1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "AArch64InstrInfo.h"
14 #include "AArch64MachineFunctionInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "MCTargetDesc/AArch64AddressingModes.h"
17 #include "Utils/AArch64BaseInfo.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/MC/MCInstBuilder.h"
39 #include "llvm/MC/MCInstrDesc.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CodeGen.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <cassert>
49 #include <cstdint>
50 #include <iterator>
51 #include <utility>
52 
53 using namespace llvm;
54 
55 #define GET_INSTRINFO_CTOR_DTOR
56 #include "AArch64GenInstrInfo.inc"
57 
58 static cl::opt<unsigned> TBZDisplacementBits(
59     "aarch64-tbz-offset-bits", cl::Hidden, cl::init(14),
60     cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
61 
62 static cl::opt<unsigned> CBZDisplacementBits(
63     "aarch64-cbz-offset-bits", cl::Hidden, cl::init(19),
64     cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
65 
66 static cl::opt<unsigned>
67     BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19),
68                         cl::desc("Restrict range of Bcc instructions (DEBUG)"));
69 
70 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
71     : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP,
72                           AArch64::CATCHRET),
73       RI(STI.getTargetTriple()), Subtarget(STI) {}
74 
75 /// GetInstSize - Return the number of bytes of code the specified
76 /// instruction may be.  This returns the maximum number of bytes.
77 unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
78   const MachineBasicBlock &MBB = *MI.getParent();
79   const MachineFunction *MF = MBB.getParent();
80   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
81 
82   {
83     auto Op = MI.getOpcode();
84     if (Op == AArch64::INLINEASM || Op == AArch64::INLINEASM_BR)
85       return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
86   }
87 
88   // Meta-instructions emit no code.
89   if (MI.isMetaInstruction())
90     return 0;
91 
92   // FIXME: We currently only handle pseudoinstructions that don't get expanded
93   //        before the assembly printer.
94   unsigned NumBytes = 0;
95   const MCInstrDesc &Desc = MI.getDesc();
96   switch (Desc.getOpcode()) {
97   default:
98     // Anything not explicitly designated otherwise is a normal 4-byte insn.
99     NumBytes = 4;
100     break;
101   case TargetOpcode::STACKMAP:
102     // The upper bound for a stackmap intrinsic is the full length of its shadow
103     NumBytes = StackMapOpers(&MI).getNumPatchBytes();
104     assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
105     break;
106   case TargetOpcode::PATCHPOINT:
107     // The size of the patchpoint intrinsic is the number of bytes requested
108     NumBytes = PatchPointOpers(&MI).getNumPatchBytes();
109     assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
110     break;
111   case TargetOpcode::STATEPOINT:
112     NumBytes = StatepointOpers(&MI).getNumPatchBytes();
113     assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
114     // No patch bytes means a normal call inst is emitted
115     if (NumBytes == 0)
116       NumBytes = 4;
117     break;
118   case AArch64::TLSDESC_CALLSEQ:
119     // This gets lowered to an instruction sequence which takes 16 bytes
120     NumBytes = 16;
121     break;
122   case AArch64::SpeculationBarrierISBDSBEndBB:
123     // This gets lowered to 2 4-byte instructions.
124     NumBytes = 8;
125     break;
126   case AArch64::SpeculationBarrierSBEndBB:
127     // This gets lowered to 1 4-byte instructions.
128     NumBytes = 4;
129     break;
130   case AArch64::JumpTableDest32:
131   case AArch64::JumpTableDest16:
132   case AArch64::JumpTableDest8:
133     NumBytes = 12;
134     break;
135   case AArch64::SPACE:
136     NumBytes = MI.getOperand(1).getImm();
137     break;
138   case AArch64::StoreSwiftAsyncContext:
139     NumBytes = 20;
140     break;
141   case TargetOpcode::BUNDLE:
142     NumBytes = getInstBundleLength(MI);
143     break;
144   }
145 
146   return NumBytes;
147 }
148 
149 unsigned AArch64InstrInfo::getInstBundleLength(const MachineInstr &MI) const {
150   unsigned Size = 0;
151   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
152   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
153   while (++I != E && I->isInsideBundle()) {
154     assert(!I->isBundle() && "No nested bundle!");
155     Size += getInstSizeInBytes(*I);
156   }
157   return Size;
158 }
159 
160 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
161                             SmallVectorImpl<MachineOperand> &Cond) {
162   // Block ends with fall-through condbranch.
163   switch (LastInst->getOpcode()) {
164   default:
165     llvm_unreachable("Unknown branch instruction?");
166   case AArch64::Bcc:
167     Target = LastInst->getOperand(1).getMBB();
168     Cond.push_back(LastInst->getOperand(0));
169     break;
170   case AArch64::CBZW:
171   case AArch64::CBZX:
172   case AArch64::CBNZW:
173   case AArch64::CBNZX:
174     Target = LastInst->getOperand(1).getMBB();
175     Cond.push_back(MachineOperand::CreateImm(-1));
176     Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
177     Cond.push_back(LastInst->getOperand(0));
178     break;
179   case AArch64::TBZW:
180   case AArch64::TBZX:
181   case AArch64::TBNZW:
182   case AArch64::TBNZX:
183     Target = LastInst->getOperand(2).getMBB();
184     Cond.push_back(MachineOperand::CreateImm(-1));
185     Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
186     Cond.push_back(LastInst->getOperand(0));
187     Cond.push_back(LastInst->getOperand(1));
188   }
189 }
190 
191 static unsigned getBranchDisplacementBits(unsigned Opc) {
192   switch (Opc) {
193   default:
194     llvm_unreachable("unexpected opcode!");
195   case AArch64::B:
196     return 64;
197   case AArch64::TBNZW:
198   case AArch64::TBZW:
199   case AArch64::TBNZX:
200   case AArch64::TBZX:
201     return TBZDisplacementBits;
202   case AArch64::CBNZW:
203   case AArch64::CBZW:
204   case AArch64::CBNZX:
205   case AArch64::CBZX:
206     return CBZDisplacementBits;
207   case AArch64::Bcc:
208     return BCCDisplacementBits;
209   }
210 }
211 
212 bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp,
213                                              int64_t BrOffset) const {
214   unsigned Bits = getBranchDisplacementBits(BranchOp);
215   assert(Bits >= 3 && "max branch displacement must be enough to jump"
216                       "over conditional branch expansion");
217   return isIntN(Bits, BrOffset / 4);
218 }
219 
220 MachineBasicBlock *
221 AArch64InstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
222   switch (MI.getOpcode()) {
223   default:
224     llvm_unreachable("unexpected opcode!");
225   case AArch64::B:
226     return MI.getOperand(0).getMBB();
227   case AArch64::TBZW:
228   case AArch64::TBNZW:
229   case AArch64::TBZX:
230   case AArch64::TBNZX:
231     return MI.getOperand(2).getMBB();
232   case AArch64::CBZW:
233   case AArch64::CBNZW:
234   case AArch64::CBZX:
235   case AArch64::CBNZX:
236   case AArch64::Bcc:
237     return MI.getOperand(1).getMBB();
238   }
239 }
240 
241 // Branch analysis.
242 bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
243                                      MachineBasicBlock *&TBB,
244                                      MachineBasicBlock *&FBB,
245                                      SmallVectorImpl<MachineOperand> &Cond,
246                                      bool AllowModify) const {
247   // If the block has no terminators, it just falls into the block after it.
248   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
249   if (I == MBB.end())
250     return false;
251 
252   // Skip over SpeculationBarrierEndBB terminators
253   if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB ||
254       I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) {
255     --I;
256   }
257 
258   if (!isUnpredicatedTerminator(*I))
259     return false;
260 
261   // Get the last instruction in the block.
262   MachineInstr *LastInst = &*I;
263 
264   // If there is only one terminator instruction, process it.
265   unsigned LastOpc = LastInst->getOpcode();
266   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
267     if (isUncondBranchOpcode(LastOpc)) {
268       TBB = LastInst->getOperand(0).getMBB();
269       return false;
270     }
271     if (isCondBranchOpcode(LastOpc)) {
272       // Block ends with fall-through condbranch.
273       parseCondBranch(LastInst, TBB, Cond);
274       return false;
275     }
276     return true; // Can't handle indirect branch.
277   }
278 
279   // Get the instruction before it if it is a terminator.
280   MachineInstr *SecondLastInst = &*I;
281   unsigned SecondLastOpc = SecondLastInst->getOpcode();
282 
283   // If AllowModify is true and the block ends with two or more unconditional
284   // branches, delete all but the first unconditional branch.
285   if (AllowModify && isUncondBranchOpcode(LastOpc)) {
286     while (isUncondBranchOpcode(SecondLastOpc)) {
287       LastInst->eraseFromParent();
288       LastInst = SecondLastInst;
289       LastOpc = LastInst->getOpcode();
290       if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
291         // Return now the only terminator is an unconditional branch.
292         TBB = LastInst->getOperand(0).getMBB();
293         return false;
294       } else {
295         SecondLastInst = &*I;
296         SecondLastOpc = SecondLastInst->getOpcode();
297       }
298     }
299   }
300 
301   // If we're allowed to modify and the block ends in a unconditional branch
302   // which could simply fallthrough, remove the branch.  (Note: This case only
303   // matters when we can't understand the whole sequence, otherwise it's also
304   // handled by BranchFolding.cpp.)
305   if (AllowModify && isUncondBranchOpcode(LastOpc) &&
306       MBB.isLayoutSuccessor(getBranchDestBlock(*LastInst))) {
307     LastInst->eraseFromParent();
308     LastInst = SecondLastInst;
309     LastOpc = LastInst->getOpcode();
310     if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
311       assert(!isUncondBranchOpcode(LastOpc) &&
312              "unreachable unconditional branches removed above");
313 
314       if (isCondBranchOpcode(LastOpc)) {
315         // Block ends with fall-through condbranch.
316         parseCondBranch(LastInst, TBB, Cond);
317         return false;
318       }
319       return true; // Can't handle indirect branch.
320     } else {
321       SecondLastInst = &*I;
322       SecondLastOpc = SecondLastInst->getOpcode();
323     }
324   }
325 
326   // If there are three terminators, we don't know what sort of block this is.
327   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
328     return true;
329 
330   // If the block ends with a B and a Bcc, handle it.
331   if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
332     parseCondBranch(SecondLastInst, TBB, Cond);
333     FBB = LastInst->getOperand(0).getMBB();
334     return false;
335   }
336 
337   // If the block ends with two unconditional branches, handle it.  The second
338   // one is not executed, so remove it.
339   if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
340     TBB = SecondLastInst->getOperand(0).getMBB();
341     I = LastInst;
342     if (AllowModify)
343       I->eraseFromParent();
344     return false;
345   }
346 
347   // ...likewise if it ends with an indirect branch followed by an unconditional
348   // branch.
349   if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
350     I = LastInst;
351     if (AllowModify)
352       I->eraseFromParent();
353     return true;
354   }
355 
356   // Otherwise, can't handle this.
357   return true;
358 }
359 
360 bool AArch64InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
361                                               MachineBranchPredicate &MBP,
362                                               bool AllowModify) const {
363   // For the moment, handle only a block which ends with a cb(n)zx followed by
364   // a fallthrough.  Why this?  Because it is a common form.
365   // TODO: Should we handle b.cc?
366 
367   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
368   if (I == MBB.end())
369     return true;
370 
371   // Skip over SpeculationBarrierEndBB terminators
372   if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB ||
373       I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) {
374     --I;
375   }
376 
377   if (!isUnpredicatedTerminator(*I))
378     return true;
379 
380   // Get the last instruction in the block.
381   MachineInstr *LastInst = &*I;
382   unsigned LastOpc = LastInst->getOpcode();
383   if (!isCondBranchOpcode(LastOpc))
384     return true;
385 
386   switch (LastOpc) {
387   default:
388     return true;
389   case AArch64::CBZW:
390   case AArch64::CBZX:
391   case AArch64::CBNZW:
392   case AArch64::CBNZX:
393     break;
394   };
395 
396   MBP.TrueDest = LastInst->getOperand(1).getMBB();
397   assert(MBP.TrueDest && "expected!");
398   MBP.FalseDest = MBB.getNextNode();
399 
400   MBP.ConditionDef = nullptr;
401   MBP.SingleUseCondition = false;
402 
403   MBP.LHS = LastInst->getOperand(0);
404   MBP.RHS = MachineOperand::CreateImm(0);
405   MBP.Predicate = LastOpc == AArch64::CBNZX ? MachineBranchPredicate::PRED_NE
406                                             : MachineBranchPredicate::PRED_EQ;
407   return false;
408 }
409 
410 bool AArch64InstrInfo::reverseBranchCondition(
411     SmallVectorImpl<MachineOperand> &Cond) const {
412   if (Cond[0].getImm() != -1) {
413     // Regular Bcc
414     AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
415     Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
416   } else {
417     // Folded compare-and-branch
418     switch (Cond[1].getImm()) {
419     default:
420       llvm_unreachable("Unknown conditional branch!");
421     case AArch64::CBZW:
422       Cond[1].setImm(AArch64::CBNZW);
423       break;
424     case AArch64::CBNZW:
425       Cond[1].setImm(AArch64::CBZW);
426       break;
427     case AArch64::CBZX:
428       Cond[1].setImm(AArch64::CBNZX);
429       break;
430     case AArch64::CBNZX:
431       Cond[1].setImm(AArch64::CBZX);
432       break;
433     case AArch64::TBZW:
434       Cond[1].setImm(AArch64::TBNZW);
435       break;
436     case AArch64::TBNZW:
437       Cond[1].setImm(AArch64::TBZW);
438       break;
439     case AArch64::TBZX:
440       Cond[1].setImm(AArch64::TBNZX);
441       break;
442     case AArch64::TBNZX:
443       Cond[1].setImm(AArch64::TBZX);
444       break;
445     }
446   }
447 
448   return false;
449 }
450 
451 unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock &MBB,
452                                         int *BytesRemoved) const {
453   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
454   if (I == MBB.end())
455     return 0;
456 
457   if (!isUncondBranchOpcode(I->getOpcode()) &&
458       !isCondBranchOpcode(I->getOpcode()))
459     return 0;
460 
461   // Remove the branch.
462   I->eraseFromParent();
463 
464   I = MBB.end();
465 
466   if (I == MBB.begin()) {
467     if (BytesRemoved)
468       *BytesRemoved = 4;
469     return 1;
470   }
471   --I;
472   if (!isCondBranchOpcode(I->getOpcode())) {
473     if (BytesRemoved)
474       *BytesRemoved = 4;
475     return 1;
476   }
477 
478   // Remove the branch.
479   I->eraseFromParent();
480   if (BytesRemoved)
481     *BytesRemoved = 8;
482 
483   return 2;
484 }
485 
486 void AArch64InstrInfo::instantiateCondBranch(
487     MachineBasicBlock &MBB, const DebugLoc &DL, MachineBasicBlock *TBB,
488     ArrayRef<MachineOperand> Cond) const {
489   if (Cond[0].getImm() != -1) {
490     // Regular Bcc
491     BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
492   } else {
493     // Folded compare-and-branch
494     // Note that we use addOperand instead of addReg to keep the flags.
495     const MachineInstrBuilder MIB =
496         BuildMI(&MBB, DL, get(Cond[1].getImm())).add(Cond[2]);
497     if (Cond.size() > 3)
498       MIB.addImm(Cond[3].getImm());
499     MIB.addMBB(TBB);
500   }
501 }
502 
503 unsigned AArch64InstrInfo::insertBranch(
504     MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
505     ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
506   // Shouldn't be a fall through.
507   assert(TBB && "insertBranch must not be told to insert a fallthrough");
508 
509   if (!FBB) {
510     if (Cond.empty()) // Unconditional branch?
511       BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
512     else
513       instantiateCondBranch(MBB, DL, TBB, Cond);
514 
515     if (BytesAdded)
516       *BytesAdded = 4;
517 
518     return 1;
519   }
520 
521   // Two-way conditional branch.
522   instantiateCondBranch(MBB, DL, TBB, Cond);
523   BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
524 
525   if (BytesAdded)
526     *BytesAdded = 8;
527 
528   return 2;
529 }
530 
531 // Find the original register that VReg is copied from.
532 static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
533   while (Register::isVirtualRegister(VReg)) {
534     const MachineInstr *DefMI = MRI.getVRegDef(VReg);
535     if (!DefMI->isFullCopy())
536       return VReg;
537     VReg = DefMI->getOperand(1).getReg();
538   }
539   return VReg;
540 }
541 
542 // Determine if VReg is defined by an instruction that can be folded into a
543 // csel instruction. If so, return the folded opcode, and the replacement
544 // register.
545 static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
546                                 unsigned *NewVReg = nullptr) {
547   VReg = removeCopies(MRI, VReg);
548   if (!Register::isVirtualRegister(VReg))
549     return 0;
550 
551   bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
552   const MachineInstr *DefMI = MRI.getVRegDef(VReg);
553   unsigned Opc = 0;
554   unsigned SrcOpNum = 0;
555   switch (DefMI->getOpcode()) {
556   case AArch64::ADDSXri:
557   case AArch64::ADDSWri:
558     // if NZCV is used, do not fold.
559     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
560       return 0;
561     // fall-through to ADDXri and ADDWri.
562     LLVM_FALLTHROUGH;
563   case AArch64::ADDXri:
564   case AArch64::ADDWri:
565     // add x, 1 -> csinc.
566     if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
567         DefMI->getOperand(3).getImm() != 0)
568       return 0;
569     SrcOpNum = 1;
570     Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
571     break;
572 
573   case AArch64::ORNXrr:
574   case AArch64::ORNWrr: {
575     // not x -> csinv, represented as orn dst, xzr, src.
576     unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
577     if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
578       return 0;
579     SrcOpNum = 2;
580     Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
581     break;
582   }
583 
584   case AArch64::SUBSXrr:
585   case AArch64::SUBSWrr:
586     // if NZCV is used, do not fold.
587     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
588       return 0;
589     // fall-through to SUBXrr and SUBWrr.
590     LLVM_FALLTHROUGH;
591   case AArch64::SUBXrr:
592   case AArch64::SUBWrr: {
593     // neg x -> csneg, represented as sub dst, xzr, src.
594     unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
595     if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
596       return 0;
597     SrcOpNum = 2;
598     Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
599     break;
600   }
601   default:
602     return 0;
603   }
604   assert(Opc && SrcOpNum && "Missing parameters");
605 
606   if (NewVReg)
607     *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
608   return Opc;
609 }
610 
611 bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
612                                        ArrayRef<MachineOperand> Cond,
613                                        Register DstReg, Register TrueReg,
614                                        Register FalseReg, int &CondCycles,
615                                        int &TrueCycles,
616                                        int &FalseCycles) const {
617   // Check register classes.
618   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
619   const TargetRegisterClass *RC =
620       RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
621   if (!RC)
622     return false;
623 
624   // Also need to check the dest regclass, in case we're trying to optimize
625   // something like:
626   // %1(gpr) = PHI %2(fpr), bb1, %(fpr), bb2
627   if (!RI.getCommonSubClass(RC, MRI.getRegClass(DstReg)))
628     return false;
629 
630   // Expanding cbz/tbz requires an extra cycle of latency on the condition.
631   unsigned ExtraCondLat = Cond.size() != 1;
632 
633   // GPRs are handled by csel.
634   // FIXME: Fold in x+1, -x, and ~x when applicable.
635   if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
636       AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
637     // Single-cycle csel, csinc, csinv, and csneg.
638     CondCycles = 1 + ExtraCondLat;
639     TrueCycles = FalseCycles = 1;
640     if (canFoldIntoCSel(MRI, TrueReg))
641       TrueCycles = 0;
642     else if (canFoldIntoCSel(MRI, FalseReg))
643       FalseCycles = 0;
644     return true;
645   }
646 
647   // Scalar floating point is handled by fcsel.
648   // FIXME: Form fabs, fmin, and fmax when applicable.
649   if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
650       AArch64::FPR32RegClass.hasSubClassEq(RC)) {
651     CondCycles = 5 + ExtraCondLat;
652     TrueCycles = FalseCycles = 2;
653     return true;
654   }
655 
656   // Can't do vectors.
657   return false;
658 }
659 
660 void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
661                                     MachineBasicBlock::iterator I,
662                                     const DebugLoc &DL, Register DstReg,
663                                     ArrayRef<MachineOperand> Cond,
664                                     Register TrueReg, Register FalseReg) const {
665   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
666 
667   // Parse the condition code, see parseCondBranch() above.
668   AArch64CC::CondCode CC;
669   switch (Cond.size()) {
670   default:
671     llvm_unreachable("Unknown condition opcode in Cond");
672   case 1: // b.cc
673     CC = AArch64CC::CondCode(Cond[0].getImm());
674     break;
675   case 3: { // cbz/cbnz
676     // We must insert a compare against 0.
677     bool Is64Bit;
678     switch (Cond[1].getImm()) {
679     default:
680       llvm_unreachable("Unknown branch opcode in Cond");
681     case AArch64::CBZW:
682       Is64Bit = false;
683       CC = AArch64CC::EQ;
684       break;
685     case AArch64::CBZX:
686       Is64Bit = true;
687       CC = AArch64CC::EQ;
688       break;
689     case AArch64::CBNZW:
690       Is64Bit = false;
691       CC = AArch64CC::NE;
692       break;
693     case AArch64::CBNZX:
694       Is64Bit = true;
695       CC = AArch64CC::NE;
696       break;
697     }
698     Register SrcReg = Cond[2].getReg();
699     if (Is64Bit) {
700       // cmp reg, #0 is actually subs xzr, reg, #0.
701       MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
702       BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
703           .addReg(SrcReg)
704           .addImm(0)
705           .addImm(0);
706     } else {
707       MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
708       BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
709           .addReg(SrcReg)
710           .addImm(0)
711           .addImm(0);
712     }
713     break;
714   }
715   case 4: { // tbz/tbnz
716     // We must insert a tst instruction.
717     switch (Cond[1].getImm()) {
718     default:
719       llvm_unreachable("Unknown branch opcode in Cond");
720     case AArch64::TBZW:
721     case AArch64::TBZX:
722       CC = AArch64CC::EQ;
723       break;
724     case AArch64::TBNZW:
725     case AArch64::TBNZX:
726       CC = AArch64CC::NE;
727       break;
728     }
729     // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
730     if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
731       BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
732           .addReg(Cond[2].getReg())
733           .addImm(
734               AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
735     else
736       BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
737           .addReg(Cond[2].getReg())
738           .addImm(
739               AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
740     break;
741   }
742   }
743 
744   unsigned Opc = 0;
745   const TargetRegisterClass *RC = nullptr;
746   bool TryFold = false;
747   if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
748     RC = &AArch64::GPR64RegClass;
749     Opc = AArch64::CSELXr;
750     TryFold = true;
751   } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
752     RC = &AArch64::GPR32RegClass;
753     Opc = AArch64::CSELWr;
754     TryFold = true;
755   } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
756     RC = &AArch64::FPR64RegClass;
757     Opc = AArch64::FCSELDrrr;
758   } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
759     RC = &AArch64::FPR32RegClass;
760     Opc = AArch64::FCSELSrrr;
761   }
762   assert(RC && "Unsupported regclass");
763 
764   // Try folding simple instructions into the csel.
765   if (TryFold) {
766     unsigned NewVReg = 0;
767     unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
768     if (FoldedOpc) {
769       // The folded opcodes csinc, csinc and csneg apply the operation to
770       // FalseReg, so we need to invert the condition.
771       CC = AArch64CC::getInvertedCondCode(CC);
772       TrueReg = FalseReg;
773     } else
774       FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
775 
776     // Fold the operation. Leave any dead instructions for DCE to clean up.
777     if (FoldedOpc) {
778       FalseReg = NewVReg;
779       Opc = FoldedOpc;
780       // The extends the live range of NewVReg.
781       MRI.clearKillFlags(NewVReg);
782     }
783   }
784 
785   // Pull all virtual register into the appropriate class.
786   MRI.constrainRegClass(TrueReg, RC);
787   MRI.constrainRegClass(FalseReg, RC);
788 
789   // Insert the csel.
790   BuildMI(MBB, I, DL, get(Opc), DstReg)
791       .addReg(TrueReg)
792       .addReg(FalseReg)
793       .addImm(CC);
794 }
795 
796 /// Returns true if a MOVi32imm or MOVi64imm can be expanded to an  ORRxx.
797 static bool canBeExpandedToORR(const MachineInstr &MI, unsigned BitSize) {
798   uint64_t Imm = MI.getOperand(1).getImm();
799   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
800   uint64_t Encoding;
801   return AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding);
802 }
803 
804 // FIXME: this implementation should be micro-architecture dependent, so a
805 // micro-architecture target hook should be introduced here in future.
806 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
807   if (!Subtarget.hasCustomCheapAsMoveHandling())
808     return MI.isAsCheapAsAMove();
809 
810   const unsigned Opcode = MI.getOpcode();
811 
812   // Firstly, check cases gated by features.
813 
814   if (Subtarget.hasZeroCycleZeroingFP()) {
815     if (Opcode == AArch64::FMOVH0 ||
816         Opcode == AArch64::FMOVS0 ||
817         Opcode == AArch64::FMOVD0)
818       return true;
819   }
820 
821   if (Subtarget.hasZeroCycleZeroingGP()) {
822     if (Opcode == TargetOpcode::COPY &&
823         (MI.getOperand(1).getReg() == AArch64::WZR ||
824          MI.getOperand(1).getReg() == AArch64::XZR))
825       return true;
826   }
827 
828   // Secondly, check cases specific to sub-targets.
829 
830   if (Subtarget.hasExynosCheapAsMoveHandling()) {
831     if (isExynosCheapAsMove(MI))
832       return true;
833 
834     return MI.isAsCheapAsAMove();
835   }
836 
837   // Finally, check generic cases.
838 
839   switch (Opcode) {
840   default:
841     return false;
842 
843   // add/sub on register without shift
844   case AArch64::ADDWri:
845   case AArch64::ADDXri:
846   case AArch64::SUBWri:
847   case AArch64::SUBXri:
848     return (MI.getOperand(3).getImm() == 0);
849 
850   // logical ops on immediate
851   case AArch64::ANDWri:
852   case AArch64::ANDXri:
853   case AArch64::EORWri:
854   case AArch64::EORXri:
855   case AArch64::ORRWri:
856   case AArch64::ORRXri:
857     return true;
858 
859   // logical ops on register without shift
860   case AArch64::ANDWrr:
861   case AArch64::ANDXrr:
862   case AArch64::BICWrr:
863   case AArch64::BICXrr:
864   case AArch64::EONWrr:
865   case AArch64::EONXrr:
866   case AArch64::EORWrr:
867   case AArch64::EORXrr:
868   case AArch64::ORNWrr:
869   case AArch64::ORNXrr:
870   case AArch64::ORRWrr:
871   case AArch64::ORRXrr:
872     return true;
873 
874   // If MOVi32imm or MOVi64imm can be expanded into ORRWri or
875   // ORRXri, it is as cheap as MOV
876   case AArch64::MOVi32imm:
877     return canBeExpandedToORR(MI, 32);
878   case AArch64::MOVi64imm:
879     return canBeExpandedToORR(MI, 64);
880   }
881 
882   llvm_unreachable("Unknown opcode to check as cheap as a move!");
883 }
884 
885 bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr &MI) {
886   switch (MI.getOpcode()) {
887   default:
888     return false;
889 
890   case AArch64::ADDWrs:
891   case AArch64::ADDXrs:
892   case AArch64::ADDSWrs:
893   case AArch64::ADDSXrs: {
894     unsigned Imm = MI.getOperand(3).getImm();
895     unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
896     if (ShiftVal == 0)
897       return true;
898     return AArch64_AM::getShiftType(Imm) == AArch64_AM::LSL && ShiftVal <= 5;
899   }
900 
901   case AArch64::ADDWrx:
902   case AArch64::ADDXrx:
903   case AArch64::ADDXrx64:
904   case AArch64::ADDSWrx:
905   case AArch64::ADDSXrx:
906   case AArch64::ADDSXrx64: {
907     unsigned Imm = MI.getOperand(3).getImm();
908     switch (AArch64_AM::getArithExtendType(Imm)) {
909     default:
910       return false;
911     case AArch64_AM::UXTB:
912     case AArch64_AM::UXTH:
913     case AArch64_AM::UXTW:
914     case AArch64_AM::UXTX:
915       return AArch64_AM::getArithShiftValue(Imm) <= 4;
916     }
917   }
918 
919   case AArch64::SUBWrs:
920   case AArch64::SUBSWrs: {
921     unsigned Imm = MI.getOperand(3).getImm();
922     unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
923     return ShiftVal == 0 ||
924            (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 31);
925   }
926 
927   case AArch64::SUBXrs:
928   case AArch64::SUBSXrs: {
929     unsigned Imm = MI.getOperand(3).getImm();
930     unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
931     return ShiftVal == 0 ||
932            (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 63);
933   }
934 
935   case AArch64::SUBWrx:
936   case AArch64::SUBXrx:
937   case AArch64::SUBXrx64:
938   case AArch64::SUBSWrx:
939   case AArch64::SUBSXrx:
940   case AArch64::SUBSXrx64: {
941     unsigned Imm = MI.getOperand(3).getImm();
942     switch (AArch64_AM::getArithExtendType(Imm)) {
943     default:
944       return false;
945     case AArch64_AM::UXTB:
946     case AArch64_AM::UXTH:
947     case AArch64_AM::UXTW:
948     case AArch64_AM::UXTX:
949       return AArch64_AM::getArithShiftValue(Imm) == 0;
950     }
951   }
952 
953   case AArch64::LDRBBroW:
954   case AArch64::LDRBBroX:
955   case AArch64::LDRBroW:
956   case AArch64::LDRBroX:
957   case AArch64::LDRDroW:
958   case AArch64::LDRDroX:
959   case AArch64::LDRHHroW:
960   case AArch64::LDRHHroX:
961   case AArch64::LDRHroW:
962   case AArch64::LDRHroX:
963   case AArch64::LDRQroW:
964   case AArch64::LDRQroX:
965   case AArch64::LDRSBWroW:
966   case AArch64::LDRSBWroX:
967   case AArch64::LDRSBXroW:
968   case AArch64::LDRSBXroX:
969   case AArch64::LDRSHWroW:
970   case AArch64::LDRSHWroX:
971   case AArch64::LDRSHXroW:
972   case AArch64::LDRSHXroX:
973   case AArch64::LDRSWroW:
974   case AArch64::LDRSWroX:
975   case AArch64::LDRSroW:
976   case AArch64::LDRSroX:
977   case AArch64::LDRWroW:
978   case AArch64::LDRWroX:
979   case AArch64::LDRXroW:
980   case AArch64::LDRXroX:
981   case AArch64::PRFMroW:
982   case AArch64::PRFMroX:
983   case AArch64::STRBBroW:
984   case AArch64::STRBBroX:
985   case AArch64::STRBroW:
986   case AArch64::STRBroX:
987   case AArch64::STRDroW:
988   case AArch64::STRDroX:
989   case AArch64::STRHHroW:
990   case AArch64::STRHHroX:
991   case AArch64::STRHroW:
992   case AArch64::STRHroX:
993   case AArch64::STRQroW:
994   case AArch64::STRQroX:
995   case AArch64::STRSroW:
996   case AArch64::STRSroX:
997   case AArch64::STRWroW:
998   case AArch64::STRWroX:
999   case AArch64::STRXroW:
1000   case AArch64::STRXroX: {
1001     unsigned IsSigned = MI.getOperand(3).getImm();
1002     return !IsSigned;
1003   }
1004   }
1005 }
1006 
1007 bool AArch64InstrInfo::isSEHInstruction(const MachineInstr &MI) {
1008   unsigned Opc = MI.getOpcode();
1009   switch (Opc) {
1010     default:
1011       return false;
1012     case AArch64::SEH_StackAlloc:
1013     case AArch64::SEH_SaveFPLR:
1014     case AArch64::SEH_SaveFPLR_X:
1015     case AArch64::SEH_SaveReg:
1016     case AArch64::SEH_SaveReg_X:
1017     case AArch64::SEH_SaveRegP:
1018     case AArch64::SEH_SaveRegP_X:
1019     case AArch64::SEH_SaveFReg:
1020     case AArch64::SEH_SaveFReg_X:
1021     case AArch64::SEH_SaveFRegP:
1022     case AArch64::SEH_SaveFRegP_X:
1023     case AArch64::SEH_SetFP:
1024     case AArch64::SEH_AddFP:
1025     case AArch64::SEH_Nop:
1026     case AArch64::SEH_PrologEnd:
1027     case AArch64::SEH_EpilogStart:
1028     case AArch64::SEH_EpilogEnd:
1029       return true;
1030   }
1031 }
1032 
1033 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1034                                              Register &SrcReg, Register &DstReg,
1035                                              unsigned &SubIdx) const {
1036   switch (MI.getOpcode()) {
1037   default:
1038     return false;
1039   case AArch64::SBFMXri: // aka sxtw
1040   case AArch64::UBFMXri: // aka uxtw
1041     // Check for the 32 -> 64 bit extension case, these instructions can do
1042     // much more.
1043     if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
1044       return false;
1045     // This is a signed or unsigned 32 -> 64 bit extension.
1046     SrcReg = MI.getOperand(1).getReg();
1047     DstReg = MI.getOperand(0).getReg();
1048     SubIdx = AArch64::sub_32;
1049     return true;
1050   }
1051 }
1052 
1053 bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint(
1054     const MachineInstr &MIa, const MachineInstr &MIb) const {
1055   const TargetRegisterInfo *TRI = &getRegisterInfo();
1056   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
1057   int64_t OffsetA = 0, OffsetB = 0;
1058   unsigned WidthA = 0, WidthB = 0;
1059   bool OffsetAIsScalable = false, OffsetBIsScalable = false;
1060 
1061   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
1062   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
1063 
1064   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1065       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1066     return false;
1067 
1068   // Retrieve the base, offset from the base and width. Width
1069   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8).  If
1070   // base are identical, and the offset of a lower memory access +
1071   // the width doesn't overlap the offset of a higher memory access,
1072   // then the memory accesses are different.
1073   // If OffsetAIsScalable and OffsetBIsScalable are both true, they
1074   // are assumed to have the same scale (vscale).
1075   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, OffsetAIsScalable,
1076                                    WidthA, TRI) &&
1077       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, OffsetBIsScalable,
1078                                    WidthB, TRI)) {
1079     if (BaseOpA->isIdenticalTo(*BaseOpB) &&
1080         OffsetAIsScalable == OffsetBIsScalable) {
1081       int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1082       int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1083       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1084       if (LowOffset + LowWidth <= HighOffset)
1085         return true;
1086     }
1087   }
1088   return false;
1089 }
1090 
1091 bool AArch64InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1092                                             const MachineBasicBlock *MBB,
1093                                             const MachineFunction &MF) const {
1094   if (TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF))
1095     return true;
1096   switch (MI.getOpcode()) {
1097   case AArch64::HINT:
1098     // CSDB hints are scheduling barriers.
1099     if (MI.getOperand(0).getImm() == 0x14)
1100       return true;
1101     break;
1102   case AArch64::DSB:
1103   case AArch64::ISB:
1104     // DSB and ISB also are scheduling barriers.
1105     return true;
1106   default:;
1107   }
1108   return isSEHInstruction(MI);
1109 }
1110 
1111 /// analyzeCompare - For a comparison instruction, return the source registers
1112 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
1113 /// Return true if the comparison instruction can be analyzed.
1114 bool AArch64InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1115                                       Register &SrcReg2, int64_t &CmpMask,
1116                                       int64_t &CmpValue) const {
1117   // The first operand can be a frame index where we'd normally expect a
1118   // register.
1119   assert(MI.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands");
1120   if (!MI.getOperand(1).isReg())
1121     return false;
1122 
1123   switch (MI.getOpcode()) {
1124   default:
1125     break;
1126   case AArch64::PTEST_PP:
1127     SrcReg = MI.getOperand(0).getReg();
1128     SrcReg2 = MI.getOperand(1).getReg();
1129     // Not sure about the mask and value for now...
1130     CmpMask = ~0;
1131     CmpValue = 0;
1132     return true;
1133   case AArch64::SUBSWrr:
1134   case AArch64::SUBSWrs:
1135   case AArch64::SUBSWrx:
1136   case AArch64::SUBSXrr:
1137   case AArch64::SUBSXrs:
1138   case AArch64::SUBSXrx:
1139   case AArch64::ADDSWrr:
1140   case AArch64::ADDSWrs:
1141   case AArch64::ADDSWrx:
1142   case AArch64::ADDSXrr:
1143   case AArch64::ADDSXrs:
1144   case AArch64::ADDSXrx:
1145     // Replace SUBSWrr with SUBWrr if NZCV is not used.
1146     SrcReg = MI.getOperand(1).getReg();
1147     SrcReg2 = MI.getOperand(2).getReg();
1148     CmpMask = ~0;
1149     CmpValue = 0;
1150     return true;
1151   case AArch64::SUBSWri:
1152   case AArch64::ADDSWri:
1153   case AArch64::SUBSXri:
1154   case AArch64::ADDSXri:
1155     SrcReg = MI.getOperand(1).getReg();
1156     SrcReg2 = 0;
1157     CmpMask = ~0;
1158     CmpValue = MI.getOperand(2).getImm();
1159     return true;
1160   case AArch64::ANDSWri:
1161   case AArch64::ANDSXri:
1162     // ANDS does not use the same encoding scheme as the others xxxS
1163     // instructions.
1164     SrcReg = MI.getOperand(1).getReg();
1165     SrcReg2 = 0;
1166     CmpMask = ~0;
1167     CmpValue = AArch64_AM::decodeLogicalImmediate(
1168                    MI.getOperand(2).getImm(),
1169                    MI.getOpcode() == AArch64::ANDSWri ? 32 : 64);
1170     return true;
1171   }
1172 
1173   return false;
1174 }
1175 
1176 static bool UpdateOperandRegClass(MachineInstr &Instr) {
1177   MachineBasicBlock *MBB = Instr.getParent();
1178   assert(MBB && "Can't get MachineBasicBlock here");
1179   MachineFunction *MF = MBB->getParent();
1180   assert(MF && "Can't get MachineFunction here");
1181   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1182   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1183   MachineRegisterInfo *MRI = &MF->getRegInfo();
1184 
1185   for (unsigned OpIdx = 0, EndIdx = Instr.getNumOperands(); OpIdx < EndIdx;
1186        ++OpIdx) {
1187     MachineOperand &MO = Instr.getOperand(OpIdx);
1188     const TargetRegisterClass *OpRegCstraints =
1189         Instr.getRegClassConstraint(OpIdx, TII, TRI);
1190 
1191     // If there's no constraint, there's nothing to do.
1192     if (!OpRegCstraints)
1193       continue;
1194     // If the operand is a frame index, there's nothing to do here.
1195     // A frame index operand will resolve correctly during PEI.
1196     if (MO.isFI())
1197       continue;
1198 
1199     assert(MO.isReg() &&
1200            "Operand has register constraints without being a register!");
1201 
1202     Register Reg = MO.getReg();
1203     if (Register::isPhysicalRegister(Reg)) {
1204       if (!OpRegCstraints->contains(Reg))
1205         return false;
1206     } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
1207                !MRI->constrainRegClass(Reg, OpRegCstraints))
1208       return false;
1209   }
1210 
1211   return true;
1212 }
1213 
1214 /// Return the opcode that does not set flags when possible - otherwise
1215 /// return the original opcode. The caller is responsible to do the actual
1216 /// substitution and legality checking.
1217 static unsigned convertToNonFlagSettingOpc(const MachineInstr &MI) {
1218   // Don't convert all compare instructions, because for some the zero register
1219   // encoding becomes the sp register.
1220   bool MIDefinesZeroReg = false;
1221   if (MI.definesRegister(AArch64::WZR) || MI.definesRegister(AArch64::XZR))
1222     MIDefinesZeroReg = true;
1223 
1224   switch (MI.getOpcode()) {
1225   default:
1226     return MI.getOpcode();
1227   case AArch64::ADDSWrr:
1228     return AArch64::ADDWrr;
1229   case AArch64::ADDSWri:
1230     return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri;
1231   case AArch64::ADDSWrs:
1232     return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs;
1233   case AArch64::ADDSWrx:
1234     return AArch64::ADDWrx;
1235   case AArch64::ADDSXrr:
1236     return AArch64::ADDXrr;
1237   case AArch64::ADDSXri:
1238     return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri;
1239   case AArch64::ADDSXrs:
1240     return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs;
1241   case AArch64::ADDSXrx:
1242     return AArch64::ADDXrx;
1243   case AArch64::SUBSWrr:
1244     return AArch64::SUBWrr;
1245   case AArch64::SUBSWri:
1246     return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri;
1247   case AArch64::SUBSWrs:
1248     return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs;
1249   case AArch64::SUBSWrx:
1250     return AArch64::SUBWrx;
1251   case AArch64::SUBSXrr:
1252     return AArch64::SUBXrr;
1253   case AArch64::SUBSXri:
1254     return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri;
1255   case AArch64::SUBSXrs:
1256     return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs;
1257   case AArch64::SUBSXrx:
1258     return AArch64::SUBXrx;
1259   }
1260 }
1261 
1262 enum AccessKind { AK_Write = 0x01, AK_Read = 0x10, AK_All = 0x11 };
1263 
1264 /// True when condition flags are accessed (either by writing or reading)
1265 /// on the instruction trace starting at From and ending at To.
1266 ///
1267 /// Note: If From and To are from different blocks it's assumed CC are accessed
1268 ///       on the path.
1269 static bool areCFlagsAccessedBetweenInstrs(
1270     MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
1271     const TargetRegisterInfo *TRI, const AccessKind AccessToCheck = AK_All) {
1272   // Early exit if To is at the beginning of the BB.
1273   if (To == To->getParent()->begin())
1274     return true;
1275 
1276   // Check whether the instructions are in the same basic block
1277   // If not, assume the condition flags might get modified somewhere.
1278   if (To->getParent() != From->getParent())
1279     return true;
1280 
1281   // From must be above To.
1282   assert(std::any_of(
1283       ++To.getReverse(), To->getParent()->rend(),
1284       [From](MachineInstr &MI) { return MI.getIterator() == From; }));
1285 
1286   // We iterate backward starting at \p To until we hit \p From.
1287   for (const MachineInstr &Instr :
1288        instructionsWithoutDebug(++To.getReverse(), From.getReverse())) {
1289     if (((AccessToCheck & AK_Write) &&
1290          Instr.modifiesRegister(AArch64::NZCV, TRI)) ||
1291         ((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI)))
1292       return true;
1293   }
1294   return false;
1295 }
1296 
1297 /// optimizePTestInstr - Attempt to remove a ptest of a predicate-generating
1298 /// operation which could set the flags in an identical manner
1299 bool AArch64InstrInfo::optimizePTestInstr(
1300     MachineInstr *PTest, unsigned MaskReg, unsigned PredReg,
1301     const MachineRegisterInfo *MRI) const {
1302   auto *Mask = MRI->getUniqueVRegDef(MaskReg);
1303   auto *Pred = MRI->getUniqueVRegDef(PredReg);
1304   auto NewOp = Pred->getOpcode();
1305   bool OpChanged = false;
1306 
1307   unsigned MaskOpcode = Mask->getOpcode();
1308   unsigned PredOpcode = Pred->getOpcode();
1309   bool PredIsPTestLike = isPTestLikeOpcode(PredOpcode);
1310   bool PredIsWhileLike = isWhileOpcode(PredOpcode);
1311 
1312   if (isPTrueOpcode(MaskOpcode) && (PredIsPTestLike || PredIsWhileLike)) {
1313     // For PTEST(PTRUE, OTHER_INST), PTEST is redundant when PTRUE doesn't
1314     // deactivate any lanes OTHER_INST might set.
1315     uint64_t MaskElementSize = getElementSizeForOpcode(MaskOpcode);
1316     uint64_t PredElementSize = getElementSizeForOpcode(PredOpcode);
1317 
1318     // Must be an all active predicate of matching element size.
1319     if ((PredElementSize != MaskElementSize) ||
1320         (Mask->getOperand(1).getImm() != 31))
1321       return false;
1322 
1323     // Fallthough to simply remove the PTEST.
1324   } else if ((Mask == Pred) && (PredIsPTestLike || PredIsWhileLike)) {
1325     // For PTEST(PG, PG), PTEST is redundant when PG is the result of an
1326     // instruction that sets the flags as PTEST would.
1327 
1328     // Fallthough to simply remove the PTEST.
1329   } else if (PredIsPTestLike) {
1330     // For PTEST(PG_1, PTEST_LIKE(PG2, ...)), PTEST is redundant when both
1331     // instructions use the same predicate.
1332     auto PTestLikeMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1333     if (Mask != PTestLikeMask)
1334       return false;
1335 
1336     // Fallthough to simply remove the PTEST.
1337   } else {
1338     switch (Pred->getOpcode()) {
1339     case AArch64::BRKB_PPzP:
1340     case AArch64::BRKPB_PPzPP: {
1341       // Op 0 is chain, 1 is the mask, 2 the previous predicate to
1342       // propagate, 3 the new predicate.
1343 
1344       // Check to see if our mask is the same as the brkpb's. If
1345       // not the resulting flag bits may be different and we
1346       // can't remove the ptest.
1347       auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1348       if (Mask != PredMask)
1349         return false;
1350 
1351       // Switch to the new opcode
1352       NewOp = Pred->getOpcode() == AArch64::BRKB_PPzP ? AArch64::BRKBS_PPzP
1353                                                       : AArch64::BRKPBS_PPzPP;
1354       OpChanged = true;
1355       break;
1356     }
1357     case AArch64::BRKN_PPzP: {
1358       auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1359       if (Mask != PredMask)
1360         return false;
1361 
1362       NewOp = AArch64::BRKNS_PPzP;
1363       OpChanged = true;
1364       break;
1365     }
1366     case AArch64::RDFFR_PPz: {
1367       // rdffr   p1.b, PredMask=p0/z <--- Definition of Pred
1368       // ptest   Mask=p0, Pred=p1.b  <--- If equal masks, remove this and use
1369       //                                  `rdffrs p1.b, p0/z` above.
1370       auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1371       if (Mask != PredMask)
1372         return false;
1373 
1374       NewOp = AArch64::RDFFRS_PPz;
1375       OpChanged = true;
1376       break;
1377     }
1378     default:
1379       // Bail out if we don't recognize the input
1380       return false;
1381     }
1382   }
1383 
1384   const TargetRegisterInfo *TRI = &getRegisterInfo();
1385 
1386   // If another instruction between Pred and PTest accesses flags, don't remove
1387   // the ptest or update the earlier instruction to modify them.
1388   if (areCFlagsAccessedBetweenInstrs(Pred, PTest, TRI))
1389     return false;
1390 
1391   // If we pass all the checks, it's safe to remove the PTEST and use the flags
1392   // as they are prior to PTEST. Sometimes this requires the tested PTEST
1393   // operand to be replaced with an equivalent instruction that also sets the
1394   // flags.
1395   Pred->setDesc(get(NewOp));
1396   PTest->eraseFromParent();
1397   if (OpChanged) {
1398     bool succeeded = UpdateOperandRegClass(*Pred);
1399     (void)succeeded;
1400     assert(succeeded && "Operands have incompatible register classes!");
1401     Pred->addRegisterDefined(AArch64::NZCV, TRI);
1402   }
1403 
1404   // Ensure that the flags def is live.
1405   if (Pred->registerDefIsDead(AArch64::NZCV, TRI)) {
1406     unsigned i = 0, e = Pred->getNumOperands();
1407     for (; i != e; ++i) {
1408       MachineOperand &MO = Pred->getOperand(i);
1409       if (MO.isReg() && MO.isDef() && MO.getReg() == AArch64::NZCV) {
1410         MO.setIsDead(false);
1411         break;
1412       }
1413     }
1414   }
1415   return true;
1416 }
1417 
1418 /// Try to optimize a compare instruction. A compare instruction is an
1419 /// instruction which produces AArch64::NZCV. It can be truly compare
1420 /// instruction
1421 /// when there are no uses of its destination register.
1422 ///
1423 /// The following steps are tried in order:
1424 /// 1. Convert CmpInstr into an unconditional version.
1425 /// 2. Remove CmpInstr if above there is an instruction producing a needed
1426 ///    condition code or an instruction which can be converted into such an
1427 ///    instruction.
1428 ///    Only comparison with zero is supported.
1429 bool AArch64InstrInfo::optimizeCompareInstr(
1430     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
1431     int64_t CmpValue, const MachineRegisterInfo *MRI) const {
1432   assert(CmpInstr.getParent());
1433   assert(MRI);
1434 
1435   // Replace SUBSWrr with SUBWrr if NZCV is not used.
1436   int DeadNZCVIdx = CmpInstr.findRegisterDefOperandIdx(AArch64::NZCV, true);
1437   if (DeadNZCVIdx != -1) {
1438     if (CmpInstr.definesRegister(AArch64::WZR) ||
1439         CmpInstr.definesRegister(AArch64::XZR)) {
1440       CmpInstr.eraseFromParent();
1441       return true;
1442     }
1443     unsigned Opc = CmpInstr.getOpcode();
1444     unsigned NewOpc = convertToNonFlagSettingOpc(CmpInstr);
1445     if (NewOpc == Opc)
1446       return false;
1447     const MCInstrDesc &MCID = get(NewOpc);
1448     CmpInstr.setDesc(MCID);
1449     CmpInstr.RemoveOperand(DeadNZCVIdx);
1450     bool succeeded = UpdateOperandRegClass(CmpInstr);
1451     (void)succeeded;
1452     assert(succeeded && "Some operands reg class are incompatible!");
1453     return true;
1454   }
1455 
1456   if (CmpInstr.getOpcode() == AArch64::PTEST_PP)
1457     return optimizePTestInstr(&CmpInstr, SrcReg, SrcReg2, MRI);
1458 
1459   if (SrcReg2 != 0)
1460     return false;
1461 
1462   // CmpInstr is a Compare instruction if destination register is not used.
1463   if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
1464     return false;
1465 
1466   if (CmpValue == 0 && substituteCmpToZero(CmpInstr, SrcReg, *MRI))
1467     return true;
1468   return (CmpValue == 0 || CmpValue == 1) &&
1469          removeCmpToZeroOrOne(CmpInstr, SrcReg, CmpValue, *MRI);
1470 }
1471 
1472 /// Get opcode of S version of Instr.
1473 /// If Instr is S version its opcode is returned.
1474 /// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version
1475 /// or we are not interested in it.
1476 static unsigned sForm(MachineInstr &Instr) {
1477   switch (Instr.getOpcode()) {
1478   default:
1479     return AArch64::INSTRUCTION_LIST_END;
1480 
1481   case AArch64::ADDSWrr:
1482   case AArch64::ADDSWri:
1483   case AArch64::ADDSXrr:
1484   case AArch64::ADDSXri:
1485   case AArch64::SUBSWrr:
1486   case AArch64::SUBSWri:
1487   case AArch64::SUBSXrr:
1488   case AArch64::SUBSXri:
1489     return Instr.getOpcode();
1490 
1491   case AArch64::ADDWrr:
1492     return AArch64::ADDSWrr;
1493   case AArch64::ADDWri:
1494     return AArch64::ADDSWri;
1495   case AArch64::ADDXrr:
1496     return AArch64::ADDSXrr;
1497   case AArch64::ADDXri:
1498     return AArch64::ADDSXri;
1499   case AArch64::ADCWr:
1500     return AArch64::ADCSWr;
1501   case AArch64::ADCXr:
1502     return AArch64::ADCSXr;
1503   case AArch64::SUBWrr:
1504     return AArch64::SUBSWrr;
1505   case AArch64::SUBWri:
1506     return AArch64::SUBSWri;
1507   case AArch64::SUBXrr:
1508     return AArch64::SUBSXrr;
1509   case AArch64::SUBXri:
1510     return AArch64::SUBSXri;
1511   case AArch64::SBCWr:
1512     return AArch64::SBCSWr;
1513   case AArch64::SBCXr:
1514     return AArch64::SBCSXr;
1515   case AArch64::ANDWri:
1516     return AArch64::ANDSWri;
1517   case AArch64::ANDXri:
1518     return AArch64::ANDSXri;
1519   }
1520 }
1521 
1522 /// Check if AArch64::NZCV should be alive in successors of MBB.
1523 static bool areCFlagsAliveInSuccessors(const MachineBasicBlock *MBB) {
1524   for (auto *BB : MBB->successors())
1525     if (BB->isLiveIn(AArch64::NZCV))
1526       return true;
1527   return false;
1528 }
1529 
1530 /// \returns The condition code operand index for \p Instr if it is a branch
1531 /// or select and -1 otherwise.
1532 static int
1533 findCondCodeUseOperandIdxForBranchOrSelect(const MachineInstr &Instr) {
1534   switch (Instr.getOpcode()) {
1535   default:
1536     return -1;
1537 
1538   case AArch64::Bcc: {
1539     int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1540     assert(Idx >= 2);
1541     return Idx - 2;
1542   }
1543 
1544   case AArch64::CSINVWr:
1545   case AArch64::CSINVXr:
1546   case AArch64::CSINCWr:
1547   case AArch64::CSINCXr:
1548   case AArch64::CSELWr:
1549   case AArch64::CSELXr:
1550   case AArch64::CSNEGWr:
1551   case AArch64::CSNEGXr:
1552   case AArch64::FCSELSrrr:
1553   case AArch64::FCSELDrrr: {
1554     int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1555     assert(Idx >= 1);
1556     return Idx - 1;
1557   }
1558   }
1559 }
1560 
1561 namespace {
1562 
1563 struct UsedNZCV {
1564   bool N = false;
1565   bool Z = false;
1566   bool C = false;
1567   bool V = false;
1568 
1569   UsedNZCV() = default;
1570 
1571   UsedNZCV &operator|=(const UsedNZCV &UsedFlags) {
1572     this->N |= UsedFlags.N;
1573     this->Z |= UsedFlags.Z;
1574     this->C |= UsedFlags.C;
1575     this->V |= UsedFlags.V;
1576     return *this;
1577   }
1578 };
1579 
1580 } // end anonymous namespace
1581 
1582 /// Find a condition code used by the instruction.
1583 /// Returns AArch64CC::Invalid if either the instruction does not use condition
1584 /// codes or we don't optimize CmpInstr in the presence of such instructions.
1585 static AArch64CC::CondCode findCondCodeUsedByInstr(const MachineInstr &Instr) {
1586   int CCIdx = findCondCodeUseOperandIdxForBranchOrSelect(Instr);
1587   return CCIdx >= 0 ? static_cast<AArch64CC::CondCode>(
1588                           Instr.getOperand(CCIdx).getImm())
1589                     : AArch64CC::Invalid;
1590 }
1591 
1592 static UsedNZCV getUsedNZCV(AArch64CC::CondCode CC) {
1593   assert(CC != AArch64CC::Invalid);
1594   UsedNZCV UsedFlags;
1595   switch (CC) {
1596   default:
1597     break;
1598 
1599   case AArch64CC::EQ: // Z set
1600   case AArch64CC::NE: // Z clear
1601     UsedFlags.Z = true;
1602     break;
1603 
1604   case AArch64CC::HI: // Z clear and C set
1605   case AArch64CC::LS: // Z set   or  C clear
1606     UsedFlags.Z = true;
1607     LLVM_FALLTHROUGH;
1608   case AArch64CC::HS: // C set
1609   case AArch64CC::LO: // C clear
1610     UsedFlags.C = true;
1611     break;
1612 
1613   case AArch64CC::MI: // N set
1614   case AArch64CC::PL: // N clear
1615     UsedFlags.N = true;
1616     break;
1617 
1618   case AArch64CC::VS: // V set
1619   case AArch64CC::VC: // V clear
1620     UsedFlags.V = true;
1621     break;
1622 
1623   case AArch64CC::GT: // Z clear, N and V the same
1624   case AArch64CC::LE: // Z set,   N and V differ
1625     UsedFlags.Z = true;
1626     LLVM_FALLTHROUGH;
1627   case AArch64CC::GE: // N and V the same
1628   case AArch64CC::LT: // N and V differ
1629     UsedFlags.N = true;
1630     UsedFlags.V = true;
1631     break;
1632   }
1633   return UsedFlags;
1634 }
1635 
1636 /// \returns Conditions flags used after \p CmpInstr in its MachineBB if they
1637 /// are not containing C or V flags and NZCV flags are not alive in successors
1638 /// of the same \p CmpInstr and \p MI parent. \returns None otherwise.
1639 ///
1640 /// Collect instructions using that flags in \p CCUseInstrs if provided.
1641 static Optional<UsedNZCV>
1642 examineCFlagsUse(MachineInstr &MI, MachineInstr &CmpInstr,
1643                  const TargetRegisterInfo &TRI,
1644                  SmallVectorImpl<MachineInstr *> *CCUseInstrs = nullptr) {
1645   MachineBasicBlock *CmpParent = CmpInstr.getParent();
1646   if (MI.getParent() != CmpParent)
1647     return None;
1648 
1649   if (areCFlagsAliveInSuccessors(CmpParent))
1650     return None;
1651 
1652   UsedNZCV NZCVUsedAfterCmp;
1653   for (MachineInstr &Instr : instructionsWithoutDebug(
1654            std::next(CmpInstr.getIterator()), CmpParent->instr_end())) {
1655     if (Instr.readsRegister(AArch64::NZCV, &TRI)) {
1656       AArch64CC::CondCode CC = findCondCodeUsedByInstr(Instr);
1657       if (CC == AArch64CC::Invalid) // Unsupported conditional instruction
1658         return None;
1659       NZCVUsedAfterCmp |= getUsedNZCV(CC);
1660       if (CCUseInstrs)
1661         CCUseInstrs->push_back(&Instr);
1662     }
1663     if (Instr.modifiesRegister(AArch64::NZCV, &TRI))
1664       break;
1665   }
1666   if (NZCVUsedAfterCmp.C || NZCVUsedAfterCmp.V)
1667     return None;
1668   return NZCVUsedAfterCmp;
1669 }
1670 
1671 static bool isADDSRegImm(unsigned Opcode) {
1672   return Opcode == AArch64::ADDSWri || Opcode == AArch64::ADDSXri;
1673 }
1674 
1675 static bool isSUBSRegImm(unsigned Opcode) {
1676   return Opcode == AArch64::SUBSWri || Opcode == AArch64::SUBSXri;
1677 }
1678 
1679 /// Check if CmpInstr can be substituted by MI.
1680 ///
1681 /// CmpInstr can be substituted:
1682 /// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1683 /// - and, MI and CmpInstr are from the same MachineBB
1684 /// - and, condition flags are not alive in successors of the CmpInstr parent
1685 /// - and, if MI opcode is the S form there must be no defs of flags between
1686 ///        MI and CmpInstr
1687 ///        or if MI opcode is not the S form there must be neither defs of flags
1688 ///        nor uses of flags between MI and CmpInstr.
1689 /// - and  C/V flags are not used after CmpInstr
1690 static bool canInstrSubstituteCmpInstr(MachineInstr &MI, MachineInstr &CmpInstr,
1691                                        const TargetRegisterInfo &TRI) {
1692   assert(sForm(MI) != AArch64::INSTRUCTION_LIST_END);
1693 
1694   const unsigned CmpOpcode = CmpInstr.getOpcode();
1695   if (!isADDSRegImm(CmpOpcode) && !isSUBSRegImm(CmpOpcode))
1696     return false;
1697 
1698   if (!examineCFlagsUse(MI, CmpInstr, TRI))
1699     return false;
1700 
1701   AccessKind AccessToCheck = AK_Write;
1702   if (sForm(MI) != MI.getOpcode())
1703     AccessToCheck = AK_All;
1704   return !areCFlagsAccessedBetweenInstrs(&MI, &CmpInstr, &TRI, AccessToCheck);
1705 }
1706 
1707 /// Substitute an instruction comparing to zero with another instruction
1708 /// which produces needed condition flags.
1709 ///
1710 /// Return true on success.
1711 bool AArch64InstrInfo::substituteCmpToZero(
1712     MachineInstr &CmpInstr, unsigned SrcReg,
1713     const MachineRegisterInfo &MRI) const {
1714   // Get the unique definition of SrcReg.
1715   MachineInstr *MI = MRI.getUniqueVRegDef(SrcReg);
1716   if (!MI)
1717     return false;
1718 
1719   const TargetRegisterInfo &TRI = getRegisterInfo();
1720 
1721   unsigned NewOpc = sForm(*MI);
1722   if (NewOpc == AArch64::INSTRUCTION_LIST_END)
1723     return false;
1724 
1725   if (!canInstrSubstituteCmpInstr(*MI, CmpInstr, TRI))
1726     return false;
1727 
1728   // Update the instruction to set NZCV.
1729   MI->setDesc(get(NewOpc));
1730   CmpInstr.eraseFromParent();
1731   bool succeeded = UpdateOperandRegClass(*MI);
1732   (void)succeeded;
1733   assert(succeeded && "Some operands reg class are incompatible!");
1734   MI->addRegisterDefined(AArch64::NZCV, &TRI);
1735   return true;
1736 }
1737 
1738 /// \returns True if \p CmpInstr can be removed.
1739 ///
1740 /// \p IsInvertCC is true if, after removing \p CmpInstr, condition
1741 /// codes used in \p CCUseInstrs must be inverted.
1742 static bool canCmpInstrBeRemoved(MachineInstr &MI, MachineInstr &CmpInstr,
1743                                  int CmpValue, const TargetRegisterInfo &TRI,
1744                                  SmallVectorImpl<MachineInstr *> &CCUseInstrs,
1745                                  bool &IsInvertCC) {
1746   assert((CmpValue == 0 || CmpValue == 1) &&
1747          "Only comparisons to 0 or 1 considered for removal!");
1748 
1749   // MI is 'CSINCWr %vreg, wzr, wzr, <cc>' or 'CSINCXr %vreg, xzr, xzr, <cc>'
1750   unsigned MIOpc = MI.getOpcode();
1751   if (MIOpc == AArch64::CSINCWr) {
1752     if (MI.getOperand(1).getReg() != AArch64::WZR ||
1753         MI.getOperand(2).getReg() != AArch64::WZR)
1754       return false;
1755   } else if (MIOpc == AArch64::CSINCXr) {
1756     if (MI.getOperand(1).getReg() != AArch64::XZR ||
1757         MI.getOperand(2).getReg() != AArch64::XZR)
1758       return false;
1759   } else {
1760     return false;
1761   }
1762   AArch64CC::CondCode MICC = findCondCodeUsedByInstr(MI);
1763   if (MICC == AArch64CC::Invalid)
1764     return false;
1765 
1766   // NZCV needs to be defined
1767   if (MI.findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
1768     return false;
1769 
1770   // CmpInstr is 'ADDS %vreg, 0' or 'SUBS %vreg, 0' or 'SUBS %vreg, 1'
1771   const unsigned CmpOpcode = CmpInstr.getOpcode();
1772   bool IsSubsRegImm = isSUBSRegImm(CmpOpcode);
1773   if (CmpValue && !IsSubsRegImm)
1774     return false;
1775   if (!CmpValue && !IsSubsRegImm && !isADDSRegImm(CmpOpcode))
1776     return false;
1777 
1778   // MI conditions allowed: eq, ne, mi, pl
1779   UsedNZCV MIUsedNZCV = getUsedNZCV(MICC);
1780   if (MIUsedNZCV.C || MIUsedNZCV.V)
1781     return false;
1782 
1783   Optional<UsedNZCV> NZCVUsedAfterCmp =
1784       examineCFlagsUse(MI, CmpInstr, TRI, &CCUseInstrs);
1785   // Condition flags are not used in CmpInstr basic block successors and only
1786   // Z or N flags allowed to be used after CmpInstr within its basic block
1787   if (!NZCVUsedAfterCmp)
1788     return false;
1789   // Z or N flag used after CmpInstr must correspond to the flag used in MI
1790   if ((MIUsedNZCV.Z && NZCVUsedAfterCmp->N) ||
1791       (MIUsedNZCV.N && NZCVUsedAfterCmp->Z))
1792     return false;
1793   // If CmpInstr is comparison to zero MI conditions are limited to eq, ne
1794   if (MIUsedNZCV.N && !CmpValue)
1795     return false;
1796 
1797   // There must be no defs of flags between MI and CmpInstr
1798   if (areCFlagsAccessedBetweenInstrs(&MI, &CmpInstr, &TRI, AK_Write))
1799     return false;
1800 
1801   // Condition code is inverted in the following cases:
1802   // 1. MI condition is ne; CmpInstr is 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1803   // 2. MI condition is eq, pl; CmpInstr is 'SUBS %vreg, 1'
1804   IsInvertCC = (CmpValue && (MICC == AArch64CC::EQ || MICC == AArch64CC::PL)) ||
1805                (!CmpValue && MICC == AArch64CC::NE);
1806   return true;
1807 }
1808 
1809 /// Remove comparision in csinc-cmp sequence
1810 ///
1811 /// Examples:
1812 /// 1. \code
1813 ///   csinc w9, wzr, wzr, ne
1814 ///   cmp   w9, #0
1815 ///   b.eq
1816 ///    \endcode
1817 /// to
1818 ///    \code
1819 ///   csinc w9, wzr, wzr, ne
1820 ///   b.ne
1821 ///    \endcode
1822 ///
1823 /// 2. \code
1824 ///   csinc x2, xzr, xzr, mi
1825 ///   cmp   x2, #1
1826 ///   b.pl
1827 ///    \endcode
1828 /// to
1829 ///    \code
1830 ///   csinc x2, xzr, xzr, mi
1831 ///   b.pl
1832 ///    \endcode
1833 ///
1834 /// \param  CmpInstr comparison instruction
1835 /// \return True when comparison removed
1836 bool AArch64InstrInfo::removeCmpToZeroOrOne(
1837     MachineInstr &CmpInstr, unsigned SrcReg, int CmpValue,
1838     const MachineRegisterInfo &MRI) const {
1839   MachineInstr *MI = MRI.getUniqueVRegDef(SrcReg);
1840   if (!MI)
1841     return false;
1842   const TargetRegisterInfo &TRI = getRegisterInfo();
1843   SmallVector<MachineInstr *, 4> CCUseInstrs;
1844   bool IsInvertCC = false;
1845   if (!canCmpInstrBeRemoved(*MI, CmpInstr, CmpValue, TRI, CCUseInstrs,
1846                             IsInvertCC))
1847     return false;
1848   // Make transformation
1849   CmpInstr.eraseFromParent();
1850   if (IsInvertCC) {
1851     // Invert condition codes in CmpInstr CC users
1852     for (MachineInstr *CCUseInstr : CCUseInstrs) {
1853       int Idx = findCondCodeUseOperandIdxForBranchOrSelect(*CCUseInstr);
1854       assert(Idx >= 0 && "Unexpected instruction using CC.");
1855       MachineOperand &CCOperand = CCUseInstr->getOperand(Idx);
1856       AArch64CC::CondCode CCUse = AArch64CC::getInvertedCondCode(
1857           static_cast<AArch64CC::CondCode>(CCOperand.getImm()));
1858       CCOperand.setImm(CCUse);
1859     }
1860   }
1861   return true;
1862 }
1863 
1864 bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1865   if (MI.getOpcode() != TargetOpcode::LOAD_STACK_GUARD &&
1866       MI.getOpcode() != AArch64::CATCHRET)
1867     return false;
1868 
1869   MachineBasicBlock &MBB = *MI.getParent();
1870   auto &Subtarget = MBB.getParent()->getSubtarget<AArch64Subtarget>();
1871   auto TRI = Subtarget.getRegisterInfo();
1872   DebugLoc DL = MI.getDebugLoc();
1873 
1874   if (MI.getOpcode() == AArch64::CATCHRET) {
1875     // Skip to the first instruction before the epilog.
1876     const TargetInstrInfo *TII =
1877       MBB.getParent()->getSubtarget().getInstrInfo();
1878     MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
1879     auto MBBI = MachineBasicBlock::iterator(MI);
1880     MachineBasicBlock::iterator FirstEpilogSEH = std::prev(MBBI);
1881     while (FirstEpilogSEH->getFlag(MachineInstr::FrameDestroy) &&
1882            FirstEpilogSEH != MBB.begin())
1883       FirstEpilogSEH = std::prev(FirstEpilogSEH);
1884     if (FirstEpilogSEH != MBB.begin())
1885       FirstEpilogSEH = std::next(FirstEpilogSEH);
1886     BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADRP))
1887         .addReg(AArch64::X0, RegState::Define)
1888         .addMBB(TargetMBB);
1889     BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADDXri))
1890         .addReg(AArch64::X0, RegState::Define)
1891         .addReg(AArch64::X0)
1892         .addMBB(TargetMBB)
1893         .addImm(0);
1894     return true;
1895   }
1896 
1897   Register Reg = MI.getOperand(0).getReg();
1898   Module &M = *MBB.getParent()->getFunction().getParent();
1899   if (M.getStackProtectorGuard() == "sysreg") {
1900     const AArch64SysReg::SysReg *SrcReg =
1901         AArch64SysReg::lookupSysRegByName(M.getStackProtectorGuardReg());
1902     if (!SrcReg)
1903       report_fatal_error("Unknown SysReg for Stack Protector Guard Register");
1904 
1905     // mrs xN, sysreg
1906     BuildMI(MBB, MI, DL, get(AArch64::MRS))
1907         .addDef(Reg, RegState::Renamable)
1908         .addImm(SrcReg->Encoding);
1909     int Offset = M.getStackProtectorGuardOffset();
1910     if (Offset >= 0 && Offset <= 32760 && Offset % 8 == 0) {
1911       // ldr xN, [xN, #offset]
1912       BuildMI(MBB, MI, DL, get(AArch64::LDRXui))
1913           .addDef(Reg)
1914           .addUse(Reg, RegState::Kill)
1915           .addImm(Offset / 8);
1916     } else if (Offset >= -256 && Offset <= 255) {
1917       // ldur xN, [xN, #offset]
1918       BuildMI(MBB, MI, DL, get(AArch64::LDURXi))
1919           .addDef(Reg)
1920           .addUse(Reg, RegState::Kill)
1921           .addImm(Offset);
1922     } else if (Offset >= -4095 && Offset <= 4095) {
1923       if (Offset > 0) {
1924         // add xN, xN, #offset
1925         BuildMI(MBB, MI, DL, get(AArch64::ADDXri))
1926             .addDef(Reg)
1927             .addUse(Reg, RegState::Kill)
1928             .addImm(Offset)
1929             .addImm(0);
1930       } else {
1931         // sub xN, xN, #offset
1932         BuildMI(MBB, MI, DL, get(AArch64::SUBXri))
1933             .addDef(Reg)
1934             .addUse(Reg, RegState::Kill)
1935             .addImm(-Offset)
1936             .addImm(0);
1937       }
1938       // ldr xN, [xN]
1939       BuildMI(MBB, MI, DL, get(AArch64::LDRXui))
1940           .addDef(Reg)
1941           .addUse(Reg, RegState::Kill)
1942           .addImm(0);
1943     } else {
1944       // Cases that are larger than +/- 4095 and not a multiple of 8, or larger
1945       // than 23760.
1946       // It might be nice to use AArch64::MOVi32imm here, which would get
1947       // expanded in PreSched2 after PostRA, but our lone scratch Reg already
1948       // contains the MRS result. findScratchNonCalleeSaveRegister() in
1949       // AArch64FrameLowering might help us find such a scratch register
1950       // though. If we failed to find a scratch register, we could emit a
1951       // stream of add instructions to build up the immediate. Or, we could try
1952       // to insert a AArch64::MOVi32imm before register allocation so that we
1953       // didn't need to scavenge for a scratch register.
1954       report_fatal_error("Unable to encode Stack Protector Guard Offset");
1955     }
1956     MBB.erase(MI);
1957     return true;
1958   }
1959 
1960   const GlobalValue *GV =
1961       cast<GlobalValue>((*MI.memoperands_begin())->getValue());
1962   const TargetMachine &TM = MBB.getParent()->getTarget();
1963   unsigned OpFlags = Subtarget.ClassifyGlobalReference(GV, TM);
1964   const unsigned char MO_NC = AArch64II::MO_NC;
1965 
1966   if ((OpFlags & AArch64II::MO_GOT) != 0) {
1967     BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg)
1968         .addGlobalAddress(GV, 0, OpFlags);
1969     if (Subtarget.isTargetILP32()) {
1970       unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
1971       BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
1972           .addDef(Reg32, RegState::Dead)
1973           .addUse(Reg, RegState::Kill)
1974           .addImm(0)
1975           .addMemOperand(*MI.memoperands_begin())
1976           .addDef(Reg, RegState::Implicit);
1977     } else {
1978       BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
1979           .addReg(Reg, RegState::Kill)
1980           .addImm(0)
1981           .addMemOperand(*MI.memoperands_begin());
1982     }
1983   } else if (TM.getCodeModel() == CodeModel::Large) {
1984     assert(!Subtarget.isTargetILP32() && "how can large exist in ILP32?");
1985     BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
1986         .addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC)
1987         .addImm(0);
1988     BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1989         .addReg(Reg, RegState::Kill)
1990         .addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC)
1991         .addImm(16);
1992     BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1993         .addReg(Reg, RegState::Kill)
1994         .addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC)
1995         .addImm(32);
1996     BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
1997         .addReg(Reg, RegState::Kill)
1998         .addGlobalAddress(GV, 0, AArch64II::MO_G3)
1999         .addImm(48);
2000     BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
2001         .addReg(Reg, RegState::Kill)
2002         .addImm(0)
2003         .addMemOperand(*MI.memoperands_begin());
2004   } else if (TM.getCodeModel() == CodeModel::Tiny) {
2005     BuildMI(MBB, MI, DL, get(AArch64::ADR), Reg)
2006         .addGlobalAddress(GV, 0, OpFlags);
2007   } else {
2008     BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg)
2009         .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
2010     unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC;
2011     if (Subtarget.isTargetILP32()) {
2012       unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
2013       BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
2014           .addDef(Reg32, RegState::Dead)
2015           .addUse(Reg, RegState::Kill)
2016           .addGlobalAddress(GV, 0, LoFlags)
2017           .addMemOperand(*MI.memoperands_begin())
2018           .addDef(Reg, RegState::Implicit);
2019     } else {
2020       BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
2021           .addReg(Reg, RegState::Kill)
2022           .addGlobalAddress(GV, 0, LoFlags)
2023           .addMemOperand(*MI.memoperands_begin());
2024     }
2025   }
2026 
2027   MBB.erase(MI);
2028 
2029   return true;
2030 }
2031 
2032 // Return true if this instruction simply sets its single destination register
2033 // to zero. This is equivalent to a register rename of the zero-register.
2034 bool AArch64InstrInfo::isGPRZero(const MachineInstr &MI) {
2035   switch (MI.getOpcode()) {
2036   default:
2037     break;
2038   case AArch64::MOVZWi:
2039   case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
2040     if (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) {
2041       assert(MI.getDesc().getNumOperands() == 3 &&
2042              MI.getOperand(2).getImm() == 0 && "invalid MOVZi operands");
2043       return true;
2044     }
2045     break;
2046   case AArch64::ANDWri: // and Rd, Rzr, #imm
2047     return MI.getOperand(1).getReg() == AArch64::WZR;
2048   case AArch64::ANDXri:
2049     return MI.getOperand(1).getReg() == AArch64::XZR;
2050   case TargetOpcode::COPY:
2051     return MI.getOperand(1).getReg() == AArch64::WZR;
2052   }
2053   return false;
2054 }
2055 
2056 // Return true if this instruction simply renames a general register without
2057 // modifying bits.
2058 bool AArch64InstrInfo::isGPRCopy(const MachineInstr &MI) {
2059   switch (MI.getOpcode()) {
2060   default:
2061     break;
2062   case TargetOpcode::COPY: {
2063     // GPR32 copies will by lowered to ORRXrs
2064     Register DstReg = MI.getOperand(0).getReg();
2065     return (AArch64::GPR32RegClass.contains(DstReg) ||
2066             AArch64::GPR64RegClass.contains(DstReg));
2067   }
2068   case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
2069     if (MI.getOperand(1).getReg() == AArch64::XZR) {
2070       assert(MI.getDesc().getNumOperands() == 4 &&
2071              MI.getOperand(3).getImm() == 0 && "invalid ORRrs operands");
2072       return true;
2073     }
2074     break;
2075   case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
2076     if (MI.getOperand(2).getImm() == 0) {
2077       assert(MI.getDesc().getNumOperands() == 4 &&
2078              MI.getOperand(3).getImm() == 0 && "invalid ADDXri operands");
2079       return true;
2080     }
2081     break;
2082   }
2083   return false;
2084 }
2085 
2086 // Return true if this instruction simply renames a general register without
2087 // modifying bits.
2088 bool AArch64InstrInfo::isFPRCopy(const MachineInstr &MI) {
2089   switch (MI.getOpcode()) {
2090   default:
2091     break;
2092   case TargetOpcode::COPY: {
2093     Register DstReg = MI.getOperand(0).getReg();
2094     return AArch64::FPR128RegClass.contains(DstReg);
2095   }
2096   case AArch64::ORRv16i8:
2097     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
2098       assert(MI.getDesc().getNumOperands() == 3 && MI.getOperand(0).isReg() &&
2099              "invalid ORRv16i8 operands");
2100       return true;
2101     }
2102     break;
2103   }
2104   return false;
2105 }
2106 
2107 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
2108                                                int &FrameIndex) const {
2109   switch (MI.getOpcode()) {
2110   default:
2111     break;
2112   case AArch64::LDRWui:
2113   case AArch64::LDRXui:
2114   case AArch64::LDRBui:
2115   case AArch64::LDRHui:
2116   case AArch64::LDRSui:
2117   case AArch64::LDRDui:
2118   case AArch64::LDRQui:
2119     if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
2120         MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
2121       FrameIndex = MI.getOperand(1).getIndex();
2122       return MI.getOperand(0).getReg();
2123     }
2124     break;
2125   }
2126 
2127   return 0;
2128 }
2129 
2130 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
2131                                               int &FrameIndex) const {
2132   switch (MI.getOpcode()) {
2133   default:
2134     break;
2135   case AArch64::STRWui:
2136   case AArch64::STRXui:
2137   case AArch64::STRBui:
2138   case AArch64::STRHui:
2139   case AArch64::STRSui:
2140   case AArch64::STRDui:
2141   case AArch64::STRQui:
2142   case AArch64::LDR_PXI:
2143   case AArch64::STR_PXI:
2144     if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
2145         MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
2146       FrameIndex = MI.getOperand(1).getIndex();
2147       return MI.getOperand(0).getReg();
2148     }
2149     break;
2150   }
2151   return 0;
2152 }
2153 
2154 /// Check all MachineMemOperands for a hint to suppress pairing.
2155 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr &MI) {
2156   return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
2157     return MMO->getFlags() & MOSuppressPair;
2158   });
2159 }
2160 
2161 /// Set a flag on the first MachineMemOperand to suppress pairing.
2162 void AArch64InstrInfo::suppressLdStPair(MachineInstr &MI) {
2163   if (MI.memoperands_empty())
2164     return;
2165   (*MI.memoperands_begin())->setFlags(MOSuppressPair);
2166 }
2167 
2168 /// Check all MachineMemOperands for a hint that the load/store is strided.
2169 bool AArch64InstrInfo::isStridedAccess(const MachineInstr &MI) {
2170   return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
2171     return MMO->getFlags() & MOStridedAccess;
2172   });
2173 }
2174 
2175 bool AArch64InstrInfo::hasUnscaledLdStOffset(unsigned Opc) {
2176   switch (Opc) {
2177   default:
2178     return false;
2179   case AArch64::STURSi:
2180   case AArch64::STRSpre:
2181   case AArch64::STURDi:
2182   case AArch64::STRDpre:
2183   case AArch64::STURQi:
2184   case AArch64::STRQpre:
2185   case AArch64::STURBBi:
2186   case AArch64::STURHHi:
2187   case AArch64::STURWi:
2188   case AArch64::STRWpre:
2189   case AArch64::STURXi:
2190   case AArch64::STRXpre:
2191   case AArch64::LDURSi:
2192   case AArch64::LDRSpre:
2193   case AArch64::LDURDi:
2194   case AArch64::LDRDpre:
2195   case AArch64::LDURQi:
2196   case AArch64::LDRQpre:
2197   case AArch64::LDURWi:
2198   case AArch64::LDRWpre:
2199   case AArch64::LDURXi:
2200   case AArch64::LDRXpre:
2201   case AArch64::LDURSWi:
2202   case AArch64::LDURHHi:
2203   case AArch64::LDURBBi:
2204   case AArch64::LDURSBWi:
2205   case AArch64::LDURSHWi:
2206     return true;
2207   }
2208 }
2209 
2210 Optional<unsigned> AArch64InstrInfo::getUnscaledLdSt(unsigned Opc) {
2211   switch (Opc) {
2212   default: return {};
2213   case AArch64::PRFMui: return AArch64::PRFUMi;
2214   case AArch64::LDRXui: return AArch64::LDURXi;
2215   case AArch64::LDRWui: return AArch64::LDURWi;
2216   case AArch64::LDRBui: return AArch64::LDURBi;
2217   case AArch64::LDRHui: return AArch64::LDURHi;
2218   case AArch64::LDRSui: return AArch64::LDURSi;
2219   case AArch64::LDRDui: return AArch64::LDURDi;
2220   case AArch64::LDRQui: return AArch64::LDURQi;
2221   case AArch64::LDRBBui: return AArch64::LDURBBi;
2222   case AArch64::LDRHHui: return AArch64::LDURHHi;
2223   case AArch64::LDRSBXui: return AArch64::LDURSBXi;
2224   case AArch64::LDRSBWui: return AArch64::LDURSBWi;
2225   case AArch64::LDRSHXui: return AArch64::LDURSHXi;
2226   case AArch64::LDRSHWui: return AArch64::LDURSHWi;
2227   case AArch64::LDRSWui: return AArch64::LDURSWi;
2228   case AArch64::STRXui: return AArch64::STURXi;
2229   case AArch64::STRWui: return AArch64::STURWi;
2230   case AArch64::STRBui: return AArch64::STURBi;
2231   case AArch64::STRHui: return AArch64::STURHi;
2232   case AArch64::STRSui: return AArch64::STURSi;
2233   case AArch64::STRDui: return AArch64::STURDi;
2234   case AArch64::STRQui: return AArch64::STURQi;
2235   case AArch64::STRBBui: return AArch64::STURBBi;
2236   case AArch64::STRHHui: return AArch64::STURHHi;
2237   }
2238 }
2239 
2240 unsigned AArch64InstrInfo::getLoadStoreImmIdx(unsigned Opc) {
2241   switch (Opc) {
2242   default:
2243     return 2;
2244   case AArch64::LDPXi:
2245   case AArch64::LDPDi:
2246   case AArch64::STPXi:
2247   case AArch64::STPDi:
2248   case AArch64::LDNPXi:
2249   case AArch64::LDNPDi:
2250   case AArch64::STNPXi:
2251   case AArch64::STNPDi:
2252   case AArch64::LDPQi:
2253   case AArch64::STPQi:
2254   case AArch64::LDNPQi:
2255   case AArch64::STNPQi:
2256   case AArch64::LDPWi:
2257   case AArch64::LDPSi:
2258   case AArch64::STPWi:
2259   case AArch64::STPSi:
2260   case AArch64::LDNPWi:
2261   case AArch64::LDNPSi:
2262   case AArch64::STNPWi:
2263   case AArch64::STNPSi:
2264   case AArch64::LDG:
2265   case AArch64::STGPi:
2266 
2267   case AArch64::LD1B_IMM:
2268   case AArch64::LD1B_H_IMM:
2269   case AArch64::LD1B_S_IMM:
2270   case AArch64::LD1B_D_IMM:
2271   case AArch64::LD1SB_H_IMM:
2272   case AArch64::LD1SB_S_IMM:
2273   case AArch64::LD1SB_D_IMM:
2274   case AArch64::LD1H_IMM:
2275   case AArch64::LD1H_S_IMM:
2276   case AArch64::LD1H_D_IMM:
2277   case AArch64::LD1SH_S_IMM:
2278   case AArch64::LD1SH_D_IMM:
2279   case AArch64::LD1W_IMM:
2280   case AArch64::LD1W_D_IMM:
2281   case AArch64::LD1SW_D_IMM:
2282   case AArch64::LD1D_IMM:
2283 
2284   case AArch64::ST1B_IMM:
2285   case AArch64::ST1B_H_IMM:
2286   case AArch64::ST1B_S_IMM:
2287   case AArch64::ST1B_D_IMM:
2288   case AArch64::ST1H_IMM:
2289   case AArch64::ST1H_S_IMM:
2290   case AArch64::ST1H_D_IMM:
2291   case AArch64::ST1W_IMM:
2292   case AArch64::ST1W_D_IMM:
2293   case AArch64::ST1D_IMM:
2294 
2295   case AArch64::LD1RB_IMM:
2296   case AArch64::LD1RB_H_IMM:
2297   case AArch64::LD1RB_S_IMM:
2298   case AArch64::LD1RB_D_IMM:
2299   case AArch64::LD1RSB_H_IMM:
2300   case AArch64::LD1RSB_S_IMM:
2301   case AArch64::LD1RSB_D_IMM:
2302   case AArch64::LD1RH_IMM:
2303   case AArch64::LD1RH_S_IMM:
2304   case AArch64::LD1RH_D_IMM:
2305   case AArch64::LD1RSH_S_IMM:
2306   case AArch64::LD1RSH_D_IMM:
2307   case AArch64::LD1RW_IMM:
2308   case AArch64::LD1RW_D_IMM:
2309   case AArch64::LD1RSW_IMM:
2310   case AArch64::LD1RD_IMM:
2311 
2312   case AArch64::LDNT1B_ZRI:
2313   case AArch64::LDNT1H_ZRI:
2314   case AArch64::LDNT1W_ZRI:
2315   case AArch64::LDNT1D_ZRI:
2316   case AArch64::STNT1B_ZRI:
2317   case AArch64::STNT1H_ZRI:
2318   case AArch64::STNT1W_ZRI:
2319   case AArch64::STNT1D_ZRI:
2320 
2321   case AArch64::LDNF1B_IMM:
2322   case AArch64::LDNF1B_H_IMM:
2323   case AArch64::LDNF1B_S_IMM:
2324   case AArch64::LDNF1B_D_IMM:
2325   case AArch64::LDNF1SB_H_IMM:
2326   case AArch64::LDNF1SB_S_IMM:
2327   case AArch64::LDNF1SB_D_IMM:
2328   case AArch64::LDNF1H_IMM:
2329   case AArch64::LDNF1H_S_IMM:
2330   case AArch64::LDNF1H_D_IMM:
2331   case AArch64::LDNF1SH_S_IMM:
2332   case AArch64::LDNF1SH_D_IMM:
2333   case AArch64::LDNF1W_IMM:
2334   case AArch64::LDNF1W_D_IMM:
2335   case AArch64::LDNF1SW_D_IMM:
2336   case AArch64::LDNF1D_IMM:
2337     return 3;
2338   case AArch64::ADDG:
2339   case AArch64::STGOffset:
2340   case AArch64::LDR_PXI:
2341   case AArch64::STR_PXI:
2342     return 2;
2343   }
2344 }
2345 
2346 bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr &MI) {
2347   switch (MI.getOpcode()) {
2348   default:
2349     return false;
2350   // Scaled instructions.
2351   case AArch64::STRSui:
2352   case AArch64::STRDui:
2353   case AArch64::STRQui:
2354   case AArch64::STRXui:
2355   case AArch64::STRWui:
2356   case AArch64::LDRSui:
2357   case AArch64::LDRDui:
2358   case AArch64::LDRQui:
2359   case AArch64::LDRXui:
2360   case AArch64::LDRWui:
2361   case AArch64::LDRSWui:
2362   // Unscaled instructions.
2363   case AArch64::STURSi:
2364   case AArch64::STRSpre:
2365   case AArch64::STURDi:
2366   case AArch64::STRDpre:
2367   case AArch64::STURQi:
2368   case AArch64::STRQpre:
2369   case AArch64::STURWi:
2370   case AArch64::STRWpre:
2371   case AArch64::STURXi:
2372   case AArch64::STRXpre:
2373   case AArch64::LDURSi:
2374   case AArch64::LDRSpre:
2375   case AArch64::LDURDi:
2376   case AArch64::LDRDpre:
2377   case AArch64::LDURQi:
2378   case AArch64::LDRQpre:
2379   case AArch64::LDURWi:
2380   case AArch64::LDRWpre:
2381   case AArch64::LDURXi:
2382   case AArch64::LDRXpre:
2383   case AArch64::LDURSWi:
2384     return true;
2385   }
2386 }
2387 
2388 unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc,
2389                                                    bool &Is64Bit) {
2390   switch (Opc) {
2391   default:
2392     llvm_unreachable("Opcode has no flag setting equivalent!");
2393   // 32-bit cases:
2394   case AArch64::ADDWri:
2395     Is64Bit = false;
2396     return AArch64::ADDSWri;
2397   case AArch64::ADDWrr:
2398     Is64Bit = false;
2399     return AArch64::ADDSWrr;
2400   case AArch64::ADDWrs:
2401     Is64Bit = false;
2402     return AArch64::ADDSWrs;
2403   case AArch64::ADDWrx:
2404     Is64Bit = false;
2405     return AArch64::ADDSWrx;
2406   case AArch64::ANDWri:
2407     Is64Bit = false;
2408     return AArch64::ANDSWri;
2409   case AArch64::ANDWrr:
2410     Is64Bit = false;
2411     return AArch64::ANDSWrr;
2412   case AArch64::ANDWrs:
2413     Is64Bit = false;
2414     return AArch64::ANDSWrs;
2415   case AArch64::BICWrr:
2416     Is64Bit = false;
2417     return AArch64::BICSWrr;
2418   case AArch64::BICWrs:
2419     Is64Bit = false;
2420     return AArch64::BICSWrs;
2421   case AArch64::SUBWri:
2422     Is64Bit = false;
2423     return AArch64::SUBSWri;
2424   case AArch64::SUBWrr:
2425     Is64Bit = false;
2426     return AArch64::SUBSWrr;
2427   case AArch64::SUBWrs:
2428     Is64Bit = false;
2429     return AArch64::SUBSWrs;
2430   case AArch64::SUBWrx:
2431     Is64Bit = false;
2432     return AArch64::SUBSWrx;
2433   // 64-bit cases:
2434   case AArch64::ADDXri:
2435     Is64Bit = true;
2436     return AArch64::ADDSXri;
2437   case AArch64::ADDXrr:
2438     Is64Bit = true;
2439     return AArch64::ADDSXrr;
2440   case AArch64::ADDXrs:
2441     Is64Bit = true;
2442     return AArch64::ADDSXrs;
2443   case AArch64::ADDXrx:
2444     Is64Bit = true;
2445     return AArch64::ADDSXrx;
2446   case AArch64::ANDXri:
2447     Is64Bit = true;
2448     return AArch64::ANDSXri;
2449   case AArch64::ANDXrr:
2450     Is64Bit = true;
2451     return AArch64::ANDSXrr;
2452   case AArch64::ANDXrs:
2453     Is64Bit = true;
2454     return AArch64::ANDSXrs;
2455   case AArch64::BICXrr:
2456     Is64Bit = true;
2457     return AArch64::BICSXrr;
2458   case AArch64::BICXrs:
2459     Is64Bit = true;
2460     return AArch64::BICSXrs;
2461   case AArch64::SUBXri:
2462     Is64Bit = true;
2463     return AArch64::SUBSXri;
2464   case AArch64::SUBXrr:
2465     Is64Bit = true;
2466     return AArch64::SUBSXrr;
2467   case AArch64::SUBXrs:
2468     Is64Bit = true;
2469     return AArch64::SUBSXrs;
2470   case AArch64::SUBXrx:
2471     Is64Bit = true;
2472     return AArch64::SUBSXrx;
2473   }
2474 }
2475 
2476 // Is this a candidate for ld/st merging or pairing?  For example, we don't
2477 // touch volatiles or load/stores that have a hint to avoid pair formation.
2478 bool AArch64InstrInfo::isCandidateToMergeOrPair(const MachineInstr &MI) const {
2479 
2480   bool IsPreLdSt = isPreLdSt(MI);
2481 
2482   // If this is a volatile load/store, don't mess with it.
2483   if (MI.hasOrderedMemoryRef())
2484     return false;
2485 
2486   // Make sure this is a reg/fi+imm (as opposed to an address reloc).
2487   // For Pre-inc LD/ST, the operand is shifted by one.
2488   assert((MI.getOperand(IsPreLdSt ? 2 : 1).isReg() ||
2489           MI.getOperand(IsPreLdSt ? 2 : 1).isFI()) &&
2490          "Expected a reg or frame index operand.");
2491 
2492   // For Pre-indexed addressing quadword instructions, the third operand is the
2493   // immediate value.
2494   bool IsImmPreLdSt = IsPreLdSt && MI.getOperand(3).isImm();
2495 
2496   if (!MI.getOperand(2).isImm() && !IsImmPreLdSt)
2497     return false;
2498 
2499   // Can't merge/pair if the instruction modifies the base register.
2500   // e.g., ldr x0, [x0]
2501   // This case will never occur with an FI base.
2502   // However, if the instruction is an LDR/STR<S,D,Q,W,X>pre, it can be merged.
2503   // For example:
2504   //   ldr q0, [x11, #32]!
2505   //   ldr q1, [x11, #16]
2506   //   to
2507   //   ldp q0, q1, [x11, #32]!
2508   if (MI.getOperand(1).isReg() && !IsPreLdSt) {
2509     Register BaseReg = MI.getOperand(1).getReg();
2510     const TargetRegisterInfo *TRI = &getRegisterInfo();
2511     if (MI.modifiesRegister(BaseReg, TRI))
2512       return false;
2513   }
2514 
2515   // Check if this load/store has a hint to avoid pair formation.
2516   // MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
2517   if (isLdStPairSuppressed(MI))
2518     return false;
2519 
2520   // Do not pair any callee-save store/reload instructions in the
2521   // prologue/epilogue if the CFI information encoded the operations as separate
2522   // instructions, as that will cause the size of the actual prologue to mismatch
2523   // with the prologue size recorded in the Windows CFI.
2524   const MCAsmInfo *MAI = MI.getMF()->getTarget().getMCAsmInfo();
2525   bool NeedsWinCFI = MAI->usesWindowsCFI() &&
2526                      MI.getMF()->getFunction().needsUnwindTableEntry();
2527   if (NeedsWinCFI && (MI.getFlag(MachineInstr::FrameSetup) ||
2528                       MI.getFlag(MachineInstr::FrameDestroy)))
2529     return false;
2530 
2531   // On some CPUs quad load/store pairs are slower than two single load/stores.
2532   if (Subtarget.isPaired128Slow()) {
2533     switch (MI.getOpcode()) {
2534     default:
2535       break;
2536     case AArch64::LDURQi:
2537     case AArch64::STURQi:
2538     case AArch64::LDRQui:
2539     case AArch64::STRQui:
2540       return false;
2541     }
2542   }
2543 
2544   return true;
2545 }
2546 
2547 bool AArch64InstrInfo::getMemOperandsWithOffsetWidth(
2548     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2549     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2550     const TargetRegisterInfo *TRI) const {
2551   if (!LdSt.mayLoadOrStore())
2552     return false;
2553 
2554   const MachineOperand *BaseOp;
2555   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, OffsetIsScalable,
2556                                     Width, TRI))
2557     return false;
2558   BaseOps.push_back(BaseOp);
2559   return true;
2560 }
2561 
2562 Optional<ExtAddrMode>
2563 AArch64InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
2564                                           const TargetRegisterInfo *TRI) const {
2565   const MachineOperand *Base; // Filled with the base operand of MI.
2566   int64_t Offset;             // Filled with the offset of MI.
2567   bool OffsetIsScalable;
2568   if (!getMemOperandWithOffset(MemI, Base, Offset, OffsetIsScalable, TRI))
2569     return None;
2570 
2571   if (!Base->isReg())
2572     return None;
2573   ExtAddrMode AM;
2574   AM.BaseReg = Base->getReg();
2575   AM.Displacement = Offset;
2576   AM.ScaledReg = 0;
2577   AM.Scale = 0;
2578   return AM;
2579 }
2580 
2581 bool AArch64InstrInfo::getMemOperandWithOffsetWidth(
2582     const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
2583     bool &OffsetIsScalable, unsigned &Width,
2584     const TargetRegisterInfo *TRI) const {
2585   assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
2586   // Handle only loads/stores with base register followed by immediate offset.
2587   if (LdSt.getNumExplicitOperands() == 3) {
2588     // Non-paired instruction (e.g., ldr x1, [x0, #8]).
2589     if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) ||
2590         !LdSt.getOperand(2).isImm())
2591       return false;
2592   } else if (LdSt.getNumExplicitOperands() == 4) {
2593     // Paired instruction (e.g., ldp x1, x2, [x0, #8]).
2594     if (!LdSt.getOperand(1).isReg() ||
2595         (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()) ||
2596         !LdSt.getOperand(3).isImm())
2597       return false;
2598   } else
2599     return false;
2600 
2601   // Get the scaling factor for the instruction and set the width for the
2602   // instruction.
2603   TypeSize Scale(0U, false);
2604   int64_t Dummy1, Dummy2;
2605 
2606   // If this returns false, then it's an instruction we don't want to handle.
2607   if (!getMemOpInfo(LdSt.getOpcode(), Scale, Width, Dummy1, Dummy2))
2608     return false;
2609 
2610   // Compute the offset. Offset is calculated as the immediate operand
2611   // multiplied by the scaling factor. Unscaled instructions have scaling factor
2612   // set to 1.
2613   if (LdSt.getNumExplicitOperands() == 3) {
2614     BaseOp = &LdSt.getOperand(1);
2615     Offset = LdSt.getOperand(2).getImm() * Scale.getKnownMinSize();
2616   } else {
2617     assert(LdSt.getNumExplicitOperands() == 4 && "invalid number of operands");
2618     BaseOp = &LdSt.getOperand(2);
2619     Offset = LdSt.getOperand(3).getImm() * Scale.getKnownMinSize();
2620   }
2621   OffsetIsScalable = Scale.isScalable();
2622 
2623   if (!BaseOp->isReg() && !BaseOp->isFI())
2624     return false;
2625 
2626   return true;
2627 }
2628 
2629 MachineOperand &
2630 AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const {
2631   assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
2632   MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands() - 1);
2633   assert(OfsOp.isImm() && "Offset operand wasn't immediate.");
2634   return OfsOp;
2635 }
2636 
2637 bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode, TypeSize &Scale,
2638                                     unsigned &Width, int64_t &MinOffset,
2639                                     int64_t &MaxOffset) {
2640   const unsigned SVEMaxBytesPerVector = AArch64::SVEMaxBitsPerVector / 8;
2641   switch (Opcode) {
2642   // Not a memory operation or something we want to handle.
2643   default:
2644     Scale = TypeSize::Fixed(0);
2645     Width = 0;
2646     MinOffset = MaxOffset = 0;
2647     return false;
2648   case AArch64::STRWpost:
2649   case AArch64::LDRWpost:
2650     Width = 32;
2651     Scale = TypeSize::Fixed(4);
2652     MinOffset = -256;
2653     MaxOffset = 255;
2654     break;
2655   case AArch64::LDURQi:
2656   case AArch64::STURQi:
2657     Width = 16;
2658     Scale = TypeSize::Fixed(1);
2659     MinOffset = -256;
2660     MaxOffset = 255;
2661     break;
2662   case AArch64::PRFUMi:
2663   case AArch64::LDURXi:
2664   case AArch64::LDURDi:
2665   case AArch64::STURXi:
2666   case AArch64::STURDi:
2667     Width = 8;
2668     Scale = TypeSize::Fixed(1);
2669     MinOffset = -256;
2670     MaxOffset = 255;
2671     break;
2672   case AArch64::LDURWi:
2673   case AArch64::LDURSi:
2674   case AArch64::LDURSWi:
2675   case AArch64::STURWi:
2676   case AArch64::STURSi:
2677     Width = 4;
2678     Scale = TypeSize::Fixed(1);
2679     MinOffset = -256;
2680     MaxOffset = 255;
2681     break;
2682   case AArch64::LDURHi:
2683   case AArch64::LDURHHi:
2684   case AArch64::LDURSHXi:
2685   case AArch64::LDURSHWi:
2686   case AArch64::STURHi:
2687   case AArch64::STURHHi:
2688     Width = 2;
2689     Scale = TypeSize::Fixed(1);
2690     MinOffset = -256;
2691     MaxOffset = 255;
2692     break;
2693   case AArch64::LDURBi:
2694   case AArch64::LDURBBi:
2695   case AArch64::LDURSBXi:
2696   case AArch64::LDURSBWi:
2697   case AArch64::STURBi:
2698   case AArch64::STURBBi:
2699     Width = 1;
2700     Scale = TypeSize::Fixed(1);
2701     MinOffset = -256;
2702     MaxOffset = 255;
2703     break;
2704   case AArch64::LDPQi:
2705   case AArch64::LDNPQi:
2706   case AArch64::STPQi:
2707   case AArch64::STNPQi:
2708     Scale = TypeSize::Fixed(16);
2709     Width = 32;
2710     MinOffset = -64;
2711     MaxOffset = 63;
2712     break;
2713   case AArch64::LDRQui:
2714   case AArch64::STRQui:
2715     Scale = TypeSize::Fixed(16);
2716     Width = 16;
2717     MinOffset = 0;
2718     MaxOffset = 4095;
2719     break;
2720   case AArch64::LDPXi:
2721   case AArch64::LDPDi:
2722   case AArch64::LDNPXi:
2723   case AArch64::LDNPDi:
2724   case AArch64::STPXi:
2725   case AArch64::STPDi:
2726   case AArch64::STNPXi:
2727   case AArch64::STNPDi:
2728     Scale = TypeSize::Fixed(8);
2729     Width = 16;
2730     MinOffset = -64;
2731     MaxOffset = 63;
2732     break;
2733   case AArch64::PRFMui:
2734   case AArch64::LDRXui:
2735   case AArch64::LDRDui:
2736   case AArch64::STRXui:
2737   case AArch64::STRDui:
2738     Scale = TypeSize::Fixed(8);
2739     Width = 8;
2740     MinOffset = 0;
2741     MaxOffset = 4095;
2742     break;
2743   case AArch64::StoreSwiftAsyncContext:
2744     // Store is an STRXui, but there might be an ADDXri in the expansion too.
2745     Scale = TypeSize::Fixed(1);
2746     Width = 8;
2747     MinOffset = 0;
2748     MaxOffset = 4095;
2749     break;
2750   case AArch64::LDPWi:
2751   case AArch64::LDPSi:
2752   case AArch64::LDNPWi:
2753   case AArch64::LDNPSi:
2754   case AArch64::STPWi:
2755   case AArch64::STPSi:
2756   case AArch64::STNPWi:
2757   case AArch64::STNPSi:
2758     Scale = TypeSize::Fixed(4);
2759     Width = 8;
2760     MinOffset = -64;
2761     MaxOffset = 63;
2762     break;
2763   case AArch64::LDRWui:
2764   case AArch64::LDRSui:
2765   case AArch64::LDRSWui:
2766   case AArch64::STRWui:
2767   case AArch64::STRSui:
2768     Scale = TypeSize::Fixed(4);
2769     Width = 4;
2770     MinOffset = 0;
2771     MaxOffset = 4095;
2772     break;
2773   case AArch64::LDRHui:
2774   case AArch64::LDRHHui:
2775   case AArch64::LDRSHWui:
2776   case AArch64::LDRSHXui:
2777   case AArch64::STRHui:
2778   case AArch64::STRHHui:
2779     Scale = TypeSize::Fixed(2);
2780     Width = 2;
2781     MinOffset = 0;
2782     MaxOffset = 4095;
2783     break;
2784   case AArch64::LDRBui:
2785   case AArch64::LDRBBui:
2786   case AArch64::LDRSBWui:
2787   case AArch64::LDRSBXui:
2788   case AArch64::STRBui:
2789   case AArch64::STRBBui:
2790     Scale = TypeSize::Fixed(1);
2791     Width = 1;
2792     MinOffset = 0;
2793     MaxOffset = 4095;
2794     break;
2795   case AArch64::STPXpre:
2796   case AArch64::LDPXpost:
2797   case AArch64::STPDpre:
2798   case AArch64::LDPDpost:
2799     Scale = TypeSize::Fixed(8);
2800     Width = 8;
2801     MinOffset = -512;
2802     MaxOffset = 504;
2803     break;
2804   case AArch64::STPQpre:
2805   case AArch64::LDPQpost:
2806     Scale = TypeSize::Fixed(16);
2807     Width = 16;
2808     MinOffset = -1024;
2809     MaxOffset = 1008;
2810     break;
2811   case AArch64::STRXpre:
2812   case AArch64::STRDpre:
2813   case AArch64::LDRXpost:
2814   case AArch64::LDRDpost:
2815     Scale = TypeSize::Fixed(1);
2816     Width = 8;
2817     MinOffset = -256;
2818     MaxOffset = 255;
2819     break;
2820   case AArch64::STRQpre:
2821   case AArch64::LDRQpost:
2822     Scale = TypeSize::Fixed(1);
2823     Width = 16;
2824     MinOffset = -256;
2825     MaxOffset = 255;
2826     break;
2827   case AArch64::ADDG:
2828     Scale = TypeSize::Fixed(16);
2829     Width = 0;
2830     MinOffset = 0;
2831     MaxOffset = 63;
2832     break;
2833   case AArch64::TAGPstack:
2834     Scale = TypeSize::Fixed(16);
2835     Width = 0;
2836     // TAGP with a negative offset turns into SUBP, which has a maximum offset
2837     // of 63 (not 64!).
2838     MinOffset = -63;
2839     MaxOffset = 63;
2840     break;
2841   case AArch64::LDG:
2842   case AArch64::STGOffset:
2843   case AArch64::STZGOffset:
2844     Scale = TypeSize::Fixed(16);
2845     Width = 16;
2846     MinOffset = -256;
2847     MaxOffset = 255;
2848     break;
2849   case AArch64::STR_ZZZZXI:
2850   case AArch64::LDR_ZZZZXI:
2851     Scale = TypeSize::Scalable(16);
2852     Width = SVEMaxBytesPerVector * 4;
2853     MinOffset = -256;
2854     MaxOffset = 252;
2855     break;
2856   case AArch64::STR_ZZZXI:
2857   case AArch64::LDR_ZZZXI:
2858     Scale = TypeSize::Scalable(16);
2859     Width = SVEMaxBytesPerVector * 3;
2860     MinOffset = -256;
2861     MaxOffset = 253;
2862     break;
2863   case AArch64::STR_ZZXI:
2864   case AArch64::LDR_ZZXI:
2865     Scale = TypeSize::Scalable(16);
2866     Width = SVEMaxBytesPerVector * 2;
2867     MinOffset = -256;
2868     MaxOffset = 254;
2869     break;
2870   case AArch64::LDR_PXI:
2871   case AArch64::STR_PXI:
2872     Scale = TypeSize::Scalable(2);
2873     Width = SVEMaxBytesPerVector / 8;
2874     MinOffset = -256;
2875     MaxOffset = 255;
2876     break;
2877   case AArch64::LDR_ZXI:
2878   case AArch64::STR_ZXI:
2879     Scale = TypeSize::Scalable(16);
2880     Width = SVEMaxBytesPerVector;
2881     MinOffset = -256;
2882     MaxOffset = 255;
2883     break;
2884   case AArch64::LD1B_IMM:
2885   case AArch64::LD1H_IMM:
2886   case AArch64::LD1W_IMM:
2887   case AArch64::LD1D_IMM:
2888   case AArch64::LDNT1B_ZRI:
2889   case AArch64::LDNT1H_ZRI:
2890   case AArch64::LDNT1W_ZRI:
2891   case AArch64::LDNT1D_ZRI:
2892   case AArch64::ST1B_IMM:
2893   case AArch64::ST1H_IMM:
2894   case AArch64::ST1W_IMM:
2895   case AArch64::ST1D_IMM:
2896   case AArch64::STNT1B_ZRI:
2897   case AArch64::STNT1H_ZRI:
2898   case AArch64::STNT1W_ZRI:
2899   case AArch64::STNT1D_ZRI:
2900   case AArch64::LDNF1B_IMM:
2901   case AArch64::LDNF1H_IMM:
2902   case AArch64::LDNF1W_IMM:
2903   case AArch64::LDNF1D_IMM:
2904     // A full vectors worth of data
2905     // Width = mbytes * elements
2906     Scale = TypeSize::Scalable(16);
2907     Width = SVEMaxBytesPerVector;
2908     MinOffset = -8;
2909     MaxOffset = 7;
2910     break;
2911   case AArch64::LD1B_H_IMM:
2912   case AArch64::LD1SB_H_IMM:
2913   case AArch64::LD1H_S_IMM:
2914   case AArch64::LD1SH_S_IMM:
2915   case AArch64::LD1W_D_IMM:
2916   case AArch64::LD1SW_D_IMM:
2917   case AArch64::ST1B_H_IMM:
2918   case AArch64::ST1H_S_IMM:
2919   case AArch64::ST1W_D_IMM:
2920   case AArch64::LDNF1B_H_IMM:
2921   case AArch64::LDNF1SB_H_IMM:
2922   case AArch64::LDNF1H_S_IMM:
2923   case AArch64::LDNF1SH_S_IMM:
2924   case AArch64::LDNF1W_D_IMM:
2925   case AArch64::LDNF1SW_D_IMM:
2926     // A half vector worth of data
2927     // Width = mbytes * elements
2928     Scale = TypeSize::Scalable(8);
2929     Width = SVEMaxBytesPerVector / 2;
2930     MinOffset = -8;
2931     MaxOffset = 7;
2932     break;
2933   case AArch64::LD1B_S_IMM:
2934   case AArch64::LD1SB_S_IMM:
2935   case AArch64::LD1H_D_IMM:
2936   case AArch64::LD1SH_D_IMM:
2937   case AArch64::ST1B_S_IMM:
2938   case AArch64::ST1H_D_IMM:
2939   case AArch64::LDNF1B_S_IMM:
2940   case AArch64::LDNF1SB_S_IMM:
2941   case AArch64::LDNF1H_D_IMM:
2942   case AArch64::LDNF1SH_D_IMM:
2943     // A quarter vector worth of data
2944     // Width = mbytes * elements
2945     Scale = TypeSize::Scalable(4);
2946     Width = SVEMaxBytesPerVector / 4;
2947     MinOffset = -8;
2948     MaxOffset = 7;
2949     break;
2950   case AArch64::LD1B_D_IMM:
2951   case AArch64::LD1SB_D_IMM:
2952   case AArch64::ST1B_D_IMM:
2953   case AArch64::LDNF1B_D_IMM:
2954   case AArch64::LDNF1SB_D_IMM:
2955     // A eighth vector worth of data
2956     // Width = mbytes * elements
2957     Scale = TypeSize::Scalable(2);
2958     Width = SVEMaxBytesPerVector / 8;
2959     MinOffset = -8;
2960     MaxOffset = 7;
2961     break;
2962   case AArch64::ST2GOffset:
2963   case AArch64::STZ2GOffset:
2964     Scale = TypeSize::Fixed(16);
2965     Width = 32;
2966     MinOffset = -256;
2967     MaxOffset = 255;
2968     break;
2969   case AArch64::STGPi:
2970     Scale = TypeSize::Fixed(16);
2971     Width = 16;
2972     MinOffset = -64;
2973     MaxOffset = 63;
2974     break;
2975   case AArch64::LD1RB_IMM:
2976   case AArch64::LD1RB_H_IMM:
2977   case AArch64::LD1RB_S_IMM:
2978   case AArch64::LD1RB_D_IMM:
2979   case AArch64::LD1RSB_H_IMM:
2980   case AArch64::LD1RSB_S_IMM:
2981   case AArch64::LD1RSB_D_IMM:
2982     Scale = TypeSize::Fixed(1);
2983     Width = 1;
2984     MinOffset = 0;
2985     MaxOffset = 63;
2986     break;
2987   case AArch64::LD1RH_IMM:
2988   case AArch64::LD1RH_S_IMM:
2989   case AArch64::LD1RH_D_IMM:
2990   case AArch64::LD1RSH_S_IMM:
2991   case AArch64::LD1RSH_D_IMM:
2992     Scale = TypeSize::Fixed(2);
2993     Width = 2;
2994     MinOffset = 0;
2995     MaxOffset = 63;
2996     break;
2997   case AArch64::LD1RW_IMM:
2998   case AArch64::LD1RW_D_IMM:
2999   case AArch64::LD1RSW_IMM:
3000     Scale = TypeSize::Fixed(4);
3001     Width = 4;
3002     MinOffset = 0;
3003     MaxOffset = 63;
3004     break;
3005   case AArch64::LD1RD_IMM:
3006     Scale = TypeSize::Fixed(8);
3007     Width = 8;
3008     MinOffset = 0;
3009     MaxOffset = 63;
3010     break;
3011   }
3012 
3013   return true;
3014 }
3015 
3016 // Scaling factor for unscaled load or store.
3017 int AArch64InstrInfo::getMemScale(unsigned Opc) {
3018   switch (Opc) {
3019   default:
3020     llvm_unreachable("Opcode has unknown scale!");
3021   case AArch64::LDRBBui:
3022   case AArch64::LDURBBi:
3023   case AArch64::LDRSBWui:
3024   case AArch64::LDURSBWi:
3025   case AArch64::STRBBui:
3026   case AArch64::STURBBi:
3027     return 1;
3028   case AArch64::LDRHHui:
3029   case AArch64::LDURHHi:
3030   case AArch64::LDRSHWui:
3031   case AArch64::LDURSHWi:
3032   case AArch64::STRHHui:
3033   case AArch64::STURHHi:
3034     return 2;
3035   case AArch64::LDRSui:
3036   case AArch64::LDURSi:
3037   case AArch64::LDRSpre:
3038   case AArch64::LDRSWui:
3039   case AArch64::LDURSWi:
3040   case AArch64::LDRWpre:
3041   case AArch64::LDRWui:
3042   case AArch64::LDURWi:
3043   case AArch64::STRSui:
3044   case AArch64::STURSi:
3045   case AArch64::STRSpre:
3046   case AArch64::STRWui:
3047   case AArch64::STURWi:
3048   case AArch64::STRWpre:
3049   case AArch64::LDPSi:
3050   case AArch64::LDPSWi:
3051   case AArch64::LDPWi:
3052   case AArch64::STPSi:
3053   case AArch64::STPWi:
3054     return 4;
3055   case AArch64::LDRDui:
3056   case AArch64::LDURDi:
3057   case AArch64::LDRDpre:
3058   case AArch64::LDRXui:
3059   case AArch64::LDURXi:
3060   case AArch64::LDRXpre:
3061   case AArch64::STRDui:
3062   case AArch64::STURDi:
3063   case AArch64::STRDpre:
3064   case AArch64::STRXui:
3065   case AArch64::STURXi:
3066   case AArch64::STRXpre:
3067   case AArch64::LDPDi:
3068   case AArch64::LDPXi:
3069   case AArch64::STPDi:
3070   case AArch64::STPXi:
3071     return 8;
3072   case AArch64::LDRQui:
3073   case AArch64::LDURQi:
3074   case AArch64::STRQui:
3075   case AArch64::STURQi:
3076   case AArch64::STRQpre:
3077   case AArch64::LDPQi:
3078   case AArch64::LDRQpre:
3079   case AArch64::STPQi:
3080   case AArch64::STGOffset:
3081   case AArch64::STZGOffset:
3082   case AArch64::ST2GOffset:
3083   case AArch64::STZ2GOffset:
3084   case AArch64::STGPi:
3085     return 16;
3086   }
3087 }
3088 
3089 bool AArch64InstrInfo::isPreLd(const MachineInstr &MI) {
3090   switch (MI.getOpcode()) {
3091   default:
3092     return false;
3093   case AArch64::LDRWpre:
3094   case AArch64::LDRXpre:
3095   case AArch64::LDRSpre:
3096   case AArch64::LDRDpre:
3097   case AArch64::LDRQpre:
3098     return true;
3099   }
3100 }
3101 
3102 bool AArch64InstrInfo::isPreSt(const MachineInstr &MI) {
3103   switch (MI.getOpcode()) {
3104   default:
3105     return false;
3106   case AArch64::STRWpre:
3107   case AArch64::STRXpre:
3108   case AArch64::STRSpre:
3109   case AArch64::STRDpre:
3110   case AArch64::STRQpre:
3111     return true;
3112   }
3113 }
3114 
3115 bool AArch64InstrInfo::isPreLdSt(const MachineInstr &MI) {
3116   return isPreLd(MI) || isPreSt(MI);
3117 }
3118 
3119 // Scale the unscaled offsets.  Returns false if the unscaled offset can't be
3120 // scaled.
3121 static bool scaleOffset(unsigned Opc, int64_t &Offset) {
3122   int Scale = AArch64InstrInfo::getMemScale(Opc);
3123 
3124   // If the byte-offset isn't a multiple of the stride, we can't scale this
3125   // offset.
3126   if (Offset % Scale != 0)
3127     return false;
3128 
3129   // Convert the byte-offset used by unscaled into an "element" offset used
3130   // by the scaled pair load/store instructions.
3131   Offset /= Scale;
3132   return true;
3133 }
3134 
3135 static bool canPairLdStOpc(unsigned FirstOpc, unsigned SecondOpc) {
3136   if (FirstOpc == SecondOpc)
3137     return true;
3138   // We can also pair sign-ext and zero-ext instructions.
3139   switch (FirstOpc) {
3140   default:
3141     return false;
3142   case AArch64::LDRWui:
3143   case AArch64::LDURWi:
3144     return SecondOpc == AArch64::LDRSWui || SecondOpc == AArch64::LDURSWi;
3145   case AArch64::LDRSWui:
3146   case AArch64::LDURSWi:
3147     return SecondOpc == AArch64::LDRWui || SecondOpc == AArch64::LDURWi;
3148   }
3149   // These instructions can't be paired based on their opcodes.
3150   return false;
3151 }
3152 
3153 static bool shouldClusterFI(const MachineFrameInfo &MFI, int FI1,
3154                             int64_t Offset1, unsigned Opcode1, int FI2,
3155                             int64_t Offset2, unsigned Opcode2) {
3156   // Accesses through fixed stack object frame indices may access a different
3157   // fixed stack slot. Check that the object offsets + offsets match.
3158   if (MFI.isFixedObjectIndex(FI1) && MFI.isFixedObjectIndex(FI2)) {
3159     int64_t ObjectOffset1 = MFI.getObjectOffset(FI1);
3160     int64_t ObjectOffset2 = MFI.getObjectOffset(FI2);
3161     assert(ObjectOffset1 <= ObjectOffset2 && "Object offsets are not ordered.");
3162     // Convert to scaled object offsets.
3163     int Scale1 = AArch64InstrInfo::getMemScale(Opcode1);
3164     if (ObjectOffset1 % Scale1 != 0)
3165       return false;
3166     ObjectOffset1 /= Scale1;
3167     int Scale2 = AArch64InstrInfo::getMemScale(Opcode2);
3168     if (ObjectOffset2 % Scale2 != 0)
3169       return false;
3170     ObjectOffset2 /= Scale2;
3171     ObjectOffset1 += Offset1;
3172     ObjectOffset2 += Offset2;
3173     return ObjectOffset1 + 1 == ObjectOffset2;
3174   }
3175 
3176   return FI1 == FI2;
3177 }
3178 
3179 /// Detect opportunities for ldp/stp formation.
3180 ///
3181 /// Only called for LdSt for which getMemOperandWithOffset returns true.
3182 bool AArch64InstrInfo::shouldClusterMemOps(
3183     ArrayRef<const MachineOperand *> BaseOps1,
3184     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
3185     unsigned NumBytes) const {
3186   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
3187   const MachineOperand &BaseOp1 = *BaseOps1.front();
3188   const MachineOperand &BaseOp2 = *BaseOps2.front();
3189   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
3190   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
3191   if (BaseOp1.getType() != BaseOp2.getType())
3192     return false;
3193 
3194   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
3195          "Only base registers and frame indices are supported.");
3196 
3197   // Check for both base regs and base FI.
3198   if (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg())
3199     return false;
3200 
3201   // Only cluster up to a single pair.
3202   if (NumLoads > 2)
3203     return false;
3204 
3205   if (!isPairableLdStInst(FirstLdSt) || !isPairableLdStInst(SecondLdSt))
3206     return false;
3207 
3208   // Can we pair these instructions based on their opcodes?
3209   unsigned FirstOpc = FirstLdSt.getOpcode();
3210   unsigned SecondOpc = SecondLdSt.getOpcode();
3211   if (!canPairLdStOpc(FirstOpc, SecondOpc))
3212     return false;
3213 
3214   // Can't merge volatiles or load/stores that have a hint to avoid pair
3215   // formation, for example.
3216   if (!isCandidateToMergeOrPair(FirstLdSt) ||
3217       !isCandidateToMergeOrPair(SecondLdSt))
3218     return false;
3219 
3220   // isCandidateToMergeOrPair guarantees that operand 2 is an immediate.
3221   int64_t Offset1 = FirstLdSt.getOperand(2).getImm();
3222   if (hasUnscaledLdStOffset(FirstOpc) && !scaleOffset(FirstOpc, Offset1))
3223     return false;
3224 
3225   int64_t Offset2 = SecondLdSt.getOperand(2).getImm();
3226   if (hasUnscaledLdStOffset(SecondOpc) && !scaleOffset(SecondOpc, Offset2))
3227     return false;
3228 
3229   // Pairwise instructions have a 7-bit signed offset field.
3230   if (Offset1 > 63 || Offset1 < -64)
3231     return false;
3232 
3233   // The caller should already have ordered First/SecondLdSt by offset.
3234   // Note: except for non-equal frame index bases
3235   if (BaseOp1.isFI()) {
3236     assert((!BaseOp1.isIdenticalTo(BaseOp2) || Offset1 <= Offset2) &&
3237            "Caller should have ordered offsets.");
3238 
3239     const MachineFrameInfo &MFI =
3240         FirstLdSt.getParent()->getParent()->getFrameInfo();
3241     return shouldClusterFI(MFI, BaseOp1.getIndex(), Offset1, FirstOpc,
3242                            BaseOp2.getIndex(), Offset2, SecondOpc);
3243   }
3244 
3245   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
3246 
3247   return Offset1 + 1 == Offset2;
3248 }
3249 
3250 static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
3251                                             unsigned Reg, unsigned SubIdx,
3252                                             unsigned State,
3253                                             const TargetRegisterInfo *TRI) {
3254   if (!SubIdx)
3255     return MIB.addReg(Reg, State);
3256 
3257   if (Register::isPhysicalRegister(Reg))
3258     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
3259   return MIB.addReg(Reg, State, SubIdx);
3260 }
3261 
3262 static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
3263                                         unsigned NumRegs) {
3264   // We really want the positive remainder mod 32 here, that happens to be
3265   // easily obtainable with a mask.
3266   return ((DestReg - SrcReg) & 0x1f) < NumRegs;
3267 }
3268 
3269 void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB,
3270                                         MachineBasicBlock::iterator I,
3271                                         const DebugLoc &DL, MCRegister DestReg,
3272                                         MCRegister SrcReg, bool KillSrc,
3273                                         unsigned Opcode,
3274                                         ArrayRef<unsigned> Indices) const {
3275   assert(Subtarget.hasNEON() && "Unexpected register copy without NEON");
3276   const TargetRegisterInfo *TRI = &getRegisterInfo();
3277   uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
3278   uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
3279   unsigned NumRegs = Indices.size();
3280 
3281   int SubReg = 0, End = NumRegs, Incr = 1;
3282   if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
3283     SubReg = NumRegs - 1;
3284     End = -1;
3285     Incr = -1;
3286   }
3287 
3288   for (; SubReg != End; SubReg += Incr) {
3289     const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
3290     AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
3291     AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
3292     AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
3293   }
3294 }
3295 
3296 void AArch64InstrInfo::copyGPRRegTuple(MachineBasicBlock &MBB,
3297                                        MachineBasicBlock::iterator I,
3298                                        DebugLoc DL, unsigned DestReg,
3299                                        unsigned SrcReg, bool KillSrc,
3300                                        unsigned Opcode, unsigned ZeroReg,
3301                                        llvm::ArrayRef<unsigned> Indices) const {
3302   const TargetRegisterInfo *TRI = &getRegisterInfo();
3303   unsigned NumRegs = Indices.size();
3304 
3305 #ifndef NDEBUG
3306   uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
3307   uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
3308   assert(DestEncoding % NumRegs == 0 && SrcEncoding % NumRegs == 0 &&
3309          "GPR reg sequences should not be able to overlap");
3310 #endif
3311 
3312   for (unsigned SubReg = 0; SubReg != NumRegs; ++SubReg) {
3313     const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
3314     AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
3315     MIB.addReg(ZeroReg);
3316     AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
3317     MIB.addImm(0);
3318   }
3319 }
3320 
3321 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3322                                    MachineBasicBlock::iterator I,
3323                                    const DebugLoc &DL, MCRegister DestReg,
3324                                    MCRegister SrcReg, bool KillSrc) const {
3325   if (AArch64::GPR32spRegClass.contains(DestReg) &&
3326       (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
3327     const TargetRegisterInfo *TRI = &getRegisterInfo();
3328 
3329     if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
3330       // If either operand is WSP, expand to ADD #0.
3331       if (Subtarget.hasZeroCycleRegMove()) {
3332         // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
3333         MCRegister DestRegX = TRI->getMatchingSuperReg(
3334             DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3335         MCRegister SrcRegX = TRI->getMatchingSuperReg(
3336             SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3337         // This instruction is reading and writing X registers.  This may upset
3338         // the register scavenger and machine verifier, so we need to indicate
3339         // that we are reading an undefined value from SrcRegX, but a proper
3340         // value from SrcReg.
3341         BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
3342             .addReg(SrcRegX, RegState::Undef)
3343             .addImm(0)
3344             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
3345             .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
3346       } else {
3347         BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
3348             .addReg(SrcReg, getKillRegState(KillSrc))
3349             .addImm(0)
3350             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3351       }
3352     } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroingGP()) {
3353       BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg)
3354           .addImm(0)
3355           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3356     } else {
3357       if (Subtarget.hasZeroCycleRegMove()) {
3358         // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
3359         MCRegister DestRegX = TRI->getMatchingSuperReg(
3360             DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3361         MCRegister SrcRegX = TRI->getMatchingSuperReg(
3362             SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3363         // This instruction is reading and writing X registers.  This may upset
3364         // the register scavenger and machine verifier, so we need to indicate
3365         // that we are reading an undefined value from SrcRegX, but a proper
3366         // value from SrcReg.
3367         BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
3368             .addReg(AArch64::XZR)
3369             .addReg(SrcRegX, RegState::Undef)
3370             .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
3371       } else {
3372         // Otherwise, expand to ORR WZR.
3373         BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
3374             .addReg(AArch64::WZR)
3375             .addReg(SrcReg, getKillRegState(KillSrc));
3376       }
3377     }
3378     return;
3379   }
3380 
3381   // Copy a Predicate register by ORRing with itself.
3382   if (AArch64::PPRRegClass.contains(DestReg) &&
3383       AArch64::PPRRegClass.contains(SrcReg)) {
3384     assert(Subtarget.hasSVE() && "Unexpected SVE register.");
3385     BuildMI(MBB, I, DL, get(AArch64::ORR_PPzPP), DestReg)
3386       .addReg(SrcReg) // Pg
3387       .addReg(SrcReg)
3388       .addReg(SrcReg, getKillRegState(KillSrc));
3389     return;
3390   }
3391 
3392   // Copy a Z register by ORRing with itself.
3393   if (AArch64::ZPRRegClass.contains(DestReg) &&
3394       AArch64::ZPRRegClass.contains(SrcReg)) {
3395     assert(Subtarget.hasSVE() && "Unexpected SVE register.");
3396     BuildMI(MBB, I, DL, get(AArch64::ORR_ZZZ), DestReg)
3397       .addReg(SrcReg)
3398       .addReg(SrcReg, getKillRegState(KillSrc));
3399     return;
3400   }
3401 
3402   // Copy a Z register pair by copying the individual sub-registers.
3403   if (AArch64::ZPR2RegClass.contains(DestReg) &&
3404       AArch64::ZPR2RegClass.contains(SrcReg)) {
3405     static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1};
3406     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
3407                      Indices);
3408     return;
3409   }
3410 
3411   // Copy a Z register triple by copying the individual sub-registers.
3412   if (AArch64::ZPR3RegClass.contains(DestReg) &&
3413       AArch64::ZPR3RegClass.contains(SrcReg)) {
3414     static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1,
3415                                        AArch64::zsub2};
3416     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
3417                      Indices);
3418     return;
3419   }
3420 
3421   // Copy a Z register quad by copying the individual sub-registers.
3422   if (AArch64::ZPR4RegClass.contains(DestReg) &&
3423       AArch64::ZPR4RegClass.contains(SrcReg)) {
3424     static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1,
3425                                        AArch64::zsub2, AArch64::zsub3};
3426     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
3427                      Indices);
3428     return;
3429   }
3430 
3431   if (AArch64::GPR64spRegClass.contains(DestReg) &&
3432       (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
3433     if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
3434       // If either operand is SP, expand to ADD #0.
3435       BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
3436           .addReg(SrcReg, getKillRegState(KillSrc))
3437           .addImm(0)
3438           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3439     } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroingGP()) {
3440       BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg)
3441           .addImm(0)
3442           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3443     } else {
3444       // Otherwise, expand to ORR XZR.
3445       BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
3446           .addReg(AArch64::XZR)
3447           .addReg(SrcReg, getKillRegState(KillSrc));
3448     }
3449     return;
3450   }
3451 
3452   // Copy a DDDD register quad by copying the individual sub-registers.
3453   if (AArch64::DDDDRegClass.contains(DestReg) &&
3454       AArch64::DDDDRegClass.contains(SrcReg)) {
3455     static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
3456                                        AArch64::dsub2, AArch64::dsub3};
3457     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
3458                      Indices);
3459     return;
3460   }
3461 
3462   // Copy a DDD register triple by copying the individual sub-registers.
3463   if (AArch64::DDDRegClass.contains(DestReg) &&
3464       AArch64::DDDRegClass.contains(SrcReg)) {
3465     static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
3466                                        AArch64::dsub2};
3467     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
3468                      Indices);
3469     return;
3470   }
3471 
3472   // Copy a DD register pair by copying the individual sub-registers.
3473   if (AArch64::DDRegClass.contains(DestReg) &&
3474       AArch64::DDRegClass.contains(SrcReg)) {
3475     static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1};
3476     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
3477                      Indices);
3478     return;
3479   }
3480 
3481   // Copy a QQQQ register quad by copying the individual sub-registers.
3482   if (AArch64::QQQQRegClass.contains(DestReg) &&
3483       AArch64::QQQQRegClass.contains(SrcReg)) {
3484     static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
3485                                        AArch64::qsub2, AArch64::qsub3};
3486     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
3487                      Indices);
3488     return;
3489   }
3490 
3491   // Copy a QQQ register triple by copying the individual sub-registers.
3492   if (AArch64::QQQRegClass.contains(DestReg) &&
3493       AArch64::QQQRegClass.contains(SrcReg)) {
3494     static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
3495                                        AArch64::qsub2};
3496     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
3497                      Indices);
3498     return;
3499   }
3500 
3501   // Copy a QQ register pair by copying the individual sub-registers.
3502   if (AArch64::QQRegClass.contains(DestReg) &&
3503       AArch64::QQRegClass.contains(SrcReg)) {
3504     static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1};
3505     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
3506                      Indices);
3507     return;
3508   }
3509 
3510   if (AArch64::XSeqPairsClassRegClass.contains(DestReg) &&
3511       AArch64::XSeqPairsClassRegClass.contains(SrcReg)) {
3512     static const unsigned Indices[] = {AArch64::sube64, AArch64::subo64};
3513     copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRXrs,
3514                     AArch64::XZR, Indices);
3515     return;
3516   }
3517 
3518   if (AArch64::WSeqPairsClassRegClass.contains(DestReg) &&
3519       AArch64::WSeqPairsClassRegClass.contains(SrcReg)) {
3520     static const unsigned Indices[] = {AArch64::sube32, AArch64::subo32};
3521     copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRWrs,
3522                     AArch64::WZR, Indices);
3523     return;
3524   }
3525 
3526   if (AArch64::FPR128RegClass.contains(DestReg) &&
3527       AArch64::FPR128RegClass.contains(SrcReg)) {
3528     if (Subtarget.hasNEON()) {
3529       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
3530           .addReg(SrcReg)
3531           .addReg(SrcReg, getKillRegState(KillSrc));
3532     } else {
3533       BuildMI(MBB, I, DL, get(AArch64::STRQpre))
3534           .addReg(AArch64::SP, RegState::Define)
3535           .addReg(SrcReg, getKillRegState(KillSrc))
3536           .addReg(AArch64::SP)
3537           .addImm(-16);
3538       BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
3539           .addReg(AArch64::SP, RegState::Define)
3540           .addReg(DestReg, RegState::Define)
3541           .addReg(AArch64::SP)
3542           .addImm(16);
3543     }
3544     return;
3545   }
3546 
3547   if (AArch64::FPR64RegClass.contains(DestReg) &&
3548       AArch64::FPR64RegClass.contains(SrcReg)) {
3549     BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
3550         .addReg(SrcReg, getKillRegState(KillSrc));
3551     return;
3552   }
3553 
3554   if (AArch64::FPR32RegClass.contains(DestReg) &&
3555       AArch64::FPR32RegClass.contains(SrcReg)) {
3556     BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
3557         .addReg(SrcReg, getKillRegState(KillSrc));
3558     return;
3559   }
3560 
3561   if (AArch64::FPR16RegClass.contains(DestReg) &&
3562       AArch64::FPR16RegClass.contains(SrcReg)) {
3563     DestReg =
3564         RI.getMatchingSuperReg(DestReg, AArch64::hsub, &AArch64::FPR32RegClass);
3565     SrcReg =
3566         RI.getMatchingSuperReg(SrcReg, AArch64::hsub, &AArch64::FPR32RegClass);
3567     BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
3568         .addReg(SrcReg, getKillRegState(KillSrc));
3569     return;
3570   }
3571 
3572   if (AArch64::FPR8RegClass.contains(DestReg) &&
3573       AArch64::FPR8RegClass.contains(SrcReg)) {
3574     DestReg =
3575         RI.getMatchingSuperReg(DestReg, AArch64::bsub, &AArch64::FPR32RegClass);
3576     SrcReg =
3577         RI.getMatchingSuperReg(SrcReg, AArch64::bsub, &AArch64::FPR32RegClass);
3578     BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
3579         .addReg(SrcReg, getKillRegState(KillSrc));
3580     return;
3581   }
3582 
3583   // Copies between GPR64 and FPR64.
3584   if (AArch64::FPR64RegClass.contains(DestReg) &&
3585       AArch64::GPR64RegClass.contains(SrcReg)) {
3586     BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
3587         .addReg(SrcReg, getKillRegState(KillSrc));
3588     return;
3589   }
3590   if (AArch64::GPR64RegClass.contains(DestReg) &&
3591       AArch64::FPR64RegClass.contains(SrcReg)) {
3592     BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
3593         .addReg(SrcReg, getKillRegState(KillSrc));
3594     return;
3595   }
3596   // Copies between GPR32 and FPR32.
3597   if (AArch64::FPR32RegClass.contains(DestReg) &&
3598       AArch64::GPR32RegClass.contains(SrcReg)) {
3599     BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
3600         .addReg(SrcReg, getKillRegState(KillSrc));
3601     return;
3602   }
3603   if (AArch64::GPR32RegClass.contains(DestReg) &&
3604       AArch64::FPR32RegClass.contains(SrcReg)) {
3605     BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
3606         .addReg(SrcReg, getKillRegState(KillSrc));
3607     return;
3608   }
3609 
3610   if (DestReg == AArch64::NZCV) {
3611     assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
3612     BuildMI(MBB, I, DL, get(AArch64::MSR))
3613         .addImm(AArch64SysReg::NZCV)
3614         .addReg(SrcReg, getKillRegState(KillSrc))
3615         .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
3616     return;
3617   }
3618 
3619   if (SrcReg == AArch64::NZCV) {
3620     assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
3621     BuildMI(MBB, I, DL, get(AArch64::MRS), DestReg)
3622         .addImm(AArch64SysReg::NZCV)
3623         .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
3624     return;
3625   }
3626 
3627 #ifndef NDEBUG
3628   const TargetRegisterInfo &TRI = getRegisterInfo();
3629   errs() << TRI.getRegAsmName(DestReg) << " = COPY "
3630          << TRI.getRegAsmName(SrcReg) << "\n";
3631 #endif
3632   llvm_unreachable("unimplemented reg-to-reg copy");
3633 }
3634 
3635 static void storeRegPairToStackSlot(const TargetRegisterInfo &TRI,
3636                                     MachineBasicBlock &MBB,
3637                                     MachineBasicBlock::iterator InsertBefore,
3638                                     const MCInstrDesc &MCID,
3639                                     Register SrcReg, bool IsKill,
3640                                     unsigned SubIdx0, unsigned SubIdx1, int FI,
3641                                     MachineMemOperand *MMO) {
3642   Register SrcReg0 = SrcReg;
3643   Register SrcReg1 = SrcReg;
3644   if (Register::isPhysicalRegister(SrcReg)) {
3645     SrcReg0 = TRI.getSubReg(SrcReg, SubIdx0);
3646     SubIdx0 = 0;
3647     SrcReg1 = TRI.getSubReg(SrcReg, SubIdx1);
3648     SubIdx1 = 0;
3649   }
3650   BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
3651       .addReg(SrcReg0, getKillRegState(IsKill), SubIdx0)
3652       .addReg(SrcReg1, getKillRegState(IsKill), SubIdx1)
3653       .addFrameIndex(FI)
3654       .addImm(0)
3655       .addMemOperand(MMO);
3656 }
3657 
3658 void AArch64InstrInfo::storeRegToStackSlot(
3659     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
3660     bool isKill, int FI, const TargetRegisterClass *RC,
3661     const TargetRegisterInfo *TRI) const {
3662   MachineFunction &MF = *MBB.getParent();
3663   MachineFrameInfo &MFI = MF.getFrameInfo();
3664 
3665   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
3666   MachineMemOperand *MMO =
3667       MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
3668                               MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
3669   unsigned Opc = 0;
3670   bool Offset = true;
3671   unsigned StackID = TargetStackID::Default;
3672   switch (TRI->getSpillSize(*RC)) {
3673   case 1:
3674     if (AArch64::FPR8RegClass.hasSubClassEq(RC))
3675       Opc = AArch64::STRBui;
3676     break;
3677   case 2:
3678     if (AArch64::FPR16RegClass.hasSubClassEq(RC))
3679       Opc = AArch64::STRHui;
3680     else if (AArch64::PPRRegClass.hasSubClassEq(RC)) {
3681       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3682       Opc = AArch64::STR_PXI;
3683       StackID = TargetStackID::ScalableVector;
3684     }
3685     break;
3686   case 4:
3687     if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
3688       Opc = AArch64::STRWui;
3689       if (Register::isVirtualRegister(SrcReg))
3690         MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
3691       else
3692         assert(SrcReg != AArch64::WSP);
3693     } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
3694       Opc = AArch64::STRSui;
3695     break;
3696   case 8:
3697     if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
3698       Opc = AArch64::STRXui;
3699       if (Register::isVirtualRegister(SrcReg))
3700         MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
3701       else
3702         assert(SrcReg != AArch64::SP);
3703     } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
3704       Opc = AArch64::STRDui;
3705     } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
3706       storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
3707                               get(AArch64::STPWi), SrcReg, isKill,
3708                               AArch64::sube32, AArch64::subo32, FI, MMO);
3709       return;
3710     }
3711     break;
3712   case 16:
3713     if (AArch64::FPR128RegClass.hasSubClassEq(RC))
3714       Opc = AArch64::STRQui;
3715     else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
3716       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3717       Opc = AArch64::ST1Twov1d;
3718       Offset = false;
3719     } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
3720       storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
3721                               get(AArch64::STPXi), SrcReg, isKill,
3722                               AArch64::sube64, AArch64::subo64, FI, MMO);
3723       return;
3724     } else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) {
3725       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3726       Opc = AArch64::STR_ZXI;
3727       StackID = TargetStackID::ScalableVector;
3728     }
3729     break;
3730   case 24:
3731     if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
3732       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3733       Opc = AArch64::ST1Threev1d;
3734       Offset = false;
3735     }
3736     break;
3737   case 32:
3738     if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
3739       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3740       Opc = AArch64::ST1Fourv1d;
3741       Offset = false;
3742     } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
3743       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3744       Opc = AArch64::ST1Twov2d;
3745       Offset = false;
3746     } else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) {
3747       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3748       Opc = AArch64::STR_ZZXI;
3749       StackID = TargetStackID::ScalableVector;
3750     }
3751     break;
3752   case 48:
3753     if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
3754       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3755       Opc = AArch64::ST1Threev2d;
3756       Offset = false;
3757     } else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) {
3758       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3759       Opc = AArch64::STR_ZZZXI;
3760       StackID = TargetStackID::ScalableVector;
3761     }
3762     break;
3763   case 64:
3764     if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
3765       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3766       Opc = AArch64::ST1Fourv2d;
3767       Offset = false;
3768     } else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) {
3769       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3770       Opc = AArch64::STR_ZZZZXI;
3771       StackID = TargetStackID::ScalableVector;
3772     }
3773     break;
3774   }
3775   assert(Opc && "Unknown register class");
3776   MFI.setStackID(FI, StackID);
3777 
3778   const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
3779                                      .addReg(SrcReg, getKillRegState(isKill))
3780                                      .addFrameIndex(FI);
3781 
3782   if (Offset)
3783     MI.addImm(0);
3784   MI.addMemOperand(MMO);
3785 }
3786 
3787 static void loadRegPairFromStackSlot(const TargetRegisterInfo &TRI,
3788                                      MachineBasicBlock &MBB,
3789                                      MachineBasicBlock::iterator InsertBefore,
3790                                      const MCInstrDesc &MCID,
3791                                      Register DestReg, unsigned SubIdx0,
3792                                      unsigned SubIdx1, int FI,
3793                                      MachineMemOperand *MMO) {
3794   Register DestReg0 = DestReg;
3795   Register DestReg1 = DestReg;
3796   bool IsUndef = true;
3797   if (Register::isPhysicalRegister(DestReg)) {
3798     DestReg0 = TRI.getSubReg(DestReg, SubIdx0);
3799     SubIdx0 = 0;
3800     DestReg1 = TRI.getSubReg(DestReg, SubIdx1);
3801     SubIdx1 = 0;
3802     IsUndef = false;
3803   }
3804   BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
3805       .addReg(DestReg0, RegState::Define | getUndefRegState(IsUndef), SubIdx0)
3806       .addReg(DestReg1, RegState::Define | getUndefRegState(IsUndef), SubIdx1)
3807       .addFrameIndex(FI)
3808       .addImm(0)
3809       .addMemOperand(MMO);
3810 }
3811 
3812 void AArch64InstrInfo::loadRegFromStackSlot(
3813     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg,
3814     int FI, const TargetRegisterClass *RC,
3815     const TargetRegisterInfo *TRI) const {
3816   MachineFunction &MF = *MBB.getParent();
3817   MachineFrameInfo &MFI = MF.getFrameInfo();
3818   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
3819   MachineMemOperand *MMO =
3820       MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
3821                               MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
3822 
3823   unsigned Opc = 0;
3824   bool Offset = true;
3825   unsigned StackID = TargetStackID::Default;
3826   switch (TRI->getSpillSize(*RC)) {
3827   case 1:
3828     if (AArch64::FPR8RegClass.hasSubClassEq(RC))
3829       Opc = AArch64::LDRBui;
3830     break;
3831   case 2:
3832     if (AArch64::FPR16RegClass.hasSubClassEq(RC))
3833       Opc = AArch64::LDRHui;
3834     else if (AArch64::PPRRegClass.hasSubClassEq(RC)) {
3835       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
3836       Opc = AArch64::LDR_PXI;
3837       StackID = TargetStackID::ScalableVector;
3838     }
3839     break;
3840   case 4:
3841     if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
3842       Opc = AArch64::LDRWui;
3843       if (Register::isVirtualRegister(DestReg))
3844         MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
3845       else
3846         assert(DestReg != AArch64::WSP);
3847     } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
3848       Opc = AArch64::LDRSui;
3849     break;
3850   case 8:
3851     if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
3852       Opc = AArch64::LDRXui;
3853       if (Register::isVirtualRegister(DestReg))
3854         MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
3855       else
3856         assert(DestReg != AArch64::SP);
3857     } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
3858       Opc = AArch64::LDRDui;
3859     } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
3860       loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
3861                                get(AArch64::LDPWi), DestReg, AArch64::sube32,
3862                                AArch64::subo32, FI, MMO);
3863       return;
3864     }
3865     break;
3866   case 16:
3867     if (AArch64::FPR128RegClass.hasSubClassEq(RC))
3868       Opc = AArch64::LDRQui;
3869     else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
3870       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3871       Opc = AArch64::LD1Twov1d;
3872       Offset = false;
3873     } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
3874       loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
3875                                get(AArch64::LDPXi), DestReg, AArch64::sube64,
3876                                AArch64::subo64, FI, MMO);
3877       return;
3878     } else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) {
3879       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
3880       Opc = AArch64::LDR_ZXI;
3881       StackID = TargetStackID::ScalableVector;
3882     }
3883     break;
3884   case 24:
3885     if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
3886       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3887       Opc = AArch64::LD1Threev1d;
3888       Offset = false;
3889     }
3890     break;
3891   case 32:
3892     if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
3893       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3894       Opc = AArch64::LD1Fourv1d;
3895       Offset = false;
3896     } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
3897       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3898       Opc = AArch64::LD1Twov2d;
3899       Offset = false;
3900     } else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) {
3901       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
3902       Opc = AArch64::LDR_ZZXI;
3903       StackID = TargetStackID::ScalableVector;
3904     }
3905     break;
3906   case 48:
3907     if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
3908       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3909       Opc = AArch64::LD1Threev2d;
3910       Offset = false;
3911     } else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) {
3912       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
3913       Opc = AArch64::LDR_ZZZXI;
3914       StackID = TargetStackID::ScalableVector;
3915     }
3916     break;
3917   case 64:
3918     if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
3919       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
3920       Opc = AArch64::LD1Fourv2d;
3921       Offset = false;
3922     } else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) {
3923       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
3924       Opc = AArch64::LDR_ZZZZXI;
3925       StackID = TargetStackID::ScalableVector;
3926     }
3927     break;
3928   }
3929 
3930   assert(Opc && "Unknown register class");
3931   MFI.setStackID(FI, StackID);
3932 
3933   const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
3934                                      .addReg(DestReg, getDefRegState(true))
3935                                      .addFrameIndex(FI);
3936   if (Offset)
3937     MI.addImm(0);
3938   MI.addMemOperand(MMO);
3939 }
3940 
3941 bool llvm::isNZCVTouchedInInstructionRange(const MachineInstr &DefMI,
3942                                            const MachineInstr &UseMI,
3943                                            const TargetRegisterInfo *TRI) {
3944   return any_of(instructionsWithoutDebug(std::next(DefMI.getIterator()),
3945                                          UseMI.getIterator()),
3946                 [TRI](const MachineInstr &I) {
3947                   return I.modifiesRegister(AArch64::NZCV, TRI) ||
3948                          I.readsRegister(AArch64::NZCV, TRI);
3949                 });
3950 }
3951 
3952 void AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(
3953     const StackOffset &Offset, int64_t &ByteSized, int64_t &VGSized) {
3954   // The smallest scalable element supported by scaled SVE addressing
3955   // modes are predicates, which are 2 scalable bytes in size. So the scalable
3956   // byte offset must always be a multiple of 2.
3957   assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
3958 
3959   // VGSized offsets are divided by '2', because the VG register is the
3960   // the number of 64bit granules as opposed to 128bit vector chunks,
3961   // which is how the 'n' in e.g. MVT::nxv1i8 is modelled.
3962   // So, for a stack offset of 16 MVT::nxv1i8's, the size is n x 16 bytes.
3963   // VG = n * 2 and the dwarf offset must be VG * 8 bytes.
3964   ByteSized = Offset.getFixed();
3965   VGSized = Offset.getScalable() / 2;
3966 }
3967 
3968 /// Returns the offset in parts to which this frame offset can be
3969 /// decomposed for the purpose of describing a frame offset.
3970 /// For non-scalable offsets this is simply its byte size.
3971 void AArch64InstrInfo::decomposeStackOffsetForFrameOffsets(
3972     const StackOffset &Offset, int64_t &NumBytes, int64_t &NumPredicateVectors,
3973     int64_t &NumDataVectors) {
3974   // The smallest scalable element supported by scaled SVE addressing
3975   // modes are predicates, which are 2 scalable bytes in size. So the scalable
3976   // byte offset must always be a multiple of 2.
3977   assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
3978 
3979   NumBytes = Offset.getFixed();
3980   NumDataVectors = 0;
3981   NumPredicateVectors = Offset.getScalable() / 2;
3982   // This method is used to get the offsets to adjust the frame offset.
3983   // If the function requires ADDPL to be used and needs more than two ADDPL
3984   // instructions, part of the offset is folded into NumDataVectors so that it
3985   // uses ADDVL for part of it, reducing the number of ADDPL instructions.
3986   if (NumPredicateVectors % 8 == 0 || NumPredicateVectors < -64 ||
3987       NumPredicateVectors > 62) {
3988     NumDataVectors = NumPredicateVectors / 8;
3989     NumPredicateVectors -= NumDataVectors * 8;
3990   }
3991 }
3992 
3993 // Helper function to emit a frame offset adjustment from a given
3994 // pointer (SrcReg), stored into DestReg. This function is explicit
3995 // in that it requires the opcode.
3996 static void emitFrameOffsetAdj(MachineBasicBlock &MBB,
3997                                MachineBasicBlock::iterator MBBI,
3998                                const DebugLoc &DL, unsigned DestReg,
3999                                unsigned SrcReg, int64_t Offset, unsigned Opc,
4000                                const TargetInstrInfo *TII,
4001                                MachineInstr::MIFlag Flag, bool NeedsWinCFI,
4002                                bool *HasWinCFI) {
4003   int Sign = 1;
4004   unsigned MaxEncoding, ShiftSize;
4005   switch (Opc) {
4006   case AArch64::ADDXri:
4007   case AArch64::ADDSXri:
4008   case AArch64::SUBXri:
4009   case AArch64::SUBSXri:
4010     MaxEncoding = 0xfff;
4011     ShiftSize = 12;
4012     break;
4013   case AArch64::ADDVL_XXI:
4014   case AArch64::ADDPL_XXI:
4015     MaxEncoding = 31;
4016     ShiftSize = 0;
4017     if (Offset < 0) {
4018       MaxEncoding = 32;
4019       Sign = -1;
4020       Offset = -Offset;
4021     }
4022     break;
4023   default:
4024     llvm_unreachable("Unsupported opcode");
4025   }
4026 
4027   // FIXME: If the offset won't fit in 24-bits, compute the offset into a
4028   // scratch register.  If DestReg is a virtual register, use it as the
4029   // scratch register; otherwise, create a new virtual register (to be
4030   // replaced by the scavenger at the end of PEI).  That case can be optimized
4031   // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
4032   // register can be loaded with offset%8 and the add/sub can use an extending
4033   // instruction with LSL#3.
4034   // Currently the function handles any offsets but generates a poor sequence
4035   // of code.
4036   //  assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
4037 
4038   const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
4039   Register TmpReg = DestReg;
4040   if (TmpReg == AArch64::XZR)
4041     TmpReg = MBB.getParent()->getRegInfo().createVirtualRegister(
4042         &AArch64::GPR64RegClass);
4043   do {
4044     uint64_t ThisVal = std::min<uint64_t>(Offset, MaxEncodableValue);
4045     unsigned LocalShiftSize = 0;
4046     if (ThisVal > MaxEncoding) {
4047       ThisVal = ThisVal >> ShiftSize;
4048       LocalShiftSize = ShiftSize;
4049     }
4050     assert((ThisVal >> ShiftSize) <= MaxEncoding &&
4051            "Encoding cannot handle value that big");
4052 
4053     Offset -= ThisVal << LocalShiftSize;
4054     if (Offset == 0)
4055       TmpReg = DestReg;
4056     auto MBI = BuildMI(MBB, MBBI, DL, TII->get(Opc), TmpReg)
4057                    .addReg(SrcReg)
4058                    .addImm(Sign * (int)ThisVal);
4059     if (ShiftSize)
4060       MBI = MBI.addImm(
4061           AArch64_AM::getShifterImm(AArch64_AM::LSL, LocalShiftSize));
4062     MBI = MBI.setMIFlag(Flag);
4063 
4064     if (NeedsWinCFI) {
4065       assert(Sign == 1 && "SEH directives should always have a positive sign");
4066       int Imm = (int)(ThisVal << LocalShiftSize);
4067       if ((DestReg == AArch64::FP && SrcReg == AArch64::SP) ||
4068           (SrcReg == AArch64::FP && DestReg == AArch64::SP)) {
4069         if (HasWinCFI)
4070           *HasWinCFI = true;
4071         if (Imm == 0)
4072           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_SetFP)).setMIFlag(Flag);
4073         else
4074           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_AddFP))
4075               .addImm(Imm)
4076               .setMIFlag(Flag);
4077         assert(Offset == 0 && "Expected remaining offset to be zero to "
4078                               "emit a single SEH directive");
4079       } else if (DestReg == AArch64::SP) {
4080         if (HasWinCFI)
4081           *HasWinCFI = true;
4082         assert(SrcReg == AArch64::SP && "Unexpected SrcReg for SEH_StackAlloc");
4083         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
4084             .addImm(Imm)
4085             .setMIFlag(Flag);
4086       }
4087       if (HasWinCFI)
4088         *HasWinCFI = true;
4089     }
4090 
4091     SrcReg = TmpReg;
4092   } while (Offset);
4093 }
4094 
4095 void llvm::emitFrameOffset(MachineBasicBlock &MBB,
4096                            MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
4097                            unsigned DestReg, unsigned SrcReg,
4098                            StackOffset Offset, const TargetInstrInfo *TII,
4099                            MachineInstr::MIFlag Flag, bool SetNZCV,
4100                            bool NeedsWinCFI, bool *HasWinCFI) {
4101   int64_t Bytes, NumPredicateVectors, NumDataVectors;
4102   AArch64InstrInfo::decomposeStackOffsetForFrameOffsets(
4103       Offset, Bytes, NumPredicateVectors, NumDataVectors);
4104 
4105   // First emit non-scalable frame offsets, or a simple 'mov'.
4106   if (Bytes || (!Offset && SrcReg != DestReg)) {
4107     assert((DestReg != AArch64::SP || Bytes % 8 == 0) &&
4108            "SP increment/decrement not 8-byte aligned");
4109     unsigned Opc = SetNZCV ? AArch64::ADDSXri : AArch64::ADDXri;
4110     if (Bytes < 0) {
4111       Bytes = -Bytes;
4112       Opc = SetNZCV ? AArch64::SUBSXri : AArch64::SUBXri;
4113     }
4114     emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, Bytes, Opc, TII, Flag,
4115                        NeedsWinCFI, HasWinCFI);
4116     SrcReg = DestReg;
4117   }
4118 
4119   assert(!(SetNZCV && (NumPredicateVectors || NumDataVectors)) &&
4120          "SetNZCV not supported with SVE vectors");
4121   assert(!(NeedsWinCFI && (NumPredicateVectors || NumDataVectors)) &&
4122          "WinCFI not supported with SVE vectors");
4123 
4124   if (NumDataVectors) {
4125     emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumDataVectors,
4126                        AArch64::ADDVL_XXI, TII, Flag, NeedsWinCFI, nullptr);
4127     SrcReg = DestReg;
4128   }
4129 
4130   if (NumPredicateVectors) {
4131     assert(DestReg != AArch64::SP && "Unaligned access to SP");
4132     emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumPredicateVectors,
4133                        AArch64::ADDPL_XXI, TII, Flag, NeedsWinCFI, nullptr);
4134   }
4135 }
4136 
4137 MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl(
4138     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
4139     MachineBasicBlock::iterator InsertPt, int FrameIndex,
4140     LiveIntervals *LIS, VirtRegMap *VRM) const {
4141   // This is a bit of a hack. Consider this instruction:
4142   //
4143   //   %0 = COPY %sp; GPR64all:%0
4144   //
4145   // We explicitly chose GPR64all for the virtual register so such a copy might
4146   // be eliminated by RegisterCoalescer. However, that may not be possible, and
4147   // %0 may even spill. We can't spill %sp, and since it is in the GPR64all
4148   // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
4149   //
4150   // To prevent that, we are going to constrain the %0 register class here.
4151   //
4152   // <rdar://problem/11522048>
4153   //
4154   if (MI.isFullCopy()) {
4155     Register DstReg = MI.getOperand(0).getReg();
4156     Register SrcReg = MI.getOperand(1).getReg();
4157     if (SrcReg == AArch64::SP && Register::isVirtualRegister(DstReg)) {
4158       MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
4159       return nullptr;
4160     }
4161     if (DstReg == AArch64::SP && Register::isVirtualRegister(SrcReg)) {
4162       MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
4163       return nullptr;
4164     }
4165   }
4166 
4167   // Handle the case where a copy is being spilled or filled but the source
4168   // and destination register class don't match.  For example:
4169   //
4170   //   %0 = COPY %xzr; GPR64common:%0
4171   //
4172   // In this case we can still safely fold away the COPY and generate the
4173   // following spill code:
4174   //
4175   //   STRXui %xzr, %stack.0
4176   //
4177   // This also eliminates spilled cross register class COPYs (e.g. between x and
4178   // d regs) of the same size.  For example:
4179   //
4180   //   %0 = COPY %1; GPR64:%0, FPR64:%1
4181   //
4182   // will be filled as
4183   //
4184   //   LDRDui %0, fi<#0>
4185   //
4186   // instead of
4187   //
4188   //   LDRXui %Temp, fi<#0>
4189   //   %0 = FMOV %Temp
4190   //
4191   if (MI.isCopy() && Ops.size() == 1 &&
4192       // Make sure we're only folding the explicit COPY defs/uses.
4193       (Ops[0] == 0 || Ops[0] == 1)) {
4194     bool IsSpill = Ops[0] == 0;
4195     bool IsFill = !IsSpill;
4196     const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4197     const MachineRegisterInfo &MRI = MF.getRegInfo();
4198     MachineBasicBlock &MBB = *MI.getParent();
4199     const MachineOperand &DstMO = MI.getOperand(0);
4200     const MachineOperand &SrcMO = MI.getOperand(1);
4201     Register DstReg = DstMO.getReg();
4202     Register SrcReg = SrcMO.getReg();
4203     // This is slightly expensive to compute for physical regs since
4204     // getMinimalPhysRegClass is slow.
4205     auto getRegClass = [&](unsigned Reg) {
4206       return Register::isVirtualRegister(Reg) ? MRI.getRegClass(Reg)
4207                                               : TRI.getMinimalPhysRegClass(Reg);
4208     };
4209 
4210     if (DstMO.getSubReg() == 0 && SrcMO.getSubReg() == 0) {
4211       assert(TRI.getRegSizeInBits(*getRegClass(DstReg)) ==
4212                  TRI.getRegSizeInBits(*getRegClass(SrcReg)) &&
4213              "Mismatched register size in non subreg COPY");
4214       if (IsSpill)
4215         storeRegToStackSlot(MBB, InsertPt, SrcReg, SrcMO.isKill(), FrameIndex,
4216                             getRegClass(SrcReg), &TRI);
4217       else
4218         loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex,
4219                              getRegClass(DstReg), &TRI);
4220       return &*--InsertPt;
4221     }
4222 
4223     // Handle cases like spilling def of:
4224     //
4225     //   %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0
4226     //
4227     // where the physical register source can be widened and stored to the full
4228     // virtual reg destination stack slot, in this case producing:
4229     //
4230     //   STRXui %xzr, %stack.0
4231     //
4232     if (IsSpill && DstMO.isUndef() && Register::isPhysicalRegister(SrcReg)) {
4233       assert(SrcMO.getSubReg() == 0 &&
4234              "Unexpected subreg on physical register");
4235       const TargetRegisterClass *SpillRC;
4236       unsigned SpillSubreg;
4237       switch (DstMO.getSubReg()) {
4238       default:
4239         SpillRC = nullptr;
4240         break;
4241       case AArch64::sub_32:
4242       case AArch64::ssub:
4243         if (AArch64::GPR32RegClass.contains(SrcReg)) {
4244           SpillRC = &AArch64::GPR64RegClass;
4245           SpillSubreg = AArch64::sub_32;
4246         } else if (AArch64::FPR32RegClass.contains(SrcReg)) {
4247           SpillRC = &AArch64::FPR64RegClass;
4248           SpillSubreg = AArch64::ssub;
4249         } else
4250           SpillRC = nullptr;
4251         break;
4252       case AArch64::dsub:
4253         if (AArch64::FPR64RegClass.contains(SrcReg)) {
4254           SpillRC = &AArch64::FPR128RegClass;
4255           SpillSubreg = AArch64::dsub;
4256         } else
4257           SpillRC = nullptr;
4258         break;
4259       }
4260 
4261       if (SpillRC)
4262         if (unsigned WidenedSrcReg =
4263                 TRI.getMatchingSuperReg(SrcReg, SpillSubreg, SpillRC)) {
4264           storeRegToStackSlot(MBB, InsertPt, WidenedSrcReg, SrcMO.isKill(),
4265                               FrameIndex, SpillRC, &TRI);
4266           return &*--InsertPt;
4267         }
4268     }
4269 
4270     // Handle cases like filling use of:
4271     //
4272     //   %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1
4273     //
4274     // where we can load the full virtual reg source stack slot, into the subreg
4275     // destination, in this case producing:
4276     //
4277     //   LDRWui %0:sub_32<def,read-undef>, %stack.0
4278     //
4279     if (IsFill && SrcMO.getSubReg() == 0 && DstMO.isUndef()) {
4280       const TargetRegisterClass *FillRC;
4281       switch (DstMO.getSubReg()) {
4282       default:
4283         FillRC = nullptr;
4284         break;
4285       case AArch64::sub_32:
4286         FillRC = &AArch64::GPR32RegClass;
4287         break;
4288       case AArch64::ssub:
4289         FillRC = &AArch64::FPR32RegClass;
4290         break;
4291       case AArch64::dsub:
4292         FillRC = &AArch64::FPR64RegClass;
4293         break;
4294       }
4295 
4296       if (FillRC) {
4297         assert(TRI.getRegSizeInBits(*getRegClass(SrcReg)) ==
4298                    TRI.getRegSizeInBits(*FillRC) &&
4299                "Mismatched regclass size on folded subreg COPY");
4300         loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, FillRC, &TRI);
4301         MachineInstr &LoadMI = *--InsertPt;
4302         MachineOperand &LoadDst = LoadMI.getOperand(0);
4303         assert(LoadDst.getSubReg() == 0 && "unexpected subreg on fill load");
4304         LoadDst.setSubReg(DstMO.getSubReg());
4305         LoadDst.setIsUndef();
4306         return &LoadMI;
4307       }
4308     }
4309   }
4310 
4311   // Cannot fold.
4312   return nullptr;
4313 }
4314 
4315 int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI,
4316                                     StackOffset &SOffset,
4317                                     bool *OutUseUnscaledOp,
4318                                     unsigned *OutUnscaledOp,
4319                                     int64_t *EmittableOffset) {
4320   // Set output values in case of early exit.
4321   if (EmittableOffset)
4322     *EmittableOffset = 0;
4323   if (OutUseUnscaledOp)
4324     *OutUseUnscaledOp = false;
4325   if (OutUnscaledOp)
4326     *OutUnscaledOp = 0;
4327 
4328   // Exit early for structured vector spills/fills as they can't take an
4329   // immediate offset.
4330   switch (MI.getOpcode()) {
4331   default:
4332     break;
4333   case AArch64::LD1Twov2d:
4334   case AArch64::LD1Threev2d:
4335   case AArch64::LD1Fourv2d:
4336   case AArch64::LD1Twov1d:
4337   case AArch64::LD1Threev1d:
4338   case AArch64::LD1Fourv1d:
4339   case AArch64::ST1Twov2d:
4340   case AArch64::ST1Threev2d:
4341   case AArch64::ST1Fourv2d:
4342   case AArch64::ST1Twov1d:
4343   case AArch64::ST1Threev1d:
4344   case AArch64::ST1Fourv1d:
4345   case AArch64::ST1i8:
4346   case AArch64::ST1i16:
4347   case AArch64::ST1i32:
4348   case AArch64::ST1i64:
4349   case AArch64::IRG:
4350   case AArch64::IRGstack:
4351   case AArch64::STGloop:
4352   case AArch64::STZGloop:
4353     return AArch64FrameOffsetCannotUpdate;
4354   }
4355 
4356   // Get the min/max offset and the scale.
4357   TypeSize ScaleValue(0U, false);
4358   unsigned Width;
4359   int64_t MinOff, MaxOff;
4360   if (!AArch64InstrInfo::getMemOpInfo(MI.getOpcode(), ScaleValue, Width, MinOff,
4361                                       MaxOff))
4362     llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
4363 
4364   // Construct the complete offset.
4365   bool IsMulVL = ScaleValue.isScalable();
4366   unsigned Scale = ScaleValue.getKnownMinSize();
4367   int64_t Offset = IsMulVL ? SOffset.getScalable() : SOffset.getFixed();
4368 
4369   const MachineOperand &ImmOpnd =
4370       MI.getOperand(AArch64InstrInfo::getLoadStoreImmIdx(MI.getOpcode()));
4371   Offset += ImmOpnd.getImm() * Scale;
4372 
4373   // If the offset doesn't match the scale, we rewrite the instruction to
4374   // use the unscaled instruction instead. Likewise, if we have a negative
4375   // offset and there is an unscaled op to use.
4376   Optional<unsigned> UnscaledOp =
4377       AArch64InstrInfo::getUnscaledLdSt(MI.getOpcode());
4378   bool useUnscaledOp = UnscaledOp && (Offset % Scale || Offset < 0);
4379   if (useUnscaledOp &&
4380       !AArch64InstrInfo::getMemOpInfo(*UnscaledOp, ScaleValue, Width, MinOff,
4381                                       MaxOff))
4382     llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
4383 
4384   Scale = ScaleValue.getKnownMinSize();
4385   assert(IsMulVL == ScaleValue.isScalable() &&
4386          "Unscaled opcode has different value for scalable");
4387 
4388   int64_t Remainder = Offset % Scale;
4389   assert(!(Remainder && useUnscaledOp) &&
4390          "Cannot have remainder when using unscaled op");
4391 
4392   assert(MinOff < MaxOff && "Unexpected Min/Max offsets");
4393   int64_t NewOffset = Offset / Scale;
4394   if (MinOff <= NewOffset && NewOffset <= MaxOff)
4395     Offset = Remainder;
4396   else {
4397     NewOffset = NewOffset < 0 ? MinOff : MaxOff;
4398     Offset = Offset - NewOffset * Scale + Remainder;
4399   }
4400 
4401   if (EmittableOffset)
4402     *EmittableOffset = NewOffset;
4403   if (OutUseUnscaledOp)
4404     *OutUseUnscaledOp = useUnscaledOp;
4405   if (OutUnscaledOp && UnscaledOp)
4406     *OutUnscaledOp = *UnscaledOp;
4407 
4408   if (IsMulVL)
4409     SOffset = StackOffset::get(SOffset.getFixed(), Offset);
4410   else
4411     SOffset = StackOffset::get(Offset, SOffset.getScalable());
4412   return AArch64FrameOffsetCanUpdate |
4413          (SOffset ? 0 : AArch64FrameOffsetIsLegal);
4414 }
4415 
4416 bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
4417                                     unsigned FrameReg, StackOffset &Offset,
4418                                     const AArch64InstrInfo *TII) {
4419   unsigned Opcode = MI.getOpcode();
4420   unsigned ImmIdx = FrameRegIdx + 1;
4421 
4422   if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
4423     Offset += StackOffset::getFixed(MI.getOperand(ImmIdx).getImm());
4424     emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
4425                     MI.getOperand(0).getReg(), FrameReg, Offset, TII,
4426                     MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
4427     MI.eraseFromParent();
4428     Offset = StackOffset();
4429     return true;
4430   }
4431 
4432   int64_t NewOffset;
4433   unsigned UnscaledOp;
4434   bool UseUnscaledOp;
4435   int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
4436                                          &UnscaledOp, &NewOffset);
4437   if (Status & AArch64FrameOffsetCanUpdate) {
4438     if (Status & AArch64FrameOffsetIsLegal)
4439       // Replace the FrameIndex with FrameReg.
4440       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
4441     if (UseUnscaledOp)
4442       MI.setDesc(TII->get(UnscaledOp));
4443 
4444     MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
4445     return !Offset;
4446   }
4447 
4448   return false;
4449 }
4450 
4451 MCInst AArch64InstrInfo::getNop() const {
4452   return MCInstBuilder(AArch64::HINT).addImm(0);
4453 }
4454 
4455 // AArch64 supports MachineCombiner.
4456 bool AArch64InstrInfo::useMachineCombiner() const { return true; }
4457 
4458 // True when Opc sets flag
4459 static bool isCombineInstrSettingFlag(unsigned Opc) {
4460   switch (Opc) {
4461   case AArch64::ADDSWrr:
4462   case AArch64::ADDSWri:
4463   case AArch64::ADDSXrr:
4464   case AArch64::ADDSXri:
4465   case AArch64::SUBSWrr:
4466   case AArch64::SUBSXrr:
4467   // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
4468   case AArch64::SUBSWri:
4469   case AArch64::SUBSXri:
4470     return true;
4471   default:
4472     break;
4473   }
4474   return false;
4475 }
4476 
4477 // 32b Opcodes that can be combined with a MUL
4478 static bool isCombineInstrCandidate32(unsigned Opc) {
4479   switch (Opc) {
4480   case AArch64::ADDWrr:
4481   case AArch64::ADDWri:
4482   case AArch64::SUBWrr:
4483   case AArch64::ADDSWrr:
4484   case AArch64::ADDSWri:
4485   case AArch64::SUBSWrr:
4486   // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
4487   case AArch64::SUBWri:
4488   case AArch64::SUBSWri:
4489     return true;
4490   default:
4491     break;
4492   }
4493   return false;
4494 }
4495 
4496 // 64b Opcodes that can be combined with a MUL
4497 static bool isCombineInstrCandidate64(unsigned Opc) {
4498   switch (Opc) {
4499   case AArch64::ADDXrr:
4500   case AArch64::ADDXri:
4501   case AArch64::SUBXrr:
4502   case AArch64::ADDSXrr:
4503   case AArch64::ADDSXri:
4504   case AArch64::SUBSXrr:
4505   // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
4506   case AArch64::SUBXri:
4507   case AArch64::SUBSXri:
4508   case AArch64::ADDv8i8:
4509   case AArch64::ADDv16i8:
4510   case AArch64::ADDv4i16:
4511   case AArch64::ADDv8i16:
4512   case AArch64::ADDv2i32:
4513   case AArch64::ADDv4i32:
4514   case AArch64::SUBv8i8:
4515   case AArch64::SUBv16i8:
4516   case AArch64::SUBv4i16:
4517   case AArch64::SUBv8i16:
4518   case AArch64::SUBv2i32:
4519   case AArch64::SUBv4i32:
4520     return true;
4521   default:
4522     break;
4523   }
4524   return false;
4525 }
4526 
4527 // FP Opcodes that can be combined with a FMUL.
4528 static bool isCombineInstrCandidateFP(const MachineInstr &Inst) {
4529   switch (Inst.getOpcode()) {
4530   default:
4531     break;
4532   case AArch64::FADDHrr:
4533   case AArch64::FADDSrr:
4534   case AArch64::FADDDrr:
4535   case AArch64::FADDv4f16:
4536   case AArch64::FADDv8f16:
4537   case AArch64::FADDv2f32:
4538   case AArch64::FADDv2f64:
4539   case AArch64::FADDv4f32:
4540   case AArch64::FSUBHrr:
4541   case AArch64::FSUBSrr:
4542   case AArch64::FSUBDrr:
4543   case AArch64::FSUBv4f16:
4544   case AArch64::FSUBv8f16:
4545   case AArch64::FSUBv2f32:
4546   case AArch64::FSUBv2f64:
4547   case AArch64::FSUBv4f32:
4548     TargetOptions Options = Inst.getParent()->getParent()->getTarget().Options;
4549     // We can fuse FADD/FSUB with FMUL, if fusion is either allowed globally by
4550     // the target options or if FADD/FSUB has the contract fast-math flag.
4551     return Options.UnsafeFPMath ||
4552            Options.AllowFPOpFusion == FPOpFusion::Fast ||
4553            Inst.getFlag(MachineInstr::FmContract);
4554     return true;
4555   }
4556   return false;
4557 }
4558 
4559 // Opcodes that can be combined with a MUL
4560 static bool isCombineInstrCandidate(unsigned Opc) {
4561   return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc));
4562 }
4563 
4564 //
4565 // Utility routine that checks if \param MO is defined by an
4566 // \param CombineOpc instruction in the basic block \param MBB
4567 static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO,
4568                        unsigned CombineOpc, unsigned ZeroReg = 0,
4569                        bool CheckZeroReg = false) {
4570   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4571   MachineInstr *MI = nullptr;
4572 
4573   if (MO.isReg() && Register::isVirtualRegister(MO.getReg()))
4574     MI = MRI.getUniqueVRegDef(MO.getReg());
4575   // And it needs to be in the trace (otherwise, it won't have a depth).
4576   if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != CombineOpc)
4577     return false;
4578   // Must only used by the user we combine with.
4579   if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
4580     return false;
4581 
4582   if (CheckZeroReg) {
4583     assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() &&
4584            MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
4585            MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
4586     // The third input reg must be zero.
4587     if (MI->getOperand(3).getReg() != ZeroReg)
4588       return false;
4589   }
4590 
4591   return true;
4592 }
4593 
4594 //
4595 // Is \param MO defined by an integer multiply and can be combined?
4596 static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO,
4597                               unsigned MulOpc, unsigned ZeroReg) {
4598   return canCombine(MBB, MO, MulOpc, ZeroReg, true);
4599 }
4600 
4601 //
4602 // Is \param MO defined by a floating-point multiply and can be combined?
4603 static bool canCombineWithFMUL(MachineBasicBlock &MBB, MachineOperand &MO,
4604                                unsigned MulOpc) {
4605   return canCombine(MBB, MO, MulOpc);
4606 }
4607 
4608 // TODO: There are many more machine instruction opcodes to match:
4609 //       1. Other data types (integer, vectors)
4610 //       2. Other math / logic operations (xor, or)
4611 //       3. Other forms of the same operation (intrinsics and other variants)
4612 bool AArch64InstrInfo::isAssociativeAndCommutative(
4613     const MachineInstr &Inst) const {
4614   switch (Inst.getOpcode()) {
4615   case AArch64::FADDDrr:
4616   case AArch64::FADDSrr:
4617   case AArch64::FADDv2f32:
4618   case AArch64::FADDv2f64:
4619   case AArch64::FADDv4f32:
4620   case AArch64::FMULDrr:
4621   case AArch64::FMULSrr:
4622   case AArch64::FMULX32:
4623   case AArch64::FMULX64:
4624   case AArch64::FMULXv2f32:
4625   case AArch64::FMULXv2f64:
4626   case AArch64::FMULXv4f32:
4627   case AArch64::FMULv2f32:
4628   case AArch64::FMULv2f64:
4629   case AArch64::FMULv4f32:
4630     return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
4631   default:
4632     return false;
4633   }
4634 }
4635 
4636 /// Find instructions that can be turned into madd.
4637 static bool getMaddPatterns(MachineInstr &Root,
4638                             SmallVectorImpl<MachineCombinerPattern> &Patterns) {
4639   unsigned Opc = Root.getOpcode();
4640   MachineBasicBlock &MBB = *Root.getParent();
4641   bool Found = false;
4642 
4643   if (!isCombineInstrCandidate(Opc))
4644     return false;
4645   if (isCombineInstrSettingFlag(Opc)) {
4646     int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true);
4647     // When NZCV is live bail out.
4648     if (Cmp_NZCV == -1)
4649       return false;
4650     unsigned NewOpc = convertToNonFlagSettingOpc(Root);
4651     // When opcode can't change bail out.
4652     // CHECKME: do we miss any cases for opcode conversion?
4653     if (NewOpc == Opc)
4654       return false;
4655     Opc = NewOpc;
4656   }
4657 
4658   auto setFound = [&](int Opcode, int Operand, unsigned ZeroReg,
4659                       MachineCombinerPattern Pattern) {
4660     if (canCombineWithMUL(MBB, Root.getOperand(Operand), Opcode, ZeroReg)) {
4661       Patterns.push_back(Pattern);
4662       Found = true;
4663     }
4664   };
4665 
4666   auto setVFound = [&](int Opcode, int Operand, MachineCombinerPattern Pattern) {
4667     if (canCombine(MBB, Root.getOperand(Operand), Opcode)) {
4668       Patterns.push_back(Pattern);
4669       Found = true;
4670     }
4671   };
4672 
4673   typedef MachineCombinerPattern MCP;
4674 
4675   switch (Opc) {
4676   default:
4677     break;
4678   case AArch64::ADDWrr:
4679     assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
4680            "ADDWrr does not have register operands");
4681     setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDW_OP1);
4682     setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULADDW_OP2);
4683     break;
4684   case AArch64::ADDXrr:
4685     setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDX_OP1);
4686     setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULADDX_OP2);
4687     break;
4688   case AArch64::SUBWrr:
4689     setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBW_OP1);
4690     setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULSUBW_OP2);
4691     break;
4692   case AArch64::SUBXrr:
4693     setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBX_OP1);
4694     setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULSUBX_OP2);
4695     break;
4696   case AArch64::ADDWri:
4697     setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDWI_OP1);
4698     break;
4699   case AArch64::ADDXri:
4700     setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDXI_OP1);
4701     break;
4702   case AArch64::SUBWri:
4703     setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBWI_OP1);
4704     break;
4705   case AArch64::SUBXri:
4706     setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBXI_OP1);
4707     break;
4708   case AArch64::ADDv8i8:
4709     setVFound(AArch64::MULv8i8, 1, MCP::MULADDv8i8_OP1);
4710     setVFound(AArch64::MULv8i8, 2, MCP::MULADDv8i8_OP2);
4711     break;
4712   case AArch64::ADDv16i8:
4713     setVFound(AArch64::MULv16i8, 1, MCP::MULADDv16i8_OP1);
4714     setVFound(AArch64::MULv16i8, 2, MCP::MULADDv16i8_OP2);
4715     break;
4716   case AArch64::ADDv4i16:
4717     setVFound(AArch64::MULv4i16, 1, MCP::MULADDv4i16_OP1);
4718     setVFound(AArch64::MULv4i16, 2, MCP::MULADDv4i16_OP2);
4719     setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULADDv4i16_indexed_OP1);
4720     setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULADDv4i16_indexed_OP2);
4721     break;
4722   case AArch64::ADDv8i16:
4723     setVFound(AArch64::MULv8i16, 1, MCP::MULADDv8i16_OP1);
4724     setVFound(AArch64::MULv8i16, 2, MCP::MULADDv8i16_OP2);
4725     setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULADDv8i16_indexed_OP1);
4726     setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULADDv8i16_indexed_OP2);
4727     break;
4728   case AArch64::ADDv2i32:
4729     setVFound(AArch64::MULv2i32, 1, MCP::MULADDv2i32_OP1);
4730     setVFound(AArch64::MULv2i32, 2, MCP::MULADDv2i32_OP2);
4731     setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULADDv2i32_indexed_OP1);
4732     setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULADDv2i32_indexed_OP2);
4733     break;
4734   case AArch64::ADDv4i32:
4735     setVFound(AArch64::MULv4i32, 1, MCP::MULADDv4i32_OP1);
4736     setVFound(AArch64::MULv4i32, 2, MCP::MULADDv4i32_OP2);
4737     setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULADDv4i32_indexed_OP1);
4738     setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULADDv4i32_indexed_OP2);
4739     break;
4740   case AArch64::SUBv8i8:
4741     setVFound(AArch64::MULv8i8, 1, MCP::MULSUBv8i8_OP1);
4742     setVFound(AArch64::MULv8i8, 2, MCP::MULSUBv8i8_OP2);
4743     break;
4744   case AArch64::SUBv16i8:
4745     setVFound(AArch64::MULv16i8, 1, MCP::MULSUBv16i8_OP1);
4746     setVFound(AArch64::MULv16i8, 2, MCP::MULSUBv16i8_OP2);
4747     break;
4748   case AArch64::SUBv4i16:
4749     setVFound(AArch64::MULv4i16, 1, MCP::MULSUBv4i16_OP1);
4750     setVFound(AArch64::MULv4i16, 2, MCP::MULSUBv4i16_OP2);
4751     setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULSUBv4i16_indexed_OP1);
4752     setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULSUBv4i16_indexed_OP2);
4753     break;
4754   case AArch64::SUBv8i16:
4755     setVFound(AArch64::MULv8i16, 1, MCP::MULSUBv8i16_OP1);
4756     setVFound(AArch64::MULv8i16, 2, MCP::MULSUBv8i16_OP2);
4757     setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULSUBv8i16_indexed_OP1);
4758     setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULSUBv8i16_indexed_OP2);
4759     break;
4760   case AArch64::SUBv2i32:
4761     setVFound(AArch64::MULv2i32, 1, MCP::MULSUBv2i32_OP1);
4762     setVFound(AArch64::MULv2i32, 2, MCP::MULSUBv2i32_OP2);
4763     setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULSUBv2i32_indexed_OP1);
4764     setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULSUBv2i32_indexed_OP2);
4765     break;
4766   case AArch64::SUBv4i32:
4767     setVFound(AArch64::MULv4i32, 1, MCP::MULSUBv4i32_OP1);
4768     setVFound(AArch64::MULv4i32, 2, MCP::MULSUBv4i32_OP2);
4769     setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULSUBv4i32_indexed_OP1);
4770     setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULSUBv4i32_indexed_OP2);
4771     break;
4772   }
4773   return Found;
4774 }
4775 /// Floating-Point Support
4776 
4777 /// Find instructions that can be turned into madd.
4778 static bool getFMAPatterns(MachineInstr &Root,
4779                            SmallVectorImpl<MachineCombinerPattern> &Patterns) {
4780 
4781   if (!isCombineInstrCandidateFP(Root))
4782     return false;
4783 
4784   MachineBasicBlock &MBB = *Root.getParent();
4785   bool Found = false;
4786 
4787   auto Match = [&](int Opcode, int Operand,
4788                    MachineCombinerPattern Pattern) -> bool {
4789     if (canCombineWithFMUL(MBB, Root.getOperand(Operand), Opcode)) {
4790       Patterns.push_back(Pattern);
4791       return true;
4792     }
4793     return false;
4794   };
4795 
4796   typedef MachineCombinerPattern MCP;
4797 
4798   switch (Root.getOpcode()) {
4799   default:
4800     assert(false && "Unsupported FP instruction in combiner\n");
4801     break;
4802   case AArch64::FADDHrr:
4803     assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
4804            "FADDHrr does not have register operands");
4805 
4806     Found  = Match(AArch64::FMULHrr, 1, MCP::FMULADDH_OP1);
4807     Found |= Match(AArch64::FMULHrr, 2, MCP::FMULADDH_OP2);
4808     break;
4809   case AArch64::FADDSrr:
4810     assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
4811            "FADDSrr does not have register operands");
4812 
4813     Found |= Match(AArch64::FMULSrr, 1, MCP::FMULADDS_OP1) ||
4814              Match(AArch64::FMULv1i32_indexed, 1, MCP::FMLAv1i32_indexed_OP1);
4815 
4816     Found |= Match(AArch64::FMULSrr, 2, MCP::FMULADDS_OP2) ||
4817              Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLAv1i32_indexed_OP2);
4818     break;
4819   case AArch64::FADDDrr:
4820     Found |= Match(AArch64::FMULDrr, 1, MCP::FMULADDD_OP1) ||
4821              Match(AArch64::FMULv1i64_indexed, 1, MCP::FMLAv1i64_indexed_OP1);
4822 
4823     Found |= Match(AArch64::FMULDrr, 2, MCP::FMULADDD_OP2) ||
4824              Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLAv1i64_indexed_OP2);
4825     break;
4826   case AArch64::FADDv4f16:
4827     Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLAv4i16_indexed_OP1) ||
4828              Match(AArch64::FMULv4f16, 1, MCP::FMLAv4f16_OP1);
4829 
4830     Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLAv4i16_indexed_OP2) ||
4831              Match(AArch64::FMULv4f16, 2, MCP::FMLAv4f16_OP2);
4832     break;
4833   case AArch64::FADDv8f16:
4834     Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLAv8i16_indexed_OP1) ||
4835              Match(AArch64::FMULv8f16, 1, MCP::FMLAv8f16_OP1);
4836 
4837     Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLAv8i16_indexed_OP2) ||
4838              Match(AArch64::FMULv8f16, 2, MCP::FMLAv8f16_OP2);
4839     break;
4840   case AArch64::FADDv2f32:
4841     Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLAv2i32_indexed_OP1) ||
4842              Match(AArch64::FMULv2f32, 1, MCP::FMLAv2f32_OP1);
4843 
4844     Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLAv2i32_indexed_OP2) ||
4845              Match(AArch64::FMULv2f32, 2, MCP::FMLAv2f32_OP2);
4846     break;
4847   case AArch64::FADDv2f64:
4848     Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLAv2i64_indexed_OP1) ||
4849              Match(AArch64::FMULv2f64, 1, MCP::FMLAv2f64_OP1);
4850 
4851     Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLAv2i64_indexed_OP2) ||
4852              Match(AArch64::FMULv2f64, 2, MCP::FMLAv2f64_OP2);
4853     break;
4854   case AArch64::FADDv4f32:
4855     Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLAv4i32_indexed_OP1) ||
4856              Match(AArch64::FMULv4f32, 1, MCP::FMLAv4f32_OP1);
4857 
4858     Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLAv4i32_indexed_OP2) ||
4859              Match(AArch64::FMULv4f32, 2, MCP::FMLAv4f32_OP2);
4860     break;
4861   case AArch64::FSUBHrr:
4862     Found  = Match(AArch64::FMULHrr, 1, MCP::FMULSUBH_OP1);
4863     Found |= Match(AArch64::FMULHrr, 2, MCP::FMULSUBH_OP2);
4864     Found |= Match(AArch64::FNMULHrr, 1, MCP::FNMULSUBH_OP1);
4865     break;
4866   case AArch64::FSUBSrr:
4867     Found = Match(AArch64::FMULSrr, 1, MCP::FMULSUBS_OP1);
4868 
4869     Found |= Match(AArch64::FMULSrr, 2, MCP::FMULSUBS_OP2) ||
4870              Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLSv1i32_indexed_OP2);
4871 
4872     Found |= Match(AArch64::FNMULSrr, 1, MCP::FNMULSUBS_OP1);
4873     break;
4874   case AArch64::FSUBDrr:
4875     Found = Match(AArch64::FMULDrr, 1, MCP::FMULSUBD_OP1);
4876 
4877     Found |= Match(AArch64::FMULDrr, 2, MCP::FMULSUBD_OP2) ||
4878              Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLSv1i64_indexed_OP2);
4879 
4880     Found |= Match(AArch64::FNMULDrr, 1, MCP::FNMULSUBD_OP1);
4881     break;
4882   case AArch64::FSUBv4f16:
4883     Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLSv4i16_indexed_OP2) ||
4884              Match(AArch64::FMULv4f16, 2, MCP::FMLSv4f16_OP2);
4885 
4886     Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLSv4i16_indexed_OP1) ||
4887              Match(AArch64::FMULv4f16, 1, MCP::FMLSv4f16_OP1);
4888     break;
4889   case AArch64::FSUBv8f16:
4890     Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLSv8i16_indexed_OP2) ||
4891              Match(AArch64::FMULv8f16, 2, MCP::FMLSv8f16_OP2);
4892 
4893     Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLSv8i16_indexed_OP1) ||
4894              Match(AArch64::FMULv8f16, 1, MCP::FMLSv8f16_OP1);
4895     break;
4896   case AArch64::FSUBv2f32:
4897     Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLSv2i32_indexed_OP2) ||
4898              Match(AArch64::FMULv2f32, 2, MCP::FMLSv2f32_OP2);
4899 
4900     Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLSv2i32_indexed_OP1) ||
4901              Match(AArch64::FMULv2f32, 1, MCP::FMLSv2f32_OP1);
4902     break;
4903   case AArch64::FSUBv2f64:
4904     Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLSv2i64_indexed_OP2) ||
4905              Match(AArch64::FMULv2f64, 2, MCP::FMLSv2f64_OP2);
4906 
4907     Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLSv2i64_indexed_OP1) ||
4908              Match(AArch64::FMULv2f64, 1, MCP::FMLSv2f64_OP1);
4909     break;
4910   case AArch64::FSUBv4f32:
4911     Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLSv4i32_indexed_OP2) ||
4912              Match(AArch64::FMULv4f32, 2, MCP::FMLSv4f32_OP2);
4913 
4914     Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLSv4i32_indexed_OP1) ||
4915              Match(AArch64::FMULv4f32, 1, MCP::FMLSv4f32_OP1);
4916     break;
4917   }
4918   return Found;
4919 }
4920 
4921 static bool getFMULPatterns(MachineInstr &Root,
4922                             SmallVectorImpl<MachineCombinerPattern> &Patterns) {
4923   MachineBasicBlock &MBB = *Root.getParent();
4924   bool Found = false;
4925 
4926   auto Match = [&](unsigned Opcode, int Operand,
4927                    MachineCombinerPattern Pattern) -> bool {
4928     MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4929     MachineOperand &MO = Root.getOperand(Operand);
4930     MachineInstr *MI = nullptr;
4931     if (MO.isReg() && Register::isVirtualRegister(MO.getReg()))
4932       MI = MRI.getUniqueVRegDef(MO.getReg());
4933     if (MI && MI->getOpcode() == Opcode) {
4934       Patterns.push_back(Pattern);
4935       return true;
4936     }
4937     return false;
4938   };
4939 
4940   typedef MachineCombinerPattern MCP;
4941 
4942   switch (Root.getOpcode()) {
4943   default:
4944     return false;
4945   case AArch64::FMULv2f32:
4946     Found = Match(AArch64::DUPv2i32lane, 1, MCP::FMULv2i32_indexed_OP1);
4947     Found |= Match(AArch64::DUPv2i32lane, 2, MCP::FMULv2i32_indexed_OP2);
4948     break;
4949   case AArch64::FMULv2f64:
4950     Found = Match(AArch64::DUPv2i64lane, 1, MCP::FMULv2i64_indexed_OP1);
4951     Found |= Match(AArch64::DUPv2i64lane, 2, MCP::FMULv2i64_indexed_OP2);
4952     break;
4953   case AArch64::FMULv4f16:
4954     Found = Match(AArch64::DUPv4i16lane, 1, MCP::FMULv4i16_indexed_OP1);
4955     Found |= Match(AArch64::DUPv4i16lane, 2, MCP::FMULv4i16_indexed_OP2);
4956     break;
4957   case AArch64::FMULv4f32:
4958     Found = Match(AArch64::DUPv4i32lane, 1, MCP::FMULv4i32_indexed_OP1);
4959     Found |= Match(AArch64::DUPv4i32lane, 2, MCP::FMULv4i32_indexed_OP2);
4960     break;
4961   case AArch64::FMULv8f16:
4962     Found = Match(AArch64::DUPv8i16lane, 1, MCP::FMULv8i16_indexed_OP1);
4963     Found |= Match(AArch64::DUPv8i16lane, 2, MCP::FMULv8i16_indexed_OP2);
4964     break;
4965   }
4966 
4967   return Found;
4968 }
4969 
4970 /// Return true when a code sequence can improve throughput. It
4971 /// should be called only for instructions in loops.
4972 /// \param Pattern - combiner pattern
4973 bool AArch64InstrInfo::isThroughputPattern(
4974     MachineCombinerPattern Pattern) const {
4975   switch (Pattern) {
4976   default:
4977     break;
4978   case MachineCombinerPattern::FMULADDH_OP1:
4979   case MachineCombinerPattern::FMULADDH_OP2:
4980   case MachineCombinerPattern::FMULSUBH_OP1:
4981   case MachineCombinerPattern::FMULSUBH_OP2:
4982   case MachineCombinerPattern::FMULADDS_OP1:
4983   case MachineCombinerPattern::FMULADDS_OP2:
4984   case MachineCombinerPattern::FMULSUBS_OP1:
4985   case MachineCombinerPattern::FMULSUBS_OP2:
4986   case MachineCombinerPattern::FMULADDD_OP1:
4987   case MachineCombinerPattern::FMULADDD_OP2:
4988   case MachineCombinerPattern::FMULSUBD_OP1:
4989   case MachineCombinerPattern::FMULSUBD_OP2:
4990   case MachineCombinerPattern::FNMULSUBH_OP1:
4991   case MachineCombinerPattern::FNMULSUBS_OP1:
4992   case MachineCombinerPattern::FNMULSUBD_OP1:
4993   case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
4994   case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
4995   case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
4996   case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
4997   case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
4998   case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
4999   case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
5000   case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
5001   case MachineCombinerPattern::FMLAv4f16_OP2:
5002   case MachineCombinerPattern::FMLAv4f16_OP1:
5003   case MachineCombinerPattern::FMLAv8f16_OP1:
5004   case MachineCombinerPattern::FMLAv8f16_OP2:
5005   case MachineCombinerPattern::FMLAv2f32_OP2:
5006   case MachineCombinerPattern::FMLAv2f32_OP1:
5007   case MachineCombinerPattern::FMLAv2f64_OP1:
5008   case MachineCombinerPattern::FMLAv2f64_OP2:
5009   case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
5010   case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
5011   case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
5012   case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
5013   case MachineCombinerPattern::FMLAv4f32_OP1:
5014   case MachineCombinerPattern::FMLAv4f32_OP2:
5015   case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
5016   case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
5017   case MachineCombinerPattern::FMLSv4i16_indexed_OP1:
5018   case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
5019   case MachineCombinerPattern::FMLSv8i16_indexed_OP1:
5020   case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
5021   case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
5022   case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
5023   case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
5024   case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
5025   case MachineCombinerPattern::FMLSv4f16_OP1:
5026   case MachineCombinerPattern::FMLSv4f16_OP2:
5027   case MachineCombinerPattern::FMLSv8f16_OP1:
5028   case MachineCombinerPattern::FMLSv8f16_OP2:
5029   case MachineCombinerPattern::FMLSv2f32_OP2:
5030   case MachineCombinerPattern::FMLSv2f64_OP2:
5031   case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
5032   case MachineCombinerPattern::FMLSv4f32_OP2:
5033   case MachineCombinerPattern::FMULv2i32_indexed_OP1:
5034   case MachineCombinerPattern::FMULv2i32_indexed_OP2:
5035   case MachineCombinerPattern::FMULv2i64_indexed_OP1:
5036   case MachineCombinerPattern::FMULv2i64_indexed_OP2:
5037   case MachineCombinerPattern::FMULv4i16_indexed_OP1:
5038   case MachineCombinerPattern::FMULv4i16_indexed_OP2:
5039   case MachineCombinerPattern::FMULv4i32_indexed_OP1:
5040   case MachineCombinerPattern::FMULv4i32_indexed_OP2:
5041   case MachineCombinerPattern::FMULv8i16_indexed_OP1:
5042   case MachineCombinerPattern::FMULv8i16_indexed_OP2:
5043   case MachineCombinerPattern::MULADDv8i8_OP1:
5044   case MachineCombinerPattern::MULADDv8i8_OP2:
5045   case MachineCombinerPattern::MULADDv16i8_OP1:
5046   case MachineCombinerPattern::MULADDv16i8_OP2:
5047   case MachineCombinerPattern::MULADDv4i16_OP1:
5048   case MachineCombinerPattern::MULADDv4i16_OP2:
5049   case MachineCombinerPattern::MULADDv8i16_OP1:
5050   case MachineCombinerPattern::MULADDv8i16_OP2:
5051   case MachineCombinerPattern::MULADDv2i32_OP1:
5052   case MachineCombinerPattern::MULADDv2i32_OP2:
5053   case MachineCombinerPattern::MULADDv4i32_OP1:
5054   case MachineCombinerPattern::MULADDv4i32_OP2:
5055   case MachineCombinerPattern::MULSUBv8i8_OP1:
5056   case MachineCombinerPattern::MULSUBv8i8_OP2:
5057   case MachineCombinerPattern::MULSUBv16i8_OP1:
5058   case MachineCombinerPattern::MULSUBv16i8_OP2:
5059   case MachineCombinerPattern::MULSUBv4i16_OP1:
5060   case MachineCombinerPattern::MULSUBv4i16_OP2:
5061   case MachineCombinerPattern::MULSUBv8i16_OP1:
5062   case MachineCombinerPattern::MULSUBv8i16_OP2:
5063   case MachineCombinerPattern::MULSUBv2i32_OP1:
5064   case MachineCombinerPattern::MULSUBv2i32_OP2:
5065   case MachineCombinerPattern::MULSUBv4i32_OP1:
5066   case MachineCombinerPattern::MULSUBv4i32_OP2:
5067   case MachineCombinerPattern::MULADDv4i16_indexed_OP1:
5068   case MachineCombinerPattern::MULADDv4i16_indexed_OP2:
5069   case MachineCombinerPattern::MULADDv8i16_indexed_OP1:
5070   case MachineCombinerPattern::MULADDv8i16_indexed_OP2:
5071   case MachineCombinerPattern::MULADDv2i32_indexed_OP1:
5072   case MachineCombinerPattern::MULADDv2i32_indexed_OP2:
5073   case MachineCombinerPattern::MULADDv4i32_indexed_OP1:
5074   case MachineCombinerPattern::MULADDv4i32_indexed_OP2:
5075   case MachineCombinerPattern::MULSUBv4i16_indexed_OP1:
5076   case MachineCombinerPattern::MULSUBv4i16_indexed_OP2:
5077   case MachineCombinerPattern::MULSUBv8i16_indexed_OP1:
5078   case MachineCombinerPattern::MULSUBv8i16_indexed_OP2:
5079   case MachineCombinerPattern::MULSUBv2i32_indexed_OP1:
5080   case MachineCombinerPattern::MULSUBv2i32_indexed_OP2:
5081   case MachineCombinerPattern::MULSUBv4i32_indexed_OP1:
5082   case MachineCombinerPattern::MULSUBv4i32_indexed_OP2:
5083     return true;
5084   } // end switch (Pattern)
5085   return false;
5086 }
5087 /// Return true when there is potentially a faster code sequence for an
5088 /// instruction chain ending in \p Root. All potential patterns are listed in
5089 /// the \p Pattern vector. Pattern should be sorted in priority order since the
5090 /// pattern evaluator stops checking as soon as it finds a faster sequence.
5091 
5092 bool AArch64InstrInfo::getMachineCombinerPatterns(
5093     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
5094     bool DoRegPressureReduce) const {
5095   // Integer patterns
5096   if (getMaddPatterns(Root, Patterns))
5097     return true;
5098   // Floating point patterns
5099   if (getFMULPatterns(Root, Patterns))
5100     return true;
5101   if (getFMAPatterns(Root, Patterns))
5102     return true;
5103 
5104   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
5105                                                      DoRegPressureReduce);
5106 }
5107 
5108 enum class FMAInstKind { Default, Indexed, Accumulator };
5109 /// genFusedMultiply - Generate fused multiply instructions.
5110 /// This function supports both integer and floating point instructions.
5111 /// A typical example:
5112 ///  F|MUL I=A,B,0
5113 ///  F|ADD R,I,C
5114 ///  ==> F|MADD R,A,B,C
5115 /// \param MF Containing MachineFunction
5116 /// \param MRI Register information
5117 /// \param TII Target information
5118 /// \param Root is the F|ADD instruction
5119 /// \param [out] InsInstrs is a vector of machine instructions and will
5120 /// contain the generated madd instruction
5121 /// \param IdxMulOpd is index of operand in Root that is the result of
5122 /// the F|MUL. In the example above IdxMulOpd is 1.
5123 /// \param MaddOpc the opcode fo the f|madd instruction
5124 /// \param RC Register class of operands
5125 /// \param kind of fma instruction (addressing mode) to be generated
5126 /// \param ReplacedAddend is the result register from the instruction
5127 /// replacing the non-combined operand, if any.
5128 static MachineInstr *
5129 genFusedMultiply(MachineFunction &MF, MachineRegisterInfo &MRI,
5130                  const TargetInstrInfo *TII, MachineInstr &Root,
5131                  SmallVectorImpl<MachineInstr *> &InsInstrs, unsigned IdxMulOpd,
5132                  unsigned MaddOpc, const TargetRegisterClass *RC,
5133                  FMAInstKind kind = FMAInstKind::Default,
5134                  const Register *ReplacedAddend = nullptr) {
5135   assert(IdxMulOpd == 1 || IdxMulOpd == 2);
5136 
5137   unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1;
5138   MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
5139   Register ResultReg = Root.getOperand(0).getReg();
5140   Register SrcReg0 = MUL->getOperand(1).getReg();
5141   bool Src0IsKill = MUL->getOperand(1).isKill();
5142   Register SrcReg1 = MUL->getOperand(2).getReg();
5143   bool Src1IsKill = MUL->getOperand(2).isKill();
5144 
5145   unsigned SrcReg2;
5146   bool Src2IsKill;
5147   if (ReplacedAddend) {
5148     // If we just generated a new addend, we must be it's only use.
5149     SrcReg2 = *ReplacedAddend;
5150     Src2IsKill = true;
5151   } else {
5152     SrcReg2 = Root.getOperand(IdxOtherOpd).getReg();
5153     Src2IsKill = Root.getOperand(IdxOtherOpd).isKill();
5154   }
5155 
5156   if (Register::isVirtualRegister(ResultReg))
5157     MRI.constrainRegClass(ResultReg, RC);
5158   if (Register::isVirtualRegister(SrcReg0))
5159     MRI.constrainRegClass(SrcReg0, RC);
5160   if (Register::isVirtualRegister(SrcReg1))
5161     MRI.constrainRegClass(SrcReg1, RC);
5162   if (Register::isVirtualRegister(SrcReg2))
5163     MRI.constrainRegClass(SrcReg2, RC);
5164 
5165   MachineInstrBuilder MIB;
5166   if (kind == FMAInstKind::Default)
5167     MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
5168               .addReg(SrcReg0, getKillRegState(Src0IsKill))
5169               .addReg(SrcReg1, getKillRegState(Src1IsKill))
5170               .addReg(SrcReg2, getKillRegState(Src2IsKill));
5171   else if (kind == FMAInstKind::Indexed)
5172     MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
5173               .addReg(SrcReg2, getKillRegState(Src2IsKill))
5174               .addReg(SrcReg0, getKillRegState(Src0IsKill))
5175               .addReg(SrcReg1, getKillRegState(Src1IsKill))
5176               .addImm(MUL->getOperand(3).getImm());
5177   else if (kind == FMAInstKind::Accumulator)
5178     MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
5179               .addReg(SrcReg2, getKillRegState(Src2IsKill))
5180               .addReg(SrcReg0, getKillRegState(Src0IsKill))
5181               .addReg(SrcReg1, getKillRegState(Src1IsKill));
5182   else
5183     assert(false && "Invalid FMA instruction kind \n");
5184   // Insert the MADD (MADD, FMA, FMS, FMLA, FMSL)
5185   InsInstrs.push_back(MIB);
5186   return MUL;
5187 }
5188 
5189 /// Fold (FMUL x (DUP y lane)) into (FMUL_indexed x y lane)
5190 static MachineInstr *
5191 genIndexedMultiply(MachineInstr &Root,
5192                    SmallVectorImpl<MachineInstr *> &InsInstrs,
5193                    unsigned IdxDupOp, unsigned MulOpc,
5194                    const TargetRegisterClass *RC, MachineRegisterInfo &MRI) {
5195   assert(((IdxDupOp == 1) || (IdxDupOp == 2)) &&
5196          "Invalid index of FMUL operand");
5197 
5198   MachineFunction &MF = *Root.getMF();
5199   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
5200 
5201   MachineInstr *Dup =
5202       MF.getRegInfo().getUniqueVRegDef(Root.getOperand(IdxDupOp).getReg());
5203 
5204   Register DupSrcReg = Dup->getOperand(1).getReg();
5205   MRI.clearKillFlags(DupSrcReg);
5206   MRI.constrainRegClass(DupSrcReg, RC);
5207 
5208   unsigned DupSrcLane = Dup->getOperand(2).getImm();
5209 
5210   unsigned IdxMulOp = IdxDupOp == 1 ? 2 : 1;
5211   MachineOperand &MulOp = Root.getOperand(IdxMulOp);
5212 
5213   Register ResultReg = Root.getOperand(0).getReg();
5214 
5215   MachineInstrBuilder MIB;
5216   MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MulOpc), ResultReg)
5217             .add(MulOp)
5218             .addReg(DupSrcReg)
5219             .addImm(DupSrcLane);
5220 
5221   InsInstrs.push_back(MIB);
5222   return &Root;
5223 }
5224 
5225 /// genFusedMultiplyAcc - Helper to generate fused multiply accumulate
5226 /// instructions.
5227 ///
5228 /// \see genFusedMultiply
5229 static MachineInstr *genFusedMultiplyAcc(
5230     MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5231     MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5232     unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) {
5233   return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5234                           FMAInstKind::Accumulator);
5235 }
5236 
5237 /// genNeg - Helper to generate an intermediate negation of the second operand
5238 /// of Root
5239 static Register genNeg(MachineFunction &MF, MachineRegisterInfo &MRI,
5240                        const TargetInstrInfo *TII, MachineInstr &Root,
5241                        SmallVectorImpl<MachineInstr *> &InsInstrs,
5242                        DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
5243                        unsigned MnegOpc, const TargetRegisterClass *RC) {
5244   Register NewVR = MRI.createVirtualRegister(RC);
5245   MachineInstrBuilder MIB =
5246       BuildMI(MF, Root.getDebugLoc(), TII->get(MnegOpc), NewVR)
5247           .add(Root.getOperand(2));
5248   InsInstrs.push_back(MIB);
5249 
5250   assert(InstrIdxForVirtReg.empty());
5251   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
5252 
5253   return NewVR;
5254 }
5255 
5256 /// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate
5257 /// instructions with an additional negation of the accumulator
5258 static MachineInstr *genFusedMultiplyAccNeg(
5259     MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5260     MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5261     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd,
5262     unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) {
5263   assert(IdxMulOpd == 1);
5264 
5265   Register NewVR =
5266       genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC);
5267   return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5268                           FMAInstKind::Accumulator, &NewVR);
5269 }
5270 
5271 /// genFusedMultiplyIdx - Helper to generate fused multiply accumulate
5272 /// instructions.
5273 ///
5274 /// \see genFusedMultiply
5275 static MachineInstr *genFusedMultiplyIdx(
5276     MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5277     MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5278     unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) {
5279   return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5280                           FMAInstKind::Indexed);
5281 }
5282 
5283 /// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate
5284 /// instructions with an additional negation of the accumulator
5285 static MachineInstr *genFusedMultiplyIdxNeg(
5286     MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5287     MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5288     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd,
5289     unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) {
5290   assert(IdxMulOpd == 1);
5291 
5292   Register NewVR =
5293       genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC);
5294 
5295   return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5296                           FMAInstKind::Indexed, &NewVR);
5297 }
5298 
5299 /// genMaddR - Generate madd instruction and combine mul and add using
5300 /// an extra virtual register
5301 /// Example - an ADD intermediate needs to be stored in a register:
5302 ///   MUL I=A,B,0
5303 ///   ADD R,I,Imm
5304 ///   ==> ORR  V, ZR, Imm
5305 ///   ==> MADD R,A,B,V
5306 /// \param MF Containing MachineFunction
5307 /// \param MRI Register information
5308 /// \param TII Target information
5309 /// \param Root is the ADD instruction
5310 /// \param [out] InsInstrs is a vector of machine instructions and will
5311 /// contain the generated madd instruction
5312 /// \param IdxMulOpd is index of operand in Root that is the result of
5313 /// the MUL. In the example above IdxMulOpd is 1.
5314 /// \param MaddOpc the opcode fo the madd instruction
5315 /// \param VR is a virtual register that holds the value of an ADD operand
5316 /// (V in the example above).
5317 /// \param RC Register class of operands
5318 static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
5319                               const TargetInstrInfo *TII, MachineInstr &Root,
5320                               SmallVectorImpl<MachineInstr *> &InsInstrs,
5321                               unsigned IdxMulOpd, unsigned MaddOpc, unsigned VR,
5322                               const TargetRegisterClass *RC) {
5323   assert(IdxMulOpd == 1 || IdxMulOpd == 2);
5324 
5325   MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
5326   Register ResultReg = Root.getOperand(0).getReg();
5327   Register SrcReg0 = MUL->getOperand(1).getReg();
5328   bool Src0IsKill = MUL->getOperand(1).isKill();
5329   Register SrcReg1 = MUL->getOperand(2).getReg();
5330   bool Src1IsKill = MUL->getOperand(2).isKill();
5331 
5332   if (Register::isVirtualRegister(ResultReg))
5333     MRI.constrainRegClass(ResultReg, RC);
5334   if (Register::isVirtualRegister(SrcReg0))
5335     MRI.constrainRegClass(SrcReg0, RC);
5336   if (Register::isVirtualRegister(SrcReg1))
5337     MRI.constrainRegClass(SrcReg1, RC);
5338   if (Register::isVirtualRegister(VR))
5339     MRI.constrainRegClass(VR, RC);
5340 
5341   MachineInstrBuilder MIB =
5342       BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg)
5343           .addReg(SrcReg0, getKillRegState(Src0IsKill))
5344           .addReg(SrcReg1, getKillRegState(Src1IsKill))
5345           .addReg(VR);
5346   // Insert the MADD
5347   InsInstrs.push_back(MIB);
5348   return MUL;
5349 }
5350 
5351 /// When getMachineCombinerPatterns() finds potential patterns,
5352 /// this function generates the instructions that could replace the
5353 /// original code sequence
5354 void AArch64InstrInfo::genAlternativeCodeSequence(
5355     MachineInstr &Root, MachineCombinerPattern Pattern,
5356     SmallVectorImpl<MachineInstr *> &InsInstrs,
5357     SmallVectorImpl<MachineInstr *> &DelInstrs,
5358     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
5359   MachineBasicBlock &MBB = *Root.getParent();
5360   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
5361   MachineFunction &MF = *MBB.getParent();
5362   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
5363 
5364   MachineInstr *MUL = nullptr;
5365   const TargetRegisterClass *RC;
5366   unsigned Opc;
5367   switch (Pattern) {
5368   default:
5369     // Reassociate instructions.
5370     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
5371                                                 DelInstrs, InstrIdxForVirtReg);
5372     return;
5373   case MachineCombinerPattern::MULADDW_OP1:
5374   case MachineCombinerPattern::MULADDX_OP1:
5375     // MUL I=A,B,0
5376     // ADD R,I,C
5377     // ==> MADD R,A,B,C
5378     // --- Create(MADD);
5379     if (Pattern == MachineCombinerPattern::MULADDW_OP1) {
5380       Opc = AArch64::MADDWrrr;
5381       RC = &AArch64::GPR32RegClass;
5382     } else {
5383       Opc = AArch64::MADDXrrr;
5384       RC = &AArch64::GPR64RegClass;
5385     }
5386     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5387     break;
5388   case MachineCombinerPattern::MULADDW_OP2:
5389   case MachineCombinerPattern::MULADDX_OP2:
5390     // MUL I=A,B,0
5391     // ADD R,C,I
5392     // ==> MADD R,A,B,C
5393     // --- Create(MADD);
5394     if (Pattern == MachineCombinerPattern::MULADDW_OP2) {
5395       Opc = AArch64::MADDWrrr;
5396       RC = &AArch64::GPR32RegClass;
5397     } else {
5398       Opc = AArch64::MADDXrrr;
5399       RC = &AArch64::GPR64RegClass;
5400     }
5401     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5402     break;
5403   case MachineCombinerPattern::MULADDWI_OP1:
5404   case MachineCombinerPattern::MULADDXI_OP1: {
5405     // MUL I=A,B,0
5406     // ADD R,I,Imm
5407     // ==> ORR  V, ZR, Imm
5408     // ==> MADD R,A,B,V
5409     // --- Create(MADD);
5410     const TargetRegisterClass *OrrRC;
5411     unsigned BitSize, OrrOpc, ZeroReg;
5412     if (Pattern == MachineCombinerPattern::MULADDWI_OP1) {
5413       OrrOpc = AArch64::ORRWri;
5414       OrrRC = &AArch64::GPR32spRegClass;
5415       BitSize = 32;
5416       ZeroReg = AArch64::WZR;
5417       Opc = AArch64::MADDWrrr;
5418       RC = &AArch64::GPR32RegClass;
5419     } else {
5420       OrrOpc = AArch64::ORRXri;
5421       OrrRC = &AArch64::GPR64spRegClass;
5422       BitSize = 64;
5423       ZeroReg = AArch64::XZR;
5424       Opc = AArch64::MADDXrrr;
5425       RC = &AArch64::GPR64RegClass;
5426     }
5427     Register NewVR = MRI.createVirtualRegister(OrrRC);
5428     uint64_t Imm = Root.getOperand(2).getImm();
5429 
5430     if (Root.getOperand(3).isImm()) {
5431       unsigned Val = Root.getOperand(3).getImm();
5432       Imm = Imm << Val;
5433     }
5434     uint64_t UImm = SignExtend64(Imm, BitSize);
5435     uint64_t Encoding;
5436     if (!AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding))
5437       return;
5438     MachineInstrBuilder MIB1 =
5439         BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
5440             .addReg(ZeroReg)
5441             .addImm(Encoding);
5442     InsInstrs.push_back(MIB1);
5443     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
5444     MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
5445     break;
5446   }
5447   case MachineCombinerPattern::MULSUBW_OP1:
5448   case MachineCombinerPattern::MULSUBX_OP1: {
5449     // MUL I=A,B,0
5450     // SUB R,I, C
5451     // ==> SUB  V, 0, C
5452     // ==> MADD R,A,B,V // = -C + A*B
5453     // --- Create(MADD);
5454     const TargetRegisterClass *SubRC;
5455     unsigned SubOpc, ZeroReg;
5456     if (Pattern == MachineCombinerPattern::MULSUBW_OP1) {
5457       SubOpc = AArch64::SUBWrr;
5458       SubRC = &AArch64::GPR32spRegClass;
5459       ZeroReg = AArch64::WZR;
5460       Opc = AArch64::MADDWrrr;
5461       RC = &AArch64::GPR32RegClass;
5462     } else {
5463       SubOpc = AArch64::SUBXrr;
5464       SubRC = &AArch64::GPR64spRegClass;
5465       ZeroReg = AArch64::XZR;
5466       Opc = AArch64::MADDXrrr;
5467       RC = &AArch64::GPR64RegClass;
5468     }
5469     Register NewVR = MRI.createVirtualRegister(SubRC);
5470     // SUB NewVR, 0, C
5471     MachineInstrBuilder MIB1 =
5472         BuildMI(MF, Root.getDebugLoc(), TII->get(SubOpc), NewVR)
5473             .addReg(ZeroReg)
5474             .add(Root.getOperand(2));
5475     InsInstrs.push_back(MIB1);
5476     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
5477     MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
5478     break;
5479   }
5480   case MachineCombinerPattern::MULSUBW_OP2:
5481   case MachineCombinerPattern::MULSUBX_OP2:
5482     // MUL I=A,B,0
5483     // SUB R,C,I
5484     // ==> MSUB R,A,B,C (computes C - A*B)
5485     // --- Create(MSUB);
5486     if (Pattern == MachineCombinerPattern::MULSUBW_OP2) {
5487       Opc = AArch64::MSUBWrrr;
5488       RC = &AArch64::GPR32RegClass;
5489     } else {
5490       Opc = AArch64::MSUBXrrr;
5491       RC = &AArch64::GPR64RegClass;
5492     }
5493     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5494     break;
5495   case MachineCombinerPattern::MULSUBWI_OP1:
5496   case MachineCombinerPattern::MULSUBXI_OP1: {
5497     // MUL I=A,B,0
5498     // SUB R,I, Imm
5499     // ==> ORR  V, ZR, -Imm
5500     // ==> MADD R,A,B,V // = -Imm + A*B
5501     // --- Create(MADD);
5502     const TargetRegisterClass *OrrRC;
5503     unsigned BitSize, OrrOpc, ZeroReg;
5504     if (Pattern == MachineCombinerPattern::MULSUBWI_OP1) {
5505       OrrOpc = AArch64::ORRWri;
5506       OrrRC = &AArch64::GPR32spRegClass;
5507       BitSize = 32;
5508       ZeroReg = AArch64::WZR;
5509       Opc = AArch64::MADDWrrr;
5510       RC = &AArch64::GPR32RegClass;
5511     } else {
5512       OrrOpc = AArch64::ORRXri;
5513       OrrRC = &AArch64::GPR64spRegClass;
5514       BitSize = 64;
5515       ZeroReg = AArch64::XZR;
5516       Opc = AArch64::MADDXrrr;
5517       RC = &AArch64::GPR64RegClass;
5518     }
5519     Register NewVR = MRI.createVirtualRegister(OrrRC);
5520     uint64_t Imm = Root.getOperand(2).getImm();
5521     if (Root.getOperand(3).isImm()) {
5522       unsigned Val = Root.getOperand(3).getImm();
5523       Imm = Imm << Val;
5524     }
5525     uint64_t UImm = SignExtend64(-Imm, BitSize);
5526     uint64_t Encoding;
5527     if (!AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding))
5528       return;
5529     MachineInstrBuilder MIB1 =
5530         BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
5531             .addReg(ZeroReg)
5532             .addImm(Encoding);
5533     InsInstrs.push_back(MIB1);
5534     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
5535     MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
5536     break;
5537   }
5538 
5539   case MachineCombinerPattern::MULADDv8i8_OP1:
5540     Opc = AArch64::MLAv8i8;
5541     RC = &AArch64::FPR64RegClass;
5542     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5543     break;
5544   case MachineCombinerPattern::MULADDv8i8_OP2:
5545     Opc = AArch64::MLAv8i8;
5546     RC = &AArch64::FPR64RegClass;
5547     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5548     break;
5549   case MachineCombinerPattern::MULADDv16i8_OP1:
5550     Opc = AArch64::MLAv16i8;
5551     RC = &AArch64::FPR128RegClass;
5552     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5553     break;
5554   case MachineCombinerPattern::MULADDv16i8_OP2:
5555     Opc = AArch64::MLAv16i8;
5556     RC = &AArch64::FPR128RegClass;
5557     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5558     break;
5559   case MachineCombinerPattern::MULADDv4i16_OP1:
5560     Opc = AArch64::MLAv4i16;
5561     RC = &AArch64::FPR64RegClass;
5562     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5563     break;
5564   case MachineCombinerPattern::MULADDv4i16_OP2:
5565     Opc = AArch64::MLAv4i16;
5566     RC = &AArch64::FPR64RegClass;
5567     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5568     break;
5569   case MachineCombinerPattern::MULADDv8i16_OP1:
5570     Opc = AArch64::MLAv8i16;
5571     RC = &AArch64::FPR128RegClass;
5572     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5573     break;
5574   case MachineCombinerPattern::MULADDv8i16_OP2:
5575     Opc = AArch64::MLAv8i16;
5576     RC = &AArch64::FPR128RegClass;
5577     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5578     break;
5579   case MachineCombinerPattern::MULADDv2i32_OP1:
5580     Opc = AArch64::MLAv2i32;
5581     RC = &AArch64::FPR64RegClass;
5582     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5583     break;
5584   case MachineCombinerPattern::MULADDv2i32_OP2:
5585     Opc = AArch64::MLAv2i32;
5586     RC = &AArch64::FPR64RegClass;
5587     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5588     break;
5589   case MachineCombinerPattern::MULADDv4i32_OP1:
5590     Opc = AArch64::MLAv4i32;
5591     RC = &AArch64::FPR128RegClass;
5592     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5593     break;
5594   case MachineCombinerPattern::MULADDv4i32_OP2:
5595     Opc = AArch64::MLAv4i32;
5596     RC = &AArch64::FPR128RegClass;
5597     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5598     break;
5599 
5600   case MachineCombinerPattern::MULSUBv8i8_OP1:
5601     Opc = AArch64::MLAv8i8;
5602     RC = &AArch64::FPR64RegClass;
5603     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
5604                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i8,
5605                                  RC);
5606     break;
5607   case MachineCombinerPattern::MULSUBv8i8_OP2:
5608     Opc = AArch64::MLSv8i8;
5609     RC = &AArch64::FPR64RegClass;
5610     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5611     break;
5612   case MachineCombinerPattern::MULSUBv16i8_OP1:
5613     Opc = AArch64::MLAv16i8;
5614     RC = &AArch64::FPR128RegClass;
5615     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
5616                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv16i8,
5617                                  RC);
5618     break;
5619   case MachineCombinerPattern::MULSUBv16i8_OP2:
5620     Opc = AArch64::MLSv16i8;
5621     RC = &AArch64::FPR128RegClass;
5622     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5623     break;
5624   case MachineCombinerPattern::MULSUBv4i16_OP1:
5625     Opc = AArch64::MLAv4i16;
5626     RC = &AArch64::FPR64RegClass;
5627     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
5628                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16,
5629                                  RC);
5630     break;
5631   case MachineCombinerPattern::MULSUBv4i16_OP2:
5632     Opc = AArch64::MLSv4i16;
5633     RC = &AArch64::FPR64RegClass;
5634     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5635     break;
5636   case MachineCombinerPattern::MULSUBv8i16_OP1:
5637     Opc = AArch64::MLAv8i16;
5638     RC = &AArch64::FPR128RegClass;
5639     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
5640                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16,
5641                                  RC);
5642     break;
5643   case MachineCombinerPattern::MULSUBv8i16_OP2:
5644     Opc = AArch64::MLSv8i16;
5645     RC = &AArch64::FPR128RegClass;
5646     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5647     break;
5648   case MachineCombinerPattern::MULSUBv2i32_OP1:
5649     Opc = AArch64::MLAv2i32;
5650     RC = &AArch64::FPR64RegClass;
5651     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
5652                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32,
5653                                  RC);
5654     break;
5655   case MachineCombinerPattern::MULSUBv2i32_OP2:
5656     Opc = AArch64::MLSv2i32;
5657     RC = &AArch64::FPR64RegClass;
5658     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5659     break;
5660   case MachineCombinerPattern::MULSUBv4i32_OP1:
5661     Opc = AArch64::MLAv4i32;
5662     RC = &AArch64::FPR128RegClass;
5663     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
5664                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32,
5665                                  RC);
5666     break;
5667   case MachineCombinerPattern::MULSUBv4i32_OP2:
5668     Opc = AArch64::MLSv4i32;
5669     RC = &AArch64::FPR128RegClass;
5670     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5671     break;
5672 
5673   case MachineCombinerPattern::MULADDv4i16_indexed_OP1:
5674     Opc = AArch64::MLAv4i16_indexed;
5675     RC = &AArch64::FPR64RegClass;
5676     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5677     break;
5678   case MachineCombinerPattern::MULADDv4i16_indexed_OP2:
5679     Opc = AArch64::MLAv4i16_indexed;
5680     RC = &AArch64::FPR64RegClass;
5681     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5682     break;
5683   case MachineCombinerPattern::MULADDv8i16_indexed_OP1:
5684     Opc = AArch64::MLAv8i16_indexed;
5685     RC = &AArch64::FPR128RegClass;
5686     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5687     break;
5688   case MachineCombinerPattern::MULADDv8i16_indexed_OP2:
5689     Opc = AArch64::MLAv8i16_indexed;
5690     RC = &AArch64::FPR128RegClass;
5691     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5692     break;
5693   case MachineCombinerPattern::MULADDv2i32_indexed_OP1:
5694     Opc = AArch64::MLAv2i32_indexed;
5695     RC = &AArch64::FPR64RegClass;
5696     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5697     break;
5698   case MachineCombinerPattern::MULADDv2i32_indexed_OP2:
5699     Opc = AArch64::MLAv2i32_indexed;
5700     RC = &AArch64::FPR64RegClass;
5701     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5702     break;
5703   case MachineCombinerPattern::MULADDv4i32_indexed_OP1:
5704     Opc = AArch64::MLAv4i32_indexed;
5705     RC = &AArch64::FPR128RegClass;
5706     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5707     break;
5708   case MachineCombinerPattern::MULADDv4i32_indexed_OP2:
5709     Opc = AArch64::MLAv4i32_indexed;
5710     RC = &AArch64::FPR128RegClass;
5711     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5712     break;
5713 
5714   case MachineCombinerPattern::MULSUBv4i16_indexed_OP1:
5715     Opc = AArch64::MLAv4i16_indexed;
5716     RC = &AArch64::FPR64RegClass;
5717     MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
5718                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16,
5719                                  RC);
5720     break;
5721   case MachineCombinerPattern::MULSUBv4i16_indexed_OP2:
5722     Opc = AArch64::MLSv4i16_indexed;
5723     RC = &AArch64::FPR64RegClass;
5724     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5725     break;
5726   case MachineCombinerPattern::MULSUBv8i16_indexed_OP1:
5727     Opc = AArch64::MLAv8i16_indexed;
5728     RC = &AArch64::FPR128RegClass;
5729     MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
5730                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16,
5731                                  RC);
5732     break;
5733   case MachineCombinerPattern::MULSUBv8i16_indexed_OP2:
5734     Opc = AArch64::MLSv8i16_indexed;
5735     RC = &AArch64::FPR128RegClass;
5736     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5737     break;
5738   case MachineCombinerPattern::MULSUBv2i32_indexed_OP1:
5739     Opc = AArch64::MLAv2i32_indexed;
5740     RC = &AArch64::FPR64RegClass;
5741     MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
5742                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32,
5743                                  RC);
5744     break;
5745   case MachineCombinerPattern::MULSUBv2i32_indexed_OP2:
5746     Opc = AArch64::MLSv2i32_indexed;
5747     RC = &AArch64::FPR64RegClass;
5748     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5749     break;
5750   case MachineCombinerPattern::MULSUBv4i32_indexed_OP1:
5751     Opc = AArch64::MLAv4i32_indexed;
5752     RC = &AArch64::FPR128RegClass;
5753     MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
5754                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32,
5755                                  RC);
5756     break;
5757   case MachineCombinerPattern::MULSUBv4i32_indexed_OP2:
5758     Opc = AArch64::MLSv4i32_indexed;
5759     RC = &AArch64::FPR128RegClass;
5760     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5761     break;
5762 
5763   // Floating Point Support
5764   case MachineCombinerPattern::FMULADDH_OP1:
5765     Opc = AArch64::FMADDHrrr;
5766     RC = &AArch64::FPR16RegClass;
5767     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5768     break;
5769   case MachineCombinerPattern::FMULADDS_OP1:
5770     Opc = AArch64::FMADDSrrr;
5771     RC = &AArch64::FPR32RegClass;
5772     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5773     break;
5774   case MachineCombinerPattern::FMULADDD_OP1:
5775     Opc = AArch64::FMADDDrrr;
5776     RC = &AArch64::FPR64RegClass;
5777     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5778     break;
5779 
5780   case MachineCombinerPattern::FMULADDH_OP2:
5781     Opc = AArch64::FMADDHrrr;
5782     RC = &AArch64::FPR16RegClass;
5783     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5784     break;
5785   case MachineCombinerPattern::FMULADDS_OP2:
5786     Opc = AArch64::FMADDSrrr;
5787     RC = &AArch64::FPR32RegClass;
5788     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5789     break;
5790   case MachineCombinerPattern::FMULADDD_OP2:
5791     Opc = AArch64::FMADDDrrr;
5792     RC = &AArch64::FPR64RegClass;
5793     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5794     break;
5795 
5796   case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
5797     Opc = AArch64::FMLAv1i32_indexed;
5798     RC = &AArch64::FPR32RegClass;
5799     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5800                            FMAInstKind::Indexed);
5801     break;
5802   case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
5803     Opc = AArch64::FMLAv1i32_indexed;
5804     RC = &AArch64::FPR32RegClass;
5805     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5806                            FMAInstKind::Indexed);
5807     break;
5808 
5809   case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
5810     Opc = AArch64::FMLAv1i64_indexed;
5811     RC = &AArch64::FPR64RegClass;
5812     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5813                            FMAInstKind::Indexed);
5814     break;
5815   case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
5816     Opc = AArch64::FMLAv1i64_indexed;
5817     RC = &AArch64::FPR64RegClass;
5818     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5819                            FMAInstKind::Indexed);
5820     break;
5821 
5822   case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
5823     RC = &AArch64::FPR64RegClass;
5824     Opc = AArch64::FMLAv4i16_indexed;
5825     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5826                            FMAInstKind::Indexed);
5827     break;
5828   case MachineCombinerPattern::FMLAv4f16_OP1:
5829     RC = &AArch64::FPR64RegClass;
5830     Opc = AArch64::FMLAv4f16;
5831     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5832                            FMAInstKind::Accumulator);
5833     break;
5834   case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
5835     RC = &AArch64::FPR64RegClass;
5836     Opc = AArch64::FMLAv4i16_indexed;
5837     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5838                            FMAInstKind::Indexed);
5839     break;
5840   case MachineCombinerPattern::FMLAv4f16_OP2:
5841     RC = &AArch64::FPR64RegClass;
5842     Opc = AArch64::FMLAv4f16;
5843     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5844                            FMAInstKind::Accumulator);
5845     break;
5846 
5847   case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
5848   case MachineCombinerPattern::FMLAv2f32_OP1:
5849     RC = &AArch64::FPR64RegClass;
5850     if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP1) {
5851       Opc = AArch64::FMLAv2i32_indexed;
5852       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5853                              FMAInstKind::Indexed);
5854     } else {
5855       Opc = AArch64::FMLAv2f32;
5856       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5857                              FMAInstKind::Accumulator);
5858     }
5859     break;
5860   case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
5861   case MachineCombinerPattern::FMLAv2f32_OP2:
5862     RC = &AArch64::FPR64RegClass;
5863     if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP2) {
5864       Opc = AArch64::FMLAv2i32_indexed;
5865       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5866                              FMAInstKind::Indexed);
5867     } else {
5868       Opc = AArch64::FMLAv2f32;
5869       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5870                              FMAInstKind::Accumulator);
5871     }
5872     break;
5873 
5874   case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
5875     RC = &AArch64::FPR128RegClass;
5876     Opc = AArch64::FMLAv8i16_indexed;
5877     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5878                            FMAInstKind::Indexed);
5879     break;
5880   case MachineCombinerPattern::FMLAv8f16_OP1:
5881     RC = &AArch64::FPR128RegClass;
5882     Opc = AArch64::FMLAv8f16;
5883     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5884                            FMAInstKind::Accumulator);
5885     break;
5886   case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
5887     RC = &AArch64::FPR128RegClass;
5888     Opc = AArch64::FMLAv8i16_indexed;
5889     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5890                            FMAInstKind::Indexed);
5891     break;
5892   case MachineCombinerPattern::FMLAv8f16_OP2:
5893     RC = &AArch64::FPR128RegClass;
5894     Opc = AArch64::FMLAv8f16;
5895     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5896                            FMAInstKind::Accumulator);
5897     break;
5898 
5899   case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
5900   case MachineCombinerPattern::FMLAv2f64_OP1:
5901     RC = &AArch64::FPR128RegClass;
5902     if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP1) {
5903       Opc = AArch64::FMLAv2i64_indexed;
5904       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5905                              FMAInstKind::Indexed);
5906     } else {
5907       Opc = AArch64::FMLAv2f64;
5908       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5909                              FMAInstKind::Accumulator);
5910     }
5911     break;
5912   case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
5913   case MachineCombinerPattern::FMLAv2f64_OP2:
5914     RC = &AArch64::FPR128RegClass;
5915     if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP2) {
5916       Opc = AArch64::FMLAv2i64_indexed;
5917       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5918                              FMAInstKind::Indexed);
5919     } else {
5920       Opc = AArch64::FMLAv2f64;
5921       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5922                              FMAInstKind::Accumulator);
5923     }
5924     break;
5925 
5926   case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
5927   case MachineCombinerPattern::FMLAv4f32_OP1:
5928     RC = &AArch64::FPR128RegClass;
5929     if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP1) {
5930       Opc = AArch64::FMLAv4i32_indexed;
5931       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5932                              FMAInstKind::Indexed);
5933     } else {
5934       Opc = AArch64::FMLAv4f32;
5935       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
5936                              FMAInstKind::Accumulator);
5937     }
5938     break;
5939 
5940   case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
5941   case MachineCombinerPattern::FMLAv4f32_OP2:
5942     RC = &AArch64::FPR128RegClass;
5943     if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP2) {
5944       Opc = AArch64::FMLAv4i32_indexed;
5945       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5946                              FMAInstKind::Indexed);
5947     } else {
5948       Opc = AArch64::FMLAv4f32;
5949       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
5950                              FMAInstKind::Accumulator);
5951     }
5952     break;
5953 
5954   case MachineCombinerPattern::FMULSUBH_OP1:
5955     Opc = AArch64::FNMSUBHrrr;
5956     RC = &AArch64::FPR16RegClass;
5957     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5958     break;
5959   case MachineCombinerPattern::FMULSUBS_OP1:
5960     Opc = AArch64::FNMSUBSrrr;
5961     RC = &AArch64::FPR32RegClass;
5962     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5963     break;
5964   case MachineCombinerPattern::FMULSUBD_OP1:
5965     Opc = AArch64::FNMSUBDrrr;
5966     RC = &AArch64::FPR64RegClass;
5967     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5968     break;
5969 
5970   case MachineCombinerPattern::FNMULSUBH_OP1:
5971     Opc = AArch64::FNMADDHrrr;
5972     RC = &AArch64::FPR16RegClass;
5973     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5974     break;
5975   case MachineCombinerPattern::FNMULSUBS_OP1:
5976     Opc = AArch64::FNMADDSrrr;
5977     RC = &AArch64::FPR32RegClass;
5978     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5979     break;
5980   case MachineCombinerPattern::FNMULSUBD_OP1:
5981     Opc = AArch64::FNMADDDrrr;
5982     RC = &AArch64::FPR64RegClass;
5983     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
5984     break;
5985 
5986   case MachineCombinerPattern::FMULSUBH_OP2:
5987     Opc = AArch64::FMSUBHrrr;
5988     RC = &AArch64::FPR16RegClass;
5989     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5990     break;
5991   case MachineCombinerPattern::FMULSUBS_OP2:
5992     Opc = AArch64::FMSUBSrrr;
5993     RC = &AArch64::FPR32RegClass;
5994     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
5995     break;
5996   case MachineCombinerPattern::FMULSUBD_OP2:
5997     Opc = AArch64::FMSUBDrrr;
5998     RC = &AArch64::FPR64RegClass;
5999     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6000     break;
6001 
6002   case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
6003     Opc = AArch64::FMLSv1i32_indexed;
6004     RC = &AArch64::FPR32RegClass;
6005     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6006                            FMAInstKind::Indexed);
6007     break;
6008 
6009   case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
6010     Opc = AArch64::FMLSv1i64_indexed;
6011     RC = &AArch64::FPR64RegClass;
6012     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6013                            FMAInstKind::Indexed);
6014     break;
6015 
6016   case MachineCombinerPattern::FMLSv4f16_OP1:
6017   case MachineCombinerPattern::FMLSv4i16_indexed_OP1: {
6018     RC = &AArch64::FPR64RegClass;
6019     Register NewVR = MRI.createVirtualRegister(RC);
6020     MachineInstrBuilder MIB1 =
6021         BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f16), NewVR)
6022             .add(Root.getOperand(2));
6023     InsInstrs.push_back(MIB1);
6024     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6025     if (Pattern == MachineCombinerPattern::FMLSv4f16_OP1) {
6026       Opc = AArch64::FMLAv4f16;
6027       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6028                              FMAInstKind::Accumulator, &NewVR);
6029     } else {
6030       Opc = AArch64::FMLAv4i16_indexed;
6031       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6032                              FMAInstKind::Indexed, &NewVR);
6033     }
6034     break;
6035   }
6036   case MachineCombinerPattern::FMLSv4f16_OP2:
6037     RC = &AArch64::FPR64RegClass;
6038     Opc = AArch64::FMLSv4f16;
6039     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6040                            FMAInstKind::Accumulator);
6041     break;
6042   case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
6043     RC = &AArch64::FPR64RegClass;
6044     Opc = AArch64::FMLSv4i16_indexed;
6045     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6046                            FMAInstKind::Indexed);
6047     break;
6048 
6049   case MachineCombinerPattern::FMLSv2f32_OP2:
6050   case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
6051     RC = &AArch64::FPR64RegClass;
6052     if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP2) {
6053       Opc = AArch64::FMLSv2i32_indexed;
6054       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6055                              FMAInstKind::Indexed);
6056     } else {
6057       Opc = AArch64::FMLSv2f32;
6058       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6059                              FMAInstKind::Accumulator);
6060     }
6061     break;
6062 
6063   case MachineCombinerPattern::FMLSv8f16_OP1:
6064   case MachineCombinerPattern::FMLSv8i16_indexed_OP1: {
6065     RC = &AArch64::FPR128RegClass;
6066     Register NewVR = MRI.createVirtualRegister(RC);
6067     MachineInstrBuilder MIB1 =
6068         BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv8f16), NewVR)
6069             .add(Root.getOperand(2));
6070     InsInstrs.push_back(MIB1);
6071     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6072     if (Pattern == MachineCombinerPattern::FMLSv8f16_OP1) {
6073       Opc = AArch64::FMLAv8f16;
6074       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6075                              FMAInstKind::Accumulator, &NewVR);
6076     } else {
6077       Opc = AArch64::FMLAv8i16_indexed;
6078       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6079                              FMAInstKind::Indexed, &NewVR);
6080     }
6081     break;
6082   }
6083   case MachineCombinerPattern::FMLSv8f16_OP2:
6084     RC = &AArch64::FPR128RegClass;
6085     Opc = AArch64::FMLSv8f16;
6086     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6087                            FMAInstKind::Accumulator);
6088     break;
6089   case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
6090     RC = &AArch64::FPR128RegClass;
6091     Opc = AArch64::FMLSv8i16_indexed;
6092     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6093                            FMAInstKind::Indexed);
6094     break;
6095 
6096   case MachineCombinerPattern::FMLSv2f64_OP2:
6097   case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
6098     RC = &AArch64::FPR128RegClass;
6099     if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP2) {
6100       Opc = AArch64::FMLSv2i64_indexed;
6101       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6102                              FMAInstKind::Indexed);
6103     } else {
6104       Opc = AArch64::FMLSv2f64;
6105       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6106                              FMAInstKind::Accumulator);
6107     }
6108     break;
6109 
6110   case MachineCombinerPattern::FMLSv4f32_OP2:
6111   case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
6112     RC = &AArch64::FPR128RegClass;
6113     if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP2) {
6114       Opc = AArch64::FMLSv4i32_indexed;
6115       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6116                              FMAInstKind::Indexed);
6117     } else {
6118       Opc = AArch64::FMLSv4f32;
6119       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6120                              FMAInstKind::Accumulator);
6121     }
6122     break;
6123   case MachineCombinerPattern::FMLSv2f32_OP1:
6124   case MachineCombinerPattern::FMLSv2i32_indexed_OP1: {
6125     RC = &AArch64::FPR64RegClass;
6126     Register NewVR = MRI.createVirtualRegister(RC);
6127     MachineInstrBuilder MIB1 =
6128         BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f32), NewVR)
6129             .add(Root.getOperand(2));
6130     InsInstrs.push_back(MIB1);
6131     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6132     if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP1) {
6133       Opc = AArch64::FMLAv2i32_indexed;
6134       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6135                              FMAInstKind::Indexed, &NewVR);
6136     } else {
6137       Opc = AArch64::FMLAv2f32;
6138       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6139                              FMAInstKind::Accumulator, &NewVR);
6140     }
6141     break;
6142   }
6143   case MachineCombinerPattern::FMLSv4f32_OP1:
6144   case MachineCombinerPattern::FMLSv4i32_indexed_OP1: {
6145     RC = &AArch64::FPR128RegClass;
6146     Register NewVR = MRI.createVirtualRegister(RC);
6147     MachineInstrBuilder MIB1 =
6148         BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f32), NewVR)
6149             .add(Root.getOperand(2));
6150     InsInstrs.push_back(MIB1);
6151     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6152     if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP1) {
6153       Opc = AArch64::FMLAv4i32_indexed;
6154       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6155                              FMAInstKind::Indexed, &NewVR);
6156     } else {
6157       Opc = AArch64::FMLAv4f32;
6158       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6159                              FMAInstKind::Accumulator, &NewVR);
6160     }
6161     break;
6162   }
6163   case MachineCombinerPattern::FMLSv2f64_OP1:
6164   case MachineCombinerPattern::FMLSv2i64_indexed_OP1: {
6165     RC = &AArch64::FPR128RegClass;
6166     Register NewVR = MRI.createVirtualRegister(RC);
6167     MachineInstrBuilder MIB1 =
6168         BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f64), NewVR)
6169             .add(Root.getOperand(2));
6170     InsInstrs.push_back(MIB1);
6171     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6172     if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP1) {
6173       Opc = AArch64::FMLAv2i64_indexed;
6174       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6175                              FMAInstKind::Indexed, &NewVR);
6176     } else {
6177       Opc = AArch64::FMLAv2f64;
6178       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6179                              FMAInstKind::Accumulator, &NewVR);
6180     }
6181     break;
6182   }
6183   case MachineCombinerPattern::FMULv2i32_indexed_OP1:
6184   case MachineCombinerPattern::FMULv2i32_indexed_OP2: {
6185     unsigned IdxDupOp =
6186         (Pattern == MachineCombinerPattern::FMULv2i32_indexed_OP1) ? 1 : 2;
6187     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv2i32_indexed,
6188                        &AArch64::FPR128RegClass, MRI);
6189     break;
6190   }
6191   case MachineCombinerPattern::FMULv2i64_indexed_OP1:
6192   case MachineCombinerPattern::FMULv2i64_indexed_OP2: {
6193     unsigned IdxDupOp =
6194         (Pattern == MachineCombinerPattern::FMULv2i64_indexed_OP1) ? 1 : 2;
6195     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv2i64_indexed,
6196                        &AArch64::FPR128RegClass, MRI);
6197     break;
6198   }
6199   case MachineCombinerPattern::FMULv4i16_indexed_OP1:
6200   case MachineCombinerPattern::FMULv4i16_indexed_OP2: {
6201     unsigned IdxDupOp =
6202         (Pattern == MachineCombinerPattern::FMULv4i16_indexed_OP1) ? 1 : 2;
6203     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv4i16_indexed,
6204                        &AArch64::FPR128_loRegClass, MRI);
6205     break;
6206   }
6207   case MachineCombinerPattern::FMULv4i32_indexed_OP1:
6208   case MachineCombinerPattern::FMULv4i32_indexed_OP2: {
6209     unsigned IdxDupOp =
6210         (Pattern == MachineCombinerPattern::FMULv4i32_indexed_OP1) ? 1 : 2;
6211     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv4i32_indexed,
6212                        &AArch64::FPR128RegClass, MRI);
6213     break;
6214   }
6215   case MachineCombinerPattern::FMULv8i16_indexed_OP1:
6216   case MachineCombinerPattern::FMULv8i16_indexed_OP2: {
6217     unsigned IdxDupOp =
6218         (Pattern == MachineCombinerPattern::FMULv8i16_indexed_OP1) ? 1 : 2;
6219     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv8i16_indexed,
6220                        &AArch64::FPR128_loRegClass, MRI);
6221     break;
6222   }
6223   } // end switch (Pattern)
6224   // Record MUL and ADD/SUB for deletion
6225   if (MUL)
6226     DelInstrs.push_back(MUL);
6227   DelInstrs.push_back(&Root);
6228 }
6229 
6230 /// Replace csincr-branch sequence by simple conditional branch
6231 ///
6232 /// Examples:
6233 /// 1. \code
6234 ///   csinc  w9, wzr, wzr, <condition code>
6235 ///   tbnz   w9, #0, 0x44
6236 ///    \endcode
6237 /// to
6238 ///    \code
6239 ///   b.<inverted condition code>
6240 ///    \endcode
6241 ///
6242 /// 2. \code
6243 ///   csinc w9, wzr, wzr, <condition code>
6244 ///   tbz   w9, #0, 0x44
6245 ///    \endcode
6246 /// to
6247 ///    \code
6248 ///   b.<condition code>
6249 ///    \endcode
6250 ///
6251 /// Replace compare and branch sequence by TBZ/TBNZ instruction when the
6252 /// compare's constant operand is power of 2.
6253 ///
6254 /// Examples:
6255 ///    \code
6256 ///   and  w8, w8, #0x400
6257 ///   cbnz w8, L1
6258 ///    \endcode
6259 /// to
6260 ///    \code
6261 ///   tbnz w8, #10, L1
6262 ///    \endcode
6263 ///
6264 /// \param  MI Conditional Branch
6265 /// \return True when the simple conditional branch is generated
6266 ///
6267 bool AArch64InstrInfo::optimizeCondBranch(MachineInstr &MI) const {
6268   bool IsNegativeBranch = false;
6269   bool IsTestAndBranch = false;
6270   unsigned TargetBBInMI = 0;
6271   switch (MI.getOpcode()) {
6272   default:
6273     llvm_unreachable("Unknown branch instruction?");
6274   case AArch64::Bcc:
6275     return false;
6276   case AArch64::CBZW:
6277   case AArch64::CBZX:
6278     TargetBBInMI = 1;
6279     break;
6280   case AArch64::CBNZW:
6281   case AArch64::CBNZX:
6282     TargetBBInMI = 1;
6283     IsNegativeBranch = true;
6284     break;
6285   case AArch64::TBZW:
6286   case AArch64::TBZX:
6287     TargetBBInMI = 2;
6288     IsTestAndBranch = true;
6289     break;
6290   case AArch64::TBNZW:
6291   case AArch64::TBNZX:
6292     TargetBBInMI = 2;
6293     IsNegativeBranch = true;
6294     IsTestAndBranch = true;
6295     break;
6296   }
6297   // So we increment a zero register and test for bits other
6298   // than bit 0? Conservatively bail out in case the verifier
6299   // missed this case.
6300   if (IsTestAndBranch && MI.getOperand(1).getImm())
6301     return false;
6302 
6303   // Find Definition.
6304   assert(MI.getParent() && "Incomplete machine instruciton\n");
6305   MachineBasicBlock *MBB = MI.getParent();
6306   MachineFunction *MF = MBB->getParent();
6307   MachineRegisterInfo *MRI = &MF->getRegInfo();
6308   Register VReg = MI.getOperand(0).getReg();
6309   if (!Register::isVirtualRegister(VReg))
6310     return false;
6311 
6312   MachineInstr *DefMI = MRI->getVRegDef(VReg);
6313 
6314   // Look through COPY instructions to find definition.
6315   while (DefMI->isCopy()) {
6316     Register CopyVReg = DefMI->getOperand(1).getReg();
6317     if (!MRI->hasOneNonDBGUse(CopyVReg))
6318       return false;
6319     if (!MRI->hasOneDef(CopyVReg))
6320       return false;
6321     DefMI = MRI->getVRegDef(CopyVReg);
6322   }
6323 
6324   switch (DefMI->getOpcode()) {
6325   default:
6326     return false;
6327   // Fold AND into a TBZ/TBNZ if constant operand is power of 2.
6328   case AArch64::ANDWri:
6329   case AArch64::ANDXri: {
6330     if (IsTestAndBranch)
6331       return false;
6332     if (DefMI->getParent() != MBB)
6333       return false;
6334     if (!MRI->hasOneNonDBGUse(VReg))
6335       return false;
6336 
6337     bool Is32Bit = (DefMI->getOpcode() == AArch64::ANDWri);
6338     uint64_t Mask = AArch64_AM::decodeLogicalImmediate(
6339         DefMI->getOperand(2).getImm(), Is32Bit ? 32 : 64);
6340     if (!isPowerOf2_64(Mask))
6341       return false;
6342 
6343     MachineOperand &MO = DefMI->getOperand(1);
6344     Register NewReg = MO.getReg();
6345     if (!Register::isVirtualRegister(NewReg))
6346       return false;
6347 
6348     assert(!MRI->def_empty(NewReg) && "Register must be defined.");
6349 
6350     MachineBasicBlock &RefToMBB = *MBB;
6351     MachineBasicBlock *TBB = MI.getOperand(1).getMBB();
6352     DebugLoc DL = MI.getDebugLoc();
6353     unsigned Imm = Log2_64(Mask);
6354     unsigned Opc = (Imm < 32)
6355                        ? (IsNegativeBranch ? AArch64::TBNZW : AArch64::TBZW)
6356                        : (IsNegativeBranch ? AArch64::TBNZX : AArch64::TBZX);
6357     MachineInstr *NewMI = BuildMI(RefToMBB, MI, DL, get(Opc))
6358                               .addReg(NewReg)
6359                               .addImm(Imm)
6360                               .addMBB(TBB);
6361     // Register lives on to the CBZ now.
6362     MO.setIsKill(false);
6363 
6364     // For immediate smaller than 32, we need to use the 32-bit
6365     // variant (W) in all cases. Indeed the 64-bit variant does not
6366     // allow to encode them.
6367     // Therefore, if the input register is 64-bit, we need to take the
6368     // 32-bit sub-part.
6369     if (!Is32Bit && Imm < 32)
6370       NewMI->getOperand(0).setSubReg(AArch64::sub_32);
6371     MI.eraseFromParent();
6372     return true;
6373   }
6374   // Look for CSINC
6375   case AArch64::CSINCWr:
6376   case AArch64::CSINCXr: {
6377     if (!(DefMI->getOperand(1).getReg() == AArch64::WZR &&
6378           DefMI->getOperand(2).getReg() == AArch64::WZR) &&
6379         !(DefMI->getOperand(1).getReg() == AArch64::XZR &&
6380           DefMI->getOperand(2).getReg() == AArch64::XZR))
6381       return false;
6382 
6383     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
6384       return false;
6385 
6386     AArch64CC::CondCode CC = (AArch64CC::CondCode)DefMI->getOperand(3).getImm();
6387     // Convert only when the condition code is not modified between
6388     // the CSINC and the branch. The CC may be used by other
6389     // instructions in between.
6390     if (areCFlagsAccessedBetweenInstrs(DefMI, MI, &getRegisterInfo(), AK_Write))
6391       return false;
6392     MachineBasicBlock &RefToMBB = *MBB;
6393     MachineBasicBlock *TBB = MI.getOperand(TargetBBInMI).getMBB();
6394     DebugLoc DL = MI.getDebugLoc();
6395     if (IsNegativeBranch)
6396       CC = AArch64CC::getInvertedCondCode(CC);
6397     BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB);
6398     MI.eraseFromParent();
6399     return true;
6400   }
6401   }
6402 }
6403 
6404 std::pair<unsigned, unsigned>
6405 AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
6406   const unsigned Mask = AArch64II::MO_FRAGMENT;
6407   return std::make_pair(TF & Mask, TF & ~Mask);
6408 }
6409 
6410 ArrayRef<std::pair<unsigned, const char *>>
6411 AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
6412   using namespace AArch64II;
6413 
6414   static const std::pair<unsigned, const char *> TargetFlags[] = {
6415       {MO_PAGE, "aarch64-page"}, {MO_PAGEOFF, "aarch64-pageoff"},
6416       {MO_G3, "aarch64-g3"},     {MO_G2, "aarch64-g2"},
6417       {MO_G1, "aarch64-g1"},     {MO_G0, "aarch64-g0"},
6418       {MO_HI12, "aarch64-hi12"}};
6419   return makeArrayRef(TargetFlags);
6420 }
6421 
6422 ArrayRef<std::pair<unsigned, const char *>>
6423 AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
6424   using namespace AArch64II;
6425 
6426   static const std::pair<unsigned, const char *> TargetFlags[] = {
6427       {MO_COFFSTUB, "aarch64-coffstub"},
6428       {MO_GOT, "aarch64-got"},
6429       {MO_NC, "aarch64-nc"},
6430       {MO_S, "aarch64-s"},
6431       {MO_TLS, "aarch64-tls"},
6432       {MO_DLLIMPORT, "aarch64-dllimport"},
6433       {MO_PREL, "aarch64-prel"},
6434       {MO_TAGGED, "aarch64-tagged"}};
6435   return makeArrayRef(TargetFlags);
6436 }
6437 
6438 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
6439 AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const {
6440   static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
6441       {{MOSuppressPair, "aarch64-suppress-pair"},
6442        {MOStridedAccess, "aarch64-strided-access"}};
6443   return makeArrayRef(TargetFlags);
6444 }
6445 
6446 /// Constants defining how certain sequences should be outlined.
6447 /// This encompasses how an outlined function should be called, and what kind of
6448 /// frame should be emitted for that outlined function.
6449 ///
6450 /// \p MachineOutlinerDefault implies that the function should be called with
6451 /// a save and restore of LR to the stack.
6452 ///
6453 /// That is,
6454 ///
6455 /// I1     Save LR                    OUTLINED_FUNCTION:
6456 /// I2 --> BL OUTLINED_FUNCTION       I1
6457 /// I3     Restore LR                 I2
6458 ///                                   I3
6459 ///                                   RET
6460 ///
6461 /// * Call construction overhead: 3 (save + BL + restore)
6462 /// * Frame construction overhead: 1 (ret)
6463 /// * Requires stack fixups? Yes
6464 ///
6465 /// \p MachineOutlinerTailCall implies that the function is being created from
6466 /// a sequence of instructions ending in a return.
6467 ///
6468 /// That is,
6469 ///
6470 /// I1                             OUTLINED_FUNCTION:
6471 /// I2 --> B OUTLINED_FUNCTION     I1
6472 /// RET                            I2
6473 ///                                RET
6474 ///
6475 /// * Call construction overhead: 1 (B)
6476 /// * Frame construction overhead: 0 (Return included in sequence)
6477 /// * Requires stack fixups? No
6478 ///
6479 /// \p MachineOutlinerNoLRSave implies that the function should be called using
6480 /// a BL instruction, but doesn't require LR to be saved and restored. This
6481 /// happens when LR is known to be dead.
6482 ///
6483 /// That is,
6484 ///
6485 /// I1                                OUTLINED_FUNCTION:
6486 /// I2 --> BL OUTLINED_FUNCTION       I1
6487 /// I3                                I2
6488 ///                                   I3
6489 ///                                   RET
6490 ///
6491 /// * Call construction overhead: 1 (BL)
6492 /// * Frame construction overhead: 1 (RET)
6493 /// * Requires stack fixups? No
6494 ///
6495 /// \p MachineOutlinerThunk implies that the function is being created from
6496 /// a sequence of instructions ending in a call. The outlined function is
6497 /// called with a BL instruction, and the outlined function tail-calls the
6498 /// original call destination.
6499 ///
6500 /// That is,
6501 ///
6502 /// I1                                OUTLINED_FUNCTION:
6503 /// I2 --> BL OUTLINED_FUNCTION       I1
6504 /// BL f                              I2
6505 ///                                   B f
6506 /// * Call construction overhead: 1 (BL)
6507 /// * Frame construction overhead: 0
6508 /// * Requires stack fixups? No
6509 ///
6510 /// \p MachineOutlinerRegSave implies that the function should be called with a
6511 /// save and restore of LR to an available register. This allows us to avoid
6512 /// stack fixups. Note that this outlining variant is compatible with the
6513 /// NoLRSave case.
6514 ///
6515 /// That is,
6516 ///
6517 /// I1     Save LR                    OUTLINED_FUNCTION:
6518 /// I2 --> BL OUTLINED_FUNCTION       I1
6519 /// I3     Restore LR                 I2
6520 ///                                   I3
6521 ///                                   RET
6522 ///
6523 /// * Call construction overhead: 3 (save + BL + restore)
6524 /// * Frame construction overhead: 1 (ret)
6525 /// * Requires stack fixups? No
6526 enum MachineOutlinerClass {
6527   MachineOutlinerDefault,  /// Emit a save, restore, call, and return.
6528   MachineOutlinerTailCall, /// Only emit a branch.
6529   MachineOutlinerNoLRSave, /// Emit a call and return.
6530   MachineOutlinerThunk,    /// Emit a call and tail-call.
6531   MachineOutlinerRegSave   /// Same as default, but save to a register.
6532 };
6533 
6534 enum MachineOutlinerMBBFlags {
6535   LRUnavailableSomewhere = 0x2,
6536   HasCalls = 0x4,
6537   UnsafeRegsDead = 0x8
6538 };
6539 
6540 unsigned
6541 AArch64InstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
6542   assert(C.LRUWasSet && "LRU wasn't set?");
6543   MachineFunction *MF = C.getMF();
6544   const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(
6545       MF->getSubtarget().getRegisterInfo());
6546 
6547   // Check if there is an available register across the sequence that we can
6548   // use.
6549   for (unsigned Reg : AArch64::GPR64RegClass) {
6550     if (!ARI->isReservedReg(*MF, Reg) &&
6551         Reg != AArch64::LR &&  // LR is not reserved, but don't use it.
6552         Reg != AArch64::X16 && // X16 is not guaranteed to be preserved.
6553         Reg != AArch64::X17 && // Ditto for X17.
6554         C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
6555       return Reg;
6556   }
6557 
6558   // No suitable register. Return 0.
6559   return 0u;
6560 }
6561 
6562 static bool
6563 outliningCandidatesSigningScopeConsensus(const outliner::Candidate &a,
6564                                          const outliner::Candidate &b) {
6565   const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>();
6566   const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>();
6567 
6568   return MFIa->shouldSignReturnAddress(false) == MFIb->shouldSignReturnAddress(false) &&
6569          MFIa->shouldSignReturnAddress(true) == MFIb->shouldSignReturnAddress(true);
6570 }
6571 
6572 static bool
6573 outliningCandidatesSigningKeyConsensus(const outliner::Candidate &a,
6574                                        const outliner::Candidate &b) {
6575   const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>();
6576   const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>();
6577 
6578   return MFIa->shouldSignWithBKey() == MFIb->shouldSignWithBKey();
6579 }
6580 
6581 static bool outliningCandidatesV8_3OpsConsensus(const outliner::Candidate &a,
6582                                                 const outliner::Candidate &b) {
6583   const AArch64Subtarget &SubtargetA =
6584       a.getMF()->getSubtarget<AArch64Subtarget>();
6585   const AArch64Subtarget &SubtargetB =
6586       b.getMF()->getSubtarget<AArch64Subtarget>();
6587   return SubtargetA.hasV8_3aOps() == SubtargetB.hasV8_3aOps();
6588 }
6589 
6590 outliner::OutlinedFunction AArch64InstrInfo::getOutliningCandidateInfo(
6591     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
6592   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
6593   unsigned SequenceSize =
6594       std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
6595                       [this](unsigned Sum, const MachineInstr &MI) {
6596                         return Sum + getInstSizeInBytes(MI);
6597                       });
6598   unsigned NumBytesToCreateFrame = 0;
6599 
6600   // We only allow outlining for functions having exactly matching return
6601   // address signing attributes, i.e., all share the same value for the
6602   // attribute "sign-return-address" and all share the same type of key they
6603   // are signed with.
6604   // Additionally we require all functions to simultaniously either support
6605   // v8.3a features or not. Otherwise an outlined function could get signed
6606   // using dedicated v8.3 instructions and a call from a function that doesn't
6607   // support v8.3 instructions would therefore be invalid.
6608   if (std::adjacent_find(
6609           RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
6610           [](const outliner::Candidate &a, const outliner::Candidate &b) {
6611             // Return true if a and b are non-equal w.r.t. return address
6612             // signing or support of v8.3a features
6613             if (outliningCandidatesSigningScopeConsensus(a, b) &&
6614                 outliningCandidatesSigningKeyConsensus(a, b) &&
6615                 outliningCandidatesV8_3OpsConsensus(a, b)) {
6616               return false;
6617             }
6618             return true;
6619           }) != RepeatedSequenceLocs.end()) {
6620     return outliner::OutlinedFunction();
6621   }
6622 
6623   // Since at this point all candidates agree on their return address signing
6624   // picking just one is fine. If the candidate functions potentially sign their
6625   // return addresses, the outlined function should do the same. Note that in
6626   // the case of "sign-return-address"="non-leaf" this is an assumption: It is
6627   // not certainly true that the outlined function will have to sign its return
6628   // address but this decision is made later, when the decision to outline
6629   // has already been made.
6630   // The same holds for the number of additional instructions we need: On
6631   // v8.3a RET can be replaced by RETAA/RETAB and no AUT instruction is
6632   // necessary. However, at this point we don't know if the outlined function
6633   // will have a RET instruction so we assume the worst.
6634   const TargetRegisterInfo &TRI = getRegisterInfo();
6635   if (FirstCand.getMF()
6636           ->getInfo<AArch64FunctionInfo>()
6637           ->shouldSignReturnAddress(true)) {
6638     // One PAC and one AUT instructions
6639     NumBytesToCreateFrame += 8;
6640 
6641     // We have to check if sp modifying instructions would get outlined.
6642     // If so we only allow outlining if sp is unchanged overall, so matching
6643     // sub and add instructions are okay to outline, all other sp modifications
6644     // are not
6645     auto hasIllegalSPModification = [&TRI](outliner::Candidate &C) {
6646       int SPValue = 0;
6647       MachineBasicBlock::iterator MBBI = C.front();
6648       for (;;) {
6649         if (MBBI->modifiesRegister(AArch64::SP, &TRI)) {
6650           switch (MBBI->getOpcode()) {
6651           case AArch64::ADDXri:
6652           case AArch64::ADDWri:
6653             assert(MBBI->getNumOperands() == 4 && "Wrong number of operands");
6654             assert(MBBI->getOperand(2).isImm() &&
6655                    "Expected operand to be immediate");
6656             assert(MBBI->getOperand(1).isReg() &&
6657                    "Expected operand to be a register");
6658             // Check if the add just increments sp. If so, we search for
6659             // matching sub instructions that decrement sp. If not, the
6660             // modification is illegal
6661             if (MBBI->getOperand(1).getReg() == AArch64::SP)
6662               SPValue += MBBI->getOperand(2).getImm();
6663             else
6664               return true;
6665             break;
6666           case AArch64::SUBXri:
6667           case AArch64::SUBWri:
6668             assert(MBBI->getNumOperands() == 4 && "Wrong number of operands");
6669             assert(MBBI->getOperand(2).isImm() &&
6670                    "Expected operand to be immediate");
6671             assert(MBBI->getOperand(1).isReg() &&
6672                    "Expected operand to be a register");
6673             // Check if the sub just decrements sp. If so, we search for
6674             // matching add instructions that increment sp. If not, the
6675             // modification is illegal
6676             if (MBBI->getOperand(1).getReg() == AArch64::SP)
6677               SPValue -= MBBI->getOperand(2).getImm();
6678             else
6679               return true;
6680             break;
6681           default:
6682             return true;
6683           }
6684         }
6685         if (MBBI == C.back())
6686           break;
6687         ++MBBI;
6688       }
6689       if (SPValue)
6690         return true;
6691       return false;
6692     };
6693     // Remove candidates with illegal stack modifying instructions
6694     llvm::erase_if(RepeatedSequenceLocs, hasIllegalSPModification);
6695 
6696     // If the sequence doesn't have enough candidates left, then we're done.
6697     if (RepeatedSequenceLocs.size() < 2)
6698       return outliner::OutlinedFunction();
6699   }
6700 
6701   // Properties about candidate MBBs that hold for all of them.
6702   unsigned FlagsSetInAll = 0xF;
6703 
6704   // Compute liveness information for each candidate, and set FlagsSetInAll.
6705   std::for_each(RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
6706                 [&FlagsSetInAll](outliner::Candidate &C) {
6707                   FlagsSetInAll &= C.Flags;
6708                 });
6709 
6710   // According to the AArch64 Procedure Call Standard, the following are
6711   // undefined on entry/exit from a function call:
6712   //
6713   // * Registers x16, x17, (and thus w16, w17)
6714   // * Condition codes (and thus the NZCV register)
6715   //
6716   // Because if this, we can't outline any sequence of instructions where
6717   // one
6718   // of these registers is live into/across it. Thus, we need to delete
6719   // those
6720   // candidates.
6721   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
6722     // If the unsafe registers in this block are all dead, then we don't need
6723     // to compute liveness here.
6724     if (C.Flags & UnsafeRegsDead)
6725       return false;
6726     C.initLRU(TRI);
6727     LiveRegUnits LRU = C.LRU;
6728     return (!LRU.available(AArch64::W16) || !LRU.available(AArch64::W17) ||
6729             !LRU.available(AArch64::NZCV));
6730   };
6731 
6732   // Are there any candidates where those registers are live?
6733   if (!(FlagsSetInAll & UnsafeRegsDead)) {
6734     // Erase every candidate that violates the restrictions above. (It could be
6735     // true that we have viable candidates, so it's not worth bailing out in
6736     // the case that, say, 1 out of 20 candidates violate the restructions.)
6737     llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
6738 
6739     // If the sequence doesn't have enough candidates left, then we're done.
6740     if (RepeatedSequenceLocs.size() < 2)
6741       return outliner::OutlinedFunction();
6742   }
6743 
6744   // At this point, we have only "safe" candidates to outline. Figure out
6745   // frame + call instruction information.
6746 
6747   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
6748 
6749   // Helper lambda which sets call information for every candidate.
6750   auto SetCandidateCallInfo =
6751       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
6752         for (outliner::Candidate &C : RepeatedSequenceLocs)
6753           C.setCallInfo(CallID, NumBytesForCall);
6754       };
6755 
6756   unsigned FrameID = MachineOutlinerDefault;
6757   NumBytesToCreateFrame += 4;
6758 
6759   bool HasBTI = any_of(RepeatedSequenceLocs, [](outliner::Candidate &C) {
6760     return C.getMF()->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement();
6761   });
6762 
6763   // We check to see if CFI Instructions are present, and if they are
6764   // we find the number of CFI Instructions in the candidates.
6765   unsigned CFICount = 0;
6766   MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
6767   for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
6768        Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
6769     if (MBBI->isCFIInstruction())
6770       CFICount++;
6771     MBBI++;
6772   }
6773 
6774   // We compare the number of found CFI Instructions to  the number of CFI
6775   // instructions in the parent function for each candidate.  We must check this
6776   // since if we outline one of the CFI instructions in a function, we have to
6777   // outline them all for correctness. If we do not, the address offsets will be
6778   // incorrect between the two sections of the program.
6779   for (outliner::Candidate &C : RepeatedSequenceLocs) {
6780     std::vector<MCCFIInstruction> CFIInstructions =
6781         C.getMF()->getFrameInstructions();
6782 
6783     if (CFICount > 0 && CFICount != CFIInstructions.size())
6784       return outliner::OutlinedFunction();
6785   }
6786 
6787   // Returns true if an instructions is safe to fix up, false otherwise.
6788   auto IsSafeToFixup = [this, &TRI](MachineInstr &MI) {
6789     if (MI.isCall())
6790       return true;
6791 
6792     if (!MI.modifiesRegister(AArch64::SP, &TRI) &&
6793         !MI.readsRegister(AArch64::SP, &TRI))
6794       return true;
6795 
6796     // Any modification of SP will break our code to save/restore LR.
6797     // FIXME: We could handle some instructions which add a constant
6798     // offset to SP, with a bit more work.
6799     if (MI.modifiesRegister(AArch64::SP, &TRI))
6800       return false;
6801 
6802     // At this point, we have a stack instruction that we might need to
6803     // fix up. We'll handle it if it's a load or store.
6804     if (MI.mayLoadOrStore()) {
6805       const MachineOperand *Base; // Filled with the base operand of MI.
6806       int64_t Offset;             // Filled with the offset of MI.
6807       bool OffsetIsScalable;
6808 
6809       // Does it allow us to offset the base operand and is the base the
6810       // register SP?
6811       if (!getMemOperandWithOffset(MI, Base, Offset, OffsetIsScalable, &TRI) ||
6812           !Base->isReg() || Base->getReg() != AArch64::SP)
6813         return false;
6814 
6815       // Fixe-up code below assumes bytes.
6816       if (OffsetIsScalable)
6817         return false;
6818 
6819       // Find the minimum/maximum offset for this instruction and check
6820       // if fixing it up would be in range.
6821       int64_t MinOffset,
6822           MaxOffset;  // Unscaled offsets for the instruction.
6823       TypeSize Scale(0U, false); // The scale to multiply the offsets by.
6824       unsigned DummyWidth;
6825       getMemOpInfo(MI.getOpcode(), Scale, DummyWidth, MinOffset, MaxOffset);
6826 
6827       Offset += 16; // Update the offset to what it would be if we outlined.
6828       if (Offset < MinOffset * (int64_t)Scale.getFixedSize() ||
6829           Offset > MaxOffset * (int64_t)Scale.getFixedSize())
6830         return false;
6831 
6832       // It's in range, so we can outline it.
6833       return true;
6834     }
6835 
6836     // FIXME: Add handling for instructions like "add x0, sp, #8".
6837 
6838     // We can't fix it up, so don't outline it.
6839     return false;
6840   };
6841 
6842   // True if it's possible to fix up each stack instruction in this sequence.
6843   // Important for frames/call variants that modify the stack.
6844   bool AllStackInstrsSafe = std::all_of(
6845       FirstCand.front(), std::next(FirstCand.back()), IsSafeToFixup);
6846 
6847   // If the last instruction in any candidate is a terminator, then we should
6848   // tail call all of the candidates.
6849   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
6850     FrameID = MachineOutlinerTailCall;
6851     NumBytesToCreateFrame = 0;
6852     SetCandidateCallInfo(MachineOutlinerTailCall, 4);
6853   }
6854 
6855   else if (LastInstrOpcode == AArch64::BL ||
6856            ((LastInstrOpcode == AArch64::BLR ||
6857              LastInstrOpcode == AArch64::BLRNoIP) &&
6858             !HasBTI)) {
6859     // FIXME: Do we need to check if the code after this uses the value of LR?
6860     FrameID = MachineOutlinerThunk;
6861     NumBytesToCreateFrame = 0;
6862     SetCandidateCallInfo(MachineOutlinerThunk, 4);
6863   }
6864 
6865   else {
6866     // We need to decide how to emit calls + frames. We can always emit the same
6867     // frame if we don't need to save to the stack. If we have to save to the
6868     // stack, then we need a different frame.
6869     unsigned NumBytesNoStackCalls = 0;
6870     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
6871 
6872     // Check if we have to save LR.
6873     for (outliner::Candidate &C : RepeatedSequenceLocs) {
6874       C.initLRU(TRI);
6875 
6876       // If we have a noreturn caller, then we're going to be conservative and
6877       // say that we have to save LR. If we don't have a ret at the end of the
6878       // block, then we can't reason about liveness accurately.
6879       //
6880       // FIXME: We can probably do better than always disabling this in
6881       // noreturn functions by fixing up the liveness info.
6882       bool IsNoReturn =
6883           C.getMF()->getFunction().hasFnAttribute(Attribute::NoReturn);
6884 
6885       // Is LR available? If so, we don't need a save.
6886       if (C.LRU.available(AArch64::LR) && !IsNoReturn) {
6887         NumBytesNoStackCalls += 4;
6888         C.setCallInfo(MachineOutlinerNoLRSave, 4);
6889         CandidatesWithoutStackFixups.push_back(C);
6890       }
6891 
6892       // Is an unused register available? If so, we won't modify the stack, so
6893       // we can outline with the same frame type as those that don't save LR.
6894       else if (findRegisterToSaveLRTo(C)) {
6895         NumBytesNoStackCalls += 12;
6896         C.setCallInfo(MachineOutlinerRegSave, 12);
6897         CandidatesWithoutStackFixups.push_back(C);
6898       }
6899 
6900       // Is SP used in the sequence at all? If not, we don't have to modify
6901       // the stack, so we are guaranteed to get the same frame.
6902       else if (C.UsedInSequence.available(AArch64::SP)) {
6903         NumBytesNoStackCalls += 12;
6904         C.setCallInfo(MachineOutlinerDefault, 12);
6905         CandidatesWithoutStackFixups.push_back(C);
6906       }
6907 
6908       // If we outline this, we need to modify the stack. Pretend we don't
6909       // outline this by saving all of its bytes.
6910       else {
6911         NumBytesNoStackCalls += SequenceSize;
6912       }
6913     }
6914 
6915     // If there are no places where we have to save LR, then note that we
6916     // don't have to update the stack. Otherwise, give every candidate the
6917     // default call type, as long as it's safe to do so.
6918     if (!AllStackInstrsSafe ||
6919         NumBytesNoStackCalls <= RepeatedSequenceLocs.size() * 12) {
6920       RepeatedSequenceLocs = CandidatesWithoutStackFixups;
6921       FrameID = MachineOutlinerNoLRSave;
6922     } else {
6923       SetCandidateCallInfo(MachineOutlinerDefault, 12);
6924 
6925       // Bugzilla ID: 46767
6926       // TODO: Check if fixing up the stack more than once is safe so we can
6927       // outline these.
6928       //
6929       // An outline resulting in a caller that requires stack fixups at the
6930       // callsite to a callee that also requires stack fixups can happen when
6931       // there are no available registers at the candidate callsite for a
6932       // candidate that itself also has calls.
6933       //
6934       // In other words if function_containing_sequence in the following pseudo
6935       // assembly requires that we save LR at the point of the call, but there
6936       // are no available registers: in this case we save using SP and as a
6937       // result the SP offsets requires stack fixups by multiples of 16.
6938       //
6939       // function_containing_sequence:
6940       //   ...
6941       //   save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N
6942       //   call OUTLINED_FUNCTION_N
6943       //   restore LR from SP
6944       //   ...
6945       //
6946       // OUTLINED_FUNCTION_N:
6947       //   save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N
6948       //   ...
6949       //   bl foo
6950       //   restore LR from SP
6951       //   ret
6952       //
6953       // Because the code to handle more than one stack fixup does not
6954       // currently have the proper checks for legality, these cases will assert
6955       // in the AArch64 MachineOutliner. This is because the code to do this
6956       // needs more hardening, testing, better checks that generated code is
6957       // legal, etc and because it is only verified to handle a single pass of
6958       // stack fixup.
6959       //
6960       // The assert happens in AArch64InstrInfo::buildOutlinedFrame to catch
6961       // these cases until they are known to be handled. Bugzilla 46767 is
6962       // referenced in comments at the assert site.
6963       //
6964       // To avoid asserting (or generating non-legal code on noassert builds)
6965       // we remove all candidates which would need more than one stack fixup by
6966       // pruning the cases where the candidate has calls while also having no
6967       // available LR and having no available general purpose registers to copy
6968       // LR to (ie one extra stack save/restore).
6969       //
6970       if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
6971         erase_if(RepeatedSequenceLocs, [this](outliner::Candidate &C) {
6972           return (std::any_of(
6973                      C.front(), std::next(C.back()),
6974                      [](const MachineInstr &MI) { return MI.isCall(); })) &&
6975                  (!C.LRU.available(AArch64::LR) || !findRegisterToSaveLRTo(C));
6976         });
6977       }
6978     }
6979 
6980     // If we dropped all of the candidates, bail out here.
6981     if (RepeatedSequenceLocs.size() < 2) {
6982       RepeatedSequenceLocs.clear();
6983       return outliner::OutlinedFunction();
6984     }
6985   }
6986 
6987   // Does every candidate's MBB contain a call? If so, then we might have a call
6988   // in the range.
6989   if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
6990     // Check if the range contains a call. These require a save + restore of the
6991     // link register.
6992     bool ModStackToSaveLR = false;
6993     if (std::any_of(FirstCand.front(), FirstCand.back(),
6994                     [](const MachineInstr &MI) { return MI.isCall(); }))
6995       ModStackToSaveLR = true;
6996 
6997     // Handle the last instruction separately. If this is a tail call, then the
6998     // last instruction is a call. We don't want to save + restore in this case.
6999     // However, it could be possible that the last instruction is a call without
7000     // it being valid to tail call this sequence. We should consider this as
7001     // well.
7002     else if (FrameID != MachineOutlinerThunk &&
7003              FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
7004       ModStackToSaveLR = true;
7005 
7006     if (ModStackToSaveLR) {
7007       // We can't fix up the stack. Bail out.
7008       if (!AllStackInstrsSafe) {
7009         RepeatedSequenceLocs.clear();
7010         return outliner::OutlinedFunction();
7011       }
7012 
7013       // Save + restore LR.
7014       NumBytesToCreateFrame += 8;
7015     }
7016   }
7017 
7018   // If we have CFI instructions, we can only outline if the outlined section
7019   // can be a tail call
7020   if (FrameID != MachineOutlinerTailCall && CFICount > 0)
7021     return outliner::OutlinedFunction();
7022 
7023   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
7024                                     NumBytesToCreateFrame, FrameID);
7025 }
7026 
7027 bool AArch64InstrInfo::isFunctionSafeToOutlineFrom(
7028     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
7029   const Function &F = MF.getFunction();
7030 
7031   // Can F be deduplicated by the linker? If it can, don't outline from it.
7032   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
7033     return false;
7034 
7035   // Don't outline from functions with section markings; the program could
7036   // expect that all the code is in the named section.
7037   // FIXME: Allow outlining from multiple functions with the same section
7038   // marking.
7039   if (F.hasSection())
7040     return false;
7041 
7042   // Outlining from functions with redzones is unsafe since the outliner may
7043   // modify the stack. Check if hasRedZone is true or unknown; if yes, don't
7044   // outline from it.
7045   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
7046   if (!AFI || AFI->hasRedZone().getValueOr(true))
7047     return false;
7048 
7049   // FIXME: Teach the outliner to generate/handle Windows unwind info.
7050   if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
7051     return false;
7052 
7053   // It's safe to outline from MF.
7054   return true;
7055 }
7056 
7057 bool AArch64InstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
7058                                               unsigned &Flags) const {
7059   if (!TargetInstrInfo::isMBBSafeToOutlineFrom(MBB, Flags))
7060     return false;
7061   // Check if LR is available through all of the MBB. If it's not, then set
7062   // a flag.
7063   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
7064          "Suitable Machine Function for outlining must track liveness");
7065   LiveRegUnits LRU(getRegisterInfo());
7066 
7067   std::for_each(MBB.rbegin(), MBB.rend(),
7068                 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
7069 
7070   // Check if each of the unsafe registers are available...
7071   bool W16AvailableInBlock = LRU.available(AArch64::W16);
7072   bool W17AvailableInBlock = LRU.available(AArch64::W17);
7073   bool NZCVAvailableInBlock = LRU.available(AArch64::NZCV);
7074 
7075   // If all of these are dead (and not live out), we know we don't have to check
7076   // them later.
7077   if (W16AvailableInBlock && W17AvailableInBlock && NZCVAvailableInBlock)
7078     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
7079 
7080   // Now, add the live outs to the set.
7081   LRU.addLiveOuts(MBB);
7082 
7083   // If any of these registers is available in the MBB, but also a live out of
7084   // the block, then we know outlining is unsafe.
7085   if (W16AvailableInBlock && !LRU.available(AArch64::W16))
7086     return false;
7087   if (W17AvailableInBlock && !LRU.available(AArch64::W17))
7088     return false;
7089   if (NZCVAvailableInBlock && !LRU.available(AArch64::NZCV))
7090     return false;
7091 
7092   // Check if there's a call inside this MachineBasicBlock. If there is, then
7093   // set a flag.
7094   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
7095     Flags |= MachineOutlinerMBBFlags::HasCalls;
7096 
7097   MachineFunction *MF = MBB.getParent();
7098 
7099   // In the event that we outline, we may have to save LR. If there is an
7100   // available register in the MBB, then we'll always save LR there. Check if
7101   // this is true.
7102   bool CanSaveLR = false;
7103   const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>(
7104       MF->getSubtarget().getRegisterInfo());
7105 
7106   // Check if there is an available register across the sequence that we can
7107   // use.
7108   for (unsigned Reg : AArch64::GPR64RegClass) {
7109     if (!ARI->isReservedReg(*MF, Reg) && Reg != AArch64::LR &&
7110         Reg != AArch64::X16 && Reg != AArch64::X17 && LRU.available(Reg)) {
7111       CanSaveLR = true;
7112       break;
7113     }
7114   }
7115 
7116   // Check if we have a register we can save LR to, and if LR was used
7117   // somewhere. If both of those things are true, then we need to evaluate the
7118   // safety of outlining stack instructions later.
7119   if (!CanSaveLR && !LRU.available(AArch64::LR))
7120     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
7121 
7122   return true;
7123 }
7124 
7125 outliner::InstrType
7126 AArch64InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
7127                                    unsigned Flags) const {
7128   MachineInstr &MI = *MIT;
7129   MachineBasicBlock *MBB = MI.getParent();
7130   MachineFunction *MF = MBB->getParent();
7131   AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>();
7132 
7133   // Don't outline anything used for return address signing. The outlined
7134   // function will get signed later if needed
7135   switch (MI.getOpcode()) {
7136   case AArch64::PACIASP:
7137   case AArch64::PACIBSP:
7138   case AArch64::AUTIASP:
7139   case AArch64::AUTIBSP:
7140   case AArch64::RETAA:
7141   case AArch64::RETAB:
7142   case AArch64::EMITBKEY:
7143     return outliner::InstrType::Illegal;
7144   }
7145 
7146   // Don't outline LOHs.
7147   if (FuncInfo->getLOHRelated().count(&MI))
7148     return outliner::InstrType::Illegal;
7149 
7150   // We can only outline these if we will tail call the outlined function, or
7151   // fix up the CFI offsets. Currently, CFI instructions are outlined only if
7152   // in a tail call.
7153   //
7154   // FIXME: If the proper fixups for the offset are implemented, this should be
7155   // possible.
7156   if (MI.isCFIInstruction())
7157     return outliner::InstrType::Legal;
7158 
7159   // Don't allow debug values to impact outlining type.
7160   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
7161     return outliner::InstrType::Invisible;
7162 
7163   // At this point, KILL instructions don't really tell us much so we can go
7164   // ahead and skip over them.
7165   if (MI.isKill())
7166     return outliner::InstrType::Invisible;
7167 
7168   // Is this a terminator for a basic block?
7169   if (MI.isTerminator()) {
7170 
7171     // Is this the end of a function?
7172     if (MI.getParent()->succ_empty())
7173       return outliner::InstrType::Legal;
7174 
7175     // It's not, so don't outline it.
7176     return outliner::InstrType::Illegal;
7177   }
7178 
7179   // Make sure none of the operands are un-outlinable.
7180   for (const MachineOperand &MOP : MI.operands()) {
7181     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
7182         MOP.isTargetIndex())
7183       return outliner::InstrType::Illegal;
7184 
7185     // If it uses LR or W30 explicitly, then don't touch it.
7186     if (MOP.isReg() && !MOP.isImplicit() &&
7187         (MOP.getReg() == AArch64::LR || MOP.getReg() == AArch64::W30))
7188       return outliner::InstrType::Illegal;
7189   }
7190 
7191   // Special cases for instructions that can always be outlined, but will fail
7192   // the later tests. e.g, ADRPs, which are PC-relative use LR, but can always
7193   // be outlined because they don't require a *specific* value to be in LR.
7194   if (MI.getOpcode() == AArch64::ADRP)
7195     return outliner::InstrType::Legal;
7196 
7197   // If MI is a call we might be able to outline it. We don't want to outline
7198   // any calls that rely on the position of items on the stack. When we outline
7199   // something containing a call, we have to emit a save and restore of LR in
7200   // the outlined function. Currently, this always happens by saving LR to the
7201   // stack. Thus, if we outline, say, half the parameters for a function call
7202   // plus the call, then we'll break the callee's expectations for the layout
7203   // of the stack.
7204   //
7205   // FIXME: Allow calls to functions which construct a stack frame, as long
7206   // as they don't access arguments on the stack.
7207   // FIXME: Figure out some way to analyze functions defined in other modules.
7208   // We should be able to compute the memory usage based on the IR calling
7209   // convention, even if we can't see the definition.
7210   if (MI.isCall()) {
7211     // Get the function associated with the call. Look at each operand and find
7212     // the one that represents the callee and get its name.
7213     const Function *Callee = nullptr;
7214     for (const MachineOperand &MOP : MI.operands()) {
7215       if (MOP.isGlobal()) {
7216         Callee = dyn_cast<Function>(MOP.getGlobal());
7217         break;
7218       }
7219     }
7220 
7221     // Never outline calls to mcount.  There isn't any rule that would require
7222     // this, but the Linux kernel's "ftrace" feature depends on it.
7223     if (Callee && Callee->getName() == "\01_mcount")
7224       return outliner::InstrType::Illegal;
7225 
7226     // If we don't know anything about the callee, assume it depends on the
7227     // stack layout of the caller. In that case, it's only legal to outline
7228     // as a tail-call. Explicitly list the call instructions we know about so we
7229     // don't get unexpected results with call pseudo-instructions.
7230     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
7231     if (MI.getOpcode() == AArch64::BLR ||
7232         MI.getOpcode() == AArch64::BLRNoIP || MI.getOpcode() == AArch64::BL)
7233       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
7234 
7235     if (!Callee)
7236       return UnknownCallOutlineType;
7237 
7238     // We have a function we have information about. Check it if it's something
7239     // can safely outline.
7240     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
7241 
7242     // We don't know what's going on with the callee at all. Don't touch it.
7243     if (!CalleeMF)
7244       return UnknownCallOutlineType;
7245 
7246     // Check if we know anything about the callee saves on the function. If we
7247     // don't, then don't touch it, since that implies that we haven't
7248     // computed anything about its stack frame yet.
7249     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
7250     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
7251         MFI.getNumObjects() > 0)
7252       return UnknownCallOutlineType;
7253 
7254     // At this point, we can say that CalleeMF ought to not pass anything on the
7255     // stack. Therefore, we can outline it.
7256     return outliner::InstrType::Legal;
7257   }
7258 
7259   // Don't outline positions.
7260   if (MI.isPosition())
7261     return outliner::InstrType::Illegal;
7262 
7263   // Don't touch the link register or W30.
7264   if (MI.readsRegister(AArch64::W30, &getRegisterInfo()) ||
7265       MI.modifiesRegister(AArch64::W30, &getRegisterInfo()))
7266     return outliner::InstrType::Illegal;
7267 
7268   // Don't outline BTI instructions, because that will prevent the outlining
7269   // site from being indirectly callable.
7270   if (MI.getOpcode() == AArch64::HINT) {
7271     int64_t Imm = MI.getOperand(0).getImm();
7272     if (Imm == 32 || Imm == 34 || Imm == 36 || Imm == 38)
7273       return outliner::InstrType::Illegal;
7274   }
7275 
7276   return outliner::InstrType::Legal;
7277 }
7278 
7279 void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
7280   for (MachineInstr &MI : MBB) {
7281     const MachineOperand *Base;
7282     unsigned Width;
7283     int64_t Offset;
7284     bool OffsetIsScalable;
7285 
7286     // Is this a load or store with an immediate offset with SP as the base?
7287     if (!MI.mayLoadOrStore() ||
7288         !getMemOperandWithOffsetWidth(MI, Base, Offset, OffsetIsScalable, Width,
7289                                       &RI) ||
7290         (Base->isReg() && Base->getReg() != AArch64::SP))
7291       continue;
7292 
7293     // It is, so we have to fix it up.
7294     TypeSize Scale(0U, false);
7295     int64_t Dummy1, Dummy2;
7296 
7297     MachineOperand &StackOffsetOperand = getMemOpBaseRegImmOfsOffsetOperand(MI);
7298     assert(StackOffsetOperand.isImm() && "Stack offset wasn't immediate!");
7299     getMemOpInfo(MI.getOpcode(), Scale, Width, Dummy1, Dummy2);
7300     assert(Scale != 0 && "Unexpected opcode!");
7301     assert(!OffsetIsScalable && "Expected offset to be a byte offset");
7302 
7303     // We've pushed the return address to the stack, so add 16 to the offset.
7304     // This is safe, since we already checked if it would overflow when we
7305     // checked if this instruction was legal to outline.
7306     int64_t NewImm = (Offset + 16) / (int64_t)Scale.getFixedSize();
7307     StackOffsetOperand.setImm(NewImm);
7308   }
7309 }
7310 
7311 static void signOutlinedFunction(MachineFunction &MF, MachineBasicBlock &MBB,
7312                                  bool ShouldSignReturnAddr,
7313                                  bool ShouldSignReturnAddrWithAKey) {
7314   if (ShouldSignReturnAddr) {
7315     MachineBasicBlock::iterator MBBPAC = MBB.begin();
7316     MachineBasicBlock::iterator MBBAUT = MBB.getFirstTerminator();
7317     const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
7318     const TargetInstrInfo *TII = Subtarget.getInstrInfo();
7319     DebugLoc DL;
7320 
7321     if (MBBAUT != MBB.end())
7322       DL = MBBAUT->getDebugLoc();
7323 
7324     // At the very beginning of the basic block we insert the following
7325     // depending on the key type
7326     //
7327     // a_key:                   b_key:
7328     //    PACIASP                   EMITBKEY
7329     //    CFI_INSTRUCTION           PACIBSP
7330     //                              CFI_INSTRUCTION
7331     unsigned PACI;
7332     if (ShouldSignReturnAddrWithAKey) {
7333       PACI = Subtarget.hasPAuth() ? AArch64::PACIA : AArch64::PACIASP;
7334     } else {
7335       BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::EMITBKEY))
7336           .setMIFlag(MachineInstr::FrameSetup);
7337       PACI = Subtarget.hasPAuth() ? AArch64::PACIB : AArch64::PACIBSP;
7338     }
7339 
7340     auto MI = BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(PACI));
7341     if (Subtarget.hasPAuth())
7342       MI.addReg(AArch64::LR, RegState::Define)
7343           .addReg(AArch64::LR)
7344           .addReg(AArch64::SP, RegState::InternalRead);
7345     MI.setMIFlag(MachineInstr::FrameSetup);
7346 
7347     unsigned CFIIndex =
7348         MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
7349     BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::CFI_INSTRUCTION))
7350         .addCFIIndex(CFIIndex)
7351         .setMIFlags(MachineInstr::FrameSetup);
7352 
7353     // If v8.3a features are available we can replace a RET instruction by
7354     // RETAA or RETAB and omit the AUT instructions
7355     if (Subtarget.hasPAuth() && MBBAUT != MBB.end() &&
7356         MBBAUT->getOpcode() == AArch64::RET) {
7357       BuildMI(MBB, MBBAUT, DL,
7358               TII->get(ShouldSignReturnAddrWithAKey ? AArch64::RETAA
7359                                                     : AArch64::RETAB))
7360           .copyImplicitOps(*MBBAUT);
7361       MBB.erase(MBBAUT);
7362     } else {
7363       BuildMI(MBB, MBBAUT, DL,
7364               TII->get(ShouldSignReturnAddrWithAKey ? AArch64::AUTIASP
7365                                                     : AArch64::AUTIBSP))
7366           .setMIFlag(MachineInstr::FrameDestroy);
7367     }
7368   }
7369 }
7370 
7371 void AArch64InstrInfo::buildOutlinedFrame(
7372     MachineBasicBlock &MBB, MachineFunction &MF,
7373     const outliner::OutlinedFunction &OF) const {
7374 
7375   AArch64FunctionInfo *FI = MF.getInfo<AArch64FunctionInfo>();
7376 
7377   if (OF.FrameConstructionID == MachineOutlinerTailCall)
7378     FI->setOutliningStyle("Tail Call");
7379   else if (OF.FrameConstructionID == MachineOutlinerThunk) {
7380     // For thunk outlining, rewrite the last instruction from a call to a
7381     // tail-call.
7382     MachineInstr *Call = &*--MBB.instr_end();
7383     unsigned TailOpcode;
7384     if (Call->getOpcode() == AArch64::BL) {
7385       TailOpcode = AArch64::TCRETURNdi;
7386     } else {
7387       assert(Call->getOpcode() == AArch64::BLR ||
7388              Call->getOpcode() == AArch64::BLRNoIP);
7389       TailOpcode = AArch64::TCRETURNriALL;
7390     }
7391     MachineInstr *TC = BuildMI(MF, DebugLoc(), get(TailOpcode))
7392                            .add(Call->getOperand(0))
7393                            .addImm(0);
7394     MBB.insert(MBB.end(), TC);
7395     Call->eraseFromParent();
7396 
7397     FI->setOutliningStyle("Thunk");
7398   }
7399 
7400   bool IsLeafFunction = true;
7401 
7402   // Is there a call in the outlined range?
7403   auto IsNonTailCall = [](const MachineInstr &MI) {
7404     return MI.isCall() && !MI.isReturn();
7405   };
7406 
7407   if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
7408     // Fix up the instructions in the range, since we're going to modify the
7409     // stack.
7410 
7411     // Bugzilla ID: 46767
7412     // TODO: Check if fixing up twice is safe so we can outline these.
7413     assert(OF.FrameConstructionID != MachineOutlinerDefault &&
7414            "Can only fix up stack references once");
7415     fixupPostOutline(MBB);
7416 
7417     IsLeafFunction = false;
7418 
7419     // LR has to be a live in so that we can save it.
7420     if (!MBB.isLiveIn(AArch64::LR))
7421       MBB.addLiveIn(AArch64::LR);
7422 
7423     MachineBasicBlock::iterator It = MBB.begin();
7424     MachineBasicBlock::iterator Et = MBB.end();
7425 
7426     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
7427         OF.FrameConstructionID == MachineOutlinerThunk)
7428       Et = std::prev(MBB.end());
7429 
7430     // Insert a save before the outlined region
7431     MachineInstr *STRXpre = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
7432                                 .addReg(AArch64::SP, RegState::Define)
7433                                 .addReg(AArch64::LR)
7434                                 .addReg(AArch64::SP)
7435                                 .addImm(-16);
7436     It = MBB.insert(It, STRXpre);
7437 
7438     const TargetSubtargetInfo &STI = MF.getSubtarget();
7439     const MCRegisterInfo *MRI = STI.getRegisterInfo();
7440     unsigned DwarfReg = MRI->getDwarfRegNum(AArch64::LR, true);
7441 
7442     // Add a CFI saying the stack was moved 16 B down.
7443     int64_t StackPosEntry =
7444         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 16));
7445     BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
7446         .addCFIIndex(StackPosEntry)
7447         .setMIFlags(MachineInstr::FrameSetup);
7448 
7449     // Add a CFI saying that the LR that we want to find is now 16 B higher than
7450     // before.
7451     int64_t LRPosEntry =
7452         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg, -16));
7453     BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
7454         .addCFIIndex(LRPosEntry)
7455         .setMIFlags(MachineInstr::FrameSetup);
7456 
7457     // Insert a restore before the terminator for the function.
7458     MachineInstr *LDRXpost = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
7459                                  .addReg(AArch64::SP, RegState::Define)
7460                                  .addReg(AArch64::LR, RegState::Define)
7461                                  .addReg(AArch64::SP)
7462                                  .addImm(16);
7463     Et = MBB.insert(Et, LDRXpost);
7464   }
7465 
7466   // If a bunch of candidates reach this point they must agree on their return
7467   // address signing. It is therefore enough to just consider the signing
7468   // behaviour of one of them
7469   const auto &MFI = *OF.Candidates.front().getMF()->getInfo<AArch64FunctionInfo>();
7470   bool ShouldSignReturnAddr = MFI.shouldSignReturnAddress(!IsLeafFunction);
7471 
7472   // a_key is the default
7473   bool ShouldSignReturnAddrWithAKey = !MFI.shouldSignWithBKey();
7474 
7475   // If this is a tail call outlined function, then there's already a return.
7476   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
7477       OF.FrameConstructionID == MachineOutlinerThunk) {
7478     signOutlinedFunction(MF, MBB, ShouldSignReturnAddr,
7479                          ShouldSignReturnAddrWithAKey);
7480     return;
7481   }
7482 
7483   // It's not a tail call, so we have to insert the return ourselves.
7484 
7485   // LR has to be a live in so that we can return to it.
7486   if (!MBB.isLiveIn(AArch64::LR))
7487     MBB.addLiveIn(AArch64::LR);
7488 
7489   MachineInstr *ret = BuildMI(MF, DebugLoc(), get(AArch64::RET))
7490                           .addReg(AArch64::LR);
7491   MBB.insert(MBB.end(), ret);
7492 
7493   signOutlinedFunction(MF, MBB, ShouldSignReturnAddr,
7494                        ShouldSignReturnAddrWithAKey);
7495 
7496   FI->setOutliningStyle("Function");
7497 
7498   // Did we have to modify the stack by saving the link register?
7499   if (OF.FrameConstructionID != MachineOutlinerDefault)
7500     return;
7501 
7502   // We modified the stack.
7503   // Walk over the basic block and fix up all the stack accesses.
7504   fixupPostOutline(MBB);
7505 }
7506 
7507 MachineBasicBlock::iterator AArch64InstrInfo::insertOutlinedCall(
7508     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
7509     MachineFunction &MF, const outliner::Candidate &C) const {
7510 
7511   // Are we tail calling?
7512   if (C.CallConstructionID == MachineOutlinerTailCall) {
7513     // If yes, then we can just branch to the label.
7514     It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::TCRETURNdi))
7515                             .addGlobalAddress(M.getNamedValue(MF.getName()))
7516                             .addImm(0));
7517     return It;
7518   }
7519 
7520   // Are we saving the link register?
7521   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
7522       C.CallConstructionID == MachineOutlinerThunk) {
7523     // No, so just insert the call.
7524     It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
7525                             .addGlobalAddress(M.getNamedValue(MF.getName())));
7526     return It;
7527   }
7528 
7529   // We want to return the spot where we inserted the call.
7530   MachineBasicBlock::iterator CallPt;
7531 
7532   // Instructions for saving and restoring LR around the call instruction we're
7533   // going to insert.
7534   MachineInstr *Save;
7535   MachineInstr *Restore;
7536   // Can we save to a register?
7537   if (C.CallConstructionID == MachineOutlinerRegSave) {
7538     // FIXME: This logic should be sunk into a target-specific interface so that
7539     // we don't have to recompute the register.
7540     unsigned Reg = findRegisterToSaveLRTo(C);
7541     assert(Reg != 0 && "No callee-saved register available?");
7542 
7543     // LR has to be a live in so that we can save it.
7544     if (!MBB.isLiveIn(AArch64::LR))
7545       MBB.addLiveIn(AArch64::LR);
7546 
7547     // Save and restore LR from Reg.
7548     Save = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), Reg)
7549                .addReg(AArch64::XZR)
7550                .addReg(AArch64::LR)
7551                .addImm(0);
7552     Restore = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), AArch64::LR)
7553                 .addReg(AArch64::XZR)
7554                 .addReg(Reg)
7555                 .addImm(0);
7556   } else {
7557     // We have the default case. Save and restore from SP.
7558     Save = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
7559                .addReg(AArch64::SP, RegState::Define)
7560                .addReg(AArch64::LR)
7561                .addReg(AArch64::SP)
7562                .addImm(-16);
7563     Restore = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
7564                   .addReg(AArch64::SP, RegState::Define)
7565                   .addReg(AArch64::LR, RegState::Define)
7566                   .addReg(AArch64::SP)
7567                   .addImm(16);
7568   }
7569 
7570   It = MBB.insert(It, Save);
7571   It++;
7572 
7573   // Insert the call.
7574   It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
7575                           .addGlobalAddress(M.getNamedValue(MF.getName())));
7576   CallPt = It;
7577   It++;
7578 
7579   It = MBB.insert(It, Restore);
7580   return CallPt;
7581 }
7582 
7583 bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault(
7584   MachineFunction &MF) const {
7585   return MF.getFunction().hasMinSize();
7586 }
7587 
7588 Optional<DestSourcePair>
7589 AArch64InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
7590 
7591   // AArch64::ORRWrs and AArch64::ORRXrs with WZR/XZR reg
7592   // and zero immediate operands used as an alias for mov instruction.
7593   if (MI.getOpcode() == AArch64::ORRWrs &&
7594       MI.getOperand(1).getReg() == AArch64::WZR &&
7595       MI.getOperand(3).getImm() == 0x0) {
7596     return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
7597   }
7598 
7599   if (MI.getOpcode() == AArch64::ORRXrs &&
7600       MI.getOperand(1).getReg() == AArch64::XZR &&
7601       MI.getOperand(3).getImm() == 0x0) {
7602     return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
7603   }
7604 
7605   return None;
7606 }
7607 
7608 Optional<RegImmPair> AArch64InstrInfo::isAddImmediate(const MachineInstr &MI,
7609                                                       Register Reg) const {
7610   int Sign = 1;
7611   int64_t Offset = 0;
7612 
7613   // TODO: Handle cases where Reg is a super- or sub-register of the
7614   // destination register.
7615   const MachineOperand &Op0 = MI.getOperand(0);
7616   if (!Op0.isReg() || Reg != Op0.getReg())
7617     return None;
7618 
7619   switch (MI.getOpcode()) {
7620   default:
7621     return None;
7622   case AArch64::SUBWri:
7623   case AArch64::SUBXri:
7624   case AArch64::SUBSWri:
7625   case AArch64::SUBSXri:
7626     Sign *= -1;
7627     LLVM_FALLTHROUGH;
7628   case AArch64::ADDSWri:
7629   case AArch64::ADDSXri:
7630   case AArch64::ADDWri:
7631   case AArch64::ADDXri: {
7632     // TODO: Third operand can be global address (usually some string).
7633     if (!MI.getOperand(0).isReg() || !MI.getOperand(1).isReg() ||
7634         !MI.getOperand(2).isImm())
7635       return None;
7636     int Shift = MI.getOperand(3).getImm();
7637     assert((Shift == 0 || Shift == 12) && "Shift can be either 0 or 12");
7638     Offset = Sign * (MI.getOperand(2).getImm() << Shift);
7639   }
7640   }
7641   return RegImmPair{MI.getOperand(1).getReg(), Offset};
7642 }
7643 
7644 /// If the given ORR instruction is a copy, and \p DescribedReg overlaps with
7645 /// the destination register then, if possible, describe the value in terms of
7646 /// the source register.
7647 static Optional<ParamLoadedValue>
7648 describeORRLoadedValue(const MachineInstr &MI, Register DescribedReg,
7649                        const TargetInstrInfo *TII,
7650                        const TargetRegisterInfo *TRI) {
7651   auto DestSrc = TII->isCopyInstr(MI);
7652   if (!DestSrc)
7653     return None;
7654 
7655   Register DestReg = DestSrc->Destination->getReg();
7656   Register SrcReg = DestSrc->Source->getReg();
7657 
7658   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
7659 
7660   // If the described register is the destination, just return the source.
7661   if (DestReg == DescribedReg)
7662     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7663 
7664   // ORRWrs zero-extends to 64-bits, so we need to consider such cases.
7665   if (MI.getOpcode() == AArch64::ORRWrs &&
7666       TRI->isSuperRegister(DestReg, DescribedReg))
7667     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7668 
7669   // We may need to describe the lower part of a ORRXrs move.
7670   if (MI.getOpcode() == AArch64::ORRXrs &&
7671       TRI->isSubRegister(DestReg, DescribedReg)) {
7672     Register SrcSubReg = TRI->getSubReg(SrcReg, AArch64::sub_32);
7673     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
7674   }
7675 
7676   assert(!TRI->isSuperOrSubRegisterEq(DestReg, DescribedReg) &&
7677          "Unhandled ORR[XW]rs copy case");
7678 
7679   return None;
7680 }
7681 
7682 Optional<ParamLoadedValue>
7683 AArch64InstrInfo::describeLoadedValue(const MachineInstr &MI,
7684                                       Register Reg) const {
7685   const MachineFunction *MF = MI.getMF();
7686   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
7687   switch (MI.getOpcode()) {
7688   case AArch64::MOVZWi:
7689   case AArch64::MOVZXi: {
7690     // MOVZWi may be used for producing zero-extended 32-bit immediates in
7691     // 64-bit parameters, so we need to consider super-registers.
7692     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7693       return None;
7694 
7695     if (!MI.getOperand(1).isImm())
7696       return None;
7697     int64_t Immediate = MI.getOperand(1).getImm();
7698     int Shift = MI.getOperand(2).getImm();
7699     return ParamLoadedValue(MachineOperand::CreateImm(Immediate << Shift),
7700                             nullptr);
7701   }
7702   case AArch64::ORRWrs:
7703   case AArch64::ORRXrs:
7704     return describeORRLoadedValue(MI, Reg, this, TRI);
7705   }
7706 
7707   return TargetInstrInfo::describeLoadedValue(MI, Reg);
7708 }
7709 
7710 bool AArch64InstrInfo::isExtendLikelyToBeFolded(
7711     MachineInstr &ExtMI, MachineRegisterInfo &MRI) const {
7712   assert(ExtMI.getOpcode() == TargetOpcode::G_SEXT ||
7713          ExtMI.getOpcode() == TargetOpcode::G_ZEXT ||
7714          ExtMI.getOpcode() == TargetOpcode::G_ANYEXT);
7715 
7716   // Anyexts are nops.
7717   if (ExtMI.getOpcode() == TargetOpcode::G_ANYEXT)
7718     return true;
7719 
7720   Register DefReg = ExtMI.getOperand(0).getReg();
7721   if (!MRI.hasOneNonDBGUse(DefReg))
7722     return false;
7723 
7724   // It's likely that a sext/zext as a G_PTR_ADD offset will be folded into an
7725   // addressing mode.
7726   auto *UserMI = &*MRI.use_instr_nodbg_begin(DefReg);
7727   return UserMI->getOpcode() == TargetOpcode::G_PTR_ADD;
7728 }
7729 
7730 uint64_t AArch64InstrInfo::getElementSizeForOpcode(unsigned Opc) const {
7731   return get(Opc).TSFlags & AArch64::ElementSizeMask;
7732 }
7733 
7734 bool AArch64InstrInfo::isPTestLikeOpcode(unsigned Opc) const {
7735   return get(Opc).TSFlags & AArch64::InstrFlagIsPTestLike;
7736 }
7737 
7738 bool AArch64InstrInfo::isWhileOpcode(unsigned Opc) const {
7739   return get(Opc).TSFlags & AArch64::InstrFlagIsWhile;
7740 }
7741 
7742 unsigned int
7743 AArch64InstrInfo::getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
7744   return OptLevel >= CodeGenOpt::Aggressive ? 6 : 2;
7745 }
7746 
7747 unsigned llvm::getBLRCallOpcode(const MachineFunction &MF) {
7748   if (MF.getSubtarget<AArch64Subtarget>().hardenSlsBlr())
7749     return AArch64::BLRNoIP;
7750   else
7751     return AArch64::BLR;
7752 }
7753 
7754 #define GET_INSTRINFO_HELPERS
7755 #define GET_INSTRMAP_INFO
7756 #include "AArch64GenInstrInfo.inc"
7757