1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetRegisterInfo.h" 37 #include <cassert> 38 #include <cstdint> 39 #include <iterator> 40 #include <limits> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "aarch64-ldst-opt" 45 46 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 47 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 48 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 49 STATISTIC(NumUnscaledPairCreated, 50 "Number of load/store from unscaled generated"); 51 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 52 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 53 54 // The LdStLimit limits how far we search for load/store pairs. 55 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 56 cl::init(20), cl::Hidden); 57 58 // The UpdateLimit limits how far we search for update instructions when we form 59 // pre-/post-index instructions. 60 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 61 cl::Hidden); 62 63 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 64 65 namespace { 66 67 typedef struct LdStPairFlags { 68 // If a matching instruction is found, MergeForward is set to true if the 69 // merge is to remove the first instruction and replace the second with 70 // a pair-wise insn, and false if the reverse is true. 71 bool MergeForward = false; 72 73 // SExtIdx gives the index of the result of the load pair that must be 74 // extended. The value of SExtIdx assumes that the paired load produces the 75 // value in this order: (I, returned iterator), i.e., -1 means no value has 76 // to be extended, 0 means I, and 1 means the returned iterator. 77 int SExtIdx = -1; 78 79 LdStPairFlags() = default; 80 81 void setMergeForward(bool V = true) { MergeForward = V; } 82 bool getMergeForward() const { return MergeForward; } 83 84 void setSExtIdx(int V) { SExtIdx = V; } 85 int getSExtIdx() const { return SExtIdx; } 86 87 } LdStPairFlags; 88 89 struct AArch64LoadStoreOpt : public MachineFunctionPass { 90 static char ID; 91 92 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 93 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 94 } 95 96 AliasAnalysis *AA; 97 const AArch64InstrInfo *TII; 98 const TargetRegisterInfo *TRI; 99 const AArch64Subtarget *Subtarget; 100 101 // Track which registers have been modified and used. 102 BitVector ModifiedRegs, UsedRegs; 103 104 virtual void getAnalysisUsage(AnalysisUsage &AU) const override { 105 AU.addRequired<AAResultsWrapperPass>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 109 // Scan the instructions looking for a load/store that can be combined 110 // with the current instruction into a load/store pair. 111 // Return the matching instruction if one is found, else MBB->end(). 112 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 113 LdStPairFlags &Flags, 114 unsigned Limit, 115 bool FindNarrowMerge); 116 117 // Scan the instructions looking for a store that writes to the address from 118 // which the current load instruction reads. Return true if one is found. 119 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 120 MachineBasicBlock::iterator &StoreI); 121 122 // Merge the two instructions indicated into a wider narrow store instruction. 123 MachineBasicBlock::iterator 124 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 125 MachineBasicBlock::iterator MergeMI, 126 const LdStPairFlags &Flags); 127 128 // Merge the two instructions indicated into a single pair-wise instruction. 129 MachineBasicBlock::iterator 130 mergePairedInsns(MachineBasicBlock::iterator I, 131 MachineBasicBlock::iterator Paired, 132 const LdStPairFlags &Flags); 133 134 // Promote the load that reads directly from the address stored to. 135 MachineBasicBlock::iterator 136 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 137 MachineBasicBlock::iterator StoreI); 138 139 // Scan the instruction list to find a base register update that can 140 // be combined with the current instruction (a load or store) using 141 // pre or post indexed addressing with writeback. Scan forwards. 142 MachineBasicBlock::iterator 143 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 144 int UnscaledOffset, unsigned Limit); 145 146 // Scan the instruction list to find a base register update that can 147 // be combined with the current instruction (a load or store) using 148 // pre or post indexed addressing with writeback. Scan backwards. 149 MachineBasicBlock::iterator 150 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 151 152 // Find an instruction that updates the base register of the ld/st 153 // instruction. 154 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 155 unsigned BaseReg, int Offset); 156 157 // Merge a pre- or post-index base register update into a ld/st instruction. 158 MachineBasicBlock::iterator 159 mergeUpdateInsn(MachineBasicBlock::iterator I, 160 MachineBasicBlock::iterator Update, bool IsPreIdx); 161 162 // Find and merge zero store instructions. 163 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 164 165 // Find and pair ldr/str instructions. 166 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 167 168 // Find and promote load instructions which read directly from store. 169 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 170 171 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 172 173 bool runOnMachineFunction(MachineFunction &Fn) override; 174 175 MachineFunctionProperties getRequiredProperties() const override { 176 return MachineFunctionProperties().set( 177 MachineFunctionProperties::Property::NoVRegs); 178 } 179 180 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 181 }; 182 183 char AArch64LoadStoreOpt::ID = 0; 184 185 } // end anonymous namespace 186 187 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 188 AARCH64_LOAD_STORE_OPT_NAME, false, false) 189 190 static bool isNarrowStore(unsigned Opc) { 191 switch (Opc) { 192 default: 193 return false; 194 case AArch64::STRBBui: 195 case AArch64::STURBBi: 196 case AArch64::STRHHui: 197 case AArch64::STURHHi: 198 return true; 199 } 200 } 201 202 // Scaling factor for unscaled load or store. 203 static int getMemScale(MachineInstr &MI) { 204 switch (MI.getOpcode()) { 205 default: 206 llvm_unreachable("Opcode has unknown scale!"); 207 case AArch64::LDRBBui: 208 case AArch64::LDURBBi: 209 case AArch64::LDRSBWui: 210 case AArch64::LDURSBWi: 211 case AArch64::STRBBui: 212 case AArch64::STURBBi: 213 return 1; 214 case AArch64::LDRHHui: 215 case AArch64::LDURHHi: 216 case AArch64::LDRSHWui: 217 case AArch64::LDURSHWi: 218 case AArch64::STRHHui: 219 case AArch64::STURHHi: 220 return 2; 221 case AArch64::LDRSui: 222 case AArch64::LDURSi: 223 case AArch64::LDRSWui: 224 case AArch64::LDURSWi: 225 case AArch64::LDRWui: 226 case AArch64::LDURWi: 227 case AArch64::STRSui: 228 case AArch64::STURSi: 229 case AArch64::STRWui: 230 case AArch64::STURWi: 231 case AArch64::LDPSi: 232 case AArch64::LDPSWi: 233 case AArch64::LDPWi: 234 case AArch64::STPSi: 235 case AArch64::STPWi: 236 return 4; 237 case AArch64::LDRDui: 238 case AArch64::LDURDi: 239 case AArch64::LDRXui: 240 case AArch64::LDURXi: 241 case AArch64::STRDui: 242 case AArch64::STURDi: 243 case AArch64::STRXui: 244 case AArch64::STURXi: 245 case AArch64::LDPDi: 246 case AArch64::LDPXi: 247 case AArch64::STPDi: 248 case AArch64::STPXi: 249 return 8; 250 case AArch64::LDRQui: 251 case AArch64::LDURQi: 252 case AArch64::STRQui: 253 case AArch64::STURQi: 254 case AArch64::LDPQi: 255 case AArch64::STPQi: 256 return 16; 257 } 258 } 259 260 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 261 bool *IsValidLdStrOpc = nullptr) { 262 if (IsValidLdStrOpc) 263 *IsValidLdStrOpc = true; 264 switch (Opc) { 265 default: 266 if (IsValidLdStrOpc) 267 *IsValidLdStrOpc = false; 268 return std::numeric_limits<unsigned>::max(); 269 case AArch64::STRDui: 270 case AArch64::STURDi: 271 case AArch64::STRQui: 272 case AArch64::STURQi: 273 case AArch64::STRBBui: 274 case AArch64::STURBBi: 275 case AArch64::STRHHui: 276 case AArch64::STURHHi: 277 case AArch64::STRWui: 278 case AArch64::STURWi: 279 case AArch64::STRXui: 280 case AArch64::STURXi: 281 case AArch64::LDRDui: 282 case AArch64::LDURDi: 283 case AArch64::LDRQui: 284 case AArch64::LDURQi: 285 case AArch64::LDRWui: 286 case AArch64::LDURWi: 287 case AArch64::LDRXui: 288 case AArch64::LDURXi: 289 case AArch64::STRSui: 290 case AArch64::STURSi: 291 case AArch64::LDRSui: 292 case AArch64::LDURSi: 293 return Opc; 294 case AArch64::LDRSWui: 295 return AArch64::LDRWui; 296 case AArch64::LDURSWi: 297 return AArch64::LDURWi; 298 } 299 } 300 301 static unsigned getMatchingWideOpcode(unsigned Opc) { 302 switch (Opc) { 303 default: 304 llvm_unreachable("Opcode has no wide equivalent!"); 305 case AArch64::STRBBui: 306 return AArch64::STRHHui; 307 case AArch64::STRHHui: 308 return AArch64::STRWui; 309 case AArch64::STURBBi: 310 return AArch64::STURHHi; 311 case AArch64::STURHHi: 312 return AArch64::STURWi; 313 case AArch64::STURWi: 314 return AArch64::STURXi; 315 case AArch64::STRWui: 316 return AArch64::STRXui; 317 } 318 } 319 320 static unsigned getMatchingPairOpcode(unsigned Opc) { 321 switch (Opc) { 322 default: 323 llvm_unreachable("Opcode has no pairwise equivalent!"); 324 case AArch64::STRSui: 325 case AArch64::STURSi: 326 return AArch64::STPSi; 327 case AArch64::STRDui: 328 case AArch64::STURDi: 329 return AArch64::STPDi; 330 case AArch64::STRQui: 331 case AArch64::STURQi: 332 return AArch64::STPQi; 333 case AArch64::STRWui: 334 case AArch64::STURWi: 335 return AArch64::STPWi; 336 case AArch64::STRXui: 337 case AArch64::STURXi: 338 return AArch64::STPXi; 339 case AArch64::LDRSui: 340 case AArch64::LDURSi: 341 return AArch64::LDPSi; 342 case AArch64::LDRDui: 343 case AArch64::LDURDi: 344 return AArch64::LDPDi; 345 case AArch64::LDRQui: 346 case AArch64::LDURQi: 347 return AArch64::LDPQi; 348 case AArch64::LDRWui: 349 case AArch64::LDURWi: 350 return AArch64::LDPWi; 351 case AArch64::LDRXui: 352 case AArch64::LDURXi: 353 return AArch64::LDPXi; 354 case AArch64::LDRSWui: 355 case AArch64::LDURSWi: 356 return AArch64::LDPSWi; 357 } 358 } 359 360 static unsigned isMatchingStore(MachineInstr &LoadInst, 361 MachineInstr &StoreInst) { 362 unsigned LdOpc = LoadInst.getOpcode(); 363 unsigned StOpc = StoreInst.getOpcode(); 364 switch (LdOpc) { 365 default: 366 llvm_unreachable("Unsupported load instruction!"); 367 case AArch64::LDRBBui: 368 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 369 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 370 case AArch64::LDURBBi: 371 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 372 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 373 case AArch64::LDRHHui: 374 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 375 StOpc == AArch64::STRXui; 376 case AArch64::LDURHHi: 377 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 378 StOpc == AArch64::STURXi; 379 case AArch64::LDRWui: 380 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 381 case AArch64::LDURWi: 382 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 383 case AArch64::LDRXui: 384 return StOpc == AArch64::STRXui; 385 case AArch64::LDURXi: 386 return StOpc == AArch64::STURXi; 387 } 388 } 389 390 static unsigned getPreIndexedOpcode(unsigned Opc) { 391 switch (Opc) { 392 default: 393 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 394 case AArch64::STRSui: 395 return AArch64::STRSpre; 396 case AArch64::STRDui: 397 return AArch64::STRDpre; 398 case AArch64::STRQui: 399 return AArch64::STRQpre; 400 case AArch64::STRBBui: 401 return AArch64::STRBBpre; 402 case AArch64::STRHHui: 403 return AArch64::STRHHpre; 404 case AArch64::STRWui: 405 return AArch64::STRWpre; 406 case AArch64::STRXui: 407 return AArch64::STRXpre; 408 case AArch64::LDRSui: 409 return AArch64::LDRSpre; 410 case AArch64::LDRDui: 411 return AArch64::LDRDpre; 412 case AArch64::LDRQui: 413 return AArch64::LDRQpre; 414 case AArch64::LDRBBui: 415 return AArch64::LDRBBpre; 416 case AArch64::LDRHHui: 417 return AArch64::LDRHHpre; 418 case AArch64::LDRWui: 419 return AArch64::LDRWpre; 420 case AArch64::LDRXui: 421 return AArch64::LDRXpre; 422 case AArch64::LDRSWui: 423 return AArch64::LDRSWpre; 424 case AArch64::LDPSi: 425 return AArch64::LDPSpre; 426 case AArch64::LDPSWi: 427 return AArch64::LDPSWpre; 428 case AArch64::LDPDi: 429 return AArch64::LDPDpre; 430 case AArch64::LDPQi: 431 return AArch64::LDPQpre; 432 case AArch64::LDPWi: 433 return AArch64::LDPWpre; 434 case AArch64::LDPXi: 435 return AArch64::LDPXpre; 436 case AArch64::STPSi: 437 return AArch64::STPSpre; 438 case AArch64::STPDi: 439 return AArch64::STPDpre; 440 case AArch64::STPQi: 441 return AArch64::STPQpre; 442 case AArch64::STPWi: 443 return AArch64::STPWpre; 444 case AArch64::STPXi: 445 return AArch64::STPXpre; 446 } 447 } 448 449 static unsigned getPostIndexedOpcode(unsigned Opc) { 450 switch (Opc) { 451 default: 452 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 453 case AArch64::STRSui: 454 return AArch64::STRSpost; 455 case AArch64::STRDui: 456 return AArch64::STRDpost; 457 case AArch64::STRQui: 458 return AArch64::STRQpost; 459 case AArch64::STRBBui: 460 return AArch64::STRBBpost; 461 case AArch64::STRHHui: 462 return AArch64::STRHHpost; 463 case AArch64::STRWui: 464 return AArch64::STRWpost; 465 case AArch64::STRXui: 466 return AArch64::STRXpost; 467 case AArch64::LDRSui: 468 return AArch64::LDRSpost; 469 case AArch64::LDRDui: 470 return AArch64::LDRDpost; 471 case AArch64::LDRQui: 472 return AArch64::LDRQpost; 473 case AArch64::LDRBBui: 474 return AArch64::LDRBBpost; 475 case AArch64::LDRHHui: 476 return AArch64::LDRHHpost; 477 case AArch64::LDRWui: 478 return AArch64::LDRWpost; 479 case AArch64::LDRXui: 480 return AArch64::LDRXpost; 481 case AArch64::LDRSWui: 482 return AArch64::LDRSWpost; 483 case AArch64::LDPSi: 484 return AArch64::LDPSpost; 485 case AArch64::LDPSWi: 486 return AArch64::LDPSWpost; 487 case AArch64::LDPDi: 488 return AArch64::LDPDpost; 489 case AArch64::LDPQi: 490 return AArch64::LDPQpost; 491 case AArch64::LDPWi: 492 return AArch64::LDPWpost; 493 case AArch64::LDPXi: 494 return AArch64::LDPXpost; 495 case AArch64::STPSi: 496 return AArch64::STPSpost; 497 case AArch64::STPDi: 498 return AArch64::STPDpost; 499 case AArch64::STPQi: 500 return AArch64::STPQpost; 501 case AArch64::STPWi: 502 return AArch64::STPWpost; 503 case AArch64::STPXi: 504 return AArch64::STPXpost; 505 } 506 } 507 508 static bool isPairedLdSt(const MachineInstr &MI) { 509 switch (MI.getOpcode()) { 510 default: 511 return false; 512 case AArch64::LDPSi: 513 case AArch64::LDPSWi: 514 case AArch64::LDPDi: 515 case AArch64::LDPQi: 516 case AArch64::LDPWi: 517 case AArch64::LDPXi: 518 case AArch64::STPSi: 519 case AArch64::STPDi: 520 case AArch64::STPQi: 521 case AArch64::STPWi: 522 case AArch64::STPXi: 523 return true; 524 } 525 } 526 527 static const MachineOperand &getLdStRegOp(const MachineInstr &MI, 528 unsigned PairedRegOp = 0) { 529 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 530 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 531 return MI.getOperand(Idx); 532 } 533 534 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 535 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 536 return MI.getOperand(Idx); 537 } 538 539 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 540 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 541 return MI.getOperand(Idx); 542 } 543 544 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 545 MachineInstr &StoreInst, 546 const AArch64InstrInfo *TII) { 547 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 548 int LoadSize = getMemScale(LoadInst); 549 int StoreSize = getMemScale(StoreInst); 550 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 551 ? getLdStOffsetOp(StoreInst).getImm() 552 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 553 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 554 ? getLdStOffsetOp(LoadInst).getImm() 555 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 556 return (UnscaledStOffset <= UnscaledLdOffset) && 557 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 558 } 559 560 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 561 unsigned Opc = MI.getOpcode(); 562 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 563 isNarrowStore(Opc)) && 564 getLdStRegOp(MI).getReg() == AArch64::WZR; 565 } 566 567 MachineBasicBlock::iterator 568 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 569 MachineBasicBlock::iterator MergeMI, 570 const LdStPairFlags &Flags) { 571 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 572 "Expected promotable zero stores."); 573 574 MachineBasicBlock::iterator NextI = I; 575 ++NextI; 576 // If NextI is the second of the two instructions to be merged, we need 577 // to skip one further. Either way we merge will invalidate the iterator, 578 // and we don't need to scan the new instruction, as it's a pairwise 579 // instruction, which we're not considering for further action anyway. 580 if (NextI == MergeMI) 581 ++NextI; 582 583 unsigned Opc = I->getOpcode(); 584 bool IsScaled = !TII->isUnscaledLdSt(Opc); 585 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 586 587 bool MergeForward = Flags.getMergeForward(); 588 // Insert our new paired instruction after whichever of the paired 589 // instructions MergeForward indicates. 590 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 591 // Also based on MergeForward is from where we copy the base register operand 592 // so we get the flags compatible with the input code. 593 const MachineOperand &BaseRegOp = 594 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 595 596 // Which register is Rt and which is Rt2 depends on the offset order. 597 MachineInstr *RtMI; 598 if (getLdStOffsetOp(*I).getImm() == 599 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 600 RtMI = &*MergeMI; 601 else 602 RtMI = &*I; 603 604 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 605 // Change the scaled offset from small to large type. 606 if (IsScaled) { 607 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 608 OffsetImm /= 2; 609 } 610 611 // Construct the new instruction. 612 DebugLoc DL = I->getDebugLoc(); 613 MachineBasicBlock *MBB = I->getParent(); 614 MachineInstrBuilder MIB; 615 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 616 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 617 .add(BaseRegOp) 618 .addImm(OffsetImm) 619 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 620 (void)MIB; 621 622 DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 623 DEBUG(I->print(dbgs())); 624 DEBUG(dbgs() << " "); 625 DEBUG(MergeMI->print(dbgs())); 626 DEBUG(dbgs() << " with instruction:\n "); 627 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 628 DEBUG(dbgs() << "\n"); 629 630 // Erase the old instructions. 631 I->eraseFromParent(); 632 MergeMI->eraseFromParent(); 633 return NextI; 634 } 635 636 MachineBasicBlock::iterator 637 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 638 MachineBasicBlock::iterator Paired, 639 const LdStPairFlags &Flags) { 640 MachineBasicBlock::iterator NextI = I; 641 ++NextI; 642 // If NextI is the second of the two instructions to be merged, we need 643 // to skip one further. Either way we merge will invalidate the iterator, 644 // and we don't need to scan the new instruction, as it's a pairwise 645 // instruction, which we're not considering for further action anyway. 646 if (NextI == Paired) 647 ++NextI; 648 649 int SExtIdx = Flags.getSExtIdx(); 650 unsigned Opc = 651 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 652 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 653 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 654 655 bool MergeForward = Flags.getMergeForward(); 656 // Insert our new paired instruction after whichever of the paired 657 // instructions MergeForward indicates. 658 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 659 // Also based on MergeForward is from where we copy the base register operand 660 // so we get the flags compatible with the input code. 661 const MachineOperand &BaseRegOp = 662 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 663 664 int Offset = getLdStOffsetOp(*I).getImm(); 665 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 666 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 667 if (IsUnscaled != PairedIsUnscaled) { 668 // We're trying to pair instructions that differ in how they are scaled. If 669 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 670 // the opposite (i.e., make Paired's offset unscaled). 671 int MemSize = getMemScale(*Paired); 672 if (PairedIsUnscaled) { 673 // If the unscaled offset isn't a multiple of the MemSize, we can't 674 // pair the operations together. 675 assert(!(PairedOffset % getMemScale(*Paired)) && 676 "Offset should be a multiple of the stride!"); 677 PairedOffset /= MemSize; 678 } else { 679 PairedOffset *= MemSize; 680 } 681 } 682 683 // Which register is Rt and which is Rt2 depends on the offset order. 684 MachineInstr *RtMI, *Rt2MI; 685 if (Offset == PairedOffset + OffsetStride) { 686 RtMI = &*Paired; 687 Rt2MI = &*I; 688 // Here we swapped the assumption made for SExtIdx. 689 // I.e., we turn ldp I, Paired into ldp Paired, I. 690 // Update the index accordingly. 691 if (SExtIdx != -1) 692 SExtIdx = (SExtIdx + 1) % 2; 693 } else { 694 RtMI = &*I; 695 Rt2MI = &*Paired; 696 } 697 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 698 // Scale the immediate offset, if necessary. 699 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 700 assert(!(OffsetImm % getMemScale(*RtMI)) && 701 "Unscaled offset cannot be scaled."); 702 OffsetImm /= getMemScale(*RtMI); 703 } 704 705 // Construct the new instruction. 706 MachineInstrBuilder MIB; 707 DebugLoc DL = I->getDebugLoc(); 708 MachineBasicBlock *MBB = I->getParent(); 709 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 710 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 711 // Kill flags may become invalid when moving stores for pairing. 712 if (RegOp0.isUse()) { 713 if (!MergeForward) { 714 // Clear kill flags on store if moving upwards. Example: 715 // STRWui %w0, ... 716 // USE %w1 717 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 718 RegOp0.setIsKill(false); 719 RegOp1.setIsKill(false); 720 } else { 721 // Clear kill flags of the first stores register. Example: 722 // STRWui %w1, ... 723 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 724 // STRW %w0 725 unsigned Reg = getLdStRegOp(*I).getReg(); 726 for (MachineInstr &MI : make_range(std::next(I), Paired)) 727 MI.clearRegisterKills(Reg, TRI); 728 } 729 } 730 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 731 .add(RegOp0) 732 .add(RegOp1) 733 .add(BaseRegOp) 734 .addImm(OffsetImm) 735 .setMemRefs(I->mergeMemRefsWith(*Paired)); 736 737 (void)MIB; 738 739 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 740 DEBUG(I->print(dbgs())); 741 DEBUG(dbgs() << " "); 742 DEBUG(Paired->print(dbgs())); 743 DEBUG(dbgs() << " with instruction:\n "); 744 if (SExtIdx != -1) { 745 // Generate the sign extension for the proper result of the ldp. 746 // I.e., with X1, that would be: 747 // %W1<def> = KILL %W1, %X1<imp-def> 748 // %X1<def> = SBFMXri %X1<kill>, 0, 31 749 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 750 // Right now, DstMO has the extended register, since it comes from an 751 // extended opcode. 752 unsigned DstRegX = DstMO.getReg(); 753 // Get the W variant of that register. 754 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 755 // Update the result of LDP to use the W instead of the X variant. 756 DstMO.setReg(DstRegW); 757 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 758 DEBUG(dbgs() << "\n"); 759 // Make the machine verifier happy by providing a definition for 760 // the X register. 761 // Insert this definition right after the generated LDP, i.e., before 762 // InsertionPoint. 763 MachineInstrBuilder MIBKill = 764 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 765 .addReg(DstRegW) 766 .addReg(DstRegX, RegState::Define); 767 MIBKill->getOperand(2).setImplicit(); 768 // Create the sign extension. 769 MachineInstrBuilder MIBSXTW = 770 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 771 .addReg(DstRegX) 772 .addImm(0) 773 .addImm(31); 774 (void)MIBSXTW; 775 DEBUG(dbgs() << " Extend operand:\n "); 776 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 777 } else { 778 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 779 } 780 DEBUG(dbgs() << "\n"); 781 782 // Erase the old instructions. 783 I->eraseFromParent(); 784 Paired->eraseFromParent(); 785 786 return NextI; 787 } 788 789 MachineBasicBlock::iterator 790 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 791 MachineBasicBlock::iterator StoreI) { 792 MachineBasicBlock::iterator NextI = LoadI; 793 ++NextI; 794 795 int LoadSize = getMemScale(*LoadI); 796 int StoreSize = getMemScale(*StoreI); 797 unsigned LdRt = getLdStRegOp(*LoadI).getReg(); 798 unsigned StRt = getLdStRegOp(*StoreI).getReg(); 799 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 800 801 assert((IsStoreXReg || 802 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 803 "Unexpected RegClass"); 804 805 MachineInstr *BitExtMI; 806 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 807 // Remove the load, if the destination register of the loads is the same 808 // register for stored value. 809 if (StRt == LdRt && LoadSize == 8) { 810 StoreI->clearRegisterKills(StRt, TRI); 811 DEBUG(dbgs() << "Remove load instruction:\n "); 812 DEBUG(LoadI->print(dbgs())); 813 DEBUG(dbgs() << "\n"); 814 LoadI->eraseFromParent(); 815 return NextI; 816 } 817 // Replace the load with a mov if the load and store are in the same size. 818 BitExtMI = 819 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 820 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 821 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 822 .addReg(StRt) 823 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 824 } else { 825 // FIXME: Currently we disable this transformation in big-endian targets as 826 // performance and correctness are verified only in little-endian. 827 if (!Subtarget->isLittleEndian()) 828 return NextI; 829 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 830 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 831 "Unsupported ld/st match"); 832 assert(LoadSize <= StoreSize && "Invalid load size"); 833 int UnscaledLdOffset = IsUnscaled 834 ? getLdStOffsetOp(*LoadI).getImm() 835 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 836 int UnscaledStOffset = IsUnscaled 837 ? getLdStOffsetOp(*StoreI).getImm() 838 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 839 int Width = LoadSize * 8; 840 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 841 int Imms = Immr + Width - 1; 842 unsigned DestReg = IsStoreXReg 843 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 844 &AArch64::GPR64RegClass) 845 : LdRt; 846 847 assert((UnscaledLdOffset >= UnscaledStOffset && 848 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 849 "Invalid offset"); 850 851 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 852 Imms = Immr + Width - 1; 853 if (UnscaledLdOffset == UnscaledStOffset) { 854 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 855 | ((Immr) << 6) // immr 856 | ((Imms) << 0) // imms 857 ; 858 859 BitExtMI = 860 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 861 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 862 DestReg) 863 .addReg(StRt) 864 .addImm(AndMaskEncoded); 865 } else { 866 BitExtMI = 867 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 868 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 869 DestReg) 870 .addReg(StRt) 871 .addImm(Immr) 872 .addImm(Imms); 873 } 874 } 875 876 // Clear kill flags between store and load. 877 for (MachineInstr &MI : make_range(StoreI->getIterator(), 878 BitExtMI->getIterator())) 879 MI.clearRegisterKills(StRt, TRI); 880 881 DEBUG(dbgs() << "Promoting load by replacing :\n "); 882 DEBUG(StoreI->print(dbgs())); 883 DEBUG(dbgs() << " "); 884 DEBUG(LoadI->print(dbgs())); 885 DEBUG(dbgs() << " with instructions:\n "); 886 DEBUG(StoreI->print(dbgs())); 887 DEBUG(dbgs() << " "); 888 DEBUG((BitExtMI)->print(dbgs())); 889 DEBUG(dbgs() << "\n"); 890 891 // Erase the old instructions. 892 LoadI->eraseFromParent(); 893 return NextI; 894 } 895 896 /// trackRegDefsUses - Remember what registers the specified instruction uses 897 /// and modifies. 898 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs, 899 BitVector &UsedRegs, 900 const TargetRegisterInfo *TRI) { 901 for (const MachineOperand &MO : MI.operands()) { 902 if (MO.isRegMask()) 903 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 904 905 if (!MO.isReg()) 906 continue; 907 unsigned Reg = MO.getReg(); 908 if (!Reg) 909 continue; 910 if (MO.isDef()) { 911 // WZR/XZR are not modified even when used as a destination register. 912 if (Reg != AArch64::WZR && Reg != AArch64::XZR) 913 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 914 ModifiedRegs.set(*AI); 915 } else { 916 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 917 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 918 UsedRegs.set(*AI); 919 } 920 } 921 } 922 923 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 924 // Convert the byte-offset used by unscaled into an "element" offset used 925 // by the scaled pair load/store instructions. 926 if (IsUnscaled) { 927 // If the byte-offset isn't a multiple of the stride, there's no point 928 // trying to match it. 929 if (Offset % OffsetStride) 930 return false; 931 Offset /= OffsetStride; 932 } 933 return Offset <= 63 && Offset >= -64; 934 } 935 936 // Do alignment, specialized to power of 2 and for signed ints, 937 // avoiding having to do a C-style cast from uint_64t to int when 938 // using alignTo from include/llvm/Support/MathExtras.h. 939 // FIXME: Move this function to include/MathExtras.h? 940 static int alignTo(int Num, int PowOf2) { 941 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 942 } 943 944 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 945 AliasAnalysis *AA) { 946 // One of the instructions must modify memory. 947 if (!MIa.mayStore() && !MIb.mayStore()) 948 return false; 949 950 // Both instructions must be memory operations. 951 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 952 return false; 953 954 return MIa.mayAlias(AA, MIb, /*UseTBAA*/false); 955 } 956 957 static bool mayAlias(MachineInstr &MIa, 958 SmallVectorImpl<MachineInstr *> &MemInsns, 959 AliasAnalysis *AA) { 960 for (MachineInstr *MIb : MemInsns) 961 if (mayAlias(MIa, *MIb, AA)) 962 return true; 963 964 return false; 965 } 966 967 bool AArch64LoadStoreOpt::findMatchingStore( 968 MachineBasicBlock::iterator I, unsigned Limit, 969 MachineBasicBlock::iterator &StoreI) { 970 MachineBasicBlock::iterator B = I->getParent()->begin(); 971 MachineBasicBlock::iterator MBBI = I; 972 MachineInstr &LoadMI = *I; 973 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 974 975 // If the load is the first instruction in the block, there's obviously 976 // not any matching store. 977 if (MBBI == B) 978 return false; 979 980 // Track which registers have been modified and used between the first insn 981 // and the second insn. 982 ModifiedRegs.reset(); 983 UsedRegs.reset(); 984 985 unsigned Count = 0; 986 do { 987 --MBBI; 988 MachineInstr &MI = *MBBI; 989 990 // Don't count transient instructions towards the search limit since there 991 // may be different numbers of them if e.g. debug information is present. 992 if (!MI.isTransient()) 993 ++Count; 994 995 // If the load instruction reads directly from the address to which the 996 // store instruction writes and the stored value is not modified, we can 997 // promote the load. Since we do not handle stores with pre-/post-index, 998 // it's unnecessary to check if BaseReg is modified by the store itself. 999 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1000 BaseReg == getLdStBaseOp(MI).getReg() && 1001 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1002 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1003 StoreI = MBBI; 1004 return true; 1005 } 1006 1007 if (MI.isCall()) 1008 return false; 1009 1010 // Update modified / uses register lists. 1011 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1012 1013 // Otherwise, if the base register is modified, we have no match, so 1014 // return early. 1015 if (ModifiedRegs[BaseReg]) 1016 return false; 1017 1018 // If we encounter a store aliased with the load, return early. 1019 if (MI.mayStore() && mayAlias(LoadMI, MI, AA)) 1020 return false; 1021 } while (MBBI != B && Count < Limit); 1022 return false; 1023 } 1024 1025 // Returns true if FirstMI and MI are candidates for merging or pairing. 1026 // Otherwise, returns false. 1027 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1028 LdStPairFlags &Flags, 1029 const AArch64InstrInfo *TII) { 1030 // If this is volatile or if pairing is suppressed, not a candidate. 1031 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1032 return false; 1033 1034 // We should have already checked FirstMI for pair suppression and volatility. 1035 assert(!FirstMI.hasOrderedMemoryRef() && 1036 !TII->isLdStPairSuppressed(FirstMI) && 1037 "FirstMI shouldn't get here if either of these checks are true."); 1038 1039 unsigned OpcA = FirstMI.getOpcode(); 1040 unsigned OpcB = MI.getOpcode(); 1041 1042 // Opcodes match: nothing more to check. 1043 if (OpcA == OpcB) 1044 return true; 1045 1046 // Try to match a sign-extended load/store with a zero-extended load/store. 1047 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1048 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1049 assert(IsValidLdStrOpc && 1050 "Given Opc should be a Load or Store with an immediate"); 1051 // OpcA will be the first instruction in the pair. 1052 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1053 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1054 return true; 1055 } 1056 1057 // If the second instruction isn't even a mergable/pairable load/store, bail 1058 // out. 1059 if (!PairIsValidLdStrOpc) 1060 return false; 1061 1062 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1063 // offsets. 1064 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1065 return false; 1066 1067 // Try to match an unscaled load/store with a scaled load/store. 1068 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1069 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1070 1071 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1072 } 1073 1074 /// Scan the instructions looking for a load/store that can be combined with the 1075 /// current instruction into a wider equivalent or a load/store pair. 1076 MachineBasicBlock::iterator 1077 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1078 LdStPairFlags &Flags, unsigned Limit, 1079 bool FindNarrowMerge) { 1080 MachineBasicBlock::iterator E = I->getParent()->end(); 1081 MachineBasicBlock::iterator MBBI = I; 1082 MachineInstr &FirstMI = *I; 1083 ++MBBI; 1084 1085 bool MayLoad = FirstMI.mayLoad(); 1086 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1087 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1088 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1089 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1090 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1091 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1092 1093 // Track which registers have been modified and used between the first insn 1094 // (inclusive) and the second insn. 1095 ModifiedRegs.reset(); 1096 UsedRegs.reset(); 1097 1098 // Remember any instructions that read/write memory between FirstMI and MI. 1099 SmallVector<MachineInstr *, 4> MemInsns; 1100 1101 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1102 MachineInstr &MI = *MBBI; 1103 1104 // Don't count transient instructions towards the search limit since there 1105 // may be different numbers of them if e.g. debug information is present. 1106 if (!MI.isTransient()) 1107 ++Count; 1108 1109 Flags.setSExtIdx(-1); 1110 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1111 getLdStOffsetOp(MI).isImm()) { 1112 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1113 // If we've found another instruction with the same opcode, check to see 1114 // if the base and offset are compatible with our starting instruction. 1115 // These instructions all have scaled immediate operands, so we just 1116 // check for +1/-1. Make sure to check the new instruction offset is 1117 // actually an immediate and not a symbolic reference destined for 1118 // a relocation. 1119 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1120 int MIOffset = getLdStOffsetOp(MI).getImm(); 1121 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1122 if (IsUnscaled != MIIsUnscaled) { 1123 // We're trying to pair instructions that differ in how they are scaled. 1124 // If FirstMI is scaled then scale the offset of MI accordingly. 1125 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1126 int MemSize = getMemScale(MI); 1127 if (MIIsUnscaled) { 1128 // If the unscaled offset isn't a multiple of the MemSize, we can't 1129 // pair the operations together: bail and keep looking. 1130 if (MIOffset % MemSize) { 1131 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1132 MemInsns.push_back(&MI); 1133 continue; 1134 } 1135 MIOffset /= MemSize; 1136 } else { 1137 MIOffset *= MemSize; 1138 } 1139 } 1140 1141 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1142 (Offset + OffsetStride == MIOffset))) { 1143 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1144 if (FindNarrowMerge) { 1145 // If the alignment requirements of the scaled wide load/store 1146 // instruction can't express the offset of the scaled narrow input, 1147 // bail and keep looking. For promotable zero stores, allow only when 1148 // the stored value is the same (i.e., WZR). 1149 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1150 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1151 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1152 MemInsns.push_back(&MI); 1153 continue; 1154 } 1155 } else { 1156 // Pairwise instructions have a 7-bit signed offset field. Single 1157 // insns have a 12-bit unsigned offset field. If the resultant 1158 // immediate offset of merging these instructions is out of range for 1159 // a pairwise instruction, bail and keep looking. 1160 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1161 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1162 MemInsns.push_back(&MI); 1163 continue; 1164 } 1165 // If the alignment requirements of the paired (scaled) instruction 1166 // can't express the offset of the unscaled input, bail and keep 1167 // looking. 1168 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1169 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1170 MemInsns.push_back(&MI); 1171 continue; 1172 } 1173 } 1174 // If the destination register of the loads is the same register, bail 1175 // and keep looking. A load-pair instruction with both destination 1176 // registers the same is UNPREDICTABLE and will result in an exception. 1177 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1178 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1179 MemInsns.push_back(&MI); 1180 continue; 1181 } 1182 1183 // If the Rt of the second instruction was not modified or used between 1184 // the two instructions and none of the instructions between the second 1185 // and first alias with the second, we can combine the second into the 1186 // first. 1187 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1188 !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1189 !mayAlias(MI, MemInsns, AA)) { 1190 Flags.setMergeForward(false); 1191 return MBBI; 1192 } 1193 1194 // Likewise, if the Rt of the first instruction is not modified or used 1195 // between the two instructions and none of the instructions between the 1196 // first and the second alias with the first, we can combine the first 1197 // into the second. 1198 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1199 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1200 !mayAlias(FirstMI, MemInsns, AA)) { 1201 Flags.setMergeForward(true); 1202 return MBBI; 1203 } 1204 // Unable to combine these instructions due to interference in between. 1205 // Keep looking. 1206 } 1207 } 1208 1209 // If the instruction wasn't a matching load or store. Stop searching if we 1210 // encounter a call instruction that might modify memory. 1211 if (MI.isCall()) 1212 return E; 1213 1214 // Update modified / uses register lists. 1215 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1216 1217 // Otherwise, if the base register is modified, we have no match, so 1218 // return early. 1219 if (ModifiedRegs[BaseReg]) 1220 return E; 1221 1222 // Update list of instructions that read/write memory. 1223 if (MI.mayLoadOrStore()) 1224 MemInsns.push_back(&MI); 1225 } 1226 return E; 1227 } 1228 1229 MachineBasicBlock::iterator 1230 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1231 MachineBasicBlock::iterator Update, 1232 bool IsPreIdx) { 1233 assert((Update->getOpcode() == AArch64::ADDXri || 1234 Update->getOpcode() == AArch64::SUBXri) && 1235 "Unexpected base register update instruction to merge!"); 1236 MachineBasicBlock::iterator NextI = I; 1237 // Return the instruction following the merged instruction, which is 1238 // the instruction following our unmerged load. Unless that's the add/sub 1239 // instruction we're merging, in which case it's the one after that. 1240 if (++NextI == Update) 1241 ++NextI; 1242 1243 int Value = Update->getOperand(2).getImm(); 1244 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1245 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1246 if (Update->getOpcode() == AArch64::SUBXri) 1247 Value = -Value; 1248 1249 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1250 : getPostIndexedOpcode(I->getOpcode()); 1251 MachineInstrBuilder MIB; 1252 if (!isPairedLdSt(*I)) { 1253 // Non-paired instruction. 1254 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1255 .add(getLdStRegOp(*Update)) 1256 .add(getLdStRegOp(*I)) 1257 .add(getLdStBaseOp(*I)) 1258 .addImm(Value) 1259 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1260 } else { 1261 // Paired instruction. 1262 int Scale = getMemScale(*I); 1263 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1264 .add(getLdStRegOp(*Update)) 1265 .add(getLdStRegOp(*I, 0)) 1266 .add(getLdStRegOp(*I, 1)) 1267 .add(getLdStBaseOp(*I)) 1268 .addImm(Value / Scale) 1269 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1270 } 1271 (void)MIB; 1272 1273 if (IsPreIdx) 1274 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1275 else 1276 DEBUG(dbgs() << "Creating post-indexed load/store."); 1277 DEBUG(dbgs() << " Replacing instructions:\n "); 1278 DEBUG(I->print(dbgs())); 1279 DEBUG(dbgs() << " "); 1280 DEBUG(Update->print(dbgs())); 1281 DEBUG(dbgs() << " with instruction:\n "); 1282 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1283 DEBUG(dbgs() << "\n"); 1284 1285 // Erase the old instructions for the block. 1286 I->eraseFromParent(); 1287 Update->eraseFromParent(); 1288 1289 return NextI; 1290 } 1291 1292 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1293 MachineInstr &MI, 1294 unsigned BaseReg, int Offset) { 1295 switch (MI.getOpcode()) { 1296 default: 1297 break; 1298 case AArch64::SUBXri: 1299 case AArch64::ADDXri: 1300 // Make sure it's a vanilla immediate operand, not a relocation or 1301 // anything else we can't handle. 1302 if (!MI.getOperand(2).isImm()) 1303 break; 1304 // Watch out for 1 << 12 shifted value. 1305 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1306 break; 1307 1308 // The update instruction source and destination register must be the 1309 // same as the load/store base register. 1310 if (MI.getOperand(0).getReg() != BaseReg || 1311 MI.getOperand(1).getReg() != BaseReg) 1312 break; 1313 1314 bool IsPairedInsn = isPairedLdSt(MemMI); 1315 int UpdateOffset = MI.getOperand(2).getImm(); 1316 if (MI.getOpcode() == AArch64::SUBXri) 1317 UpdateOffset = -UpdateOffset; 1318 1319 // For non-paired load/store instructions, the immediate must fit in a 1320 // signed 9-bit integer. 1321 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1322 break; 1323 1324 // For paired load/store instructions, the immediate must be a multiple of 1325 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1326 // integer. 1327 if (IsPairedInsn) { 1328 int Scale = getMemScale(MemMI); 1329 if (UpdateOffset % Scale != 0) 1330 break; 1331 1332 int ScaledOffset = UpdateOffset / Scale; 1333 if (ScaledOffset > 63 || ScaledOffset < -64) 1334 break; 1335 } 1336 1337 // If we have a non-zero Offset, we check that it matches the amount 1338 // we're adding to the register. 1339 if (!Offset || Offset == UpdateOffset) 1340 return true; 1341 break; 1342 } 1343 return false; 1344 } 1345 1346 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1347 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1348 MachineBasicBlock::iterator E = I->getParent()->end(); 1349 MachineInstr &MemMI = *I; 1350 MachineBasicBlock::iterator MBBI = I; 1351 1352 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1353 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1354 1355 // Scan forward looking for post-index opportunities. Updating instructions 1356 // can't be formed if the memory instruction doesn't have the offset we're 1357 // looking for. 1358 if (MIUnscaledOffset != UnscaledOffset) 1359 return E; 1360 1361 // If the base register overlaps a destination register, we can't 1362 // merge the update. 1363 bool IsPairedInsn = isPairedLdSt(MemMI); 1364 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1365 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1366 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1367 return E; 1368 } 1369 1370 // Track which registers have been modified and used between the first insn 1371 // (inclusive) and the second insn. 1372 ModifiedRegs.reset(); 1373 UsedRegs.reset(); 1374 ++MBBI; 1375 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1376 MachineInstr &MI = *MBBI; 1377 1378 // Don't count transient instructions towards the search limit since there 1379 // may be different numbers of them if e.g. debug information is present. 1380 if (!MI.isTransient()) 1381 ++Count; 1382 1383 // If we found a match, return it. 1384 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1385 return MBBI; 1386 1387 // Update the status of what the instruction clobbered and used. 1388 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1389 1390 // Otherwise, if the base register is used or modified, we have no match, so 1391 // return early. 1392 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1393 return E; 1394 } 1395 return E; 1396 } 1397 1398 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1399 MachineBasicBlock::iterator I, unsigned Limit) { 1400 MachineBasicBlock::iterator B = I->getParent()->begin(); 1401 MachineBasicBlock::iterator E = I->getParent()->end(); 1402 MachineInstr &MemMI = *I; 1403 MachineBasicBlock::iterator MBBI = I; 1404 1405 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1406 int Offset = getLdStOffsetOp(MemMI).getImm(); 1407 1408 // If the load/store is the first instruction in the block, there's obviously 1409 // not any matching update. Ditto if the memory offset isn't zero. 1410 if (MBBI == B || Offset != 0) 1411 return E; 1412 // If the base register overlaps a destination register, we can't 1413 // merge the update. 1414 bool IsPairedInsn = isPairedLdSt(MemMI); 1415 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1416 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1417 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1418 return E; 1419 } 1420 1421 // Track which registers have been modified and used between the first insn 1422 // (inclusive) and the second insn. 1423 ModifiedRegs.reset(); 1424 UsedRegs.reset(); 1425 unsigned Count = 0; 1426 do { 1427 --MBBI; 1428 MachineInstr &MI = *MBBI; 1429 1430 // Don't count transient instructions towards the search limit since there 1431 // may be different numbers of them if e.g. debug information is present. 1432 if (!MI.isTransient()) 1433 ++Count; 1434 1435 // If we found a match, return it. 1436 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1437 return MBBI; 1438 1439 // Update the status of what the instruction clobbered and used. 1440 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1441 1442 // Otherwise, if the base register is used or modified, we have no match, so 1443 // return early. 1444 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1445 return E; 1446 } while (MBBI != B && Count < Limit); 1447 return E; 1448 } 1449 1450 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1451 MachineBasicBlock::iterator &MBBI) { 1452 MachineInstr &MI = *MBBI; 1453 // If this is a volatile load, don't mess with it. 1454 if (MI.hasOrderedMemoryRef()) 1455 return false; 1456 1457 // Make sure this is a reg+imm. 1458 // FIXME: It is possible to extend it to handle reg+reg cases. 1459 if (!getLdStOffsetOp(MI).isImm()) 1460 return false; 1461 1462 // Look backward up to LdStLimit instructions. 1463 MachineBasicBlock::iterator StoreI; 1464 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1465 ++NumLoadsFromStoresPromoted; 1466 // Promote the load. Keeping the iterator straight is a 1467 // pain, so we let the merge routine tell us what the next instruction 1468 // is after it's done mucking about. 1469 MBBI = promoteLoadFromStore(MBBI, StoreI); 1470 return true; 1471 } 1472 return false; 1473 } 1474 1475 // Merge adjacent zero stores into a wider store. 1476 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1477 MachineBasicBlock::iterator &MBBI) { 1478 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1479 MachineInstr &MI = *MBBI; 1480 MachineBasicBlock::iterator E = MI.getParent()->end(); 1481 1482 if (!TII->isCandidateToMergeOrPair(MI)) 1483 return false; 1484 1485 // Look ahead up to LdStLimit instructions for a mergable instruction. 1486 LdStPairFlags Flags; 1487 MachineBasicBlock::iterator MergeMI = 1488 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1489 if (MergeMI != E) { 1490 ++NumZeroStoresPromoted; 1491 1492 // Keeping the iterator straight is a pain, so we let the merge routine tell 1493 // us what the next instruction is after it's done mucking about. 1494 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1495 return true; 1496 } 1497 return false; 1498 } 1499 1500 // Find loads and stores that can be merged into a single load or store pair 1501 // instruction. 1502 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1503 MachineInstr &MI = *MBBI; 1504 MachineBasicBlock::iterator E = MI.getParent()->end(); 1505 1506 if (!TII->isCandidateToMergeOrPair(MI)) 1507 return false; 1508 1509 // Early exit if the offset is not possible to match. (6 bits of positive 1510 // range, plus allow an extra one in case we find a later insn that matches 1511 // with Offset-1) 1512 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1513 int Offset = getLdStOffsetOp(MI).getImm(); 1514 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1515 // Allow one more for offset. 1516 if (Offset > 0) 1517 Offset -= OffsetStride; 1518 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1519 return false; 1520 1521 // Look ahead up to LdStLimit instructions for a pairable instruction. 1522 LdStPairFlags Flags; 1523 MachineBasicBlock::iterator Paired = 1524 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1525 if (Paired != E) { 1526 ++NumPairCreated; 1527 if (TII->isUnscaledLdSt(MI)) 1528 ++NumUnscaledPairCreated; 1529 // Keeping the iterator straight is a pain, so we let the merge routine tell 1530 // us what the next instruction is after it's done mucking about. 1531 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1532 return true; 1533 } 1534 return false; 1535 } 1536 1537 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1538 bool EnableNarrowZeroStOpt) { 1539 bool Modified = false; 1540 // Four tranformations to do here: 1541 // 1) Find loads that directly read from stores and promote them by 1542 // replacing with mov instructions. If the store is wider than the load, 1543 // the load will be replaced with a bitfield extract. 1544 // e.g., 1545 // str w1, [x0, #4] 1546 // ldrh w2, [x0, #6] 1547 // ; becomes 1548 // str w1, [x0, #4] 1549 // lsr w2, w1, #16 1550 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1551 MBBI != E;) { 1552 MachineInstr &MI = *MBBI; 1553 switch (MI.getOpcode()) { 1554 default: 1555 // Just move on to the next instruction. 1556 ++MBBI; 1557 break; 1558 // Scaled instructions. 1559 case AArch64::LDRBBui: 1560 case AArch64::LDRHHui: 1561 case AArch64::LDRWui: 1562 case AArch64::LDRXui: 1563 // Unscaled instructions. 1564 case AArch64::LDURBBi: 1565 case AArch64::LDURHHi: 1566 case AArch64::LDURWi: 1567 case AArch64::LDURXi: 1568 if (tryToPromoteLoadFromStore(MBBI)) { 1569 Modified = true; 1570 break; 1571 } 1572 ++MBBI; 1573 break; 1574 } 1575 } 1576 // 2) Merge adjacent zero stores into a wider store. 1577 // e.g., 1578 // strh wzr, [x0] 1579 // strh wzr, [x0, #2] 1580 // ; becomes 1581 // str wzr, [x0] 1582 // e.g., 1583 // str wzr, [x0] 1584 // str wzr, [x0, #4] 1585 // ; becomes 1586 // str xzr, [x0] 1587 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1588 EnableNarrowZeroStOpt && MBBI != E;) { 1589 if (isPromotableZeroStoreInst(*MBBI)) { 1590 if (tryToMergeZeroStInst(MBBI)) { 1591 Modified = true; 1592 } else 1593 ++MBBI; 1594 } else 1595 ++MBBI; 1596 } 1597 1598 // 3) Find loads and stores that can be merged into a single load or store 1599 // pair instruction. 1600 // e.g., 1601 // ldr x0, [x2] 1602 // ldr x1, [x2, #8] 1603 // ; becomes 1604 // ldp x0, x1, [x2] 1605 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1606 MBBI != E;) { 1607 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 1608 Modified = true; 1609 else 1610 ++MBBI; 1611 } 1612 // 4) Find base register updates that can be merged into the load or store 1613 // as a base-reg writeback. 1614 // e.g., 1615 // ldr x0, [x2] 1616 // add x2, x2, #4 1617 // ; becomes 1618 // ldr x0, [x2], #4 1619 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1620 MBBI != E;) { 1621 MachineInstr &MI = *MBBI; 1622 // Do update merging. It's simpler to keep this separate from the above 1623 // switchs, though not strictly necessary. 1624 unsigned Opc = MI.getOpcode(); 1625 switch (Opc) { 1626 default: 1627 // Just move on to the next instruction. 1628 ++MBBI; 1629 break; 1630 // Scaled instructions. 1631 case AArch64::STRSui: 1632 case AArch64::STRDui: 1633 case AArch64::STRQui: 1634 case AArch64::STRXui: 1635 case AArch64::STRWui: 1636 case AArch64::STRHHui: 1637 case AArch64::STRBBui: 1638 case AArch64::LDRSui: 1639 case AArch64::LDRDui: 1640 case AArch64::LDRQui: 1641 case AArch64::LDRXui: 1642 case AArch64::LDRWui: 1643 case AArch64::LDRHHui: 1644 case AArch64::LDRBBui: 1645 // Unscaled instructions. 1646 case AArch64::STURSi: 1647 case AArch64::STURDi: 1648 case AArch64::STURQi: 1649 case AArch64::STURWi: 1650 case AArch64::STURXi: 1651 case AArch64::LDURSi: 1652 case AArch64::LDURDi: 1653 case AArch64::LDURQi: 1654 case AArch64::LDURWi: 1655 case AArch64::LDURXi: 1656 // Paired instructions. 1657 case AArch64::LDPSi: 1658 case AArch64::LDPSWi: 1659 case AArch64::LDPDi: 1660 case AArch64::LDPQi: 1661 case AArch64::LDPWi: 1662 case AArch64::LDPXi: 1663 case AArch64::STPSi: 1664 case AArch64::STPDi: 1665 case AArch64::STPQi: 1666 case AArch64::STPWi: 1667 case AArch64::STPXi: { 1668 // Make sure this is a reg+imm (as opposed to an address reloc). 1669 if (!getLdStOffsetOp(MI).isImm()) { 1670 ++MBBI; 1671 break; 1672 } 1673 // Look forward to try to form a post-index instruction. For example, 1674 // ldr x0, [x20] 1675 // add x20, x20, #32 1676 // merged into: 1677 // ldr x0, [x20], #32 1678 MachineBasicBlock::iterator Update = 1679 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1680 if (Update != E) { 1681 // Merge the update into the ld/st. 1682 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1683 Modified = true; 1684 ++NumPostFolded; 1685 break; 1686 } 1687 // Don't know how to handle pre/post-index versions, so move to the next 1688 // instruction. 1689 if (TII->isUnscaledLdSt(Opc)) { 1690 ++MBBI; 1691 break; 1692 } 1693 1694 // Look back to try to find a pre-index instruction. For example, 1695 // add x0, x0, #8 1696 // ldr x1, [x0] 1697 // merged into: 1698 // ldr x1, [x0, #8]! 1699 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1700 if (Update != E) { 1701 // Merge the update into the ld/st. 1702 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1703 Modified = true; 1704 ++NumPreFolded; 1705 break; 1706 } 1707 // The immediate in the load/store is scaled by the size of the memory 1708 // operation. The immediate in the add we're looking for, 1709 // however, is not, so adjust here. 1710 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1711 1712 // Look forward to try to find a post-index instruction. For example, 1713 // ldr x1, [x0, #64] 1714 // add x0, x0, #64 1715 // merged into: 1716 // ldr x1, [x0, #64]! 1717 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1718 if (Update != E) { 1719 // Merge the update into the ld/st. 1720 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1721 Modified = true; 1722 ++NumPreFolded; 1723 break; 1724 } 1725 1726 // Nothing found. Just move to the next instruction. 1727 ++MBBI; 1728 break; 1729 } 1730 } 1731 } 1732 1733 return Modified; 1734 } 1735 1736 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1737 if (skipFunction(*Fn.getFunction())) 1738 return false; 1739 1740 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1741 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1742 TRI = Subtarget->getRegisterInfo(); 1743 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1744 1745 // Resize the modified and used register bitfield trackers. We do this once 1746 // per function and then clear the bitfield each time we optimize a load or 1747 // store. 1748 ModifiedRegs.resize(TRI->getNumRegs()); 1749 UsedRegs.resize(TRI->getNumRegs()); 1750 1751 bool Modified = false; 1752 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 1753 for (auto &MBB : Fn) 1754 Modified |= optimizeBlock(MBB, enableNarrowZeroStOpt); 1755 1756 return Modified; 1757 } 1758 1759 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 1760 // stores near one another? Note: The pre-RA instruction scheduler already has 1761 // hooks to try and schedule pairable loads/stores together to improve pairing 1762 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 1763 1764 // FIXME: When pairing store instructions it's very possible for this pass to 1765 // hoist a store with a KILL marker above another use (without a KILL marker). 1766 // The resulting IR is invalid, but nothing uses the KILL markers after this 1767 // pass, so it's never caused a problem in practice. 1768 1769 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1770 /// load / store optimization pass. 1771 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1772 return new AArch64LoadStoreOpt(); 1773 } 1774