1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 37 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 38 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 39 STATISTIC(NumUnscaledPairCreated, 40 "Number of load/store from unscaled generated"); 41 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted"); 42 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 43 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 44 45 // The LdStLimit limits how far we search for load/store pairs. 46 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 47 cl::init(20), cl::Hidden); 48 49 // The UpdateLimit limits how far we search for update instructions when we form 50 // pre-/post-index instructions. 51 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 52 cl::Hidden); 53 54 static cl::opt<bool> EnableNarrowLdMerge("enable-narrow-ld-merge", cl::Hidden, 55 cl::init(false), 56 cl::desc("Enable narrow load merge")); 57 58 namespace llvm { 59 void initializeAArch64LoadStoreOptPass(PassRegistry &); 60 } 61 62 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 63 64 namespace { 65 66 typedef struct LdStPairFlags { 67 // If a matching instruction is found, MergeForward is set to true if the 68 // merge is to remove the first instruction and replace the second with 69 // a pair-wise insn, and false if the reverse is true. 70 bool MergeForward; 71 72 // SExtIdx gives the index of the result of the load pair that must be 73 // extended. The value of SExtIdx assumes that the paired load produces the 74 // value in this order: (I, returned iterator), i.e., -1 means no value has 75 // to be extended, 0 means I, and 1 means the returned iterator. 76 int SExtIdx; 77 78 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 79 80 void setMergeForward(bool V = true) { MergeForward = V; } 81 bool getMergeForward() const { return MergeForward; } 82 83 void setSExtIdx(int V) { SExtIdx = V; } 84 int getSExtIdx() const { return SExtIdx; } 85 86 } LdStPairFlags; 87 88 struct AArch64LoadStoreOpt : public MachineFunctionPass { 89 static char ID; 90 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 91 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 92 } 93 94 const AArch64InstrInfo *TII; 95 const TargetRegisterInfo *TRI; 96 const AArch64Subtarget *Subtarget; 97 98 // Track which registers have been modified and used. 99 BitVector ModifiedRegs, UsedRegs; 100 101 // Scan the instructions looking for a load/store that can be combined 102 // with the current instruction into a load/store pair. 103 // Return the matching instruction if one is found, else MBB->end(). 104 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 105 LdStPairFlags &Flags, 106 unsigned Limit, 107 bool FindNarrowMerge); 108 109 // Scan the instructions looking for a store that writes to the address from 110 // which the current load instruction reads. Return true if one is found. 111 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 112 MachineBasicBlock::iterator &StoreI); 113 114 // Merge the two instructions indicated into a wider instruction. 115 MachineBasicBlock::iterator 116 mergeNarrowInsns(MachineBasicBlock::iterator I, 117 MachineBasicBlock::iterator MergeMI, 118 const LdStPairFlags &Flags); 119 120 // Merge the two instructions indicated into a single pair-wise instruction. 121 MachineBasicBlock::iterator 122 mergePairedInsns(MachineBasicBlock::iterator I, 123 MachineBasicBlock::iterator Paired, 124 const LdStPairFlags &Flags); 125 126 // Promote the load that reads directly from the address stored to. 127 MachineBasicBlock::iterator 128 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 129 MachineBasicBlock::iterator StoreI); 130 131 // Scan the instruction list to find a base register update that can 132 // be combined with the current instruction (a load or store) using 133 // pre or post indexed addressing with writeback. Scan forwards. 134 MachineBasicBlock::iterator 135 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 136 int UnscaledOffset, unsigned Limit); 137 138 // Scan the instruction list to find a base register update that can 139 // be combined with the current instruction (a load or store) using 140 // pre or post indexed addressing with writeback. Scan backwards. 141 MachineBasicBlock::iterator 142 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 143 144 // Find an instruction that updates the base register of the ld/st 145 // instruction. 146 bool isMatchingUpdateInsn(MachineInstr *MemMI, MachineInstr *MI, 147 unsigned BaseReg, int Offset); 148 149 // Merge a pre- or post-index base register update into a ld/st instruction. 150 MachineBasicBlock::iterator 151 mergeUpdateInsn(MachineBasicBlock::iterator I, 152 MachineBasicBlock::iterator Update, bool IsPreIdx); 153 154 // Find and merge foldable ldr/str instructions. 155 bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI); 156 157 // Find and pair ldr/str instructions. 158 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 159 160 // Find and promote load instructions which read directly from store. 161 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 162 163 bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt); 164 165 bool runOnMachineFunction(MachineFunction &Fn) override; 166 167 MachineFunctionProperties getRequiredProperties() const override { 168 return MachineFunctionProperties().set( 169 MachineFunctionProperties::Property::AllVRegsAllocated); 170 } 171 172 const char *getPassName() const override { 173 return AARCH64_LOAD_STORE_OPT_NAME; 174 } 175 }; 176 char AArch64LoadStoreOpt::ID = 0; 177 } // namespace 178 179 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 180 AARCH64_LOAD_STORE_OPT_NAME, false, false) 181 182 static unsigned getBitExtrOpcode(MachineInstr *MI) { 183 switch (MI->getOpcode()) { 184 default: 185 llvm_unreachable("Unexpected opcode."); 186 case AArch64::LDRBBui: 187 case AArch64::LDURBBi: 188 case AArch64::LDRHHui: 189 case AArch64::LDURHHi: 190 return AArch64::UBFMWri; 191 case AArch64::LDRSBWui: 192 case AArch64::LDURSBWi: 193 case AArch64::LDRSHWui: 194 case AArch64::LDURSHWi: 195 return AArch64::SBFMWri; 196 } 197 } 198 199 static bool isNarrowStore(unsigned Opc) { 200 switch (Opc) { 201 default: 202 return false; 203 case AArch64::STRBBui: 204 case AArch64::STURBBi: 205 case AArch64::STRHHui: 206 case AArch64::STURHHi: 207 return true; 208 } 209 } 210 211 static bool isNarrowLoad(unsigned Opc) { 212 switch (Opc) { 213 default: 214 return false; 215 case AArch64::LDRHHui: 216 case AArch64::LDURHHi: 217 case AArch64::LDRBBui: 218 case AArch64::LDURBBi: 219 case AArch64::LDRSHWui: 220 case AArch64::LDURSHWi: 221 case AArch64::LDRSBWui: 222 case AArch64::LDURSBWi: 223 return true; 224 } 225 } 226 227 static bool isNarrowLoad(MachineInstr *MI) { 228 return isNarrowLoad(MI->getOpcode()); 229 } 230 231 static bool isNarrowLoadOrStore(unsigned Opc) { 232 return isNarrowLoad(Opc) || isNarrowStore(Opc); 233 } 234 235 // Scaling factor for unscaled load or store. 236 static int getMemScale(MachineInstr *MI) { 237 switch (MI->getOpcode()) { 238 default: 239 llvm_unreachable("Opcode has unknown scale!"); 240 case AArch64::LDRBBui: 241 case AArch64::LDURBBi: 242 case AArch64::LDRSBWui: 243 case AArch64::LDURSBWi: 244 case AArch64::STRBBui: 245 case AArch64::STURBBi: 246 return 1; 247 case AArch64::LDRHHui: 248 case AArch64::LDURHHi: 249 case AArch64::LDRSHWui: 250 case AArch64::LDURSHWi: 251 case AArch64::STRHHui: 252 case AArch64::STURHHi: 253 return 2; 254 case AArch64::LDRSui: 255 case AArch64::LDURSi: 256 case AArch64::LDRSWui: 257 case AArch64::LDURSWi: 258 case AArch64::LDRWui: 259 case AArch64::LDURWi: 260 case AArch64::STRSui: 261 case AArch64::STURSi: 262 case AArch64::STRWui: 263 case AArch64::STURWi: 264 case AArch64::LDPSi: 265 case AArch64::LDPSWi: 266 case AArch64::LDPWi: 267 case AArch64::STPSi: 268 case AArch64::STPWi: 269 return 4; 270 case AArch64::LDRDui: 271 case AArch64::LDURDi: 272 case AArch64::LDRXui: 273 case AArch64::LDURXi: 274 case AArch64::STRDui: 275 case AArch64::STURDi: 276 case AArch64::STRXui: 277 case AArch64::STURXi: 278 case AArch64::LDPDi: 279 case AArch64::LDPXi: 280 case AArch64::STPDi: 281 case AArch64::STPXi: 282 return 8; 283 case AArch64::LDRQui: 284 case AArch64::LDURQi: 285 case AArch64::STRQui: 286 case AArch64::STURQi: 287 case AArch64::LDPQi: 288 case AArch64::STPQi: 289 return 16; 290 } 291 } 292 293 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 294 bool *IsValidLdStrOpc = nullptr) { 295 if (IsValidLdStrOpc) 296 *IsValidLdStrOpc = true; 297 switch (Opc) { 298 default: 299 if (IsValidLdStrOpc) 300 *IsValidLdStrOpc = false; 301 return UINT_MAX; 302 case AArch64::STRDui: 303 case AArch64::STURDi: 304 case AArch64::STRQui: 305 case AArch64::STURQi: 306 case AArch64::STRBBui: 307 case AArch64::STURBBi: 308 case AArch64::STRHHui: 309 case AArch64::STURHHi: 310 case AArch64::STRWui: 311 case AArch64::STURWi: 312 case AArch64::STRXui: 313 case AArch64::STURXi: 314 case AArch64::LDRDui: 315 case AArch64::LDURDi: 316 case AArch64::LDRQui: 317 case AArch64::LDURQi: 318 case AArch64::LDRWui: 319 case AArch64::LDURWi: 320 case AArch64::LDRXui: 321 case AArch64::LDURXi: 322 case AArch64::STRSui: 323 case AArch64::STURSi: 324 case AArch64::LDRSui: 325 case AArch64::LDURSi: 326 case AArch64::LDRHHui: 327 case AArch64::LDURHHi: 328 case AArch64::LDRBBui: 329 case AArch64::LDURBBi: 330 return Opc; 331 case AArch64::LDRSWui: 332 return AArch64::LDRWui; 333 case AArch64::LDURSWi: 334 return AArch64::LDURWi; 335 case AArch64::LDRSBWui: 336 return AArch64::LDRBBui; 337 case AArch64::LDRSHWui: 338 return AArch64::LDRHHui; 339 case AArch64::LDURSBWi: 340 return AArch64::LDURBBi; 341 case AArch64::LDURSHWi: 342 return AArch64::LDURHHi; 343 } 344 } 345 346 static unsigned getMatchingWideOpcode(unsigned Opc) { 347 switch (Opc) { 348 default: 349 llvm_unreachable("Opcode has no wide equivalent!"); 350 case AArch64::STRBBui: 351 return AArch64::STRHHui; 352 case AArch64::STRHHui: 353 return AArch64::STRWui; 354 case AArch64::STURBBi: 355 return AArch64::STURHHi; 356 case AArch64::STURHHi: 357 return AArch64::STURWi; 358 case AArch64::STURWi: 359 return AArch64::STURXi; 360 case AArch64::STRWui: 361 return AArch64::STRXui; 362 case AArch64::LDRHHui: 363 case AArch64::LDRSHWui: 364 return AArch64::LDRWui; 365 case AArch64::LDURHHi: 366 case AArch64::LDURSHWi: 367 return AArch64::LDURWi; 368 case AArch64::LDRBBui: 369 case AArch64::LDRSBWui: 370 return AArch64::LDRHHui; 371 case AArch64::LDURBBi: 372 case AArch64::LDURSBWi: 373 return AArch64::LDURHHi; 374 } 375 } 376 377 static unsigned getMatchingPairOpcode(unsigned Opc) { 378 switch (Opc) { 379 default: 380 llvm_unreachable("Opcode has no pairwise equivalent!"); 381 case AArch64::STRSui: 382 case AArch64::STURSi: 383 return AArch64::STPSi; 384 case AArch64::STRDui: 385 case AArch64::STURDi: 386 return AArch64::STPDi; 387 case AArch64::STRQui: 388 case AArch64::STURQi: 389 return AArch64::STPQi; 390 case AArch64::STRWui: 391 case AArch64::STURWi: 392 return AArch64::STPWi; 393 case AArch64::STRXui: 394 case AArch64::STURXi: 395 return AArch64::STPXi; 396 case AArch64::LDRSui: 397 case AArch64::LDURSi: 398 return AArch64::LDPSi; 399 case AArch64::LDRDui: 400 case AArch64::LDURDi: 401 return AArch64::LDPDi; 402 case AArch64::LDRQui: 403 case AArch64::LDURQi: 404 return AArch64::LDPQi; 405 case AArch64::LDRWui: 406 case AArch64::LDURWi: 407 return AArch64::LDPWi; 408 case AArch64::LDRXui: 409 case AArch64::LDURXi: 410 return AArch64::LDPXi; 411 case AArch64::LDRSWui: 412 case AArch64::LDURSWi: 413 return AArch64::LDPSWi; 414 } 415 } 416 417 static unsigned isMatchingStore(MachineInstr *LoadInst, 418 MachineInstr *StoreInst) { 419 unsigned LdOpc = LoadInst->getOpcode(); 420 unsigned StOpc = StoreInst->getOpcode(); 421 switch (LdOpc) { 422 default: 423 llvm_unreachable("Unsupported load instruction!"); 424 case AArch64::LDRBBui: 425 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 426 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 427 case AArch64::LDURBBi: 428 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 429 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 430 case AArch64::LDRHHui: 431 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 432 StOpc == AArch64::STRXui; 433 case AArch64::LDURHHi: 434 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 435 StOpc == AArch64::STURXi; 436 case AArch64::LDRWui: 437 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 438 case AArch64::LDURWi: 439 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 440 case AArch64::LDRXui: 441 return StOpc == AArch64::STRXui; 442 case AArch64::LDURXi: 443 return StOpc == AArch64::STURXi; 444 } 445 } 446 447 static unsigned getPreIndexedOpcode(unsigned Opc) { 448 switch (Opc) { 449 default: 450 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 451 case AArch64::STRSui: 452 return AArch64::STRSpre; 453 case AArch64::STRDui: 454 return AArch64::STRDpre; 455 case AArch64::STRQui: 456 return AArch64::STRQpre; 457 case AArch64::STRBBui: 458 return AArch64::STRBBpre; 459 case AArch64::STRHHui: 460 return AArch64::STRHHpre; 461 case AArch64::STRWui: 462 return AArch64::STRWpre; 463 case AArch64::STRXui: 464 return AArch64::STRXpre; 465 case AArch64::LDRSui: 466 return AArch64::LDRSpre; 467 case AArch64::LDRDui: 468 return AArch64::LDRDpre; 469 case AArch64::LDRQui: 470 return AArch64::LDRQpre; 471 case AArch64::LDRBBui: 472 return AArch64::LDRBBpre; 473 case AArch64::LDRHHui: 474 return AArch64::LDRHHpre; 475 case AArch64::LDRWui: 476 return AArch64::LDRWpre; 477 case AArch64::LDRXui: 478 return AArch64::LDRXpre; 479 case AArch64::LDRSWui: 480 return AArch64::LDRSWpre; 481 case AArch64::LDPSi: 482 return AArch64::LDPSpre; 483 case AArch64::LDPSWi: 484 return AArch64::LDPSWpre; 485 case AArch64::LDPDi: 486 return AArch64::LDPDpre; 487 case AArch64::LDPQi: 488 return AArch64::LDPQpre; 489 case AArch64::LDPWi: 490 return AArch64::LDPWpre; 491 case AArch64::LDPXi: 492 return AArch64::LDPXpre; 493 case AArch64::STPSi: 494 return AArch64::STPSpre; 495 case AArch64::STPDi: 496 return AArch64::STPDpre; 497 case AArch64::STPQi: 498 return AArch64::STPQpre; 499 case AArch64::STPWi: 500 return AArch64::STPWpre; 501 case AArch64::STPXi: 502 return AArch64::STPXpre; 503 } 504 } 505 506 static unsigned getPostIndexedOpcode(unsigned Opc) { 507 switch (Opc) { 508 default: 509 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 510 case AArch64::STRSui: 511 return AArch64::STRSpost; 512 case AArch64::STRDui: 513 return AArch64::STRDpost; 514 case AArch64::STRQui: 515 return AArch64::STRQpost; 516 case AArch64::STRBBui: 517 return AArch64::STRBBpost; 518 case AArch64::STRHHui: 519 return AArch64::STRHHpost; 520 case AArch64::STRWui: 521 return AArch64::STRWpost; 522 case AArch64::STRXui: 523 return AArch64::STRXpost; 524 case AArch64::LDRSui: 525 return AArch64::LDRSpost; 526 case AArch64::LDRDui: 527 return AArch64::LDRDpost; 528 case AArch64::LDRQui: 529 return AArch64::LDRQpost; 530 case AArch64::LDRBBui: 531 return AArch64::LDRBBpost; 532 case AArch64::LDRHHui: 533 return AArch64::LDRHHpost; 534 case AArch64::LDRWui: 535 return AArch64::LDRWpost; 536 case AArch64::LDRXui: 537 return AArch64::LDRXpost; 538 case AArch64::LDRSWui: 539 return AArch64::LDRSWpost; 540 case AArch64::LDPSi: 541 return AArch64::LDPSpost; 542 case AArch64::LDPSWi: 543 return AArch64::LDPSWpost; 544 case AArch64::LDPDi: 545 return AArch64::LDPDpost; 546 case AArch64::LDPQi: 547 return AArch64::LDPQpost; 548 case AArch64::LDPWi: 549 return AArch64::LDPWpost; 550 case AArch64::LDPXi: 551 return AArch64::LDPXpost; 552 case AArch64::STPSi: 553 return AArch64::STPSpost; 554 case AArch64::STPDi: 555 return AArch64::STPDpost; 556 case AArch64::STPQi: 557 return AArch64::STPQpost; 558 case AArch64::STPWi: 559 return AArch64::STPWpost; 560 case AArch64::STPXi: 561 return AArch64::STPXpost; 562 } 563 } 564 565 static bool isPairedLdSt(const MachineInstr *MI) { 566 switch (MI->getOpcode()) { 567 default: 568 return false; 569 case AArch64::LDPSi: 570 case AArch64::LDPSWi: 571 case AArch64::LDPDi: 572 case AArch64::LDPQi: 573 case AArch64::LDPWi: 574 case AArch64::LDPXi: 575 case AArch64::STPSi: 576 case AArch64::STPDi: 577 case AArch64::STPQi: 578 case AArch64::STPWi: 579 case AArch64::STPXi: 580 return true; 581 } 582 } 583 584 static const MachineOperand &getLdStRegOp(const MachineInstr *MI, 585 unsigned PairedRegOp = 0) { 586 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 587 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 588 return MI->getOperand(Idx); 589 } 590 591 static const MachineOperand &getLdStBaseOp(const MachineInstr *MI) { 592 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 593 return MI->getOperand(Idx); 594 } 595 596 static const MachineOperand &getLdStOffsetOp(const MachineInstr *MI) { 597 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 598 return MI->getOperand(Idx); 599 } 600 601 static bool isLdOffsetInRangeOfSt(MachineInstr *LoadInst, 602 MachineInstr *StoreInst, 603 const AArch64InstrInfo *TII) { 604 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 605 int LoadSize = getMemScale(LoadInst); 606 int StoreSize = getMemScale(StoreInst); 607 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 608 ? getLdStOffsetOp(StoreInst).getImm() 609 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 610 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 611 ? getLdStOffsetOp(LoadInst).getImm() 612 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 613 return (UnscaledStOffset <= UnscaledLdOffset) && 614 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 615 } 616 617 static bool isPromotableZeroStoreOpcode(unsigned Opc) { 618 return isNarrowStore(Opc) || Opc == AArch64::STRWui || Opc == AArch64::STURWi; 619 } 620 621 static bool isPromotableZeroStoreOpcode(MachineInstr *MI) { 622 return isPromotableZeroStoreOpcode(MI->getOpcode()); 623 } 624 625 static bool isPromotableZeroStoreInst(MachineInstr *MI) { 626 return (isPromotableZeroStoreOpcode(MI)) && 627 getLdStRegOp(MI).getReg() == AArch64::WZR; 628 } 629 630 MachineBasicBlock::iterator 631 AArch64LoadStoreOpt::mergeNarrowInsns(MachineBasicBlock::iterator I, 632 MachineBasicBlock::iterator MergeMI, 633 const LdStPairFlags &Flags) { 634 MachineBasicBlock::iterator NextI = I; 635 ++NextI; 636 // If NextI is the second of the two instructions to be merged, we need 637 // to skip one further. Either way we merge will invalidate the iterator, 638 // and we don't need to scan the new instruction, as it's a pairwise 639 // instruction, which we're not considering for further action anyway. 640 if (NextI == MergeMI) 641 ++NextI; 642 643 unsigned Opc = I->getOpcode(); 644 bool IsScaled = !TII->isUnscaledLdSt(Opc); 645 int OffsetStride = IsScaled ? 1 : getMemScale(I); 646 647 bool MergeForward = Flags.getMergeForward(); 648 // Insert our new paired instruction after whichever of the paired 649 // instructions MergeForward indicates. 650 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 651 // Also based on MergeForward is from where we copy the base register operand 652 // so we get the flags compatible with the input code. 653 const MachineOperand &BaseRegOp = 654 MergeForward ? getLdStBaseOp(MergeMI) : getLdStBaseOp(I); 655 656 // Which register is Rt and which is Rt2 depends on the offset order. 657 MachineInstr *RtMI, *Rt2MI; 658 if (getLdStOffsetOp(I).getImm() == 659 getLdStOffsetOp(MergeMI).getImm() + OffsetStride) { 660 RtMI = MergeMI; 661 Rt2MI = I; 662 } else { 663 RtMI = I; 664 Rt2MI = MergeMI; 665 } 666 667 int OffsetImm = getLdStOffsetOp(RtMI).getImm(); 668 // Change the scaled offset from small to large type. 669 if (IsScaled) { 670 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 671 OffsetImm /= 2; 672 } 673 674 DebugLoc DL = I->getDebugLoc(); 675 MachineBasicBlock *MBB = I->getParent(); 676 if (isNarrowLoad(Opc)) { 677 MachineInstr *RtNewDest = MergeForward ? I : MergeMI; 678 // When merging small (< 32 bit) loads for big-endian targets, the order of 679 // the component parts gets swapped. 680 if (!Subtarget->isLittleEndian()) 681 std::swap(RtMI, Rt2MI); 682 // Construct the new load instruction. 683 MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2; 684 NewMemMI = 685 BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 686 .addOperand(getLdStRegOp(RtNewDest)) 687 .addOperand(BaseRegOp) 688 .addImm(OffsetImm) 689 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 690 (void)NewMemMI; 691 692 DEBUG( 693 dbgs() 694 << "Creating the new load and extract. Replacing instructions:\n "); 695 DEBUG(I->print(dbgs())); 696 DEBUG(dbgs() << " "); 697 DEBUG(MergeMI->print(dbgs())); 698 DEBUG(dbgs() << " with instructions:\n "); 699 DEBUG((NewMemMI)->print(dbgs())); 700 701 int Width = getMemScale(I) == 1 ? 8 : 16; 702 int LSBLow = 0; 703 int LSBHigh = Width; 704 int ImmsLow = LSBLow + Width - 1; 705 int ImmsHigh = LSBHigh + Width - 1; 706 MachineInstr *ExtDestMI = MergeForward ? MergeMI : I; 707 if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) { 708 // Create the bitfield extract for high bits. 709 BitExtMI1 = 710 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI))) 711 .addOperand(getLdStRegOp(Rt2MI)) 712 .addReg(getLdStRegOp(RtNewDest).getReg()) 713 .addImm(LSBHigh) 714 .addImm(ImmsHigh); 715 // Create the bitfield extract for low bits. 716 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 717 // For unsigned, prefer to use AND for low bits. 718 BitExtMI2 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 719 .addOperand(getLdStRegOp(RtMI)) 720 .addReg(getLdStRegOp(RtNewDest).getReg()) 721 .addImm(ImmsLow); 722 } else { 723 BitExtMI2 = 724 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI))) 725 .addOperand(getLdStRegOp(RtMI)) 726 .addReg(getLdStRegOp(RtNewDest).getReg()) 727 .addImm(LSBLow) 728 .addImm(ImmsLow); 729 } 730 } else { 731 // Create the bitfield extract for low bits. 732 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 733 // For unsigned, prefer to use AND for low bits. 734 BitExtMI1 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 735 .addOperand(getLdStRegOp(RtMI)) 736 .addReg(getLdStRegOp(RtNewDest).getReg()) 737 .addImm(ImmsLow); 738 } else { 739 BitExtMI1 = 740 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI))) 741 .addOperand(getLdStRegOp(RtMI)) 742 .addReg(getLdStRegOp(RtNewDest).getReg()) 743 .addImm(LSBLow) 744 .addImm(ImmsLow); 745 } 746 747 // Create the bitfield extract for high bits. 748 BitExtMI2 = 749 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI))) 750 .addOperand(getLdStRegOp(Rt2MI)) 751 .addReg(getLdStRegOp(RtNewDest).getReg()) 752 .addImm(LSBHigh) 753 .addImm(ImmsHigh); 754 } 755 (void)BitExtMI1; 756 (void)BitExtMI2; 757 758 DEBUG(dbgs() << " "); 759 DEBUG((BitExtMI1)->print(dbgs())); 760 DEBUG(dbgs() << " "); 761 DEBUG((BitExtMI2)->print(dbgs())); 762 DEBUG(dbgs() << "\n"); 763 764 // Erase the old instructions. 765 I->eraseFromParent(); 766 MergeMI->eraseFromParent(); 767 return NextI; 768 } 769 assert(isPromotableZeroStoreInst(I) && isPromotableZeroStoreInst(MergeMI) && 770 "Expected promotable zero store"); 771 772 // Construct the new instruction. 773 MachineInstrBuilder MIB; 774 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 775 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 776 .addOperand(BaseRegOp) 777 .addImm(OffsetImm) 778 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 779 (void)MIB; 780 781 DEBUG(dbgs() << "Creating wider load/store. Replacing instructions:\n "); 782 DEBUG(I->print(dbgs())); 783 DEBUG(dbgs() << " "); 784 DEBUG(MergeMI->print(dbgs())); 785 DEBUG(dbgs() << " with instruction:\n "); 786 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 787 DEBUG(dbgs() << "\n"); 788 789 // Erase the old instructions. 790 I->eraseFromParent(); 791 MergeMI->eraseFromParent(); 792 return NextI; 793 } 794 795 MachineBasicBlock::iterator 796 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 797 MachineBasicBlock::iterator Paired, 798 const LdStPairFlags &Flags) { 799 MachineBasicBlock::iterator NextI = I; 800 ++NextI; 801 // If NextI is the second of the two instructions to be merged, we need 802 // to skip one further. Either way we merge will invalidate the iterator, 803 // and we don't need to scan the new instruction, as it's a pairwise 804 // instruction, which we're not considering for further action anyway. 805 if (NextI == Paired) 806 ++NextI; 807 808 int SExtIdx = Flags.getSExtIdx(); 809 unsigned Opc = 810 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 811 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 812 int OffsetStride = IsUnscaled ? getMemScale(I) : 1; 813 814 bool MergeForward = Flags.getMergeForward(); 815 // Insert our new paired instruction after whichever of the paired 816 // instructions MergeForward indicates. 817 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 818 // Also based on MergeForward is from where we copy the base register operand 819 // so we get the flags compatible with the input code. 820 const MachineOperand &BaseRegOp = 821 MergeForward ? getLdStBaseOp(Paired) : getLdStBaseOp(I); 822 823 int Offset = getLdStOffsetOp(I).getImm(); 824 int PairedOffset = getLdStOffsetOp(Paired).getImm(); 825 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 826 if (IsUnscaled != PairedIsUnscaled) { 827 // We're trying to pair instructions that differ in how they are scaled. If 828 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 829 // the opposite (i.e., make Paired's offset unscaled). 830 int MemSize = getMemScale(Paired); 831 if (PairedIsUnscaled) { 832 // If the unscaled offset isn't a multiple of the MemSize, we can't 833 // pair the operations together. 834 assert(!(PairedOffset % getMemScale(Paired)) && 835 "Offset should be a multiple of the stride!"); 836 PairedOffset /= MemSize; 837 } else { 838 PairedOffset *= MemSize; 839 } 840 } 841 842 // Which register is Rt and which is Rt2 depends on the offset order. 843 MachineInstr *RtMI, *Rt2MI; 844 if (Offset == PairedOffset + OffsetStride) { 845 RtMI = Paired; 846 Rt2MI = I; 847 // Here we swapped the assumption made for SExtIdx. 848 // I.e., we turn ldp I, Paired into ldp Paired, I. 849 // Update the index accordingly. 850 if (SExtIdx != -1) 851 SExtIdx = (SExtIdx + 1) % 2; 852 } else { 853 RtMI = I; 854 Rt2MI = Paired; 855 } 856 int OffsetImm = getLdStOffsetOp(RtMI).getImm(); 857 // Scale the immediate offset, if necessary. 858 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 859 assert(!(OffsetImm % getMemScale(RtMI)) && 860 "Unscaled offset cannot be scaled."); 861 OffsetImm /= getMemScale(RtMI); 862 } 863 864 // Construct the new instruction. 865 MachineInstrBuilder MIB; 866 DebugLoc DL = I->getDebugLoc(); 867 MachineBasicBlock *MBB = I->getParent(); 868 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 869 .addOperand(getLdStRegOp(RtMI)) 870 .addOperand(getLdStRegOp(Rt2MI)) 871 .addOperand(BaseRegOp) 872 .addImm(OffsetImm) 873 .setMemRefs(I->mergeMemRefsWith(*Paired)); 874 875 (void)MIB; 876 877 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 878 DEBUG(I->print(dbgs())); 879 DEBUG(dbgs() << " "); 880 DEBUG(Paired->print(dbgs())); 881 DEBUG(dbgs() << " with instruction:\n "); 882 if (SExtIdx != -1) { 883 // Generate the sign extension for the proper result of the ldp. 884 // I.e., with X1, that would be: 885 // %W1<def> = KILL %W1, %X1<imp-def> 886 // %X1<def> = SBFMXri %X1<kill>, 0, 31 887 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 888 // Right now, DstMO has the extended register, since it comes from an 889 // extended opcode. 890 unsigned DstRegX = DstMO.getReg(); 891 // Get the W variant of that register. 892 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 893 // Update the result of LDP to use the W instead of the X variant. 894 DstMO.setReg(DstRegW); 895 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 896 DEBUG(dbgs() << "\n"); 897 // Make the machine verifier happy by providing a definition for 898 // the X register. 899 // Insert this definition right after the generated LDP, i.e., before 900 // InsertionPoint. 901 MachineInstrBuilder MIBKill = 902 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 903 .addReg(DstRegW) 904 .addReg(DstRegX, RegState::Define); 905 MIBKill->getOperand(2).setImplicit(); 906 // Create the sign extension. 907 MachineInstrBuilder MIBSXTW = 908 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 909 .addReg(DstRegX) 910 .addImm(0) 911 .addImm(31); 912 (void)MIBSXTW; 913 DEBUG(dbgs() << " Extend operand:\n "); 914 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 915 } else { 916 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 917 } 918 DEBUG(dbgs() << "\n"); 919 920 // Erase the old instructions. 921 I->eraseFromParent(); 922 Paired->eraseFromParent(); 923 924 return NextI; 925 } 926 927 MachineBasicBlock::iterator 928 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 929 MachineBasicBlock::iterator StoreI) { 930 MachineBasicBlock::iterator NextI = LoadI; 931 ++NextI; 932 933 int LoadSize = getMemScale(LoadI); 934 int StoreSize = getMemScale(StoreI); 935 unsigned LdRt = getLdStRegOp(LoadI).getReg(); 936 unsigned StRt = getLdStRegOp(StoreI).getReg(); 937 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 938 939 assert((IsStoreXReg || 940 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 941 "Unexpected RegClass"); 942 943 MachineInstr *BitExtMI; 944 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 945 // Remove the load, if the destination register of the loads is the same 946 // register for stored value. 947 if (StRt == LdRt && LoadSize == 8) { 948 DEBUG(dbgs() << "Remove load instruction:\n "); 949 DEBUG(LoadI->print(dbgs())); 950 DEBUG(dbgs() << "\n"); 951 LoadI->eraseFromParent(); 952 return NextI; 953 } 954 // Replace the load with a mov if the load and store are in the same size. 955 BitExtMI = 956 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 957 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 958 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 959 .addReg(StRt) 960 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 961 } else { 962 // FIXME: Currently we disable this transformation in big-endian targets as 963 // performance and correctness are verified only in little-endian. 964 if (!Subtarget->isLittleEndian()) 965 return NextI; 966 bool IsUnscaled = TII->isUnscaledLdSt(LoadI); 967 assert(IsUnscaled == TII->isUnscaledLdSt(StoreI) && 968 "Unsupported ld/st match"); 969 assert(LoadSize <= StoreSize && "Invalid load size"); 970 int UnscaledLdOffset = IsUnscaled 971 ? getLdStOffsetOp(LoadI).getImm() 972 : getLdStOffsetOp(LoadI).getImm() * LoadSize; 973 int UnscaledStOffset = IsUnscaled 974 ? getLdStOffsetOp(StoreI).getImm() 975 : getLdStOffsetOp(StoreI).getImm() * StoreSize; 976 int Width = LoadSize * 8; 977 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 978 int Imms = Immr + Width - 1; 979 unsigned DestReg = IsStoreXReg 980 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 981 &AArch64::GPR64RegClass) 982 : LdRt; 983 984 assert((UnscaledLdOffset >= UnscaledStOffset && 985 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 986 "Invalid offset"); 987 988 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 989 Imms = Immr + Width - 1; 990 if (UnscaledLdOffset == UnscaledStOffset) { 991 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 992 | ((Immr) << 6) // immr 993 | ((Imms) << 0) // imms 994 ; 995 996 BitExtMI = 997 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 998 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 999 DestReg) 1000 .addReg(StRt) 1001 .addImm(AndMaskEncoded); 1002 } else { 1003 BitExtMI = 1004 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1005 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1006 DestReg) 1007 .addReg(StRt) 1008 .addImm(Immr) 1009 .addImm(Imms); 1010 } 1011 } 1012 (void)BitExtMI; 1013 1014 DEBUG(dbgs() << "Promoting load by replacing :\n "); 1015 DEBUG(StoreI->print(dbgs())); 1016 DEBUG(dbgs() << " "); 1017 DEBUG(LoadI->print(dbgs())); 1018 DEBUG(dbgs() << " with instructions:\n "); 1019 DEBUG(StoreI->print(dbgs())); 1020 DEBUG(dbgs() << " "); 1021 DEBUG((BitExtMI)->print(dbgs())); 1022 DEBUG(dbgs() << "\n"); 1023 1024 // Erase the old instructions. 1025 LoadI->eraseFromParent(); 1026 return NextI; 1027 } 1028 1029 /// trackRegDefsUses - Remember what registers the specified instruction uses 1030 /// and modifies. 1031 static void trackRegDefsUses(const MachineInstr *MI, BitVector &ModifiedRegs, 1032 BitVector &UsedRegs, 1033 const TargetRegisterInfo *TRI) { 1034 for (const MachineOperand &MO : MI->operands()) { 1035 if (MO.isRegMask()) 1036 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 1037 1038 if (!MO.isReg()) 1039 continue; 1040 unsigned Reg = MO.getReg(); 1041 if (!Reg) 1042 continue; 1043 if (MO.isDef()) { 1044 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1045 ModifiedRegs.set(*AI); 1046 } else { 1047 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 1048 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1049 UsedRegs.set(*AI); 1050 } 1051 } 1052 } 1053 1054 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1055 // Convert the byte-offset used by unscaled into an "element" offset used 1056 // by the scaled pair load/store instructions. 1057 if (IsUnscaled) { 1058 // If the byte-offset isn't a multiple of the stride, there's no point 1059 // trying to match it. 1060 if (Offset % OffsetStride) 1061 return false; 1062 Offset /= OffsetStride; 1063 } 1064 return Offset <= 63 && Offset >= -64; 1065 } 1066 1067 // Do alignment, specialized to power of 2 and for signed ints, 1068 // avoiding having to do a C-style cast from uint_64t to int when 1069 // using alignTo from include/llvm/Support/MathExtras.h. 1070 // FIXME: Move this function to include/MathExtras.h? 1071 static int alignTo(int Num, int PowOf2) { 1072 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1073 } 1074 1075 static bool mayAlias(MachineInstr *MIa, MachineInstr *MIb, 1076 const AArch64InstrInfo *TII) { 1077 // One of the instructions must modify memory. 1078 if (!MIa->mayStore() && !MIb->mayStore()) 1079 return false; 1080 1081 // Both instructions must be memory operations. 1082 if (!MIa->mayLoadOrStore() && !MIb->mayLoadOrStore()) 1083 return false; 1084 1085 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 1086 } 1087 1088 static bool mayAlias(MachineInstr *MIa, 1089 SmallVectorImpl<MachineInstr *> &MemInsns, 1090 const AArch64InstrInfo *TII) { 1091 for (auto &MIb : MemInsns) 1092 if (mayAlias(MIa, MIb, TII)) 1093 return true; 1094 1095 return false; 1096 } 1097 1098 bool AArch64LoadStoreOpt::findMatchingStore( 1099 MachineBasicBlock::iterator I, unsigned Limit, 1100 MachineBasicBlock::iterator &StoreI) { 1101 MachineBasicBlock::iterator B = I->getParent()->begin(); 1102 MachineBasicBlock::iterator MBBI = I; 1103 MachineInstr *LoadMI = I; 1104 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 1105 1106 // If the load is the first instruction in the block, there's obviously 1107 // not any matching store. 1108 if (MBBI == B) 1109 return false; 1110 1111 // Track which registers have been modified and used between the first insn 1112 // and the second insn. 1113 ModifiedRegs.reset(); 1114 UsedRegs.reset(); 1115 1116 unsigned Count = 0; 1117 do { 1118 --MBBI; 1119 MachineInstr *MI = MBBI; 1120 1121 // Don't count DBG_VALUE instructions towards the search limit. 1122 if (!MI->isDebugValue()) 1123 ++Count; 1124 1125 // If the load instruction reads directly from the address to which the 1126 // store instruction writes and the stored value is not modified, we can 1127 // promote the load. Since we do not handle stores with pre-/post-index, 1128 // it's unnecessary to check if BaseReg is modified by the store itself. 1129 if (MI->mayStore() && isMatchingStore(LoadMI, MI) && 1130 BaseReg == getLdStBaseOp(MI).getReg() && 1131 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1132 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1133 StoreI = MBBI; 1134 return true; 1135 } 1136 1137 if (MI->isCall()) 1138 return false; 1139 1140 // Update modified / uses register lists. 1141 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1142 1143 // Otherwise, if the base register is modified, we have no match, so 1144 // return early. 1145 if (ModifiedRegs[BaseReg]) 1146 return false; 1147 1148 // If we encounter a store aliased with the load, return early. 1149 if (MI->mayStore() && mayAlias(LoadMI, MI, TII)) 1150 return false; 1151 } while (MBBI != B && Count < Limit); 1152 return false; 1153 } 1154 1155 // Returns true if these two opcodes can be merged or paired. Otherwise, 1156 // returns false. 1157 static bool canMergeOpc(unsigned OpcA, unsigned OpcB, LdStPairFlags &Flags, 1158 const AArch64InstrInfo *TII) { 1159 // Opcodes match: nothing more to check. 1160 if (OpcA == OpcB) 1161 return true; 1162 1163 // Try to match a sign-extended load/store with a zero-extended load/store. 1164 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1165 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1166 assert(IsValidLdStrOpc && 1167 "Given Opc should be a Load or Store with an immediate"); 1168 // OpcA will be the first instruction in the pair. 1169 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1170 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1171 return true; 1172 } 1173 1174 // If the second instruction isn't even a load/store, bail out. 1175 if (!PairIsValidLdStrOpc) 1176 return false; 1177 1178 // FIXME: We don't support merging narrow loads/stores with mixed 1179 // scaled/unscaled offsets. 1180 if (isNarrowLoadOrStore(OpcA) || isNarrowLoadOrStore(OpcB)) 1181 return false; 1182 1183 // Try to match an unscaled load/store with a scaled load/store. 1184 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1185 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1186 1187 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1188 } 1189 1190 /// Scan the instructions looking for a load/store that can be combined with the 1191 /// current instruction into a wider equivalent or a load/store pair. 1192 MachineBasicBlock::iterator 1193 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1194 LdStPairFlags &Flags, unsigned Limit, 1195 bool FindNarrowMerge) { 1196 MachineBasicBlock::iterator E = I->getParent()->end(); 1197 MachineBasicBlock::iterator MBBI = I; 1198 MachineInstr *FirstMI = I; 1199 ++MBBI; 1200 1201 unsigned Opc = FirstMI->getOpcode(); 1202 bool MayLoad = FirstMI->mayLoad(); 1203 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1204 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1205 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1206 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1207 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1208 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1209 1210 // Track which registers have been modified and used between the first insn 1211 // (inclusive) and the second insn. 1212 ModifiedRegs.reset(); 1213 UsedRegs.reset(); 1214 1215 // Remember any instructions that read/write memory between FirstMI and MI. 1216 SmallVector<MachineInstr *, 4> MemInsns; 1217 1218 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1219 MachineInstr *MI = MBBI; 1220 // Skip DBG_VALUE instructions. Otherwise debug info can affect the 1221 // optimization by changing how far we scan. 1222 if (MI->isDebugValue()) 1223 continue; 1224 1225 // Now that we know this is a real instruction, count it. 1226 ++Count; 1227 1228 Flags.setSExtIdx(-1); 1229 if (canMergeOpc(Opc, MI->getOpcode(), Flags, TII) && 1230 getLdStOffsetOp(MI).isImm()) { 1231 assert(MI->mayLoadOrStore() && "Expected memory operation."); 1232 // If we've found another instruction with the same opcode, check to see 1233 // if the base and offset are compatible with our starting instruction. 1234 // These instructions all have scaled immediate operands, so we just 1235 // check for +1/-1. Make sure to check the new instruction offset is 1236 // actually an immediate and not a symbolic reference destined for 1237 // a relocation. 1238 // 1239 // Pairwise instructions have a 7-bit signed offset field. Single insns 1240 // have a 12-bit unsigned offset field. To be a valid combine, the 1241 // final offset must be in range. 1242 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1243 int MIOffset = getLdStOffsetOp(MI).getImm(); 1244 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1245 if (IsUnscaled != MIIsUnscaled) { 1246 // We're trying to pair instructions that differ in how they are scaled. 1247 // If FirstMI is scaled then scale the offset of MI accordingly. 1248 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1249 int MemSize = getMemScale(MI); 1250 if (MIIsUnscaled) { 1251 // If the unscaled offset isn't a multiple of the MemSize, we can't 1252 // pair the operations together: bail and keep looking. 1253 if (MIOffset % MemSize) 1254 continue; 1255 MIOffset /= MemSize; 1256 } else { 1257 MIOffset *= MemSize; 1258 } 1259 } 1260 1261 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1262 (Offset + OffsetStride == MIOffset))) { 1263 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1264 // If this is a volatile load/store that otherwise matched, stop looking 1265 // as something is going on that we don't have enough information to 1266 // safely transform. Similarly, stop if we see a hint to avoid pairs. 1267 if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1268 return E; 1269 1270 if (FindNarrowMerge) { 1271 // If the alignment requirements of the scaled wide load/store 1272 // instruction can't express the offset of the scaled narrow input, 1273 // bail and keep looking. For promotable zero stores, allow only when 1274 // the stored value is the same (i.e., WZR). 1275 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1276 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1277 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1278 MemInsns.push_back(MI); 1279 continue; 1280 } 1281 } else { 1282 // If the resultant immediate offset of merging these instructions 1283 // is out of range for a pairwise instruction, bail and keep looking. 1284 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1285 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1286 MemInsns.push_back(MI); 1287 continue; 1288 } 1289 // If the alignment requirements of the paired (scaled) instruction 1290 // can't express the offset of the unscaled input, bail and keep 1291 // looking. 1292 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1293 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1294 MemInsns.push_back(MI); 1295 continue; 1296 } 1297 } 1298 // If the destination register of the loads is the same register, bail 1299 // and keep looking. A load-pair instruction with both destination 1300 // registers the same is UNPREDICTABLE and will result in an exception. 1301 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1302 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1303 MemInsns.push_back(MI); 1304 continue; 1305 } 1306 1307 // If the Rt of the second instruction was not modified or used between 1308 // the two instructions and none of the instructions between the second 1309 // and first alias with the second, we can combine the second into the 1310 // first. 1311 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1312 !(MI->mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1313 !mayAlias(MI, MemInsns, TII)) { 1314 Flags.setMergeForward(false); 1315 return MBBI; 1316 } 1317 1318 // Likewise, if the Rt of the first instruction is not modified or used 1319 // between the two instructions and none of the instructions between the 1320 // first and the second alias with the first, we can combine the first 1321 // into the second. 1322 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1323 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1324 !mayAlias(FirstMI, MemInsns, TII)) { 1325 Flags.setMergeForward(true); 1326 return MBBI; 1327 } 1328 // Unable to combine these instructions due to interference in between. 1329 // Keep looking. 1330 } 1331 } 1332 1333 // If the instruction wasn't a matching load or store. Stop searching if we 1334 // encounter a call instruction that might modify memory. 1335 if (MI->isCall()) 1336 return E; 1337 1338 // Update modified / uses register lists. 1339 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1340 1341 // Otherwise, if the base register is modified, we have no match, so 1342 // return early. 1343 if (ModifiedRegs[BaseReg]) 1344 return E; 1345 1346 // Update list of instructions that read/write memory. 1347 if (MI->mayLoadOrStore()) 1348 MemInsns.push_back(MI); 1349 } 1350 return E; 1351 } 1352 1353 MachineBasicBlock::iterator 1354 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1355 MachineBasicBlock::iterator Update, 1356 bool IsPreIdx) { 1357 assert((Update->getOpcode() == AArch64::ADDXri || 1358 Update->getOpcode() == AArch64::SUBXri) && 1359 "Unexpected base register update instruction to merge!"); 1360 MachineBasicBlock::iterator NextI = I; 1361 // Return the instruction following the merged instruction, which is 1362 // the instruction following our unmerged load. Unless that's the add/sub 1363 // instruction we're merging, in which case it's the one after that. 1364 if (++NextI == Update) 1365 ++NextI; 1366 1367 int Value = Update->getOperand(2).getImm(); 1368 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1369 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1370 if (Update->getOpcode() == AArch64::SUBXri) 1371 Value = -Value; 1372 1373 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1374 : getPostIndexedOpcode(I->getOpcode()); 1375 MachineInstrBuilder MIB; 1376 if (!isPairedLdSt(I)) { 1377 // Non-paired instruction. 1378 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1379 .addOperand(getLdStRegOp(Update)) 1380 .addOperand(getLdStRegOp(I)) 1381 .addOperand(getLdStBaseOp(I)) 1382 .addImm(Value) 1383 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1384 } else { 1385 // Paired instruction. 1386 int Scale = getMemScale(I); 1387 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1388 .addOperand(getLdStRegOp(Update)) 1389 .addOperand(getLdStRegOp(I, 0)) 1390 .addOperand(getLdStRegOp(I, 1)) 1391 .addOperand(getLdStBaseOp(I)) 1392 .addImm(Value / Scale) 1393 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1394 } 1395 (void)MIB; 1396 1397 if (IsPreIdx) 1398 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1399 else 1400 DEBUG(dbgs() << "Creating post-indexed load/store."); 1401 DEBUG(dbgs() << " Replacing instructions:\n "); 1402 DEBUG(I->print(dbgs())); 1403 DEBUG(dbgs() << " "); 1404 DEBUG(Update->print(dbgs())); 1405 DEBUG(dbgs() << " with instruction:\n "); 1406 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1407 DEBUG(dbgs() << "\n"); 1408 1409 // Erase the old instructions for the block. 1410 I->eraseFromParent(); 1411 Update->eraseFromParent(); 1412 1413 return NextI; 1414 } 1415 1416 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr *MemMI, 1417 MachineInstr *MI, 1418 unsigned BaseReg, int Offset) { 1419 switch (MI->getOpcode()) { 1420 default: 1421 break; 1422 case AArch64::SUBXri: 1423 // Negate the offset for a SUB instruction. 1424 Offset *= -1; 1425 // FALLTHROUGH 1426 case AArch64::ADDXri: 1427 // Make sure it's a vanilla immediate operand, not a relocation or 1428 // anything else we can't handle. 1429 if (!MI->getOperand(2).isImm()) 1430 break; 1431 // Watch out for 1 << 12 shifted value. 1432 if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm())) 1433 break; 1434 1435 // The update instruction source and destination register must be the 1436 // same as the load/store base register. 1437 if (MI->getOperand(0).getReg() != BaseReg || 1438 MI->getOperand(1).getReg() != BaseReg) 1439 break; 1440 1441 bool IsPairedInsn = isPairedLdSt(MemMI); 1442 int UpdateOffset = MI->getOperand(2).getImm(); 1443 // For non-paired load/store instructions, the immediate must fit in a 1444 // signed 9-bit integer. 1445 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1446 break; 1447 1448 // For paired load/store instructions, the immediate must be a multiple of 1449 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1450 // integer. 1451 if (IsPairedInsn) { 1452 int Scale = getMemScale(MemMI); 1453 if (UpdateOffset % Scale != 0) 1454 break; 1455 1456 int ScaledOffset = UpdateOffset / Scale; 1457 if (ScaledOffset > 64 || ScaledOffset < -64) 1458 break; 1459 } 1460 1461 // If we have a non-zero Offset, we check that it matches the amount 1462 // we're adding to the register. 1463 if (!Offset || Offset == MI->getOperand(2).getImm()) 1464 return true; 1465 break; 1466 } 1467 return false; 1468 } 1469 1470 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1471 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1472 MachineBasicBlock::iterator E = I->getParent()->end(); 1473 MachineInstr *MemMI = I; 1474 MachineBasicBlock::iterator MBBI = I; 1475 1476 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1477 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1478 1479 // Scan forward looking for post-index opportunities. Updating instructions 1480 // can't be formed if the memory instruction doesn't have the offset we're 1481 // looking for. 1482 if (MIUnscaledOffset != UnscaledOffset) 1483 return E; 1484 1485 // If the base register overlaps a destination register, we can't 1486 // merge the update. 1487 bool IsPairedInsn = isPairedLdSt(MemMI); 1488 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1489 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1490 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1491 return E; 1492 } 1493 1494 // Track which registers have been modified and used between the first insn 1495 // (inclusive) and the second insn. 1496 ModifiedRegs.reset(); 1497 UsedRegs.reset(); 1498 ++MBBI; 1499 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1500 MachineInstr *MI = MBBI; 1501 // Skip DBG_VALUE instructions. 1502 if (MI->isDebugValue()) 1503 continue; 1504 1505 // Now that we know this is a real instruction, count it. 1506 ++Count; 1507 1508 // If we found a match, return it. 1509 if (isMatchingUpdateInsn(I, MI, BaseReg, UnscaledOffset)) 1510 return MBBI; 1511 1512 // Update the status of what the instruction clobbered and used. 1513 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1514 1515 // Otherwise, if the base register is used or modified, we have no match, so 1516 // return early. 1517 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1518 return E; 1519 } 1520 return E; 1521 } 1522 1523 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1524 MachineBasicBlock::iterator I, unsigned Limit) { 1525 MachineBasicBlock::iterator B = I->getParent()->begin(); 1526 MachineBasicBlock::iterator E = I->getParent()->end(); 1527 MachineInstr *MemMI = I; 1528 MachineBasicBlock::iterator MBBI = I; 1529 1530 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1531 int Offset = getLdStOffsetOp(MemMI).getImm(); 1532 1533 // If the load/store is the first instruction in the block, there's obviously 1534 // not any matching update. Ditto if the memory offset isn't zero. 1535 if (MBBI == B || Offset != 0) 1536 return E; 1537 // If the base register overlaps a destination register, we can't 1538 // merge the update. 1539 bool IsPairedInsn = isPairedLdSt(MemMI); 1540 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1541 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1542 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1543 return E; 1544 } 1545 1546 // Track which registers have been modified and used between the first insn 1547 // (inclusive) and the second insn. 1548 ModifiedRegs.reset(); 1549 UsedRegs.reset(); 1550 unsigned Count = 0; 1551 do { 1552 --MBBI; 1553 MachineInstr *MI = MBBI; 1554 1555 // Don't count DBG_VALUE instructions towards the search limit. 1556 if (!MI->isDebugValue()) 1557 ++Count; 1558 1559 // If we found a match, return it. 1560 if (isMatchingUpdateInsn(I, MI, BaseReg, Offset)) 1561 return MBBI; 1562 1563 // Update the status of what the instruction clobbered and used. 1564 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1565 1566 // Otherwise, if the base register is used or modified, we have no match, so 1567 // return early. 1568 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1569 return E; 1570 } while (MBBI != B && Count < Limit); 1571 return E; 1572 } 1573 1574 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1575 MachineBasicBlock::iterator &MBBI) { 1576 MachineInstr *MI = MBBI; 1577 // If this is a volatile load, don't mess with it. 1578 if (MI->hasOrderedMemoryRef()) 1579 return false; 1580 1581 // Make sure this is a reg+imm. 1582 // FIXME: It is possible to extend it to handle reg+reg cases. 1583 if (!getLdStOffsetOp(MI).isImm()) 1584 return false; 1585 1586 // Look backward up to LdStLimit instructions. 1587 MachineBasicBlock::iterator StoreI; 1588 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1589 ++NumLoadsFromStoresPromoted; 1590 // Promote the load. Keeping the iterator straight is a 1591 // pain, so we let the merge routine tell us what the next instruction 1592 // is after it's done mucking about. 1593 MBBI = promoteLoadFromStore(MBBI, StoreI); 1594 return true; 1595 } 1596 return false; 1597 } 1598 1599 // Find narrow loads that can be converted into a single wider load with 1600 // bitfield extract instructions. Also merge adjacent zero stores into a wider 1601 // store. 1602 bool AArch64LoadStoreOpt::tryToMergeLdStInst( 1603 MachineBasicBlock::iterator &MBBI) { 1604 assert((isNarrowLoad(MBBI) || isPromotableZeroStoreOpcode(MBBI)) && 1605 "Expected narrow op."); 1606 MachineInstr *MI = MBBI; 1607 MachineBasicBlock::iterator E = MI->getParent()->end(); 1608 1609 if (!TII->isCandidateToMergeOrPair(MI)) 1610 return false; 1611 1612 // For promotable zero stores, the stored value should be WZR. 1613 if (isPromotableZeroStoreOpcode(MI) && 1614 getLdStRegOp(MI).getReg() != AArch64::WZR) 1615 return false; 1616 1617 // Look ahead up to LdStLimit instructions for a mergable instruction. 1618 LdStPairFlags Flags; 1619 MachineBasicBlock::iterator MergeMI = 1620 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1621 if (MergeMI != E) { 1622 if (isNarrowLoad(MI)) { 1623 ++NumNarrowLoadsPromoted; 1624 } else if (isPromotableZeroStoreInst(MI)) { 1625 ++NumZeroStoresPromoted; 1626 } 1627 // Keeping the iterator straight is a pain, so we let the merge routine tell 1628 // us what the next instruction is after it's done mucking about. 1629 MBBI = mergeNarrowInsns(MBBI, MergeMI, Flags); 1630 return true; 1631 } 1632 return false; 1633 } 1634 1635 // Find loads and stores that can be merged into a single load or store pair 1636 // instruction. 1637 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1638 MachineInstr *MI = MBBI; 1639 MachineBasicBlock::iterator E = MI->getParent()->end(); 1640 1641 if (!TII->isCandidateToMergeOrPair(MI)) 1642 return false; 1643 1644 // Early exit if the offset is not possible to match. (6 bits of positive 1645 // range, plus allow an extra one in case we find a later insn that matches 1646 // with Offset-1) 1647 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1648 int Offset = getLdStOffsetOp(MI).getImm(); 1649 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1650 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1651 return false; 1652 1653 // Look ahead up to LdStLimit instructions for a pairable instruction. 1654 LdStPairFlags Flags; 1655 MachineBasicBlock::iterator Paired = 1656 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1657 if (Paired != E) { 1658 ++NumPairCreated; 1659 if (TII->isUnscaledLdSt(MI)) 1660 ++NumUnscaledPairCreated; 1661 // Keeping the iterator straight is a pain, so we let the merge routine tell 1662 // us what the next instruction is after it's done mucking about. 1663 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1664 return true; 1665 } 1666 return false; 1667 } 1668 1669 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1670 bool enableNarrowLdOpt) { 1671 bool Modified = false; 1672 // Four tranformations to do here: 1673 // 1) Find loads that directly read from stores and promote them by 1674 // replacing with mov instructions. If the store is wider than the load, 1675 // the load will be replaced with a bitfield extract. 1676 // e.g., 1677 // str w1, [x0, #4] 1678 // ldrh w2, [x0, #6] 1679 // ; becomes 1680 // str w1, [x0, #4] 1681 // lsr w2, w1, #16 1682 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1683 MBBI != E;) { 1684 MachineInstr *MI = MBBI; 1685 switch (MI->getOpcode()) { 1686 default: 1687 // Just move on to the next instruction. 1688 ++MBBI; 1689 break; 1690 // Scaled instructions. 1691 case AArch64::LDRBBui: 1692 case AArch64::LDRHHui: 1693 case AArch64::LDRWui: 1694 case AArch64::LDRXui: 1695 // Unscaled instructions. 1696 case AArch64::LDURBBi: 1697 case AArch64::LDURHHi: 1698 case AArch64::LDURWi: 1699 case AArch64::LDURXi: { 1700 if (tryToPromoteLoadFromStore(MBBI)) { 1701 Modified = true; 1702 break; 1703 } 1704 ++MBBI; 1705 break; 1706 } 1707 } 1708 } 1709 // 2) Find narrow loads that can be converted into a single wider load 1710 // with bitfield extract instructions. 1711 // e.g., 1712 // ldrh w0, [x2] 1713 // ldrh w1, [x2, #2] 1714 // ; becomes 1715 // ldr w0, [x2] 1716 // ubfx w1, w0, #16, #16 1717 // and w0, w0, #ffff 1718 // 1719 // Also merge adjacent zero stores into a wider store. 1720 // e.g., 1721 // strh wzr, [x0] 1722 // strh wzr, [x0, #2] 1723 // ; becomes 1724 // str wzr, [x0] 1725 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1726 enableNarrowLdOpt && MBBI != E;) { 1727 MachineInstr *MI = MBBI; 1728 unsigned Opc = MI->getOpcode(); 1729 if (isPromotableZeroStoreOpcode(Opc) || 1730 (EnableNarrowLdMerge && isNarrowLoad(Opc))) { 1731 if (tryToMergeLdStInst(MBBI)) { 1732 Modified = true; 1733 } else 1734 ++MBBI; 1735 } else 1736 ++MBBI; 1737 } 1738 1739 // 3) Find loads and stores that can be merged into a single load or store 1740 // pair instruction. 1741 // e.g., 1742 // ldr x0, [x2] 1743 // ldr x1, [x2, #8] 1744 // ; becomes 1745 // ldp x0, x1, [x2] 1746 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1747 MBBI != E;) { 1748 MachineInstr *MI = MBBI; 1749 switch (MI->getOpcode()) { 1750 default: 1751 // Just move on to the next instruction. 1752 ++MBBI; 1753 break; 1754 // Scaled instructions. 1755 case AArch64::STRSui: 1756 case AArch64::STRDui: 1757 case AArch64::STRQui: 1758 case AArch64::STRXui: 1759 case AArch64::STRWui: 1760 case AArch64::LDRSui: 1761 case AArch64::LDRDui: 1762 case AArch64::LDRQui: 1763 case AArch64::LDRXui: 1764 case AArch64::LDRWui: 1765 case AArch64::LDRSWui: 1766 // Unscaled instructions. 1767 case AArch64::STURSi: 1768 case AArch64::STURDi: 1769 case AArch64::STURQi: 1770 case AArch64::STURWi: 1771 case AArch64::STURXi: 1772 case AArch64::LDURSi: 1773 case AArch64::LDURDi: 1774 case AArch64::LDURQi: 1775 case AArch64::LDURWi: 1776 case AArch64::LDURXi: 1777 case AArch64::LDURSWi: { 1778 if (tryToPairLdStInst(MBBI)) { 1779 Modified = true; 1780 break; 1781 } 1782 ++MBBI; 1783 break; 1784 } 1785 } 1786 } 1787 // 4) Find base register updates that can be merged into the load or store 1788 // as a base-reg writeback. 1789 // e.g., 1790 // ldr x0, [x2] 1791 // add x2, x2, #4 1792 // ; becomes 1793 // ldr x0, [x2], #4 1794 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1795 MBBI != E;) { 1796 MachineInstr *MI = MBBI; 1797 // Do update merging. It's simpler to keep this separate from the above 1798 // switchs, though not strictly necessary. 1799 unsigned Opc = MI->getOpcode(); 1800 switch (Opc) { 1801 default: 1802 // Just move on to the next instruction. 1803 ++MBBI; 1804 break; 1805 // Scaled instructions. 1806 case AArch64::STRSui: 1807 case AArch64::STRDui: 1808 case AArch64::STRQui: 1809 case AArch64::STRXui: 1810 case AArch64::STRWui: 1811 case AArch64::STRHHui: 1812 case AArch64::STRBBui: 1813 case AArch64::LDRSui: 1814 case AArch64::LDRDui: 1815 case AArch64::LDRQui: 1816 case AArch64::LDRXui: 1817 case AArch64::LDRWui: 1818 case AArch64::LDRHHui: 1819 case AArch64::LDRBBui: 1820 // Unscaled instructions. 1821 case AArch64::STURSi: 1822 case AArch64::STURDi: 1823 case AArch64::STURQi: 1824 case AArch64::STURWi: 1825 case AArch64::STURXi: 1826 case AArch64::LDURSi: 1827 case AArch64::LDURDi: 1828 case AArch64::LDURQi: 1829 case AArch64::LDURWi: 1830 case AArch64::LDURXi: 1831 // Paired instructions. 1832 case AArch64::LDPSi: 1833 case AArch64::LDPSWi: 1834 case AArch64::LDPDi: 1835 case AArch64::LDPQi: 1836 case AArch64::LDPWi: 1837 case AArch64::LDPXi: 1838 case AArch64::STPSi: 1839 case AArch64::STPDi: 1840 case AArch64::STPQi: 1841 case AArch64::STPWi: 1842 case AArch64::STPXi: { 1843 // Make sure this is a reg+imm (as opposed to an address reloc). 1844 if (!getLdStOffsetOp(MI).isImm()) { 1845 ++MBBI; 1846 break; 1847 } 1848 // Look forward to try to form a post-index instruction. For example, 1849 // ldr x0, [x20] 1850 // add x20, x20, #32 1851 // merged into: 1852 // ldr x0, [x20], #32 1853 MachineBasicBlock::iterator Update = 1854 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1855 if (Update != E) { 1856 // Merge the update into the ld/st. 1857 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1858 Modified = true; 1859 ++NumPostFolded; 1860 break; 1861 } 1862 // Don't know how to handle pre/post-index versions, so move to the next 1863 // instruction. 1864 if (TII->isUnscaledLdSt(Opc)) { 1865 ++MBBI; 1866 break; 1867 } 1868 1869 // Look back to try to find a pre-index instruction. For example, 1870 // add x0, x0, #8 1871 // ldr x1, [x0] 1872 // merged into: 1873 // ldr x1, [x0, #8]! 1874 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1875 if (Update != E) { 1876 // Merge the update into the ld/st. 1877 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1878 Modified = true; 1879 ++NumPreFolded; 1880 break; 1881 } 1882 // The immediate in the load/store is scaled by the size of the memory 1883 // operation. The immediate in the add we're looking for, 1884 // however, is not, so adjust here. 1885 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1886 1887 // Look forward to try to find a post-index instruction. For example, 1888 // ldr x1, [x0, #64] 1889 // add x0, x0, #64 1890 // merged into: 1891 // ldr x1, [x0, #64]! 1892 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1893 if (Update != E) { 1894 // Merge the update into the ld/st. 1895 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1896 Modified = true; 1897 ++NumPreFolded; 1898 break; 1899 } 1900 1901 // Nothing found. Just move to the next instruction. 1902 ++MBBI; 1903 break; 1904 } 1905 } 1906 } 1907 1908 return Modified; 1909 } 1910 1911 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1912 if (skipFunction(*Fn.getFunction())) 1913 return false; 1914 1915 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1916 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1917 TRI = Subtarget->getRegisterInfo(); 1918 1919 // Resize the modified and used register bitfield trackers. We do this once 1920 // per function and then clear the bitfield each time we optimize a load or 1921 // store. 1922 ModifiedRegs.resize(TRI->getNumRegs()); 1923 UsedRegs.resize(TRI->getNumRegs()); 1924 1925 bool Modified = false; 1926 bool enableNarrowLdOpt = 1927 Subtarget->mergeNarrowLoads() && !Subtarget->requiresStrictAlign(); 1928 for (auto &MBB : Fn) 1929 Modified |= optimizeBlock(MBB, enableNarrowLdOpt); 1930 1931 return Modified; 1932 } 1933 1934 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep 1935 // loads and stores near one another? 1936 1937 // FIXME: When pairing store instructions it's very possible for this pass to 1938 // hoist a store with a KILL marker above another use (without a KILL marker). 1939 // The resulting IR is invalid, but nothing uses the KILL markers after this 1940 // pass, so it's never caused a problem in practice. 1941 1942 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1943 /// load / store optimization pass. 1944 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1945 return new AArch64LoadStoreOpt(); 1946 } 1947