true if one is found. 107 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 108 MachineBasicBlock::iterator &StoreI); 109 110 // Merge the two instructions indicated into a wider instruction. 111 MachineBasicBlock::iterator 112 mergeNarrowInsns(MachineBasicBlock::iterator I, 113 MachineBasicBlock::iterator MergeMI, 114 const LdStPairFlags &Flags); 115 116 // Merge the two instructions indicated into a single pair-wise instruction. 117 MachineBasicBlock::iterator 118 mergePairedInsns(MachineBasicBlock::iterator I, 119 MachineBasicBlock::iterator Paired, 120 const LdStPairFlags &Flags); 121 122 // Promote the load that reads directly from the address stored to. 123 MachineBasicBlock::iterator 124 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 125 MachineBasicBlock::iterator StoreI); 126 127 // Scan the instruction list to find a base register update that can 128 // be combined with the current instruction (a load or store) using 129 // pre or post indexed addressing with writeback. Scan forwards. 130 MachineBasicBlock::iterator 131 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 132 int UnscaledOffset, unsigned Limit); 133 134 // Scan the instruction list to find a base register update that can 135 // be combined with the current instruction (a load or store) using 136 // pre or post indexed addressing with writeback. Scan backwards. 137 MachineBasicBlock::iterator 138 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 139 140 // Find an instruction that updates the base register of the ld/st 141 // instruction. 142 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 143 unsigned BaseReg, int Offset); 144 145 // Merge a pre- or post-index base register update into a ld/st instruction. 146 MachineBasicBlock::iterator 147 mergeUpdateInsn(MachineBasicBlock::iterator I, 148 MachineBasicBlock::iterator Update, bool IsPreIdx); 149 150 // Find and merge foldable ldr/str instructions. 151 bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI); 152 153 // Find and pair ldr/str instructions. 154 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 155 156 // Find and promote load instructions which read directly from store. 157 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 158 159 bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt); 160 161 bool runOnMachineFunction(MachineFunction &Fn) override; 162 163 MachineFunctionProperties getRequiredProperties() const override { 164 return MachineFunctionProperties().set( 165 MachineFunctionProperties::Property::AllVRegsAllocated); 166 } 167 168 const char *getPassName() const override { 169 return AARCH64_LOAD_STORE_OPT_NAME; 170 } 171 }; 172 char AArch64LoadStoreOpt::ID = 0; 173 } // namespace 174 175 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 176 AARCH64_LOAD_STORE_OPT_NAME, false, false) 177 178 static unsigned getBitExtrOpcode(MachineInstr &MI) { 179 switch (MI.getOpcode()) { 180 default: 181 llvm_unreachable("Unexpected opcode."); 182 case AArch64::LDRBBui: 183 case AArch64::LDURBBi: 184 case AArch64::LDRHHui: 185 case AArch64::LDURHHi: 186 return AArch64::UBFMWri; 187 case AArch64::LDRSBWui: 188 case AArch64::LDURSBWi: 189 case AArch64::LDRSHWui: 190 case AArch64::LDURSHWi: 191 return AArch64::SBFMWri; 192 } 193 } 194 195 static bool isNarrowStore(unsigned Opc) { 196 switch (Opc) { 197 default: 198 return false; 199 case AArch64::STRBBui: 200 case AArch64::STURBBi: 201 case AArch64::STRHHui: 202 case AArch64::STURHHi: 203 return true; 204 } 205 } 206 207 static bool isNarrowLoad(unsigned Opc) { 208 switch (Opc) { 209 default: 210 return false; 211 case AArch64::LDRHHui: 212 case AArch64::LDURHHi: 213 case AArch64::LDRBBui: 214 case AArch64::LDURBBi: 215 case AArch64::LDRSHWui: 216 case AArch64::LDURSHWi: 217 case AArch64::LDRSBWui: 218 case AArch64::LDURSBWi: 219 return true; 220 } 221 } 222 223 static bool isNarrowLoad(MachineInstr &MI) { 224 return isNarrowLoad(MI.getOpcode()); 225 } 226 227 static bool isNarrowLoadOrStore(unsigned Opc) { 228 return isNarrowLoad(Opc) || isNarrowStore(Opc); 229 } 230 231 // Scaling factor for unscaled load or store. 232 static int getMemScale(MachineInstr &MI) { 233 switch (MI.getOpcode()) { 234 default: 235 llvm_unreachable("Opcode has unknown scale!"); 236 case AArch64::LDRBBui: 237 case AArch64::LDURBBi: 238 case AArch64::LDRSBWui: 239 case AArch64::LDURSBWi: 240 case AArch64::STRBBui: 241 case AArch64::STURBBi: 242 return 1; 243 case AArch64::LDRHHui: 244 case AArch64::LDURHHi: 245 case AArch64::LDRSHWui: 246 case AArch64::LDURSHWi: 247 case AArch64::STRHHui: 248 case AArch64::STURHHi: 249 return 2; 250 case AArch64::LDRSui: 251 case AArch64::LDURSi: 252 case AArch64::LDRSWui: 253 case AArch64::LDURSWi: 254 case AArch64::LDRWui: 255 case AArch64::LDURWi: 256 case AArch64::STRSui: 257 case AArch64::STURSi: 258 case AArch64::STRWui: 259 case AArch64::STURWi: 260 case AArch64::LDPSi: 261 case AArch64::LDPSWi: 262 case AArch64::LDPWi: 263 case AArch64::STPSi: 264 case AArch64::STPWi: 265 return 4; 266 case AArch64::LDRDui: 267 case AArch64::LDURDi: 268 case AArch64::LDRXui: 269 case AArch64::LDURXi: 270 case AArch64::STRDui: 271 case AArch64::STURDi: 272 case AArch64::STRXui: 273 case AArch64::STURXi: 274 case AArch64::LDPDi: 275 case AArch64::LDPXi: 276 case AArch64::STPDi: 277 case AArch64::STPXi: 278 return 8; 279 case AArch64::LDRQui: 280 case AArch64::LDURQi: 281 case AArch64::STRQui: 282 case AArch64::STURQi: 283 case AArch64::LDPQi: 284 case AArch64::STPQi: 285 return 16; 286 } 287 } 288 289 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 290 bool *IsValidLdStrOpc = nullptr) { 291 if (IsValidLdStrOpc) 292 *IsValidLdStrOpc = true; 293 switch (Opc) { 294 default: 295 if (IsValidLdStrOpc) 296 *IsValidLdStrOpc = false; 297 return UINT_MAX; 298 case AArch64::STRDui: 299 case AArch64::STURDi: 300 case AArch64::STRQui: 301 case AArch64::STURQi: 302 case AArch64::STRBBui: 303 case AArch64::STURBBi: 304 case AArch64::STRHHui: 305 case AArch64::STURHHi: 306 case AArch64::STRWui: 307 case AArch64::STURWi: 308 case AArch64::STRXui: 309 case AArch64::STURXi: 310 case AArch64::LDRDui: 311 case AArch64::LDURDi: 312 case AArch64::LDRQui: 313 case AArch64::LDURQi: 314 case AArch64::LDRWui: 315 case AArch64::LDURWi: 316 case AArch64::LDRXui: 317 case AArch64::LDURXi: 318 case AArch64::STRSui: 319 case AArch64::STURSi: 320 case AArch64::LDRSui: 321 case AArch64::LDURSi: 322 case AArch64::LDRHHui: 323 case AArch64::LDURHHi: 324 case AArch64::LDRBBui: 325 case AArch64::LDURBBi: 326 return Opc; 327 case AArch64::LDRSWui: 328 return AArch64::LDRWui; 329 case AArch64::LDURSWi: 330 return AArch64::LDURWi; 331 case AArch64::LDRSBWui: 332 return AArch64::LDRBBui; 333 case AArch64::LDRSHWui: 334 return AArch64::LDRHHui; 335 case AArch64::LDURSBWi: 336 return AArch64::LDURBBi; 337 case AArch64::LDURSHWi: 338 return AArch64::LDURHHi; 339 } 340 } 341 342 static unsigned getMatchingWideOpcode(unsigned Opc) { 343 switch (Opc) { 344 default: 345 llvm_unreachable("Opcode has no wide equivalent!"); 346 case AArch64::STRBBui: 347 return AArch64::STRHHui; 348 case AArch64::STRHHui: 349 return AArch64::STRWui; 350 case AArch64::STURBBi: 351 return AArch64::STURHHi; 352 case AArch64::STURHHi: 353 return AArch64::STURWi; 354 case AArch64::STURWi: 355 return AArch64::STURXi; 356 case AArch64::STRWui: 357 return AArch64::STRXui; 358 case AArch64::LDRHHui: 359 case AArch64::LDRSHWui: 360 return AArch64::LDRWui; 361 case AArch64::LDURHHi: 362 case AArch64::LDURSHWi: 363 return AArch64::LDURWi; 364 case AArch64::LDRBBui: 365 case AArch64::LDRSBWui: 366 return AArch64::LDRHHui; 367 case AArch64::LDURBBi: 368 case AArch64::LDURSBWi: 369 return AArch64::LDURHHi; 370 } 371 } 372 373 static unsigned getMatchingPairOpcode(unsigned Opc) { 374 switch (Opc) { 375 default: 376 llvm_unreachable("Opcode has no pairwise equivalent!"); 377 case AArch64::STRSui: 378 case AArch64::STURSi: 379 return AArch64::STPSi; 380 case AArch64::STRDui: 381 case AArch64::STURDi: 382 return AArch64::STPDi; 383 case AArch64::STRQui: 384 case AArch64::STURQi: 385 return AArch64::STPQi; 386 case AArch64::STRWui: 387 case AArch64::STURWi: 388 return AArch64::STPWi; 389 case AArch64::STRXui: 390 case AArch64::STURXi: 391 return AArch64::STPXi; 392 case AArch64::LDRSui: 393 case AArch64::LDURSi: 394 return AArch64::LDPSi; 395 case AArch64::LDRDui: 396 case AArch64::LDURDi: 397 return AArch64::LDPDi; 398 case AArch64::LDRQui: 399 case AArch64::LDURQi: 400 return AArch64::LDPQi; 401 case AArch64::LDRWui: 402 case AArch64::LDURWi: 403 return AArch64::LDPWi; 404 case AArch64::LDRXui: 405 case AArch64::LDURXi: 406 return AArch64::LDPXi; 407 case AArch64::LDRSWui: 408 case AArch64::LDURSWi: 409 return AArch64::LDPSWi; 410 } 411 } 412 413 static unsigned isMatchingStore(MachineInstr &LoadInst, 414 MachineInstr &StoreInst) { 415 unsigned LdOpc = LoadInst.getOpcode(); 416 unsigned StOpc = StoreInst.getOpcode(); 417 switch (LdOpc) { 418 default: 419 llvm_unreachable("Unsupported load instruction!"); 420 case AArch64::LDRBBui: 421 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 422 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 423 case AArch64::LDURBBi: 424 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 425 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 426 case AArch64::LDRHHui: 427 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 428 StOpc == AArch64::STRXui; 429 case AArch64::LDURHHi: 430 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 431 StOpc == AArch64::STURXi; 432 case AArch64::LDRWui: 433 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 434 case AArch64::LDURWi: 435 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 436 case AArch64::LDRXui: 437 return StOpc == AArch64::STRXui; 438 case AArch64::LDURXi: 439 return StOpc == AArch64::STURXi; 440 } 441 } 442 443 static unsigned getPreIndexedOpcode(unsigned Opc) { 444 switch (Opc) { 445 default: 446 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 447 case AArch64::STRSui: 448 return AArch64::STRSpre; 449 case AArch64::STRDui: 450 return AArch64::STRDpre; 451 case AArch64::STRQui: 452 return AArch64::STRQpre; 453 case AArch64::STRBBui: 454 return AArch64::STRBBpre; 455 case AArch64::STRHHui: 456 return AArch64::STRHHpre; 457 case AArch64::STRWui: 458 return AArch64::STRWpre; 459 case AArch64::STRXui: 460 return AArch64::STRXpre; 461 case AArch64::LDRSui: 462 return AArch64::LDRSpre; 463 case AArch64::LDRDui: 464 return AArch64::LDRDpre; 465 case AArch64::LDRQui: 466 return AArch64::LDRQpre; 467 case AArch64::LDRBBui: 468 return AArch64::LDRBBpre; 469 case AArch64::LDRHHui: 470 return AArch64::LDRHHpre; 471 case AArch64::LDRWui: 472 return AArch64::LDRWpre; 473 case AArch64::LDRXui: 474 return AArch64::LDRXpre; 475 case AArch64::LDRSWui: 476 return AArch64::LDRSWpre; 477 case AArch64::LDPSi: 478 return AArch64::LDPSpre; 479 case AArch64::LDPSWi: 480 return AArch64::LDPSWpre; 481 case AArch64::LDPDi: 482 return AArch64::LDPDpre; 483 case AArch64::LDPQi: 484 return AArch64::LDPQpre; 485 case AArch64::LDPWi: 486 return AArch64::LDPWpre; 487 case AArch64::LDPXi: 488 return AArch64::LDPXpre; 489 case AArch64::STPSi: 490 return AArch64::STPSpre; 491 case AArch64::STPDi: 492 return AArch64::STPDpre; 493 case AArch64::STPQi: 494 return AArch64::STPQpre; 495 case AArch64::STPWi: 496 return AArch64::STPWpre; 497 case AArch64::STPXi: 498 return AArch64::STPXpre; 499 } 500 } 501 502 static unsigned getPostIndexedOpcode(unsigned Opc) { 503 switch (Opc) { 504 default: 505 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 506 case AArch64::STRSui: 507 return AArch64::STRSpost; 508 case AArch64::STRDui: 509 return AArch64::STRDpost; 510 case AArch64::STRQui: 511 return AArch64::STRQpost; 512 case AArch64::STRBBui: 513 return AArch64::STRBBpost; 514 case AArch64::STRHHui: 515 return AArch64::STRHHpost; 516 case AArch64::STRWui: 517 return AArch64::STRWpost; 518 case AArch64::STRXui: 519 return AArch64::STRXpost; 520 case AArch64::LDRSui: 521 return AArch64::LDRSpost; 522 case AArch64::LDRDui: 523 return AArch64::LDRDpost; 524 case AArch64::LDRQui: 525 return AArch64::LDRQpost; 526 case AArch64::LDRBBui: 527 return AArch64::LDRBBpost; 528 case AArch64::LDRHHui: 529 return AArch64::LDRHHpost; 530 case AArch64::LDRWui: 531 return AArch64::LDRWpost; 532 case AArch64::LDRXui: 533 return AArch64::LDRXpost; 534 case AArch64::LDRSWui: 535 return AArch64::LDRSWpost; 536 case AArch64::LDPSi: 537 return AArch64::LDPSpost; 538 case AArch64::LDPSWi: 539 return AArch64::LDPSWpost; 540 case AArch64::LDPDi: 541 return AArch64::LDPDpost; 542 case AArch64::LDPQi: 543 return AArch64::LDPQpost; 544 case AArch64::LDPWi: 545 return AArch64::LDPWpost; 546 case AArch64::LDPXi: 547 return AArch64::LDPXpost; 548 case AArch64::STPSi: 549 return AArch64::STPSpost; 550 case AArch64::STPDi: 551 return AArch64::STPDpost; 552 case AArch64::STPQi: 553 return AArch64::STPQpost; 554 case AArch64::STPWi: 555 return AArch64::STPWpost; 556 case AArch64::STPXi: 557 return AArch64::STPXpost; 558 } 559 } 560 561 static bool isPairedLdSt(const MachineInstr &MI) { 562 switch (MI.getOpcode()) { 563 default: 564 return false; 565 case AArch64::LDPSi: 566 case AArch64::LDPSWi: 567 case AArch64::LDPDi: 568 case AArch64::LDPQi: 569 case AArch64::LDPWi: 570 case AArch64::LDPXi: 571 case AArch64::STPSi: 572 case AArch64::STPDi: 573 case AArch64::STPQi: 574 case AArch64::STPWi: 575 case AArch64::STPXi: 576 return true; 577 } 578 } 579 580 static const MachineOperand &getLdStRegOp(const MachineInstr &MI, 581 unsigned PairedRegOp = 0) { 582 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 583 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 584 return MI.getOperand(Idx); 585 } 586 587 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 588 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 589 return MI.getOperand(Idx); 590 } 591 592 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 593 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 594 return MI.getOperand(Idx); 595 } 596 597 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 598 MachineInstr &StoreInst, 599 const AArch64InstrInfo *TII) { 600 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 601 int LoadSize = getMemScale(LoadInst); 602 int StoreSize = getMemScale(StoreInst); 603 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 604 ? getLdStOffsetOp(StoreInst).getImm() 605 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 606 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 607 ? getLdStOffsetOp(LoadInst).getImm() 608 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 609 return (UnscaledStOffset <= UnscaledLdOffset) && 610 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 611 } 612 613 static bool isPromotableZeroStoreOpcode(unsigned Opc) { 614 return isNarrowStore(Opc) || Opc == AArch64::STRWui || Opc == AArch64::STURWi; 615 } 616 617 static bool isPromotableZeroStoreOpcode(MachineInstr &MI) { 618 return isPromotableZeroStoreOpcode(MI.getOpcode()); 619 } 620 621 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 622 return (isPromotableZeroStoreOpcode(MI)) && 623 getLdStRegOp(MI).getReg() == AArch64::WZR; 624 } 625 626 MachineBasicBlock::iterator 627 AArch64LoadStoreOpt::mergeNarrowInsns(MachineBasicBlock::iterator I, 628 MachineBasicBlock::iterator MergeMI, 629 const LdStPairFlags &Flags) { 630 MachineBasicBlock::iterator NextI = I; 631 ++NextI; 632 // If NextI is the second of the two instructions to be merged, we need 633 // to skip one further. Either way we merge will invalidate the iterator, 634 // and we don't need to scan the new instruction, as it's a pairwise 635 // instruction, which we're not considering for further action anyway. 636 if (NextI == MergeMI) 637 ++NextI; 638 639 unsigned Opc = I->getOpcode(); 640 bool IsScaled = !TII->isUnscaledLdSt(Opc); 641 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 642 643 bool MergeForward = Flags.getMergeForward(); 644 // Insert our new paired instruction after whichever of the paired 645 // instructions MergeForward indicates. 646 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 647 // Also based on MergeForward is from where we copy the base register operand 648 // so we get the flags compatible with the input code. 649 const MachineOperand &BaseRegOp = 650 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 651 652 // Which register is Rt and which is Rt2 depends on the offset order. 653 MachineInstr *RtMI, *Rt2MI; 654 if (getLdStOffsetOp(*I).getImm() == 655 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) { 656 RtMI = &*MergeMI; 657 Rt2MI = &*I; 658 } else { 659 RtMI = &*I; 660 Rt2MI = &*MergeMI; 661 } 662 663 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 664 // Change the scaled offset from small to large type. 665 if (IsScaled) { 666 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 667 OffsetImm /= 2; 668 } 669 670 DebugLoc DL = I->getDebugLoc(); 671 MachineBasicBlock *MBB = I->getParent(); 672 if (isNarrowLoad(Opc)) { 673 MachineInstr *RtNewDest = &*(MergeForward ? I : MergeMI); 674 // When merging small (< 32 bit) loads for big-endian targets, the order of 675 // the component parts gets swapped. 676 if (!Subtarget->isLittleEndian()) 677 std::swap(RtMI, Rt2MI); 678 // Construct the new load instruction. 679 MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2; 680 NewMemMI = 681 BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 682 .addOperand(getLdStRegOp(*RtNewDest)) 683 .addOperand(BaseRegOp) 684 .addImm(OffsetImm) 685 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 686 (void)NewMemMI; 687 688 DEBUG( 689 dbgs() 690 << "Creating the new load and extract. Replacing instructions:\n "); 691 DEBUG(I->print(dbgs())); 692 DEBUG(dbgs() << " "); 693 DEBUG(MergeMI->print(dbgs())); 694 DEBUG(dbgs() << " with instructions:\n "); 695 DEBUG((NewMemMI)->print(dbgs())); 696 697 int Width = getMemScale(*I) == 1 ? 8 : 16; 698 int LSBLow = 0; 699 int LSBHigh = Width; 700 int ImmsLow = LSBLow + Width - 1; 701 int ImmsHigh = LSBHigh + Width - 1; 702 MachineInstr *ExtDestMI = &*(MergeForward ? MergeMI : I); 703 if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) { 704 // Create the bitfield extract for high bits. 705 BitExtMI1 = 706 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*Rt2MI))) 707 .addOperand(getLdStRegOp(*Rt2MI)) 708 .addReg(getLdStRegOp(*RtNewDest).getReg()) 709 .addImm(LSBHigh) 710 .addImm(ImmsHigh); 711 // Create the bitfield extract for low bits. 712 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 713 // For unsigned, prefer to use AND for low bits. 714 BitExtMI2 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 715 .addOperand(getLdStRegOp(*RtMI)) 716 .addReg(getLdStRegOp(*RtNewDest).getReg()) 717 .addImm(ImmsLow); 718 } else { 719 BitExtMI2 = 720 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*RtMI))) 721 .addOperand(getLdStRegOp(*RtMI)) 722 .addReg(getLdStRegOp(*RtNewDest).getReg()) 723 .addImm(LSBLow) 724 .addImm(ImmsLow); 725 } 726 } else { 727 // Create the bitfield extract for low bits. 728 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 729 // For unsigned, prefer to use AND for low bits. 730 BitExtMI1 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 731 .addOperand(getLdStRegOp(*RtMI)) 732 .addReg(getLdStRegOp(*RtNewDest).getReg()) 733 .addImm(ImmsLow); 734 } else { 735 BitExtMI1 = 736 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*RtMI))) 737 .addOperand(getLdStRegOp(*RtMI)) 738 .addReg(getLdStRegOp(*RtNewDest).getReg()) 739 .addImm(LSBLow) 740 .addImm(ImmsLow); 741 } 742 743 // Create the bitfield extract for high bits. 744 BitExtMI2 = 745 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*Rt2MI))) 746 .addOperand(getLdStRegOp(*Rt2MI)) 747 .addReg(getLdStRegOp(*RtNewDest).getReg()) 748 .addImm(LSBHigh) 749 .addImm(ImmsHigh); 750 } 751 (void)BitExtMI1; 752 (void)BitExtMI2; 753 754 DEBUG(dbgs() << " "); 755 DEBUG((BitExtMI1)->print(dbgs())); 756 DEBUG(dbgs() << " "); 757 DEBUG((BitExtMI2)->print(dbgs())); 758 DEBUG(dbgs() << "\n"); 759 760 // Erase the old instructions. 761 I->eraseFromParent(); 762 MergeMI->eraseFromParent(); 763 return NextI; 764 } 765 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 766 "Expected promotable zero store"); 767 768 // Construct the new instruction. 769 MachineInstrBuilder MIB; 770 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 771 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 772 .addOperand(BaseRegOp) 773 .addImm(OffsetImm) 774 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 775 (void)MIB; 776 777 DEBUG(dbgs() << "Creating wider load/store. Replacing instructions:\n "); 778 DEBUG(I->print(dbgs())); 779 DEBUG(dbgs() << " "); 780 DEBUG(MergeMI->print(dbgs())); 781 DEBUG(dbgs() << " with instruction:\n "); 782 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 783 DEBUG(dbgs() << "\n"); 784 785 // Erase the old instructions. 786 I->eraseFromParent(); 787 MergeMI->eraseFromParent(); 788 return NextI; 789 } 790 791 MachineBasicBlock::iterator 792 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 793 MachineBasicBlock::iterator Paired, 794 const LdStPairFlags &Flags) { 795 MachineBasicBlock::iterator NextI = I; 796 ++NextI; 797 // If NextI is the second of the two instructions to be merged, we need 798 // to skip one further. Either way we merge will invalidate the iterator, 799 // and we don't need to scan the new instruction, as it's a pairwise 800 // instruction, which we're not considering for further action anyway. 801 if (NextI == Paired) 802 ++NextI; 803 804 int SExtIdx = Flags.getSExtIdx(); 805 unsigned Opc = 806 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 807 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 808 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 809 810 bool MergeForward = Flags.getMergeForward(); 811 // Insert our new paired instruction after whichever of the paired 812 // instructions MergeForward indicates. 813 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 814 // Also based on MergeForward is from where we copy the base register operand 815 // so we get the flags compatible with the input code. 816 const MachineOperand &BaseRegOp = 817 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 818 819 int Offset = getLdStOffsetOp(*I).getImm(); 820 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 821 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 822 if (IsUnscaled != PairedIsUnscaled) { 823 // We're trying to pair instructions that differ in how they are scaled. If 824 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 825 // the opposite (i.e., make Paired's offset unscaled). 826 int MemSize = getMemScale(*Paired); 827 if (PairedIsUnscaled) { 828 // If the unscaled offset isn't a multiple of the MemSize, we can't 829 // pair the operations together. 830 assert(!(PairedOffset % getMemScale(*Paired)) && 831 "Offset should be a multiple of the stride!"); 832 PairedOffset /= MemSize; 833 } else { 834 PairedOffset *= MemSize; 835 } 836 } 837 838 // Which register is Rt and which is Rt2 depends on the offset order. 839 MachineInstr *RtMI, *Rt2MI; 840 if (Offset == PairedOffset + OffsetStride) { 841 RtMI = &*Paired; 842 Rt2MI = &*I; 843 // Here we swapped the assumption made for SExtIdx. 844 // I.e., we turn ldp I, Paired into ldp Paired, I. 845 // Update the index accordingly. 846 if (SExtIdx != -1) 847 SExtIdx = (SExtIdx + 1) % 2; 848 } else { 849 RtMI = &*I; 850 Rt2MI = &*Paired; 851 } 852 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 853 // Scale the immediate offset, if necessary. 854 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 855 assert(!(OffsetImm % getMemScale(*RtMI)) && 856 "Unscaled offset cannot be scaled."); 857 OffsetImm /= getMemScale(*RtMI); 858 } 859 860 // Construct the new instruction. 861 MachineInstrBuilder MIB; 862 DebugLoc DL = I->getDebugLoc(); 863 MachineBasicBlock *MBB = I->getParent(); 864 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 865 .addOperand(getLdStRegOp(*RtMI)) 866 .addOperand(getLdStRegOp(*Rt2MI)) 867 .addOperand(BaseRegOp) 868 .addImm(OffsetImm) 869 .setMemRefs(I->mergeMemRefsWith(*Paired)); 870 871 (void)MIB; 872 873 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 874 DEBUG(I->print(dbgs())); 875 DEBUG(dbgs() << " "); 876 DEBUG(Paired->print(dbgs())); 877 DEBUG(dbgs() << " with instruction:\n "); 878 if (SExtIdx != -1) { 879 // Generate the sign extension for the proper result of the ldp. 880 // I.e., with X1, that would be: 881 // %W1<def> = KILL %W1, %X1<imp-def> 882 // %X1<def> = SBFMXri %X1<kill>, 0, 31 883 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 884 // Right now, DstMO has the extended register, since it comes from an 885 // extended opcode. 886 unsigned DstRegX = DstMO.getReg(); 887 // Get the W variant of that register. 888 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 889 // Update the result of LDP to use the W instead of the X variant. 890 DstMO.setReg(DstRegW); 891 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 892 DEBUG(dbgs() << "\n"); 893 // Make the machine verifier happy by providing a definition for 894 // the X register. 895 // Insert this definition right after the generated LDP, i.e., before 896 // InsertionPoint. 897 MachineInstrBuilder MIBKill = 898 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 899 .addReg(DstRegW) 900 .addReg(DstRegX, RegState::Define); 901 MIBKill->getOperand(2).setImplicit(); 902 // Create the sign extension. 903 MachineInstrBuilder MIBSXTW = 904 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 905 .addReg(DstRegX) 906 .addImm(0) 907 .addImm(31); 908 (void)MIBSXTW; 909 DEBUG(dbgs() << " Extend operand:\n "); 910 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 911 } else { 912 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 913 } 914 DEBUG(dbgs() << "\n"); 915 916 // Erase the old instructions. 917 I->eraseFromParent(); 918 Paired->eraseFromParent(); 919 920 return NextI; 921 } 922 923 MachineBasicBlock::iterator 924 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 925 MachineBasicBlock::iterator StoreI) { 926 MachineBasicBlock::iterator NextI = LoadI; 927 ++NextI; 928 929 int LoadSize = getMemScale(*LoadI); 930 int StoreSize = getMemScale(*StoreI); 931 unsigned LdRt = getLdStRegOp(*LoadI).getReg(); 932 unsigned StRt = getLdStRegOp(*StoreI).getReg(); 933 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 934 935 assert((IsStoreXReg || 936 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 937 "Unexpected RegClass"); 938 939 MachineInstr *BitExtMI; 940 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 941 // Remove the load, if the destination register of the loads is the same 942 // register for stored value. 943 if (StRt == LdRt && LoadSize == 8) { 944 DEBUG(dbgs() << "Remove load instruction:\n "); 945 DEBUG(LoadI->print(dbgs())); 946 DEBUG(dbgs() << "\n"); 947 LoadI->eraseFromParent(); 948 return NextI; 949 } 950 // Replace the load with a mov if the load and store are in the same size. 951 BitExtMI = 952 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 953 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 954 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 955 .addReg(StRt) 956 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 957 } else { 958 // FIXME: Currently we disable this transformation in big-endian targets as 959 // performance and correctness are verified only in little-endian. 960 if (!Subtarget->isLittleEndian()) 961 return NextI; 962 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 963 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 964 "Unsupported ld/st match"); 965 assert(LoadSize <= StoreSize && "Invalid load size"); 966 int UnscaledLdOffset = IsUnscaled 967 ? getLdStOffsetOp(*LoadI).getImm() 968 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 969 int UnscaledStOffset = IsUnscaled 970 ? getLdStOffsetOp(*StoreI).getImm() 971 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 972 int Width = LoadSize * 8; 973 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 974 int Imms = Immr + Width - 1; 975 unsigned DestReg = IsStoreXReg 976 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 977 &AArch64::GPR64RegClass) 978 : LdRt; 979 980 assert((UnscaledLdOffset >= UnscaledStOffset && 981 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 982 "Invalid offset"); 983 984 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 985 Imms = Immr + Width - 1; 986 if (UnscaledLdOffset == UnscaledStOffset) { 987 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 988 | ((Immr) << 6) // immr 989 | ((Imms) << 0) // imms 990 ; 991 992 BitExtMI = 993 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 994 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 995 DestReg) 996 .addReg(StRt) 997 .addImm(AndMaskEncoded); 998 } else { 999 BitExtMI = 1000 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1001 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1002 DestReg) 1003 .addReg(StRt) 1004 .addImm(Immr) 1005 .addImm(Imms); 1006 } 1007 } 1008 (void)BitExtMI; 1009 1010 DEBUG(dbgs() << "Promoting load by replacing :\n "); 1011 DEBUG(StoreI->print(dbgs())); 1012 DEBUG(dbgs() << " "); 1013 DEBUG(LoadI->print(dbgs())); 1014 DEBUG(dbgs() << " with instructions:\n "); 1015 DEBUG(StoreI->print(dbgs())); 1016 DEBUG(dbgs() << " "); 1017 DEBUG((BitExtMI)->print(dbgs())); 1018 DEBUG(dbgs() << "\n"); 1019 1020 // Erase the old instructions. 1021 LoadI->eraseFromParent(); 1022 return NextI; 1023 } 1024 1025 /// trackRegDefsUses - Remember what registers the specified instruction uses 1026 /// and modifies. 1027 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs, 1028 BitVector &UsedRegs, 1029 const TargetRegisterInfo *TRI) { 1030 for (const MachineOperand &MO : MI.operands()) { 1031 if (MO.isRegMask()) 1032 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 1033 1034 if (!MO.isReg()) 1035 continue; 1036 unsigned Reg = MO.getReg(); 1037 if (!Reg) 1038 continue; 1039 if (MO.isDef()) { 1040 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1041 ModifiedRegs.set(*AI); 1042 } else { 1043 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 1044 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1045 UsedRegs.set(*AI); 1046 } 1047 } 1048 } 1049 1050 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1051 // Convert the byte-offset used by unscaled into an "element" offset used 1052 // by the scaled pair load/store instructions. 1053 if (IsUnscaled) { 1054 // If the byte-offset isn't a multiple of the stride, there's no point 1055 // trying to match it. 1056 if (Offset % OffsetStride) 1057 return false; 1058 Offset /= OffsetStride; 1059 } 1060 return Offset <= 63 && Offset >= -64; 1061 } 1062 1063 // Do alignment, specialized to power of 2 and for signed ints, 1064 // avoiding having to do a C-style cast from uint_64t to int when 1065 // using alignTo from include/llvm/Support/MathExtras.h. 1066 // FIXME: Move this function to include/MathExtras.h? 1067 static int alignTo(int Num, int PowOf2) { 1068 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1069 } 1070 1071 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 1072 const AArch64InstrInfo *TII) { 1073 // One of the instructions must modify memory. 1074 if (!MIa.mayStore() && !MIb.mayStore()) 1075 return false; 1076 1077 // Both instructions must be memory operations. 1078 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 1079 return false; 1080 1081 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 1082 } 1083 1084 static bool mayAlias(MachineInstr &MIa, 1085 SmallVectorImpl<MachineInstr *> &MemInsns, 1086 const AArch64InstrInfo *TII) { 1087 for (MachineInstr *MIb : MemInsns) 1088 if (mayAlias(MIa, *MIb, TII)) 1089 return true; 1090 1091 return false; 1092 } 1093 1094 bool AArch64LoadStoreOpt::findMatchingStore( 1095 MachineBasicBlock::iterator I, unsigned Limit, 1096 MachineBasicBlock::iterator &StoreI) { 1097 MachineBasicBlock::iterator B = I->getParent()->begin(); 1098 MachineBasicBlock::iterator MBBI = I; 1099 MachineInstr &LoadMI = *I; 1100 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 1101 1102 // If the load is the first instruction in the block, there's obviously 1103 // not any matching store. 1104 if (MBBI == B) 1105 return false; 1106 1107 // Track which registers have been modified and used between the first insn 1108 // and the second insn. 1109 ModifiedRegs.reset(); 1110 UsedRegs.reset(); 1111 1112 unsigned Count = 0; 1113 do { 1114 --MBBI; 1115 MachineInstr &MI = *MBBI; 1116 1117 // Don't count transient instructions towards the search limit since there 1118 // may be different numbers of them if e.g. debug information is present. 1119 if (!MI.isTransient()) 1120 ++Count; 1121 1122 // If the load instruction reads directly from the address to which the 1123 // store instruction writes and the stored value is not modified, we can 1124 // promote the load. Since we do not handle stores with pre-/post-index, 1125 // it's unnecessary to check if BaseReg is modified by the store itself. 1126 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1127 BaseReg == getLdStBaseOp(MI).getReg() && 1128 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1129 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1130 StoreI = MBBI; 1131 return true; 1132 } 1133 1134 if (MI.isCall()) 1135 return false; 1136 1137 // Update modified / uses register lists. 1138 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1139 1140 // Otherwise, if the base register is modified, we have no match, so 1141 // return early. 1142 if (ModifiedRegs[BaseReg]) 1143 return false; 1144 1145 // If we encounter a store aliased with the load, return early. 1146 if (MI.mayStore() && mayAlias(LoadMI, MI, TII)) 1147 return false; 1148 } while (MBBI != B && Count < Limit); 1149 return false; 1150 } 1151 1152 // Returns true if FirstMI and MI are candidates for merging or pairing. 1153 // Otherwise, returns false. 1154 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1155 LdStPairFlags &Flags, 1156 const AArch64InstrInfo *TII) { 1157 // If this is volatile or if pairing is suppressed, not a candidate. 1158 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1159 return false; 1160 1161 // We should have already checked FirstMI for pair suppression and volatility. 1162 assert(!FirstMI.hasOrderedMemoryRef() && 1163 !TII->isLdStPairSuppressed(FirstMI) && 1164 "FirstMI shouldn't get here if either of these checks are true."); 1165 1166 unsigned OpcA = FirstMI.getOpcode(); 1167 unsigned OpcB = MI.getOpcode(); 1168 1169 // Opcodes match: nothing more to check. 1170 if (OpcA == OpcB) 1171 return true; 1172 1173 // Try to match a sign-extended load/store with a zero-extended load/store. 1174 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1175 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1176 assert(IsValidLdStrOpc && 1177 "Given Opc should be a Load or Store with an immediate"); 1178 // OpcA will be the first instruction in the pair. 1179 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1180 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1181 return true; 1182 } 1183 1184 // If the second instruction isn't even a load/store, bail out. 1185 if (!PairIsValidLdStrOpc) 1186 return false; 1187 1188 // FIXME: We don't support merging narrow loads/stores with mixed 1189 // scaled/unscaled offsets. 1190 if (isNarrowLoadOrStore(OpcA) || isNarrowLoadOrStore(OpcB)) 1191 return false; 1192 1193 // Try to match an unscaled load/store with a scaled load/store. 1194 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1195 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1196 1197 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1198 } 1199 1200 /// Scan the instructions looking for a load/store that can be combined with the 1201 /// current instruction into a wider equivalent or a load/store pair. 1202 MachineBasicBlock::iterator 1203 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1204 LdStPairFlags &Flags, unsigned Limit, 1205 bool FindNarrowMerge) { 1206 MachineBasicBlock::iterator E = I->getParent()->end(); 1207 MachineBasicBlock::iterator MBBI = I; 1208 MachineInstr &FirstMI = *I; 1209 ++MBBI; 1210 1211 bool MayLoad = FirstMI.mayLoad(); 1212 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1213 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1214 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1215 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1216 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1217 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1218 1219 // Track which registers have been modified and used between the first insn 1220 // (inclusive) and the second insn. 1221 ModifiedRegs.reset(); 1222 UsedRegs.reset(); 1223 1224 // Remember any instructions that read/write memory between FirstMI and MI. 1225 SmallVector<MachineInstr *, 4> MemInsns; 1226 1227 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1228 MachineInstr &MI = *MBBI; 1229 1230 // Don't count transient instructions towards the search limit since there 1231 // may be different numbers of them if e.g. debug information is present. 1232 if (!MI.isTransient()) 1233 ++Count; 1234 1235 Flags.setSExtIdx(-1); 1236 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1237 getLdStOffsetOp(MI).isImm()) { 1238 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1239 // If we've found another instruction with the same opcode, check to see 1240 // if the base and offset are compatible with our starting instruction. 1241 // These instructions all have scaled immediate operands, so we just 1242 // check for +1/-1. Make sure to check the new instruction offset is 1243 // actually an immediate and not a symbolic reference destined for 1244 // a relocation. 1245 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1246 int MIOffset = getLdStOffsetOp(MI).getImm(); 1247 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1248 if (IsUnscaled != MIIsUnscaled) { 1249 // We're trying to pair instructions that differ in how they are scaled. 1250 // If FirstMI is scaled then scale the offset of MI accordingly. 1251 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1252 int MemSize = getMemScale(MI); 1253 if (MIIsUnscaled) { 1254 // If the unscaled offset isn't a multiple of the MemSize, we can't 1255 // pair the operations together: bail and keep looking. 1256 if (MIOffset % MemSize) 1257 continue; 1258 MIOffset /= MemSize; 1259 } else { 1260 MIOffset *= MemSize; 1261 } 1262 } 1263 1264 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1265 (Offset + OffsetStride == MIOffset))) { 1266 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1267 if (FindNarrowMerge) { 1268 // If the alignment requirements of the scaled wide load/store 1269 // instruction can't express the offset of the scaled narrow input, 1270 // bail and keep looking. For promotable zero stores, allow only when 1271 // the stored value is the same (i.e., WZR). 1272 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1273 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1274 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1275 MemInsns.push_back(&MI); 1276 continue; 1277 } 1278 } else { 1279 // Pairwise instructions have a 7-bit signed offset field. Single 1280 // insns have a 12-bit unsigned offset field. If the resultant 1281 // immediate offset of merging these instructions is out of range for 1282 // a pairwise instruction, bail and keep looking. 1283 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1284 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1285 MemInsns.push_back(&MI); 1286 continue; 1287 } 1288 // If the alignment requirements of the paired (scaled) instruction 1289 // can't express the offset of the unscaled input, bail and keep 1290 // looking. 1291 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1292 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1293 MemInsns.push_back(&MI); 1294 continue; 1295 } 1296 } 1297 // If the destination register of the loads is the same register, bail 1298 // and keep looking. A load-pair instruction with both destination 1299 // registers the same is UNPREDICTABLE and will result in an exception. 1300 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1301 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1302 MemInsns.push_back(&MI); 1303 continue; 1304 } 1305 1306 // If the Rt of the second instruction was not modified or used between 1307 // the two instructions and none of the instructions between the second 1308 // and first alias with the second, we can combine the second into the 1309 // first. 1310 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1311 !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1312 !mayAlias(MI, MemInsns, TII)) { 1313 Flags.setMergeForward(false); 1314 return MBBI; 1315 } 1316 1317 // Likewise, if the Rt of the first instruction is not modified or used 1318 // between the two instructions and none of the instructions between the 1319 // first and the second alias with the first, we can combine the first 1320 // into the second. 1321 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1322 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1323 !mayAlias(FirstMI, MemInsns, TII)) { 1324 Flags.setMergeForward(true); 1325 return MBBI; 1326 } 1327 // Unable to combine these instructions due to interference in between. 1328 // Keep looking. 1329 } 1330 } 1331 1332 // If the instruction wasn't a matching load or store. Stop searching if we 1333 // encounter a call instruction that might modify memory. 1334 if (MI.isCall()) 1335 return E; 1336 1337 // Update modified / uses register lists. 1338 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1339 1340 // Otherwise, if the base register is modified, we have no match, so 1341 // return early. 1342 if (ModifiedRegs[BaseReg]) 1343 return E; 1344 1345 // Update list of instructions that read/write memory. 1346 if (MI.mayLoadOrStore()) 1347 MemInsns.push_back(&MI); 1348 } 1349 return E; 1350 } 1351 1352 MachineBasicBlock::iterator 1353 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1354 MachineBasicBlock::iterator Update, 1355 bool IsPreIdx) { 1356 assert((Update->getOpcode() == AArch64::ADDXri || 1357 Update->getOpcode() == AArch64::SUBXri) && 1358 "Unexpected base register update instruction to merge!"); 1359 MachineBasicBlock::iterator NextI = I; 1360 // Return the instruction following the merged instruction, which is 1361 // the instruction following our unmerged load. Unless that's the add/sub 1362 // instruction we're merging, in which case it's the one after that. 1363 if (++NextI == Update) 1364 ++NextI; 1365 1366 int Value = Update->getOperand(2).getImm(); 1367 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1368 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1369 if (Update->getOpcode() == AArch64::SUBXri) 1370 Value = -Value; 1371 1372 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1373 : getPostIndexedOpcode(I->getOpcode()); 1374 MachineInstrBuilder MIB; 1375 if (!isPairedLdSt(*I)) { 1376 // Non-paired instruction. 1377 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1378 .addOperand(getLdStRegOp(*Update)) 1379 .addOperand(getLdStRegOp(*I)) 1380 .addOperand(getLdStBaseOp(*I)) 1381 .addImm(Value) 1382 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1383 } else { 1384 // Paired instruction. 1385 int Scale = getMemScale(*I); 1386 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1387 .addOperand(getLdStRegOp(*Update)) 1388 .addOperand(getLdStRegOp(*I, 0)) 1389 .addOperand(getLdStRegOp(*I, 1)) 1390 .addOperand(getLdStBaseOp(*I)) 1391 .addImm(Value / Scale) 1392 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1393 } 1394 (void)MIB; 1395 1396 if (IsPreIdx) 1397 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1398 else 1399 DEBUG(dbgs() << "Creating post-indexed load/store."); 1400 DEBUG(dbgs() << " Replacing instructions:\n "); 1401 DEBUG(I->print(dbgs())); 1402 DEBUG(dbgs() << " "); 1403 DEBUG(Update->print(dbgs())); 1404 DEBUG(dbgs() << " with instruction:\n "); 1405 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1406 DEBUG(dbgs() << "\n"); 1407 1408 // Erase the old instructions for the block. 1409 I->eraseFromParent(); 1410 Update->eraseFromParent(); 1411 1412 return NextI; 1413 } 1414 1415 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1416 MachineInstr &MI, 1417 unsigned BaseReg, int Offset) { 1418 switch (MI.getOpcode()) { 1419 default: 1420 break; 1421 case AArch64::SUBXri: 1422 // Negate the offset for a SUB instruction. 1423 Offset *= -1; 1424 // FALLTHROUGH 1425 case AArch64::ADDXri: 1426 // Make sure it's a vanilla immediate operand, not a relocation or 1427 // anything else we can't handle. 1428 if (!MI.getOperand(2).isImm()) 1429 break; 1430 // Watch out for 1 << 12 shifted value. 1431 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1432 break; 1433 1434 // The update instruction source and destination register must be the 1435 // same as the load/store base register. 1436 if (MI.getOperand(0).getReg() != BaseReg || 1437 MI.getOperand(1).getReg() != BaseReg) 1438 break; 1439 1440 bool IsPairedInsn = isPairedLdSt(MemMI); 1441 int UpdateOffset = MI.getOperand(2).getImm(); 1442 // For non-paired load/store instructions, the immediate must fit in a 1443 // signed 9-bit integer. 1444 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1445 break; 1446 1447 // For paired load/store instructions, the immediate must be a multiple of 1448 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1449 // integer. 1450 if (IsPairedInsn) { 1451 int Scale = getMemScale(MemMI); 1452 if (UpdateOffset % Scale != 0) 1453 break; 1454 1455 int ScaledOffset = UpdateOffset / Scale; 1456 if (ScaledOffset > 64 || ScaledOffset < -64) 1457 break; 1458 } 1459 1460 // If we have a non-zero Offset, we check that it matches the amount 1461 // we're adding to the register. 1462 if (!Offset || Offset == MI.getOperand(2).getImm()) 1463 return true; 1464 break; 1465 } 1466 return false; 1467 } 1468 1469 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1470 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1471 MachineBasicBlock::iterator E = I->getParent()->end(); 1472 MachineInstr &MemMI = *I; 1473 MachineBasicBlock::iterator MBBI = I; 1474 1475 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1476 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1477 1478 // Scan forward looking for post-index opportunities. Updating instructions 1479 // can't be formed if the memory instruction doesn't have the offset we're 1480 // looking for. 1481 if (MIUnscaledOffset != UnscaledOffset) 1482 return E; 1483 1484 // If the base register overlaps a destination register, we can't 1485 // merge the update. 1486 bool IsPairedInsn = isPairedLdSt(MemMI); 1487 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1488 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1489 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1490 return E; 1491 } 1492 1493 // Track which registers have been modified and used between the first insn 1494 // (inclusive) and the second insn. 1495 ModifiedRegs.reset(); 1496 UsedRegs.reset(); 1497 ++MBBI; 1498 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1499 MachineInstr &MI = *MBBI; 1500 1501 // Don't count transient instructions towards the search limit since there 1502 // may be different numbers of them if e.g. debug information is present. 1503 if (!MI.isTransient()) 1504 ++Count; 1505 1506 // If we found a match, return it. 1507 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1508 return MBBI; 1509 1510 // Update the status of what the instruction clobbered and used. 1511 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1512 1513 // Otherwise, if the base register is used or modified, we have no match, so 1514 // return early. 1515 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1516 return E; 1517 } 1518 return E; 1519 } 1520 1521 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1522 MachineBasicBlock::iterator I, unsigned Limit) { 1523 MachineBasicBlock::iterator B = I->getParent()->begin(); 1524 MachineBasicBlock::iterator E = I->getParent()->end(); 1525 MachineInstr &MemMI = *I; 1526 MachineBasicBlock::iterator MBBI = I; 1527 1528 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1529 int Offset = getLdStOffsetOp(MemMI).getImm(); 1530 1531 // If the load/store is the first instruction in the block, there's obviously 1532 // not any matching update. Ditto if the memory offset isn't zero. 1533 if (MBBI == B || Offset != 0) 1534 return E; 1535 // If the base register overlaps a destination register, we can't 1536 // merge the update. 1537 bool IsPairedInsn = isPairedLdSt(MemMI); 1538 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1539 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1540 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1541 return E; 1542 } 1543 1544 // Track which registers have been modified and used between the first insn 1545 // (inclusive) and the second insn. 1546 ModifiedRegs.reset(); 1547 UsedRegs.reset(); 1548 unsigned Count = 0; 1549 do { 1550 --MBBI; 1551 MachineInstr &MI = *MBBI; 1552 1553 // Don't count transient instructions towards the search limit since there 1554 // may be different numbers of them if e.g. debug information is present. 1555 if (!MI.isTransient()) 1556 ++Count; 1557 1558 // If we found a match, return it. 1559 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1560 return MBBI; 1561 1562 // Update the status of what the instruction clobbered and used. 1563 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1564 1565 // Otherwise, if the base register is used or modified, we have no match, so 1566 // return early. 1567 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1568 return E; 1569 } while (MBBI != B && Count < Limit); 1570 return E; 1571 } 1572 1573 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1574 MachineBasicBlock::iterator &MBBI) { 1575 MachineInstr &MI = *MBBI; 1576 // If this is a volatile load, don't mess with it. 1577 if (MI.hasOrderedMemoryRef()) 1578 return false; 1579 1580 // Make sure this is a reg+imm. 1581 // FIXME: It is possible to extend it to handle reg+reg cases. 1582 if (!getLdStOffsetOp(MI).isImm()) 1583 return false; 1584 1585 // Look backward up to LdStLimit instructions. 1586 MachineBasicBlock::iterator StoreI; 1587 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1588 ++NumLoadsFromStoresPromoted; 1589 // Promote the load. Keeping the iterator straight is a 1590 // pain, so we let the merge routine tell us what the next instruction 1591 // is after it's done mucking about. 1592 MBBI = promoteLoadFromStore(MBBI, StoreI); 1593 return true; 1594 } 1595 return false; 1596 } 1597 1598 // Find narrow loads that can be converted into a single wider load with 1599 // bitfield extract instructions. Also merge adjacent zero stores into a wider 1600 // store. 1601 bool AArch64LoadStoreOpt::tryToMergeLdStInst( 1602 MachineBasicBlock::iterator &MBBI) { 1603 assert((isNarrowLoad(*MBBI) || isPromotableZeroStoreOpcode(*MBBI)) && 1604 "Expected narrow op."); 1605 MachineInstr &MI = *MBBI; 1606 MachineBasicBlock::iterator E = MI.getParent()->end(); 1607 1608 if (!TII->isCandidateToMergeOrPair(MI)) 1609 return false; 1610 1611 // For promotable zero stores, the stored value should be WZR. 1612 if (isPromotableZeroStoreOpcode(MI) && 1613 getLdStRegOp(MI).getReg() != AArch64::WZR) 1614 return false; 1615 1616 // Look ahead up to LdStLimit instructions for a mergable instruction. 1617 LdStPairFlags Flags; 1618 MachineBasicBlock::iterator MergeMI = 1619 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1620 if (MergeMI != E) { 1621 if (isNarrowLoad(MI)) { 1622 ++NumNarrowLoadsPromoted; 1623 } else if (isPromotableZeroStoreInst(MI)) { 1624 ++NumZeroStoresPromoted; 1625 } 1626 // Keeping the iterator straight is a pain, so we let the merge routine tell 1627 // us what the next instruction is after it's done mucking about. 1628 MBBI = mergeNarrowInsns(MBBI, MergeMI, Flags); 1629 return true; 1630 } 1631 return false; 1632 } 1633 1634 // Find loads and stores that can be merged into a single load or store pair 1635 // instruction. 1636 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1637 MachineInstr &MI = *MBBI; 1638 MachineBasicBlock::iterator E = MI.getParent()->end(); 1639 1640 if (!TII->isCandidateToMergeOrPair(MI)) 1641 return false; 1642 1643 // Early exit if the offset is not possible to match. (6 bits of positive 1644 // range, plus allow an extra one in case we find a later insn that matches 1645 // with Offset-1) 1646 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1647 int Offset = getLdStOffsetOp(MI).getImm(); 1648 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1649 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1650 return false; 1651 1652 // Look ahead up to LdStLimit instructions for a pairable instruction. 1653 LdStPairFlags Flags; 1654 MachineBasicBlock::iterator Paired = 1655 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1656 if (Paired != E) { 1657 ++NumPairCreated; 1658 if (TII->isUnscaledLdSt(MI)) 1659 ++NumUnscaledPairCreated; 1660 // Keeping the iterator straight is a pain, so we let the merge routine tell 1661 // us what the next instruction is after it's done mucking about. 1662 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1663 return true; 1664 } 1665 return false; 1666 } 1667 1668 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1669 bool enableNarrowLdOpt) { 1670 bool Modified = false; 1671 // Four tranformations to do here: 1672 // 1) Find loads that directly read from stores and promote them by 1673 // replacing with mov instructions. If the store is wider than the load, 1674 // the load will be replaced with a bitfield extract. 1675 // e.g., 1676 // str w1, [x0, #4] 1677 // ldrh w2, [x0, #6] 1678 // ; becomes 1679 // str w1, [x0, #4] 1680 // lsr w2, w1, #16 1681 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1682 MBBI != E;) { 1683 MachineInstr &MI = *MBBI; 1684 switch (MI.getOpcode()) { 1685 default: 1686 // Just move on to the next instruction. 1687 ++MBBI; 1688 break; 1689 // Scaled instructions. 1690 case AArch64::LDRBBui: 1691 case AArch64::LDRHHui: 1692 case AArch64::LDRWui: 1693 case AArch64::LDRXui: 1694 // Unscaled instructions. 1695 case AArch64::LDURBBi: 1696 case AArch64::LDURHHi: 1697 case AArch64::LDURWi: 1698 case AArch64::LDURXi: { 1699 if (tryToPromoteLoadFromStore(MBBI)) { 1700 Modified = true; 1701 break; 1702 } 1703 ++MBBI; 1704 break; 1705 } 1706 } 1707 } 1708 // 2) Find narrow loads that can be converted into a single wider load 1709 // with bitfield extract instructions. 1710 // e.g., 1711 // ldrh w0, [x2] 1712 // ldrh w1, [x2, #2] 1713 // ; becomes 1714 // ldr w0, [x2] 1715 // ubfx w1, w0, #16, #16 1716 // and w0, w0, #ffff 1717 // 1718 // Also merge adjacent zero stores into a wider store. 1719 // e.g., 1720 // strh wzr, [x0] 1721 // strh wzr, [x0, #2] 1722 // ; becomes 1723 // str wzr, [x0] 1724 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1725 enableNarrowLdOpt && MBBI != E;) { 1726 MachineInstr &MI = *MBBI; 1727 unsigned Opc = MI.getOpcode(); 1728 if (isPromotableZeroStoreOpcode(Opc) || 1729 (EnableNarrowLdMerge && isNarrowLoad(Opc))) { 1730 if (tryToMergeLdStInst(MBBI)) { 1731 Modified = true; 1732 } else 1733 ++MBBI; 1734 } else 1735 ++MBBI; 1736 } 1737 1738 // 3) Find loads and stores that can be merged into a single load or store 1739 // pair instruction. 1740 // e.g., 1741 // ldr x0, [x2] 1742 // ldr x1, [x2, #8] 1743 // ; becomes 1744 // ldp x0, x1, [x2] 1745 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1746 MBBI != E;) { 1747 MachineInstr &MI = *MBBI; 1748 switch (MI.getOpcode()) { 1749 default: 1750 // Just move on to the next instruction. 1751 ++MBBI; 1752 break; 1753 // Scaled instructions. 1754 case AArch64::STRSui: 1755 case AArch64::STRDui: 1756 case AArch64::STRQui: 1757 case AArch64::STRXui: 1758 case AArch64::STRWui: 1759 case AArch64::LDRSui: 1760 case AArch64::LDRDui: 1761 case AArch64::LDRQui: 1762 case AArch64::LDRXui: 1763 case AArch64::LDRWui: 1764 case AArch64::LDRSWui: 1765 // Unscaled instructions. 1766 case AArch64::STURSi: 1767 case AArch64::STURDi: 1768 case AArch64::STURQi: 1769 case AArch64::STURWi: 1770 case AArch64::STURXi: 1771 case AArch64::LDURSi: 1772 case AArch64::LDURDi: 1773 case AArch64::LDURQi: 1774 case AArch64::LDURWi: 1775 case AArch64::LDURXi: 1776 case AArch64::LDURSWi: { 1777 if (tryToPairLdStInst(MBBI)) { 1778 Modified = true; 1779 break; 1780 } 1781 ++MBBI; 1782 break; 1783 } 1784 } 1785 } 1786 // 4) Find base register updates that can be merged into the load or store 1787 // as a base-reg writeback. 1788 // e.g., 1789 // ldr x0, [x2] 1790 // add x2, x2, #4 1791 // ; becomes 1792 // ldr x0, [x2], #4 1793 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1794 MBBI != E;) { 1795 MachineInstr &MI = *MBBI; 1796 // Do update merging. It's simpler to keep this separate from the above 1797 // switchs, though not strictly necessary. 1798 unsigned Opc = MI.getOpcode(); 1799 switch (Opc) { 1800 default: 1801 // Just move on to the next instruction. 1802 ++MBBI; 1803 break; 1804 // Scaled instructions. 1805 case AArch64::STRSui: 1806 case AArch64::STRDui: 1807 case AArch64::STRQui: 1808 case AArch64::STRXui: 1809 case AArch64::STRWui: 1810 case AArch64::STRHHui: 1811 case AArch64::STRBBui: 1812 case AArch64::LDRSui: 1813 case AArch64::LDRDui: 1814 case AArch64::LDRQui: 1815 case AArch64::LDRXui: 1816 case AArch64::LDRWui: 1817 case AArch64::LDRHHui: 1818 case AArch64::LDRBBui: 1819 // Unscaled instructions. 1820 case AArch64::STURSi: 1821 case AArch64::STURDi: 1822 case AArch64::STURQi: 1823 case AArch64::STURWi: 1824 case AArch64::STURXi: 1825 case AArch64::LDURSi: 1826 case AArch64::LDURDi: 1827 case AArch64::LDURQi: 1828 case AArch64::LDURWi: 1829 case AArch64::LDURXi: 1830 // Paired instructions. 1831 case AArch64::LDPSi: 1832 case AArch64::LDPSWi: 1833 case AArch64::LDPDi: 1834 case AArch64::LDPQi: 1835 case AArch64::LDPWi: 1836 case AArch64::LDPXi: 1837 case AArch64::STPSi: 1838 case AArch64::STPDi: 1839 case AArch64::STPQi: 1840 case AArch64::STPWi: 1841 case AArch64::STPXi: { 1842 // Make sure this is a reg+imm (as opposed to an address reloc). 1843 if (!getLdStOffsetOp(MI).isImm()) { 1844 ++MBBI; 1845 break; 1846 } 1847 // Look forward to try to form a post-index instruction. For example, 1848 // ldr x0, [x20] 1849 // add x20, x20, #32 1850 // merged into: 1851 // ldr x0, [x20], #32 1852 MachineBasicBlock::iterator Update = 1853 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1854 if (Update != E) { 1855 // Merge the update into the ld/st. 1856 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1857 Modified = true; 1858 ++NumPostFolded; 1859 break; 1860 } 1861 // Don't know how to handle pre/post-index versions, so move to the next 1862 // instruction. 1863 if (TII->isUnscaledLdSt(Opc)) { 1864 ++MBBI; 1865 break; 1866 } 1867 1868 // Look back to try to find a pre-index instruction. For example, 1869 // add x0, x0, #8 1870 // ldr x1, [x0] 1871 // merged into: 1872 // ldr x1, [x0, #8]! 1873 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1874 if (Update != E) { 1875 // Merge the update into the ld/st. 1876 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1877 Modified = true; 1878 ++NumPreFolded; 1879 break; 1880 } 1881 // The immediate in the load/store is scaled by the size of the memory 1882 // operation. The immediate in the add we're looking for, 1883 // however, is not, so adjust here. 1884 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1885 1886 // Look forward to try to find a post-index instruction. For example, 1887 // ldr x1, [x0, #64] 1888 // add x0, x0, #64 1889 // merged into: 1890 // ldr x1, [x0, #64]! 1891 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1892 if (Update != E) { 1893 // Merge the update into the ld/st. 1894 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1895 Modified = true; 1896 ++NumPreFolded; 1897 break; 1898 } 1899 1900 // Nothing found. Just move to the next instruction. 1901 ++MBBI; 1902 break; 1903 } 1904 } 1905 } 1906 1907 return Modified; 1908 } 1909 1910 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1911 if (skipFunction(*Fn.getFunction())) 1912 return false; 1913 1914 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1915 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1916 TRI = Subtarget->getRegisterInfo(); 1917 1918 // Resize the modified and used register bitfield trackers. We do this once 1919 // per function and then clear the bitfield each time we optimize a load or 1920 // store. 1921 ModifiedRegs.resize(TRI->getNumRegs()); 1922 UsedRegs.resize(TRI->getNumRegs()); 1923 1924 bool Modified = false; 1925 bool enableNarrowLdOpt = 1926 Subtarget->mergeNarrowLoads() && !Subtarget->requiresStrictAlign(); 1927 for (auto &MBB : Fn) 1928 Modified |= optimizeBlock(MBB, enableNarrowLdOpt); 1929 1930 return Modified; 1931 } 1932 1933 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep 1934 // loads and stores near one another? 1935 1936 // FIXME: When pairing store instructions it's very possible for this pass to 1937 // hoist a store with a KILL marker above another use (without a KILL marker). 1938 // The resulting IR is invalid, but nothing uses the KILL markers after this 1939 // pass, so it's never caused a problem in practice. 1940 1941 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1942 /// load / store optimization pass. 1943 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1944 return new AArch64LoadStoreOpt(); 1945 } 1946