1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of TargetFrameLowering class. 10 // 11 // On AArch64, stack frames are structured as follows: 12 // 13 // The stack grows downward. 14 // 15 // All of the individual frame areas on the frame below are optional, i.e. it's 16 // possible to create a function so that the particular area isn't present 17 // in the frame. 18 // 19 // At function entry, the "frame" looks as follows: 20 // 21 // | | Higher address 22 // |-----------------------------------| 23 // | | 24 // | arguments passed on the stack | 25 // | | 26 // |-----------------------------------| <- sp 27 // | | Lower address 28 // 29 // 30 // After the prologue has run, the frame has the following general structure. 31 // Note that this doesn't depict the case where a red-zone is used. Also, 32 // technically the last frame area (VLAs) doesn't get created until in the 33 // main function body, after the prologue is run. However, it's depicted here 34 // for completeness. 35 // 36 // | | Higher address 37 // |-----------------------------------| 38 // | | 39 // | arguments passed on the stack | 40 // | | 41 // |-----------------------------------| 42 // | | 43 // | (Win64 only) varargs from reg | 44 // | | 45 // |-----------------------------------| 46 // | | 47 // | callee-saved gpr registers | <--. 48 // | | | On Darwin platforms these 49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, 50 // | | | (frame record first) 51 // | prev_fp, prev_lr | <--' 52 // | (a.k.a. "frame record") | 53 // |-----------------------------------| <- fp(=x29) 54 // | | 55 // | callee-saved fp/simd/SVE regs | 56 // | | 57 // |-----------------------------------| 58 // | | 59 // | SVE stack objects | 60 // | | 61 // |-----------------------------------| 62 // |.empty.space.to.make.part.below....| 63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 64 // |.the.standard.16-byte.alignment....| compile time; if present) 65 // |-----------------------------------| 66 // | | 67 // | local variables of fixed size | 68 // | including spill slots | 69 // |-----------------------------------| <- bp(not defined by ABI, 70 // |.variable-sized.local.variables....| LLVM chooses X19) 71 // |.(VLAs)............................| (size of this area is unknown at 72 // |...................................| compile time) 73 // |-----------------------------------| <- sp 74 // | | Lower address 75 // 76 // 77 // To access the data in a frame, at-compile time, a constant offset must be 78 // computable from one of the pointers (fp, bp, sp) to access it. The size 79 // of the areas with a dotted background cannot be computed at compile-time 80 // if they are present, making it required to have all three of fp, bp and 81 // sp to be set up to be able to access all contents in the frame areas, 82 // assuming all of the frame areas are non-empty. 83 // 84 // For most functions, some of the frame areas are empty. For those functions, 85 // it may not be necessary to set up fp or bp: 86 // * A base pointer is definitely needed when there are both VLAs and local 87 // variables with more-than-default alignment requirements. 88 // * A frame pointer is definitely needed when there are local variables with 89 // more-than-default alignment requirements. 90 // 91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the 92 // callee-saved area, since the unwind encoding does not allow for encoding 93 // this dynamically and existing tools depend on this layout. For other 94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved 95 // area to allow SVE stack objects (allocated directly below the callee-saves, 96 // if available) to be accessed directly from the framepointer. 97 // The SVE spill/fill instructions have VL-scaled addressing modes such 98 // as: 99 // ldr z8, [fp, #-7 mul vl] 100 // For SVE the size of the vector length (VL) is not known at compile-time, so 101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this 102 // layout, we don't need to add an unscaled offset to the framepointer before 103 // accessing the SVE object in the frame. 104 // 105 // In some cases when a base pointer is not strictly needed, it is generated 106 // anyway when offsets from the frame pointer to access local variables become 107 // so large that the offset can't be encoded in the immediate fields of loads 108 // or stores. 109 // 110 // FIXME: also explain the redzone concept. 111 // FIXME: also explain the concept of reserved call frames. 112 // 113 //===----------------------------------------------------------------------===// 114 115 #include "AArch64FrameLowering.h" 116 #include "AArch64InstrInfo.h" 117 #include "AArch64MachineFunctionInfo.h" 118 #include "AArch64RegisterInfo.h" 119 #include "AArch64StackOffset.h" 120 #include "AArch64Subtarget.h" 121 #include "AArch64TargetMachine.h" 122 #include "MCTargetDesc/AArch64AddressingModes.h" 123 #include "llvm/ADT/ScopeExit.h" 124 #include "llvm/ADT/SmallVector.h" 125 #include "llvm/ADT/Statistic.h" 126 #include "llvm/CodeGen/LivePhysRegs.h" 127 #include "llvm/CodeGen/MachineBasicBlock.h" 128 #include "llvm/CodeGen/MachineFrameInfo.h" 129 #include "llvm/CodeGen/MachineFunction.h" 130 #include "llvm/CodeGen/MachineInstr.h" 131 #include "llvm/CodeGen/MachineInstrBuilder.h" 132 #include "llvm/CodeGen/MachineMemOperand.h" 133 #include "llvm/CodeGen/MachineModuleInfo.h" 134 #include "llvm/CodeGen/MachineOperand.h" 135 #include "llvm/CodeGen/MachineRegisterInfo.h" 136 #include "llvm/CodeGen/RegisterScavenging.h" 137 #include "llvm/CodeGen/TargetInstrInfo.h" 138 #include "llvm/CodeGen/TargetRegisterInfo.h" 139 #include "llvm/CodeGen/TargetSubtargetInfo.h" 140 #include "llvm/CodeGen/WinEHFuncInfo.h" 141 #include "llvm/IR/Attributes.h" 142 #include "llvm/IR/CallingConv.h" 143 #include "llvm/IR/DataLayout.h" 144 #include "llvm/IR/DebugLoc.h" 145 #include "llvm/IR/Function.h" 146 #include "llvm/MC/MCAsmInfo.h" 147 #include "llvm/MC/MCDwarf.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Debug.h" 150 #include "llvm/Support/ErrorHandling.h" 151 #include "llvm/Support/MathExtras.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include "llvm/Target/TargetOptions.h" 155 #include <cassert> 156 #include <cstdint> 157 #include <iterator> 158 #include <vector> 159 160 using namespace llvm; 161 162 #define DEBUG_TYPE "frame-info" 163 164 static cl::opt<bool> EnableRedZone("aarch64-redzone", 165 cl::desc("enable use of redzone on AArch64"), 166 cl::init(false), cl::Hidden); 167 168 static cl::opt<bool> 169 ReverseCSRRestoreSeq("reverse-csr-restore-seq", 170 cl::desc("reverse the CSR restore sequence"), 171 cl::init(false), cl::Hidden); 172 173 static cl::opt<bool> StackTaggingMergeSetTag( 174 "stack-tagging-merge-settag", 175 cl::desc("merge settag instruction in function epilog"), cl::init(true), 176 cl::Hidden); 177 178 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); 179 180 /// This is the biggest offset to the stack pointer we can encode in aarch64 181 /// instructions (without using a separate calculation and a temp register). 182 /// Note that the exception here are vector stores/loads which cannot encode any 183 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). 184 static const unsigned DefaultSafeSPDisplacement = 255; 185 186 /// Look at each instruction that references stack frames and return the stack 187 /// size limit beyond which some of these instructions will require a scratch 188 /// register during their expansion later. 189 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { 190 // FIXME: For now, just conservatively guestimate based on unscaled indexing 191 // range. We'll end up allocating an unnecessary spill slot a lot, but 192 // realistically that's not a big deal at this stage of the game. 193 for (MachineBasicBlock &MBB : MF) { 194 for (MachineInstr &MI : MBB) { 195 if (MI.isDebugInstr() || MI.isPseudo() || 196 MI.getOpcode() == AArch64::ADDXri || 197 MI.getOpcode() == AArch64::ADDSXri) 198 continue; 199 200 for (const MachineOperand &MO : MI.operands()) { 201 if (!MO.isFI()) 202 continue; 203 204 StackOffset Offset; 205 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == 206 AArch64FrameOffsetCannotUpdate) 207 return 0; 208 } 209 } 210 } 211 return DefaultSafeSPDisplacement; 212 } 213 214 TargetStackID::Value 215 AArch64FrameLowering::getStackIDForScalableVectors() const { 216 return TargetStackID::SVEVector; 217 } 218 219 /// Returns the size of the fixed object area (allocated next to sp on entry) 220 /// On Win64 this may include a var args area and an UnwindHelp object for EH. 221 static unsigned getFixedObjectSize(const MachineFunction &MF, 222 const AArch64FunctionInfo *AFI, bool IsWin64, 223 bool IsFunclet) { 224 if (!IsWin64 || IsFunclet) { 225 // Only Win64 uses fixed objects, and then only for the function (not 226 // funclets) 227 return 0; 228 } else { 229 // Var args are stored here in the primary function. 230 const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); 231 // To support EH funclets we allocate an UnwindHelp object 232 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); 233 return alignTo(VarArgsArea + UnwindHelpObject, 16); 234 } 235 } 236 237 /// Returns the size of the entire SVE stackframe (calleesaves + spills). 238 static StackOffset getSVEStackSize(const MachineFunction &MF) { 239 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 240 return {(int64_t)AFI->getStackSizeSVE(), MVT::nxv1i8}; 241 } 242 243 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { 244 if (!EnableRedZone) 245 return false; 246 // Don't use the red zone if the function explicitly asks us not to. 247 // This is typically used for kernel code. 248 if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone)) 249 return false; 250 251 const MachineFrameInfo &MFI = MF.getFrameInfo(); 252 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 253 uint64_t NumBytes = AFI->getLocalStackSize(); 254 255 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 || 256 getSVEStackSize(MF)); 257 } 258 259 /// hasFP - Return true if the specified function should have a dedicated frame 260 /// pointer register. 261 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { 262 const MachineFrameInfo &MFI = MF.getFrameInfo(); 263 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 264 // Win64 EH requires a frame pointer if funclets are present, as the locals 265 // are accessed off the frame pointer in both the parent function and the 266 // funclets. 267 if (MF.hasEHFunclets()) 268 return true; 269 // Retain behavior of always omitting the FP for leaf functions when possible. 270 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 271 return true; 272 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || 273 MFI.hasStackMap() || MFI.hasPatchPoint() || 274 RegInfo->needsStackRealignment(MF)) 275 return true; 276 // With large callframes around we may need to use FP to access the scavenging 277 // emergency spillslot. 278 // 279 // Unfortunately some calls to hasFP() like machine verifier -> 280 // getReservedReg() -> hasFP in the middle of global isel are too early 281 // to know the max call frame size. Hopefully conservatively returning "true" 282 // in those cases is fine. 283 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. 284 if (!MFI.isMaxCallFrameSizeComputed() || 285 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) 286 return true; 287 288 return false; 289 } 290 291 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 292 /// not required, we reserve argument space for call sites in the function 293 /// immediately on entry to the current function. This eliminates the need for 294 /// add/sub sp brackets around call sites. Returns true if the call frame is 295 /// included as part of the stack frame. 296 bool 297 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 298 return !MF.getFrameInfo().hasVarSizedObjects(); 299 } 300 301 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( 302 MachineFunction &MF, MachineBasicBlock &MBB, 303 MachineBasicBlock::iterator I) const { 304 const AArch64InstrInfo *TII = 305 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); 306 DebugLoc DL = I->getDebugLoc(); 307 unsigned Opc = I->getOpcode(); 308 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); 309 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 310 311 if (!hasReservedCallFrame(MF)) { 312 int64_t Amount = I->getOperand(0).getImm(); 313 Amount = alignTo(Amount, getStackAlign()); 314 if (!IsDestroy) 315 Amount = -Amount; 316 317 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it 318 // doesn't have to pop anything), then the first operand will be zero too so 319 // this adjustment is a no-op. 320 if (CalleePopAmount == 0) { 321 // FIXME: in-function stack adjustment for calls is limited to 24-bits 322 // because there's no guaranteed temporary register available. 323 // 324 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. 325 // 1) For offset <= 12-bit, we use LSL #0 326 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses 327 // LSL #0, and the other uses LSL #12. 328 // 329 // Most call frames will be allocated at the start of a function so 330 // this is OK, but it is a limitation that needs dealing with. 331 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); 332 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, {Amount, MVT::i8}, 333 TII); 334 } 335 } else if (CalleePopAmount != 0) { 336 // If the calling convention demands that the callee pops arguments from the 337 // stack, we want to add it back if we have a reserved call frame. 338 assert(CalleePopAmount < 0xffffff && "call frame too large"); 339 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 340 {-(int64_t)CalleePopAmount, MVT::i8}, TII); 341 } 342 return MBB.erase(I); 343 } 344 345 static bool ShouldSignReturnAddress(MachineFunction &MF) { 346 // The function should be signed in the following situations: 347 // - sign-return-address=all 348 // - sign-return-address=non-leaf and the functions spills the LR 349 350 const Function &F = MF.getFunction(); 351 if (!F.hasFnAttribute("sign-return-address")) 352 return false; 353 354 StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString(); 355 if (Scope.equals("none")) 356 return false; 357 358 if (Scope.equals("all")) 359 return true; 360 361 assert(Scope.equals("non-leaf") && "Expected all, none or non-leaf"); 362 363 for (const auto &Info : MF.getFrameInfo().getCalleeSavedInfo()) 364 if (Info.getReg() == AArch64::LR) 365 return true; 366 367 return false; 368 } 369 370 void AArch64FrameLowering::emitCalleeSavedFrameMoves( 371 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 372 MachineFunction &MF = *MBB.getParent(); 373 MachineFrameInfo &MFI = MF.getFrameInfo(); 374 const TargetSubtargetInfo &STI = MF.getSubtarget(); 375 const MCRegisterInfo *MRI = STI.getRegisterInfo(); 376 const TargetInstrInfo *TII = STI.getInstrInfo(); 377 DebugLoc DL = MBB.findDebugLoc(MBBI); 378 379 // Add callee saved registers to move list. 380 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 381 if (CSI.empty()) 382 return; 383 384 for (const auto &Info : CSI) { 385 unsigned Reg = Info.getReg(); 386 int64_t Offset = 387 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea(); 388 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 389 unsigned CFIIndex = MF.addFrameInst( 390 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 391 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 392 .addCFIIndex(CFIIndex) 393 .setMIFlags(MachineInstr::FrameSetup); 394 } 395 } 396 397 // Find a scratch register that we can use at the start of the prologue to 398 // re-align the stack pointer. We avoid using callee-save registers since they 399 // may appear to be free when this is called from canUseAsPrologue (during 400 // shrink wrapping), but then no longer be free when this is called from 401 // emitPrologue. 402 // 403 // FIXME: This is a bit conservative, since in the above case we could use one 404 // of the callee-save registers as a scratch temp to re-align the stack pointer, 405 // but we would then have to make sure that we were in fact saving at least one 406 // callee-save register in the prologue, which is additional complexity that 407 // doesn't seem worth the benefit. 408 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { 409 MachineFunction *MF = MBB->getParent(); 410 411 // If MBB is an entry block, use X9 as the scratch register 412 if (&MF->front() == MBB) 413 return AArch64::X9; 414 415 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 416 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 417 LivePhysRegs LiveRegs(TRI); 418 LiveRegs.addLiveIns(*MBB); 419 420 // Mark callee saved registers as used so we will not choose them. 421 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); 422 for (unsigned i = 0; CSRegs[i]; ++i) 423 LiveRegs.addReg(CSRegs[i]); 424 425 // Prefer X9 since it was historically used for the prologue scratch reg. 426 const MachineRegisterInfo &MRI = MF->getRegInfo(); 427 if (LiveRegs.available(MRI, AArch64::X9)) 428 return AArch64::X9; 429 430 for (unsigned Reg : AArch64::GPR64RegClass) { 431 if (LiveRegs.available(MRI, Reg)) 432 return Reg; 433 } 434 return AArch64::NoRegister; 435 } 436 437 bool AArch64FrameLowering::canUseAsPrologue( 438 const MachineBasicBlock &MBB) const { 439 const MachineFunction *MF = MBB.getParent(); 440 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 441 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 442 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 443 444 // Don't need a scratch register if we're not going to re-align the stack. 445 if (!RegInfo->needsStackRealignment(*MF)) 446 return true; 447 // Otherwise, we can use any block as long as it has a scratch register 448 // available. 449 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; 450 } 451 452 static bool windowsRequiresStackProbe(MachineFunction &MF, 453 uint64_t StackSizeInBytes) { 454 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 455 if (!Subtarget.isTargetWindows()) 456 return false; 457 const Function &F = MF.getFunction(); 458 // TODO: When implementing stack protectors, take that into account 459 // for the probe threshold. 460 unsigned StackProbeSize = 4096; 461 if (F.hasFnAttribute("stack-probe-size")) 462 F.getFnAttribute("stack-probe-size") 463 .getValueAsString() 464 .getAsInteger(0, StackProbeSize); 465 return (StackSizeInBytes >= StackProbeSize) && 466 !F.hasFnAttribute("no-stack-arg-probe"); 467 } 468 469 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( 470 MachineFunction &MF, uint64_t StackBumpBytes) const { 471 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 472 const MachineFrameInfo &MFI = MF.getFrameInfo(); 473 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 474 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 475 476 if (AFI->getLocalStackSize() == 0) 477 return false; 478 479 // 512 is the maximum immediate for stp/ldp that will be used for 480 // callee-save save/restores 481 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) 482 return false; 483 484 if (MFI.hasVarSizedObjects()) 485 return false; 486 487 if (RegInfo->needsStackRealignment(MF)) 488 return false; 489 490 // This isn't strictly necessary, but it simplifies things a bit since the 491 // current RedZone handling code assumes the SP is adjusted by the 492 // callee-save save/restore code. 493 if (canUseRedZone(MF)) 494 return false; 495 496 // When there is an SVE area on the stack, always allocate the 497 // callee-saves and spills/locals separately. 498 if (getSVEStackSize(MF)) 499 return false; 500 501 return true; 502 } 503 504 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue( 505 MachineBasicBlock &MBB, unsigned StackBumpBytes) const { 506 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes)) 507 return false; 508 509 if (MBB.empty()) 510 return true; 511 512 // Disable combined SP bump if the last instruction is an MTE tag store. It 513 // is almost always better to merge SP adjustment into those instructions. 514 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator(); 515 MachineBasicBlock::iterator Begin = MBB.begin(); 516 while (LastI != Begin) { 517 --LastI; 518 if (LastI->isTransient()) 519 continue; 520 if (!LastI->getFlag(MachineInstr::FrameDestroy)) 521 break; 522 } 523 switch (LastI->getOpcode()) { 524 case AArch64::STGloop: 525 case AArch64::STZGloop: 526 case AArch64::STGOffset: 527 case AArch64::STZGOffset: 528 case AArch64::ST2GOffset: 529 case AArch64::STZ2GOffset: 530 return false; 531 default: 532 return true; 533 } 534 llvm_unreachable("unreachable"); 535 } 536 537 // Given a load or a store instruction, generate an appropriate unwinding SEH 538 // code on Windows. 539 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, 540 const TargetInstrInfo &TII, 541 MachineInstr::MIFlag Flag) { 542 unsigned Opc = MBBI->getOpcode(); 543 MachineBasicBlock *MBB = MBBI->getParent(); 544 MachineFunction &MF = *MBB->getParent(); 545 DebugLoc DL = MBBI->getDebugLoc(); 546 unsigned ImmIdx = MBBI->getNumOperands() - 1; 547 int Imm = MBBI->getOperand(ImmIdx).getImm(); 548 MachineInstrBuilder MIB; 549 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 550 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 551 552 switch (Opc) { 553 default: 554 llvm_unreachable("No SEH Opcode for this instruction"); 555 case AArch64::LDPDpost: 556 Imm = -Imm; 557 LLVM_FALLTHROUGH; 558 case AArch64::STPDpre: { 559 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 560 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 561 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) 562 .addImm(Reg0) 563 .addImm(Reg1) 564 .addImm(Imm * 8) 565 .setMIFlag(Flag); 566 break; 567 } 568 case AArch64::LDPXpost: 569 Imm = -Imm; 570 LLVM_FALLTHROUGH; 571 case AArch64::STPXpre: { 572 Register Reg0 = MBBI->getOperand(1).getReg(); 573 Register Reg1 = MBBI->getOperand(2).getReg(); 574 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 575 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) 576 .addImm(Imm * 8) 577 .setMIFlag(Flag); 578 else 579 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) 580 .addImm(RegInfo->getSEHRegNum(Reg0)) 581 .addImm(RegInfo->getSEHRegNum(Reg1)) 582 .addImm(Imm * 8) 583 .setMIFlag(Flag); 584 break; 585 } 586 case AArch64::LDRDpost: 587 Imm = -Imm; 588 LLVM_FALLTHROUGH; 589 case AArch64::STRDpre: { 590 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 591 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) 592 .addImm(Reg) 593 .addImm(Imm) 594 .setMIFlag(Flag); 595 break; 596 } 597 case AArch64::LDRXpost: 598 Imm = -Imm; 599 LLVM_FALLTHROUGH; 600 case AArch64::STRXpre: { 601 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 602 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) 603 .addImm(Reg) 604 .addImm(Imm) 605 .setMIFlag(Flag); 606 break; 607 } 608 case AArch64::STPDi: 609 case AArch64::LDPDi: { 610 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 611 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 612 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) 613 .addImm(Reg0) 614 .addImm(Reg1) 615 .addImm(Imm * 8) 616 .setMIFlag(Flag); 617 break; 618 } 619 case AArch64::STPXi: 620 case AArch64::LDPXi: { 621 Register Reg0 = MBBI->getOperand(0).getReg(); 622 Register Reg1 = MBBI->getOperand(1).getReg(); 623 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 624 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) 625 .addImm(Imm * 8) 626 .setMIFlag(Flag); 627 else 628 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) 629 .addImm(RegInfo->getSEHRegNum(Reg0)) 630 .addImm(RegInfo->getSEHRegNum(Reg1)) 631 .addImm(Imm * 8) 632 .setMIFlag(Flag); 633 break; 634 } 635 case AArch64::STRXui: 636 case AArch64::LDRXui: { 637 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 638 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) 639 .addImm(Reg) 640 .addImm(Imm * 8) 641 .setMIFlag(Flag); 642 break; 643 } 644 case AArch64::STRDui: 645 case AArch64::LDRDui: { 646 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 647 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) 648 .addImm(Reg) 649 .addImm(Imm * 8) 650 .setMIFlag(Flag); 651 break; 652 } 653 } 654 auto I = MBB->insertAfter(MBBI, MIB); 655 return I; 656 } 657 658 // Fix up the SEH opcode associated with the save/restore instruction. 659 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, 660 unsigned LocalStackSize) { 661 MachineOperand *ImmOpnd = nullptr; 662 unsigned ImmIdx = MBBI->getNumOperands() - 1; 663 switch (MBBI->getOpcode()) { 664 default: 665 llvm_unreachable("Fix the offset in the SEH instruction"); 666 case AArch64::SEH_SaveFPLR: 667 case AArch64::SEH_SaveRegP: 668 case AArch64::SEH_SaveReg: 669 case AArch64::SEH_SaveFRegP: 670 case AArch64::SEH_SaveFReg: 671 ImmOpnd = &MBBI->getOperand(ImmIdx); 672 break; 673 } 674 if (ImmOpnd) 675 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); 676 } 677 678 // Convert callee-save register save/restore instruction to do stack pointer 679 // decrement/increment to allocate/deallocate the callee-save stack area by 680 // converting store/load to use pre/post increment version. 681 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( 682 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 683 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, 684 bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) { 685 // Ignore instructions that do not operate on SP, i.e. shadow call stack 686 // instructions and associated CFI instruction. 687 while (MBBI->getOpcode() == AArch64::STRXpost || 688 MBBI->getOpcode() == AArch64::LDRXpre || 689 MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) { 690 if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION) 691 assert(MBBI->getOperand(0).getReg() != AArch64::SP); 692 ++MBBI; 693 } 694 unsigned NewOpc; 695 int Scale = 1; 696 switch (MBBI->getOpcode()) { 697 default: 698 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 699 case AArch64::STPXi: 700 NewOpc = AArch64::STPXpre; 701 Scale = 8; 702 break; 703 case AArch64::STPDi: 704 NewOpc = AArch64::STPDpre; 705 Scale = 8; 706 break; 707 case AArch64::STPQi: 708 NewOpc = AArch64::STPQpre; 709 Scale = 16; 710 break; 711 case AArch64::STRXui: 712 NewOpc = AArch64::STRXpre; 713 break; 714 case AArch64::STRDui: 715 NewOpc = AArch64::STRDpre; 716 break; 717 case AArch64::STRQui: 718 NewOpc = AArch64::STRQpre; 719 break; 720 case AArch64::LDPXi: 721 NewOpc = AArch64::LDPXpost; 722 Scale = 8; 723 break; 724 case AArch64::LDPDi: 725 NewOpc = AArch64::LDPDpost; 726 Scale = 8; 727 break; 728 case AArch64::LDPQi: 729 NewOpc = AArch64::LDPQpost; 730 Scale = 16; 731 break; 732 case AArch64::LDRXui: 733 NewOpc = AArch64::LDRXpost; 734 break; 735 case AArch64::LDRDui: 736 NewOpc = AArch64::LDRDpost; 737 break; 738 case AArch64::LDRQui: 739 NewOpc = AArch64::LDRQpost; 740 break; 741 } 742 // Get rid of the SEH code associated with the old instruction. 743 if (NeedsWinCFI) { 744 auto SEH = std::next(MBBI); 745 if (AArch64InstrInfo::isSEHInstruction(*SEH)) 746 SEH->eraseFromParent(); 747 } 748 749 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 750 MIB.addReg(AArch64::SP, RegState::Define); 751 752 // Copy all operands other than the immediate offset. 753 unsigned OpndIdx = 0; 754 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; 755 ++OpndIdx) 756 MIB.add(MBBI->getOperand(OpndIdx)); 757 758 assert(MBBI->getOperand(OpndIdx).getImm() == 0 && 759 "Unexpected immediate offset in first/last callee-save save/restore " 760 "instruction!"); 761 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && 762 "Unexpected base register in callee-save save/restore instruction!"); 763 assert(CSStackSizeInc % Scale == 0); 764 MIB.addImm(CSStackSizeInc / Scale); 765 766 MIB.setMIFlags(MBBI->getFlags()); 767 MIB.setMemRefs(MBBI->memoperands()); 768 769 // Generate a new SEH code that corresponds to the new instruction. 770 if (NeedsWinCFI) { 771 *HasWinCFI = true; 772 InsertSEH(*MIB, *TII, 773 InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy); 774 } 775 776 return std::prev(MBB.erase(MBBI)); 777 } 778 779 // Fixup callee-save register save/restore instructions to take into account 780 // combined SP bump by adding the local stack size to the stack offsets. 781 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, 782 uint64_t LocalStackSize, 783 bool NeedsWinCFI, 784 bool *HasWinCFI) { 785 if (AArch64InstrInfo::isSEHInstruction(MI)) 786 return; 787 788 unsigned Opc = MI.getOpcode(); 789 790 // Ignore instructions that do not operate on SP, i.e. shadow call stack 791 // instructions and associated CFI instruction. 792 if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre || 793 Opc == AArch64::CFI_INSTRUCTION) { 794 if (Opc != AArch64::CFI_INSTRUCTION) 795 assert(MI.getOperand(0).getReg() != AArch64::SP); 796 return; 797 } 798 799 unsigned Scale; 800 switch (Opc) { 801 case AArch64::STPXi: 802 case AArch64::STRXui: 803 case AArch64::STPDi: 804 case AArch64::STRDui: 805 case AArch64::LDPXi: 806 case AArch64::LDRXui: 807 case AArch64::LDPDi: 808 case AArch64::LDRDui: 809 Scale = 8; 810 break; 811 case AArch64::STPQi: 812 case AArch64::STRQui: 813 case AArch64::LDPQi: 814 case AArch64::LDRQui: 815 Scale = 16; 816 break; 817 default: 818 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 819 } 820 821 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; 822 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && 823 "Unexpected base register in callee-save save/restore instruction!"); 824 // Last operand is immediate offset that needs fixing. 825 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); 826 // All generated opcodes have scaled offsets. 827 assert(LocalStackSize % Scale == 0); 828 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); 829 830 if (NeedsWinCFI) { 831 *HasWinCFI = true; 832 auto MBBI = std::next(MachineBasicBlock::iterator(MI)); 833 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); 834 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && 835 "Expecting a SEH instruction"); 836 fixupSEHOpcode(MBBI, LocalStackSize); 837 } 838 } 839 840 static void adaptForLdStOpt(MachineBasicBlock &MBB, 841 MachineBasicBlock::iterator FirstSPPopI, 842 MachineBasicBlock::iterator LastPopI) { 843 // Sometimes (when we restore in the same order as we save), we can end up 844 // with code like this: 845 // 846 // ldp x26, x25, [sp] 847 // ldp x24, x23, [sp, #16] 848 // ldp x22, x21, [sp, #32] 849 // ldp x20, x19, [sp, #48] 850 // add sp, sp, #64 851 // 852 // In this case, it is always better to put the first ldp at the end, so 853 // that the load-store optimizer can run and merge the ldp and the add into 854 // a post-index ldp. 855 // If we managed to grab the first pop instruction, move it to the end. 856 if (ReverseCSRRestoreSeq) 857 MBB.splice(FirstSPPopI, &MBB, LastPopI); 858 // We should end up with something like this now: 859 // 860 // ldp x24, x23, [sp, #16] 861 // ldp x22, x21, [sp, #32] 862 // ldp x20, x19, [sp, #48] 863 // ldp x26, x25, [sp] 864 // add sp, sp, #64 865 // 866 // and the load-store optimizer can merge the last two instructions into: 867 // 868 // ldp x26, x25, [sp], #64 869 // 870 } 871 872 static bool ShouldSignWithAKey(MachineFunction &MF) { 873 const Function &F = MF.getFunction(); 874 if (!F.hasFnAttribute("sign-return-address-key")) 875 return true; 876 877 const StringRef Key = 878 F.getFnAttribute("sign-return-address-key").getValueAsString(); 879 assert(Key.equals_lower("a_key") || Key.equals_lower("b_key")); 880 return Key.equals_lower("a_key"); 881 } 882 883 static bool needsWinCFI(const MachineFunction &MF) { 884 const Function &F = MF.getFunction(); 885 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 886 F.needsUnwindTableEntry(); 887 } 888 889 static bool isTargetDarwin(const MachineFunction &MF) { 890 return MF.getSubtarget<AArch64Subtarget>().isTargetDarwin(); 891 } 892 893 static bool isTargetWindows(const MachineFunction &MF) { 894 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows(); 895 } 896 897 // Convenience function to determine whether I is an SVE callee save. 898 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { 899 switch (I->getOpcode()) { 900 default: 901 return false; 902 case AArch64::STR_ZXI: 903 case AArch64::STR_PXI: 904 case AArch64::LDR_ZXI: 905 case AArch64::LDR_PXI: 906 return I->getFlag(MachineInstr::FrameSetup) || 907 I->getFlag(MachineInstr::FrameDestroy); 908 } 909 } 910 911 void AArch64FrameLowering::emitPrologue(MachineFunction &MF, 912 MachineBasicBlock &MBB) const { 913 MachineBasicBlock::iterator MBBI = MBB.begin(); 914 const MachineFrameInfo &MFI = MF.getFrameInfo(); 915 const Function &F = MF.getFunction(); 916 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 917 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 918 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 919 MachineModuleInfo &MMI = MF.getMMI(); 920 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 921 bool needsFrameMoves = 922 MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 923 bool HasFP = hasFP(MF); 924 bool NeedsWinCFI = needsWinCFI(MF); 925 bool HasWinCFI = false; 926 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); 927 928 bool IsFunclet = MBB.isEHFuncletEntry(); 929 930 // At this point, we're going to decide whether or not the function uses a 931 // redzone. In most cases, the function doesn't have a redzone so let's 932 // assume that's false and set it to true in the case that there's a redzone. 933 AFI->setHasRedZone(false); 934 935 // Debug location must be unknown since the first debug location is used 936 // to determine the end of the prologue. 937 DebugLoc DL; 938 939 if (ShouldSignReturnAddress(MF)) { 940 if (ShouldSignWithAKey(MF)) 941 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP)) 942 .setMIFlag(MachineInstr::FrameSetup); 943 else { 944 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY)) 945 .setMIFlag(MachineInstr::FrameSetup); 946 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP)) 947 .setMIFlag(MachineInstr::FrameSetup); 948 } 949 950 unsigned CFIIndex = 951 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 952 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 953 .addCFIIndex(CFIIndex) 954 .setMIFlags(MachineInstr::FrameSetup); 955 } 956 957 // All calls are tail calls in GHC calling conv, and functions have no 958 // prologue/epilogue. 959 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 960 return; 961 962 // Set tagged base pointer to the bottom of the stack frame. 963 // Ideally it should match SP value after prologue. 964 AFI->setTaggedBasePointerOffset(MFI.getStackSize()); 965 966 const StackOffset &SVEStackSize = getSVEStackSize(MF); 967 968 // getStackSize() includes all the locals in its size calculation. We don't 969 // include these locals when computing the stack size of a funclet, as they 970 // are allocated in the parent's stack frame and accessed via the frame 971 // pointer from the funclet. We only save the callee saved registers in the 972 // funclet, which are really the callee saved registers of the parent 973 // function, including the funclet. 974 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 975 : MFI.getStackSize(); 976 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { 977 assert(!HasFP && "unexpected function without stack frame but with FP"); 978 assert(!SVEStackSize && 979 "unexpected function without stack frame but with SVE objects"); 980 // All of the stack allocation is for locals. 981 AFI->setLocalStackSize(NumBytes); 982 if (!NumBytes) 983 return; 984 // REDZONE: If the stack size is less than 128 bytes, we don't need 985 // to actually allocate. 986 if (canUseRedZone(MF)) { 987 AFI->setHasRedZone(true); 988 ++NumRedZoneFunctions; 989 } else { 990 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 991 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, 992 false, NeedsWinCFI, &HasWinCFI); 993 if (!NeedsWinCFI && needsFrameMoves) { 994 // Label used to tie together the PROLOG_LABEL and the MachineMoves. 995 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 996 // Encode the stack size of the leaf function. 997 unsigned CFIIndex = MF.addFrameInst( 998 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes)); 999 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1000 .addCFIIndex(CFIIndex) 1001 .setMIFlags(MachineInstr::FrameSetup); 1002 } 1003 } 1004 1005 if (NeedsWinCFI) { 1006 HasWinCFI = true; 1007 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1008 .setMIFlag(MachineInstr::FrameSetup); 1009 } 1010 1011 return; 1012 } 1013 1014 bool IsWin64 = 1015 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1016 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1017 1018 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1019 // All of the remaining stack allocations are for locals. 1020 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1021 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 1022 if (CombineSPBump) { 1023 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1024 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1025 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, false, 1026 NeedsWinCFI, &HasWinCFI); 1027 NumBytes = 0; 1028 } else if (PrologueSaveSize != 0) { 1029 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( 1030 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI); 1031 NumBytes -= PrologueSaveSize; 1032 } 1033 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1034 1035 // Move past the saves of the callee-saved registers, fixing up the offsets 1036 // and pre-inc if we decided to combine the callee-save and local stack 1037 // pointer bump above. 1038 MachineBasicBlock::iterator End = MBB.end(); 1039 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && 1040 !IsSVECalleeSave(MBBI)) { 1041 if (CombineSPBump) 1042 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), 1043 NeedsWinCFI, &HasWinCFI); 1044 ++MBBI; 1045 } 1046 1047 // For funclets the FP belongs to the containing function. 1048 if (!IsFunclet && HasFP) { 1049 // Only set up FP if we actually need to. 1050 int64_t FPOffset = isTargetDarwin(MF) ? (AFI->getCalleeSavedStackSize() - 16) : 0; 1051 1052 if (CombineSPBump) 1053 FPOffset += AFI->getLocalStackSize(); 1054 1055 // Issue sub fp, sp, FPOffset or 1056 // mov fp,sp when FPOffset is zero. 1057 // Note: All stores of callee-saved registers are marked as "FrameSetup". 1058 // This code marks the instruction(s) that set the FP also. 1059 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, 1060 {FPOffset, MVT::i8}, TII, MachineInstr::FrameSetup, false, 1061 NeedsWinCFI, &HasWinCFI); 1062 } 1063 1064 if (windowsRequiresStackProbe(MF, NumBytes)) { 1065 uint64_t NumWords = NumBytes >> 4; 1066 if (NeedsWinCFI) { 1067 HasWinCFI = true; 1068 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't 1069 // exceed this amount. We need to move at most 2^24 - 1 into x15. 1070 // This is at most two instructions, MOVZ follwed by MOVK. 1071 // TODO: Fix to use multiple stack alloc unwind codes for stacks 1072 // exceeding 256MB in size. 1073 if (NumBytes >= (1 << 28)) 1074 report_fatal_error("Stack size cannot exceed 256MB for stack " 1075 "unwinding purposes"); 1076 1077 uint32_t LowNumWords = NumWords & 0xFFFF; 1078 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) 1079 .addImm(LowNumWords) 1080 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1081 .setMIFlag(MachineInstr::FrameSetup); 1082 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1083 .setMIFlag(MachineInstr::FrameSetup); 1084 if ((NumWords & 0xFFFF0000) != 0) { 1085 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) 1086 .addReg(AArch64::X15) 1087 .addImm((NumWords & 0xFFFF0000) >> 16) // High half 1088 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) 1089 .setMIFlag(MachineInstr::FrameSetup); 1090 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1091 .setMIFlag(MachineInstr::FrameSetup); 1092 } 1093 } else { 1094 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) 1095 .addImm(NumWords) 1096 .setMIFlags(MachineInstr::FrameSetup); 1097 } 1098 1099 switch (MF.getTarget().getCodeModel()) { 1100 case CodeModel::Tiny: 1101 case CodeModel::Small: 1102 case CodeModel::Medium: 1103 case CodeModel::Kernel: 1104 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) 1105 .addExternalSymbol("__chkstk") 1106 .addReg(AArch64::X15, RegState::Implicit) 1107 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1108 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1109 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1110 .setMIFlags(MachineInstr::FrameSetup); 1111 if (NeedsWinCFI) { 1112 HasWinCFI = true; 1113 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1114 .setMIFlag(MachineInstr::FrameSetup); 1115 } 1116 break; 1117 case CodeModel::Large: 1118 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) 1119 .addReg(AArch64::X16, RegState::Define) 1120 .addExternalSymbol("__chkstk") 1121 .addExternalSymbol("__chkstk") 1122 .setMIFlags(MachineInstr::FrameSetup); 1123 if (NeedsWinCFI) { 1124 HasWinCFI = true; 1125 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1126 .setMIFlag(MachineInstr::FrameSetup); 1127 } 1128 1129 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR)) 1130 .addReg(AArch64::X16, RegState::Kill) 1131 .addReg(AArch64::X15, RegState::Implicit | RegState::Define) 1132 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1133 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1134 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1135 .setMIFlags(MachineInstr::FrameSetup); 1136 if (NeedsWinCFI) { 1137 HasWinCFI = true; 1138 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1139 .setMIFlag(MachineInstr::FrameSetup); 1140 } 1141 break; 1142 } 1143 1144 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) 1145 .addReg(AArch64::SP, RegState::Kill) 1146 .addReg(AArch64::X15, RegState::Kill) 1147 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) 1148 .setMIFlags(MachineInstr::FrameSetup); 1149 if (NeedsWinCFI) { 1150 HasWinCFI = true; 1151 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1152 .addImm(NumBytes) 1153 .setMIFlag(MachineInstr::FrameSetup); 1154 } 1155 NumBytes = 0; 1156 } 1157 1158 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {}; 1159 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; 1160 1161 // Process the SVE callee-saves to determine what space needs to be 1162 // allocated. 1163 if (AFI->getSVECalleeSavedStackSize()) { 1164 // Find callee save instructions in frame. 1165 CalleeSavesBegin = MBBI; 1166 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); 1167 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) 1168 ++MBBI; 1169 CalleeSavesEnd = MBBI; 1170 1171 int64_t OffsetToFirstCalleeSaveFromSP = 1172 MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex()); 1173 StackOffset OffsetToCalleeSavesFromSP = 1174 StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize; 1175 AllocateBefore -= OffsetToCalleeSavesFromSP; 1176 AllocateAfter = SVEStackSize - AllocateBefore; 1177 } 1178 1179 // Allocate space for the callee saves (if any). 1180 emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, 1181 -AllocateBefore, TII, 1182 MachineInstr::FrameSetup); 1183 1184 // Finally allocate remaining SVE stack space. 1185 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP, 1186 -AllocateAfter, TII, 1187 MachineInstr::FrameSetup); 1188 1189 // Allocate space for the rest of the frame. 1190 if (NumBytes) { 1191 // Alignment is required for the parent frame, not the funclet 1192 const bool NeedsRealignment = 1193 !IsFunclet && RegInfo->needsStackRealignment(MF); 1194 unsigned scratchSPReg = AArch64::SP; 1195 1196 if (NeedsRealignment) { 1197 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB); 1198 assert(scratchSPReg != AArch64::NoRegister); 1199 } 1200 1201 // If we're a leaf function, try using the red zone. 1202 if (!canUseRedZone(MF)) 1203 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have 1204 // the correct value here, as NumBytes also includes padding bytes, 1205 // which shouldn't be counted here. 1206 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, 1207 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, 1208 false, NeedsWinCFI, &HasWinCFI); 1209 1210 if (NeedsRealignment) { 1211 const unsigned NrBitsToZero = Log2(MFI.getMaxAlign()); 1212 assert(NrBitsToZero > 1); 1213 assert(scratchSPReg != AArch64::SP); 1214 1215 // SUB X9, SP, NumBytes 1216 // -- X9 is temporary register, so shouldn't contain any live data here, 1217 // -- free to use. This is already produced by emitFrameOffset above. 1218 // AND SP, X9, 0b11111...0000 1219 // The logical immediates have a non-trivial encoding. The following 1220 // formula computes the encoded immediate with all ones but 1221 // NrBitsToZero zero bits as least significant bits. 1222 uint32_t andMaskEncoded = (1 << 12) // = N 1223 | ((64 - NrBitsToZero) << 6) // immr 1224 | ((64 - NrBitsToZero - 1) << 0); // imms 1225 1226 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) 1227 .addReg(scratchSPReg, RegState::Kill) 1228 .addImm(andMaskEncoded); 1229 AFI->setStackRealigned(true); 1230 if (NeedsWinCFI) { 1231 HasWinCFI = true; 1232 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1233 .addImm(NumBytes & andMaskEncoded) 1234 .setMIFlag(MachineInstr::FrameSetup); 1235 } 1236 } 1237 } 1238 1239 // If we need a base pointer, set it up here. It's whatever the value of the 1240 // stack pointer is at this point. Any variable size objects will be allocated 1241 // after this, so we can still use the base pointer to reference locals. 1242 // 1243 // FIXME: Clarify FrameSetup flags here. 1244 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is 1245 // needed. 1246 // For funclets the BP belongs to the containing function. 1247 if (!IsFunclet && RegInfo->hasBasePointer(MF)) { 1248 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, 1249 false); 1250 if (NeedsWinCFI) { 1251 HasWinCFI = true; 1252 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1253 .setMIFlag(MachineInstr::FrameSetup); 1254 } 1255 } 1256 1257 // The very last FrameSetup instruction indicates the end of prologue. Emit a 1258 // SEH opcode indicating the prologue end. 1259 if (NeedsWinCFI && HasWinCFI) { 1260 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1261 .setMIFlag(MachineInstr::FrameSetup); 1262 } 1263 1264 // SEH funclets are passed the frame pointer in X1. If the parent 1265 // function uses the base register, then the base register is used 1266 // directly, and is not retrieved from X1. 1267 if (IsFunclet && F.hasPersonalityFn()) { 1268 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); 1269 if (isAsynchronousEHPersonality(Per)) { 1270 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) 1271 .addReg(AArch64::X1) 1272 .setMIFlag(MachineInstr::FrameSetup); 1273 MBB.addLiveIn(AArch64::X1); 1274 } 1275 } 1276 1277 if (needsFrameMoves) { 1278 const DataLayout &TD = MF.getDataLayout(); 1279 const int StackGrowth = isTargetDarwin(MF) 1280 ? (2 * -TD.getPointerSize(0)) 1281 : -AFI->getCalleeSavedStackSize(); 1282 Register FramePtr = RegInfo->getFrameRegister(MF); 1283 // An example of the prologue: 1284 // 1285 // .globl __foo 1286 // .align 2 1287 // __foo: 1288 // Ltmp0: 1289 // .cfi_startproc 1290 // .cfi_personality 155, ___gxx_personality_v0 1291 // Leh_func_begin: 1292 // .cfi_lsda 16, Lexception33 1293 // 1294 // stp xa,bx, [sp, -#offset]! 1295 // ... 1296 // stp x28, x27, [sp, #offset-32] 1297 // stp fp, lr, [sp, #offset-16] 1298 // add fp, sp, #offset - 16 1299 // sub sp, sp, #1360 1300 // 1301 // The Stack: 1302 // +-------------------------------------------+ 1303 // 10000 | ........ | ........ | ........ | ........ | 1304 // 10004 | ........ | ........ | ........ | ........ | 1305 // +-------------------------------------------+ 1306 // 10008 | ........ | ........ | ........ | ........ | 1307 // 1000c | ........ | ........ | ........ | ........ | 1308 // +===========================================+ 1309 // 10010 | X28 Register | 1310 // 10014 | X28 Register | 1311 // +-------------------------------------------+ 1312 // 10018 | X27 Register | 1313 // 1001c | X27 Register | 1314 // +===========================================+ 1315 // 10020 | Frame Pointer | 1316 // 10024 | Frame Pointer | 1317 // +-------------------------------------------+ 1318 // 10028 | Link Register | 1319 // 1002c | Link Register | 1320 // +===========================================+ 1321 // 10030 | ........ | ........ | ........ | ........ | 1322 // 10034 | ........ | ........ | ........ | ........ | 1323 // +-------------------------------------------+ 1324 // 10038 | ........ | ........ | ........ | ........ | 1325 // 1003c | ........ | ........ | ........ | ........ | 1326 // +-------------------------------------------+ 1327 // 1328 // [sp] = 10030 :: >>initial value<< 1329 // sp = 10020 :: stp fp, lr, [sp, #-16]! 1330 // fp = sp == 10020 :: mov fp, sp 1331 // [sp] == 10020 :: stp x28, x27, [sp, #-16]! 1332 // sp == 10010 :: >>final value<< 1333 // 1334 // The frame pointer (w29) points to address 10020. If we use an offset of 1335 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 1336 // for w27, and -32 for w28: 1337 // 1338 // Ltmp1: 1339 // .cfi_def_cfa w29, 16 1340 // Ltmp2: 1341 // .cfi_offset w30, -8 1342 // Ltmp3: 1343 // .cfi_offset w29, -16 1344 // Ltmp4: 1345 // .cfi_offset w27, -24 1346 // Ltmp5: 1347 // .cfi_offset w28, -32 1348 1349 if (HasFP) { 1350 // Define the current CFA rule to use the provided FP. 1351 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true); 1352 unsigned CFIIndex = MF.addFrameInst( 1353 MCCFIInstruction::cfiDefCfa(nullptr, Reg, FixedObject - StackGrowth)); 1354 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1355 .addCFIIndex(CFIIndex) 1356 .setMIFlags(MachineInstr::FrameSetup); 1357 } else { 1358 // Encode the stack size of the leaf function. 1359 unsigned CFIIndex = MF.addFrameInst( 1360 MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI.getStackSize())); 1361 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1362 .addCFIIndex(CFIIndex) 1363 .setMIFlags(MachineInstr::FrameSetup); 1364 } 1365 1366 // Now emit the moves for whatever callee saved regs we have (including FP, 1367 // LR if those are saved). 1368 emitCalleeSavedFrameMoves(MBB, MBBI); 1369 } 1370 } 1371 1372 static void InsertReturnAddressAuth(MachineFunction &MF, 1373 MachineBasicBlock &MBB) { 1374 if (!ShouldSignReturnAddress(MF)) 1375 return; 1376 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1377 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1378 1379 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1380 DebugLoc DL; 1381 if (MBBI != MBB.end()) 1382 DL = MBBI->getDebugLoc(); 1383 1384 // The AUTIASP instruction assembles to a hint instruction before v8.3a so 1385 // this instruction can safely used for any v8a architecture. 1386 // From v8.3a onwards there are optimised authenticate LR and return 1387 // instructions, namely RETA{A,B}, that can be used instead. 1388 if (Subtarget.hasV8_3aOps() && MBBI != MBB.end() && 1389 MBBI->getOpcode() == AArch64::RET_ReallyLR) { 1390 BuildMI(MBB, MBBI, DL, 1391 TII->get(ShouldSignWithAKey(MF) ? AArch64::RETAA : AArch64::RETAB)) 1392 .copyImplicitOps(*MBBI); 1393 MBB.erase(MBBI); 1394 } else { 1395 BuildMI( 1396 MBB, MBBI, DL, 1397 TII->get(ShouldSignWithAKey(MF) ? AArch64::AUTIASP : AArch64::AUTIBSP)) 1398 .setMIFlag(MachineInstr::FrameDestroy); 1399 } 1400 } 1401 1402 static bool isFuncletReturnInstr(const MachineInstr &MI) { 1403 switch (MI.getOpcode()) { 1404 default: 1405 return false; 1406 case AArch64::CATCHRET: 1407 case AArch64::CLEANUPRET: 1408 return true; 1409 } 1410 } 1411 1412 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, 1413 MachineBasicBlock &MBB) const { 1414 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 1415 MachineFrameInfo &MFI = MF.getFrameInfo(); 1416 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1417 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1418 DebugLoc DL; 1419 bool IsTailCallReturn = false; 1420 bool NeedsWinCFI = needsWinCFI(MF); 1421 bool HasWinCFI = false; 1422 bool IsFunclet = false; 1423 auto WinCFI = make_scope_exit([&]() { 1424 if (!MF.hasWinCFI()) 1425 MF.setHasWinCFI(HasWinCFI); 1426 }); 1427 1428 if (MBB.end() != MBBI) { 1429 DL = MBBI->getDebugLoc(); 1430 unsigned RetOpcode = MBBI->getOpcode(); 1431 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi || 1432 RetOpcode == AArch64::TCRETURNri || 1433 RetOpcode == AArch64::TCRETURNriBTI; 1434 IsFunclet = isFuncletReturnInstr(*MBBI); 1435 } 1436 1437 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1438 : MFI.getStackSize(); 1439 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1440 1441 // All calls are tail calls in GHC calling conv, and functions have no 1442 // prologue/epilogue. 1443 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1444 return; 1445 1446 // Initial and residual are named for consistency with the prologue. Note that 1447 // in the epilogue, the residual adjustment is executed first. 1448 uint64_t ArgumentPopSize = 0; 1449 if (IsTailCallReturn) { 1450 MachineOperand &StackAdjust = MBBI->getOperand(1); 1451 1452 // For a tail-call in a callee-pops-arguments environment, some or all of 1453 // the stack may actually be in use for the call's arguments, this is 1454 // calculated during LowerCall and consumed here... 1455 ArgumentPopSize = StackAdjust.getImm(); 1456 } else { 1457 // ... otherwise the amount to pop is *all* of the argument space, 1458 // conveniently stored in the MachineFunctionInfo by 1459 // LowerFormalArguments. This will, of course, be zero for the C calling 1460 // convention. 1461 ArgumentPopSize = AFI->getArgumentStackToRestore(); 1462 } 1463 1464 // The stack frame should be like below, 1465 // 1466 // ---------------------- --- 1467 // | | | 1468 // | BytesInStackArgArea| CalleeArgStackSize 1469 // | (NumReusableBytes) | (of tail call) 1470 // | | --- 1471 // | | | 1472 // ---------------------| --- | 1473 // | | | | 1474 // | CalleeSavedReg | | | 1475 // | (CalleeSavedStackSize)| | | 1476 // | | | | 1477 // ---------------------| | NumBytes 1478 // | | StackSize (StackAdjustUp) 1479 // | LocalStackSize | | | 1480 // | (covering callee | | | 1481 // | args) | | | 1482 // | | | | 1483 // ---------------------- --- --- 1484 // 1485 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize 1486 // = StackSize + ArgumentPopSize 1487 // 1488 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps 1489 // it as the 2nd argument of AArch64ISD::TC_RETURN. 1490 1491 auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); }); 1492 1493 bool IsWin64 = 1494 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1495 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1496 1497 uint64_t AfterCSRPopSize = ArgumentPopSize; 1498 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1499 // We cannot rely on the local stack size set in emitPrologue if the function 1500 // has funclets, as funclets have different local stack size requirements, and 1501 // the current value set in emitPrologue may be that of the containing 1502 // function. 1503 if (MF.hasEHFunclets()) 1504 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1505 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes); 1506 // Assume we can't combine the last pop with the sp restore. 1507 1508 if (!CombineSPBump && PrologueSaveSize != 0) { 1509 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); 1510 while (AArch64InstrInfo::isSEHInstruction(*Pop)) 1511 Pop = std::prev(Pop); 1512 // Converting the last ldp to a post-index ldp is valid only if the last 1513 // ldp's offset is 0. 1514 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); 1515 // If the offset is 0, convert it to a post-index ldp. 1516 if (OffsetOp.getImm() == 0) 1517 convertCalleeSaveRestoreToSPPrePostIncDec( 1518 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false); 1519 else { 1520 // If not, make sure to emit an add after the last ldp. 1521 // We're doing this by transfering the size to be restored from the 1522 // adjustment *before* the CSR pops to the adjustment *after* the CSR 1523 // pops. 1524 AfterCSRPopSize += PrologueSaveSize; 1525 } 1526 } 1527 1528 // Move past the restores of the callee-saved registers. 1529 // If we plan on combining the sp bump of the local stack size and the callee 1530 // save stack size, we might need to adjust the CSR save and restore offsets. 1531 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); 1532 MachineBasicBlock::iterator Begin = MBB.begin(); 1533 while (LastPopI != Begin) { 1534 --LastPopI; 1535 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || 1536 IsSVECalleeSave(LastPopI)) { 1537 ++LastPopI; 1538 break; 1539 } else if (CombineSPBump) 1540 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), 1541 NeedsWinCFI, &HasWinCFI); 1542 } 1543 1544 if (NeedsWinCFI) { 1545 HasWinCFI = true; 1546 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) 1547 .setMIFlag(MachineInstr::FrameDestroy); 1548 } 1549 1550 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1551 1552 // If there is a single SP update, insert it before the ret and we're done. 1553 if (CombineSPBump) { 1554 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1555 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 1556 {NumBytes + (int64_t)AfterCSRPopSize, MVT::i8}, TII, 1557 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1558 if (NeedsWinCFI && HasWinCFI) 1559 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1560 TII->get(AArch64::SEH_EpilogEnd)) 1561 .setMIFlag(MachineInstr::FrameDestroy); 1562 return; 1563 } 1564 1565 NumBytes -= PrologueSaveSize; 1566 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1567 1568 // Process the SVE callee-saves to determine what space needs to be 1569 // deallocated. 1570 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; 1571 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; 1572 if (AFI->getSVECalleeSavedStackSize()) { 1573 RestoreBegin = std::prev(RestoreEnd);; 1574 while (IsSVECalleeSave(RestoreBegin) && 1575 RestoreBegin != MBB.begin()) 1576 --RestoreBegin; 1577 ++RestoreBegin; 1578 1579 assert(IsSVECalleeSave(RestoreBegin) && 1580 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); 1581 1582 int64_t OffsetToFirstCalleeSaveFromSP = 1583 MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex()); 1584 StackOffset OffsetToCalleeSavesFromSP = 1585 StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize; 1586 DeallocateBefore = OffsetToCalleeSavesFromSP; 1587 DeallocateAfter = SVEStackSize - DeallocateBefore; 1588 } 1589 1590 // Deallocate the SVE area. 1591 if (SVEStackSize) { 1592 if (AFI->isStackRealigned()) { 1593 if (AFI->getSVECalleeSavedStackSize()) 1594 // Set SP to start of SVE area, from which the callee-save reloads 1595 // can be done. The code below will deallocate the stack space 1596 // space by moving FP -> SP. 1597 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, 1598 -SVEStackSize, TII, MachineInstr::FrameDestroy); 1599 } else { 1600 if (AFI->getSVECalleeSavedStackSize()) { 1601 // Deallocate the non-SVE locals first before we can deallocate (and 1602 // restore callee saves) from the SVE area. 1603 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1604 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy); 1605 NumBytes = 0; 1606 } 1607 1608 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1609 DeallocateBefore, TII, MachineInstr::FrameDestroy); 1610 1611 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, 1612 DeallocateAfter, TII, MachineInstr::FrameDestroy); 1613 } 1614 } 1615 1616 if (!hasFP(MF)) { 1617 bool RedZone = canUseRedZone(MF); 1618 // If this was a redzone leaf function, we don't need to restore the 1619 // stack pointer (but we may need to pop stack args for fastcc). 1620 if (RedZone && AfterCSRPopSize == 0) 1621 return; 1622 1623 bool NoCalleeSaveRestore = PrologueSaveSize == 0; 1624 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; 1625 if (NoCalleeSaveRestore) 1626 StackRestoreBytes += AfterCSRPopSize; 1627 1628 // If we were able to combine the local stack pop with the argument pop, 1629 // then we're done. 1630 bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0; 1631 1632 // If we're done after this, make sure to help the load store optimizer. 1633 if (Done) 1634 adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI); 1635 1636 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1637 {StackRestoreBytes, MVT::i8}, TII, 1638 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1639 if (Done) { 1640 if (NeedsWinCFI) { 1641 HasWinCFI = true; 1642 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1643 TII->get(AArch64::SEH_EpilogEnd)) 1644 .setMIFlag(MachineInstr::FrameDestroy); 1645 } 1646 return; 1647 } 1648 1649 NumBytes = 0; 1650 } 1651 1652 // Restore the original stack pointer. 1653 // FIXME: Rather than doing the math here, we should instead just use 1654 // non-post-indexed loads for the restores if we aren't actually going to 1655 // be able to save any instructions. 1656 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { 1657 int64_t OffsetToFrameRecord = 1658 isTargetDarwin(MF) ? (-(int64_t)AFI->getCalleeSavedStackSize() + 16) : 0; 1659 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP, 1660 {OffsetToFrameRecord, MVT::i8}, 1661 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI); 1662 } else if (NumBytes) 1663 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1664 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy, false, 1665 NeedsWinCFI); 1666 1667 // This must be placed after the callee-save restore code because that code 1668 // assumes the SP is at the same location as it was after the callee-save save 1669 // code in the prologue. 1670 if (AfterCSRPopSize) { 1671 // Find an insertion point for the first ldp so that it goes before the 1672 // shadow call stack epilog instruction. This ensures that the restore of 1673 // lr from x18 is placed after the restore from sp. 1674 auto FirstSPPopI = MBB.getFirstTerminator(); 1675 while (FirstSPPopI != Begin) { 1676 auto Prev = std::prev(FirstSPPopI); 1677 if (Prev->getOpcode() != AArch64::LDRXpre || 1678 Prev->getOperand(0).getReg() == AArch64::SP) 1679 break; 1680 FirstSPPopI = Prev; 1681 } 1682 1683 adaptForLdStOpt(MBB, FirstSPPopI, LastPopI); 1684 1685 emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP, 1686 {(int64_t)AfterCSRPopSize, MVT::i8}, TII, 1687 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1688 } 1689 if (NeedsWinCFI && HasWinCFI) 1690 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd)) 1691 .setMIFlag(MachineInstr::FrameDestroy); 1692 1693 MF.setHasWinCFI(HasWinCFI); 1694 } 1695 1696 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1697 /// debug info. It's the same as what we use for resolving the code-gen 1698 /// references for now. FIXME: This can go wrong when references are 1699 /// SP-relative and simple call frames aren't used. 1700 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, 1701 int FI, 1702 Register &FrameReg) const { 1703 return resolveFrameIndexReference( 1704 MF, FI, FrameReg, 1705 /*PreferFP=*/ 1706 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress), 1707 /*ForSimm=*/false) 1708 .getBytes(); 1709 } 1710 1711 int AArch64FrameLowering::getNonLocalFrameIndexReference( 1712 const MachineFunction &MF, int FI) const { 1713 return getSEHFrameIndexOffset(MF, FI); 1714 } 1715 1716 static StackOffset getFPOffset(const MachineFunction &MF, int64_t ObjectOffset) { 1717 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1718 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1719 bool IsWin64 = 1720 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1721 1722 unsigned FixedObject = 1723 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); 1724 unsigned FPAdjust = isTargetDarwin(MF) 1725 ? 16 : AFI->getCalleeSavedStackSize(MF.getFrameInfo()); 1726 return {ObjectOffset + FixedObject + FPAdjust, MVT::i8}; 1727 } 1728 1729 static StackOffset getStackOffset(const MachineFunction &MF, int64_t ObjectOffset) { 1730 const auto &MFI = MF.getFrameInfo(); 1731 return {ObjectOffset + (int64_t)MFI.getStackSize(), MVT::i8}; 1732 } 1733 1734 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, 1735 int FI) const { 1736 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1737 MF.getSubtarget().getRegisterInfo()); 1738 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); 1739 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP 1740 ? getFPOffset(MF, ObjectOffset).getBytes() 1741 : getStackOffset(MF, ObjectOffset).getBytes(); 1742 } 1743 1744 StackOffset AArch64FrameLowering::resolveFrameIndexReference( 1745 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, 1746 bool ForSimm) const { 1747 const auto &MFI = MF.getFrameInfo(); 1748 int64_t ObjectOffset = MFI.getObjectOffset(FI); 1749 bool isFixed = MFI.isFixedObjectIndex(FI); 1750 bool isSVE = MFI.getStackID(FI) == TargetStackID::SVEVector; 1751 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, 1752 PreferFP, ForSimm); 1753 } 1754 1755 StackOffset AArch64FrameLowering::resolveFrameOffsetReference( 1756 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, 1757 Register &FrameReg, bool PreferFP, bool ForSimm) const { 1758 const auto &MFI = MF.getFrameInfo(); 1759 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1760 MF.getSubtarget().getRegisterInfo()); 1761 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1762 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1763 1764 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getBytes(); 1765 int64_t Offset = getStackOffset(MF, ObjectOffset).getBytes(); 1766 bool isCSR = 1767 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 1768 1769 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1770 1771 // Use frame pointer to reference fixed objects. Use it for locals if 1772 // there are VLAs or a dynamically realigned SP (and thus the SP isn't 1773 // reliable as a base). Make sure useFPForScavengingIndex() does the 1774 // right thing for the emergency spill slot. 1775 bool UseFP = false; 1776 if (AFI->hasStackFrame() && !isSVE) { 1777 // We shouldn't prefer using the FP when there is an SVE area 1778 // in between the FP and the non-SVE locals/spills. 1779 PreferFP &= !SVEStackSize; 1780 1781 // Note: Keeping the following as multiple 'if' statements rather than 1782 // merging to a single expression for readability. 1783 // 1784 // Argument access should always use the FP. 1785 if (isFixed) { 1786 UseFP = hasFP(MF); 1787 } else if (isCSR && RegInfo->needsStackRealignment(MF)) { 1788 // References to the CSR area must use FP if we're re-aligning the stack 1789 // since the dynamically-sized alignment padding is between the SP/BP and 1790 // the CSR area. 1791 assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); 1792 UseFP = true; 1793 } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) { 1794 // If the FPOffset is negative and we're producing a signed immediate, we 1795 // have to keep in mind that the available offset range for negative 1796 // offsets is smaller than for positive ones. If an offset is available 1797 // via the FP and the SP, use whichever is closest. 1798 bool FPOffsetFits = !ForSimm || FPOffset >= -256; 1799 PreferFP |= Offset > -FPOffset; 1800 1801 if (MFI.hasVarSizedObjects()) { 1802 // If we have variable sized objects, we can use either FP or BP, as the 1803 // SP offset is unknown. We can use the base pointer if we have one and 1804 // FP is not preferred. If not, we're stuck with using FP. 1805 bool CanUseBP = RegInfo->hasBasePointer(MF); 1806 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. 1807 UseFP = PreferFP; 1808 else if (!CanUseBP) { // Can't use BP. Forced to use FP. 1809 assert(!SVEStackSize && "Expected BP to be available"); 1810 UseFP = true; 1811 } 1812 // else we can use BP and FP, but the offset from FP won't fit. 1813 // That will make us scavenge registers which we can probably avoid by 1814 // using BP. If it won't fit for BP either, we'll scavenge anyway. 1815 } else if (FPOffset >= 0) { 1816 // Use SP or FP, whichever gives us the best chance of the offset 1817 // being in range for direct access. If the FPOffset is positive, 1818 // that'll always be best, as the SP will be even further away. 1819 UseFP = true; 1820 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { 1821 // Funclets access the locals contained in the parent's stack frame 1822 // via the frame pointer, so we have to use the FP in the parent 1823 // function. 1824 (void) Subtarget; 1825 assert( 1826 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) && 1827 "Funclets should only be present on Win64"); 1828 UseFP = true; 1829 } else { 1830 // We have the choice between FP and (SP or BP). 1831 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. 1832 UseFP = true; 1833 } 1834 } 1835 } 1836 1837 assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) && 1838 "In the presence of dynamic stack pointer realignment, " 1839 "non-argument/CSR objects cannot be accessed through the frame pointer"); 1840 1841 if (isSVE) { 1842 int64_t OffsetToSVEArea = 1843 MFI.getStackSize() - AFI->getCalleeSavedStackSize(); 1844 StackOffset FPOffset = {ObjectOffset, MVT::nxv1i8}; 1845 StackOffset SPOffset = SVEStackSize + 1846 StackOffset(ObjectOffset, MVT::nxv1i8) + 1847 StackOffset(OffsetToSVEArea, MVT::i8); 1848 // Always use the FP for SVE spills if available and beneficial. 1849 if (hasFP(MF) && 1850 (SPOffset.getBytes() || 1851 FPOffset.getScalableBytes() < SPOffset.getScalableBytes() || 1852 RegInfo->needsStackRealignment(MF))) { 1853 FrameReg = RegInfo->getFrameRegister(MF); 1854 return FPOffset; 1855 } 1856 1857 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() 1858 : (unsigned)AArch64::SP; 1859 return SPOffset; 1860 } 1861 1862 StackOffset ScalableOffset = {}; 1863 if (UseFP && !(isFixed || isCSR)) 1864 ScalableOffset = -SVEStackSize; 1865 if (!UseFP && (isFixed || isCSR)) 1866 ScalableOffset = SVEStackSize; 1867 1868 if (UseFP) { 1869 FrameReg = RegInfo->getFrameRegister(MF); 1870 return StackOffset(FPOffset, MVT::i8) + ScalableOffset; 1871 } 1872 1873 // Use the base pointer if we have one. 1874 if (RegInfo->hasBasePointer(MF)) 1875 FrameReg = RegInfo->getBaseRegister(); 1876 else { 1877 assert(!MFI.hasVarSizedObjects() && 1878 "Can't use SP when we have var sized objects."); 1879 FrameReg = AArch64::SP; 1880 // If we're using the red zone for this function, the SP won't actually 1881 // be adjusted, so the offsets will be negative. They're also all 1882 // within range of the signed 9-bit immediate instructions. 1883 if (canUseRedZone(MF)) 1884 Offset -= AFI->getLocalStackSize(); 1885 } 1886 1887 return StackOffset(Offset, MVT::i8) + ScalableOffset; 1888 } 1889 1890 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { 1891 // Do not set a kill flag on values that are also marked as live-in. This 1892 // happens with the @llvm-returnaddress intrinsic and with arguments passed in 1893 // callee saved registers. 1894 // Omitting the kill flags is conservatively correct even if the live-in 1895 // is not used after all. 1896 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); 1897 return getKillRegState(!IsLiveIn); 1898 } 1899 1900 static bool produceCompactUnwindFrame(MachineFunction &MF) { 1901 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1902 AttributeList Attrs = MF.getFunction().getAttributes(); 1903 return Subtarget.isTargetMachO() && 1904 !(Subtarget.getTargetLowering()->supportSwiftError() && 1905 Attrs.hasAttrSomewhere(Attribute::SwiftError)); 1906 } 1907 1908 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, 1909 bool NeedsWinCFI) { 1910 // If we are generating register pairs for a Windows function that requires 1911 // EH support, then pair consecutive registers only. There are no unwind 1912 // opcodes for saves/restores of non-consectuve register pairs. 1913 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x. 1914 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling 1915 1916 // TODO: LR can be paired with any register. We don't support this yet in 1917 // the MCLayer. We need to add support for the save_lrpair unwind code. 1918 if (Reg2 == AArch64::FP) 1919 return true; 1920 if (!NeedsWinCFI) 1921 return false; 1922 if (Reg2 == Reg1 + 1) 1923 return false; 1924 return true; 1925 } 1926 1927 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. 1928 /// WindowsCFI requires that only consecutive registers can be paired. 1929 /// LR and FP need to be allocated together when the frame needs to save 1930 /// the frame-record. This means any other register pairing with LR is invalid. 1931 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, 1932 bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord) { 1933 if (UsesWinAAPCS) 1934 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI); 1935 1936 // If we need to store the frame record, don't pair any register 1937 // with LR other than FP. 1938 if (NeedsFrameRecord) 1939 return Reg2 == AArch64::LR; 1940 1941 return false; 1942 } 1943 1944 namespace { 1945 1946 struct RegPairInfo { 1947 unsigned Reg1 = AArch64::NoRegister; 1948 unsigned Reg2 = AArch64::NoRegister; 1949 int FrameIdx; 1950 int Offset; 1951 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type; 1952 1953 RegPairInfo() = default; 1954 1955 bool isPaired() const { return Reg2 != AArch64::NoRegister; } 1956 1957 unsigned getScale() const { 1958 switch (Type) { 1959 case PPR: 1960 return 2; 1961 case GPR: 1962 case FPR64: 1963 return 8; 1964 case ZPR: 1965 case FPR128: 1966 return 16; 1967 } 1968 llvm_unreachable("Unsupported type"); 1969 } 1970 1971 bool isScalable() const { return Type == PPR || Type == ZPR; } 1972 }; 1973 1974 } // end anonymous namespace 1975 1976 static void computeCalleeSaveRegisterPairs( 1977 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI, 1978 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, 1979 bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) { 1980 1981 if (CSI.empty()) 1982 return; 1983 1984 bool IsWindows = isTargetWindows(MF); 1985 bool NeedsWinCFI = needsWinCFI(MF); 1986 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1987 MachineFrameInfo &MFI = MF.getFrameInfo(); 1988 CallingConv::ID CC = MF.getFunction().getCallingConv(); 1989 unsigned Count = CSI.size(); 1990 (void)CC; 1991 // MachO's compact unwind format relies on all registers being stored in 1992 // pairs. 1993 assert((!produceCompactUnwindFrame(MF) || 1994 CC == CallingConv::PreserveMost || 1995 (Count & 1) == 0) && 1996 "Odd number of callee-saved regs to spill!"); 1997 int ByteOffset = AFI->getCalleeSavedStackSize(); 1998 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); 1999 // On Linux, we will have either one or zero non-paired register. On Windows 2000 // with CFI, we can have multiple unpaired registers in order to utilize the 2001 // available unwind codes. This flag assures that the alignment fixup is done 2002 // only once, as intened. 2003 bool FixupDone = false; 2004 for (unsigned i = 0; i < Count; ++i) { 2005 RegPairInfo RPI; 2006 RPI.Reg1 = CSI[i].getReg(); 2007 2008 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) 2009 RPI.Type = RegPairInfo::GPR; 2010 else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) 2011 RPI.Type = RegPairInfo::FPR64; 2012 else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) 2013 RPI.Type = RegPairInfo::FPR128; 2014 else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) 2015 RPI.Type = RegPairInfo::ZPR; 2016 else if (AArch64::PPRRegClass.contains(RPI.Reg1)) 2017 RPI.Type = RegPairInfo::PPR; 2018 else 2019 llvm_unreachable("Unsupported register class."); 2020 2021 // Add the next reg to the pair if it is in the same register class. 2022 if (i + 1 < Count) { 2023 unsigned NextReg = CSI[i + 1].getReg(); 2024 switch (RPI.Type) { 2025 case RegPairInfo::GPR: 2026 if (AArch64::GPR64RegClass.contains(NextReg) && 2027 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, NeedsWinCFI, 2028 NeedsFrameRecord)) 2029 RPI.Reg2 = NextReg; 2030 break; 2031 case RegPairInfo::FPR64: 2032 if (AArch64::FPR64RegClass.contains(NextReg) && 2033 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI)) 2034 RPI.Reg2 = NextReg; 2035 break; 2036 case RegPairInfo::FPR128: 2037 if (AArch64::FPR128RegClass.contains(NextReg)) 2038 RPI.Reg2 = NextReg; 2039 break; 2040 case RegPairInfo::PPR: 2041 case RegPairInfo::ZPR: 2042 break; 2043 } 2044 } 2045 2046 // If either of the registers to be saved is the lr register, it means that 2047 // we also need to save lr in the shadow call stack. 2048 if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) && 2049 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) { 2050 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18)) 2051 report_fatal_error("Must reserve x18 to use shadow call stack"); 2052 NeedShadowCallStackProlog = true; 2053 } 2054 2055 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI 2056 // list to come in sorted by frame index so that we can issue the store 2057 // pair instructions directly. Assert if we see anything otherwise. 2058 // 2059 // The order of the registers in the list is controlled by 2060 // getCalleeSavedRegs(), so they will always be in-order, as well. 2061 assert((!RPI.isPaired() || 2062 (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) && 2063 "Out of order callee saved regs!"); 2064 2065 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || 2066 RPI.Reg1 == AArch64::LR) && 2067 "FrameRecord must be allocated together with LR"); 2068 2069 // Windows AAPCS has FP and LR reversed. 2070 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || 2071 RPI.Reg2 == AArch64::LR) && 2072 "FrameRecord must be allocated together with LR"); 2073 2074 // MachO's compact unwind format relies on all registers being stored in 2075 // adjacent register pairs. 2076 assert((!produceCompactUnwindFrame(MF) || 2077 CC == CallingConv::PreserveMost || 2078 (RPI.isPaired() && 2079 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 2080 RPI.Reg1 + 1 == RPI.Reg2))) && 2081 "Callee-save registers not saved as adjacent register pair!"); 2082 2083 RPI.FrameIdx = CSI[i].getFrameIdx(); 2084 2085 int Scale = RPI.getScale(); 2086 if (RPI.isScalable()) 2087 ScalableByteOffset -= Scale; 2088 else 2089 ByteOffset -= RPI.isPaired() ? 2 * Scale : Scale; 2090 2091 assert(!(RPI.isScalable() && RPI.isPaired()) && 2092 "Paired spill/fill instructions don't exist for SVE vectors"); 2093 2094 // Round up size of non-pair to pair size if we need to pad the 2095 // callee-save area to ensure 16-byte alignment. 2096 if (AFI->hasCalleeSaveStackFreeSpace() && !FixupDone && 2097 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 && 2098 !RPI.isPaired()) { 2099 FixupDone = true; 2100 ByteOffset -= 8; 2101 assert(ByteOffset % 16 == 0); 2102 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16)); 2103 MFI.setObjectAlignment(RPI.FrameIdx, Align(16)); 2104 } 2105 2106 int Offset = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2107 assert(Offset % Scale == 0); 2108 RPI.Offset = Offset / Scale; 2109 2110 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || 2111 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && 2112 "Offset out of bounds for LDP/STP immediate"); 2113 2114 RegPairs.push_back(RPI); 2115 if (RPI.isPaired()) 2116 ++i; 2117 } 2118 } 2119 2120 bool AArch64FrameLowering::spillCalleeSavedRegisters( 2121 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2122 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2123 MachineFunction &MF = *MBB.getParent(); 2124 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2125 bool NeedsWinCFI = needsWinCFI(MF); 2126 DebugLoc DL; 2127 SmallVector<RegPairInfo, 8> RegPairs; 2128 2129 bool NeedShadowCallStackProlog = false; 2130 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2131 NeedShadowCallStackProlog, hasFP(MF)); 2132 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2133 2134 if (NeedShadowCallStackProlog) { 2135 // Shadow call stack prolog: str x30, [x18], #8 2136 BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost)) 2137 .addReg(AArch64::X18, RegState::Define) 2138 .addReg(AArch64::LR) 2139 .addReg(AArch64::X18) 2140 .addImm(8) 2141 .setMIFlag(MachineInstr::FrameSetup); 2142 2143 if (NeedsWinCFI) 2144 BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop)) 2145 .setMIFlag(MachineInstr::FrameSetup); 2146 2147 if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) { 2148 // Emit a CFI instruction that causes 8 to be subtracted from the value of 2149 // x18 when unwinding past this frame. 2150 static const char CFIInst[] = { 2151 dwarf::DW_CFA_val_expression, 2152 18, // register 2153 2, // length 2154 static_cast<char>(unsigned(dwarf::DW_OP_breg18)), 2155 static_cast<char>(-8) & 0x7f, // addend (sleb128) 2156 }; 2157 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( 2158 nullptr, StringRef(CFIInst, sizeof(CFIInst)))); 2159 BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION)) 2160 .addCFIIndex(CFIIndex) 2161 .setMIFlag(MachineInstr::FrameSetup); 2162 } 2163 2164 // This instruction also makes x18 live-in to the entry block. 2165 MBB.addLiveIn(AArch64::X18); 2166 } 2167 2168 for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE; 2169 ++RPII) { 2170 RegPairInfo RPI = *RPII; 2171 unsigned Reg1 = RPI.Reg1; 2172 unsigned Reg2 = RPI.Reg2; 2173 unsigned StrOpc; 2174 2175 // Issue sequence of spills for cs regs. The first spill may be converted 2176 // to a pre-decrement store later by emitPrologue if the callee-save stack 2177 // area allocation can't be combined with the local stack area allocation. 2178 // For example: 2179 // stp x22, x21, [sp, #0] // addImm(+0) 2180 // stp x20, x19, [sp, #16] // addImm(+2) 2181 // stp fp, lr, [sp, #32] // addImm(+4) 2182 // Rationale: This sequence saves uop updates compared to a sequence of 2183 // pre-increment spills like stp xi,xj,[sp,#-16]! 2184 // Note: Similar rationale and sequence for restores in epilog. 2185 unsigned Size; 2186 Align Alignment; 2187 switch (RPI.Type) { 2188 case RegPairInfo::GPR: 2189 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; 2190 Size = 8; 2191 Alignment = Align(8); 2192 break; 2193 case RegPairInfo::FPR64: 2194 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; 2195 Size = 8; 2196 Alignment = Align(8); 2197 break; 2198 case RegPairInfo::FPR128: 2199 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; 2200 Size = 16; 2201 Alignment = Align(16); 2202 break; 2203 case RegPairInfo::ZPR: 2204 StrOpc = AArch64::STR_ZXI; 2205 Size = 16; 2206 Alignment = Align(16); 2207 break; 2208 case RegPairInfo::PPR: 2209 StrOpc = AArch64::STR_PXI; 2210 Size = 2; 2211 Alignment = Align(2); 2212 break; 2213 } 2214 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); 2215 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2216 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2217 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2218 dbgs() << ")\n"); 2219 2220 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && 2221 "Windows unwdinding requires a consecutive (FP,LR) pair"); 2222 // Windows unwind codes require consecutive registers if registers are 2223 // paired. Make the switch here, so that the code below will save (x,x+1) 2224 // and not (x+1,x). 2225 unsigned FrameIdxReg1 = RPI.FrameIdx; 2226 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2227 if (NeedsWinCFI && RPI.isPaired()) { 2228 std::swap(Reg1, Reg2); 2229 std::swap(FrameIdxReg1, FrameIdxReg2); 2230 } 2231 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 2232 if (!MRI.isReserved(Reg1)) 2233 MBB.addLiveIn(Reg1); 2234 if (RPI.isPaired()) { 2235 if (!MRI.isReserved(Reg2)) 2236 MBB.addLiveIn(Reg2); 2237 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); 2238 MIB.addMemOperand(MF.getMachineMemOperand( 2239 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2240 MachineMemOperand::MOStore, Size, Alignment)); 2241 } 2242 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) 2243 .addReg(AArch64::SP) 2244 .addImm(RPI.Offset) // [sp, #offset*scale], 2245 // where factor*scale is implicit 2246 .setMIFlag(MachineInstr::FrameSetup); 2247 MIB.addMemOperand(MF.getMachineMemOperand( 2248 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2249 MachineMemOperand::MOStore, Size, Alignment)); 2250 if (NeedsWinCFI) 2251 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 2252 2253 // Update the StackIDs of the SVE stack slots. 2254 MachineFrameInfo &MFI = MF.getFrameInfo(); 2255 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) 2256 MFI.setStackID(RPI.FrameIdx, TargetStackID::SVEVector); 2257 2258 } 2259 return true; 2260 } 2261 2262 bool AArch64FrameLowering::restoreCalleeSavedRegisters( 2263 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2264 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2265 MachineFunction &MF = *MBB.getParent(); 2266 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2267 DebugLoc DL; 2268 SmallVector<RegPairInfo, 8> RegPairs; 2269 bool NeedsWinCFI = needsWinCFI(MF); 2270 2271 if (MI != MBB.end()) 2272 DL = MI->getDebugLoc(); 2273 2274 bool NeedShadowCallStackProlog = false; 2275 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2276 NeedShadowCallStackProlog, hasFP(MF)); 2277 2278 auto EmitMI = [&](const RegPairInfo &RPI) { 2279 unsigned Reg1 = RPI.Reg1; 2280 unsigned Reg2 = RPI.Reg2; 2281 2282 // Issue sequence of restores for cs regs. The last restore may be converted 2283 // to a post-increment load later by emitEpilogue if the callee-save stack 2284 // area allocation can't be combined with the local stack area allocation. 2285 // For example: 2286 // ldp fp, lr, [sp, #32] // addImm(+4) 2287 // ldp x20, x19, [sp, #16] // addImm(+2) 2288 // ldp x22, x21, [sp, #0] // addImm(+0) 2289 // Note: see comment in spillCalleeSavedRegisters() 2290 unsigned LdrOpc; 2291 unsigned Size; 2292 Align Alignment; 2293 switch (RPI.Type) { 2294 case RegPairInfo::GPR: 2295 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; 2296 Size = 8; 2297 Alignment = Align(8); 2298 break; 2299 case RegPairInfo::FPR64: 2300 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; 2301 Size = 8; 2302 Alignment = Align(8); 2303 break; 2304 case RegPairInfo::FPR128: 2305 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; 2306 Size = 16; 2307 Alignment = Align(16); 2308 break; 2309 case RegPairInfo::ZPR: 2310 LdrOpc = AArch64::LDR_ZXI; 2311 Size = 16; 2312 Alignment = Align(16); 2313 break; 2314 case RegPairInfo::PPR: 2315 LdrOpc = AArch64::LDR_PXI; 2316 Size = 2; 2317 Alignment = Align(2); 2318 break; 2319 } 2320 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); 2321 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2322 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2323 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2324 dbgs() << ")\n"); 2325 2326 // Windows unwind codes require consecutive registers if registers are 2327 // paired. Make the switch here, so that the code below will save (x,x+1) 2328 // and not (x+1,x). 2329 unsigned FrameIdxReg1 = RPI.FrameIdx; 2330 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2331 if (NeedsWinCFI && RPI.isPaired()) { 2332 std::swap(Reg1, Reg2); 2333 std::swap(FrameIdxReg1, FrameIdxReg2); 2334 } 2335 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc)); 2336 if (RPI.isPaired()) { 2337 MIB.addReg(Reg2, getDefRegState(true)); 2338 MIB.addMemOperand(MF.getMachineMemOperand( 2339 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2340 MachineMemOperand::MOLoad, Size, Alignment)); 2341 } 2342 MIB.addReg(Reg1, getDefRegState(true)) 2343 .addReg(AArch64::SP) 2344 .addImm(RPI.Offset) // [sp, #offset*scale] 2345 // where factor*scale is implicit 2346 .setMIFlag(MachineInstr::FrameDestroy); 2347 MIB.addMemOperand(MF.getMachineMemOperand( 2348 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2349 MachineMemOperand::MOLoad, Size, Alignment)); 2350 if (NeedsWinCFI) 2351 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 2352 }; 2353 2354 // SVE objects are always restored in reverse order. 2355 for (const RegPairInfo &RPI : reverse(RegPairs)) 2356 if (RPI.isScalable()) 2357 EmitMI(RPI); 2358 2359 if (ReverseCSRRestoreSeq) { 2360 for (const RegPairInfo &RPI : reverse(RegPairs)) 2361 if (!RPI.isScalable()) 2362 EmitMI(RPI); 2363 } else 2364 for (const RegPairInfo &RPI : RegPairs) 2365 if (!RPI.isScalable()) 2366 EmitMI(RPI); 2367 2368 if (NeedShadowCallStackProlog) { 2369 // Shadow call stack epilog: ldr x30, [x18, #-8]! 2370 BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre)) 2371 .addReg(AArch64::X18, RegState::Define) 2372 .addReg(AArch64::LR, RegState::Define) 2373 .addReg(AArch64::X18) 2374 .addImm(-8) 2375 .setMIFlag(MachineInstr::FrameDestroy); 2376 } 2377 2378 return true; 2379 } 2380 2381 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, 2382 BitVector &SavedRegs, 2383 RegScavenger *RS) const { 2384 // All calls are tail calls in GHC calling conv, and functions have no 2385 // prologue/epilogue. 2386 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 2387 return; 2388 2389 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2390 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( 2391 MF.getSubtarget().getRegisterInfo()); 2392 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2393 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2394 unsigned UnspilledCSGPR = AArch64::NoRegister; 2395 unsigned UnspilledCSGPRPaired = AArch64::NoRegister; 2396 2397 MachineFrameInfo &MFI = MF.getFrameInfo(); 2398 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 2399 2400 unsigned BasePointerReg = RegInfo->hasBasePointer(MF) 2401 ? RegInfo->getBaseRegister() 2402 : (unsigned)AArch64::NoRegister; 2403 2404 unsigned ExtraCSSpill = 0; 2405 // Figure out which callee-saved registers to save/restore. 2406 for (unsigned i = 0; CSRegs[i]; ++i) { 2407 const unsigned Reg = CSRegs[i]; 2408 2409 // Add the base pointer register to SavedRegs if it is callee-save. 2410 if (Reg == BasePointerReg) 2411 SavedRegs.set(Reg); 2412 2413 bool RegUsed = SavedRegs.test(Reg); 2414 unsigned PairedReg = AArch64::NoRegister; 2415 if (AArch64::GPR64RegClass.contains(Reg) || 2416 AArch64::FPR64RegClass.contains(Reg) || 2417 AArch64::FPR128RegClass.contains(Reg)) 2418 PairedReg = CSRegs[i ^ 1]; 2419 2420 if (!RegUsed) { 2421 if (AArch64::GPR64RegClass.contains(Reg) && 2422 !RegInfo->isReservedReg(MF, Reg)) { 2423 UnspilledCSGPR = Reg; 2424 UnspilledCSGPRPaired = PairedReg; 2425 } 2426 continue; 2427 } 2428 2429 // MachO's compact unwind format relies on all registers being stored in 2430 // pairs. 2431 // FIXME: the usual format is actually better if unwinding isn't needed. 2432 if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister && 2433 !SavedRegs.test(PairedReg)) { 2434 SavedRegs.set(PairedReg); 2435 if (AArch64::GPR64RegClass.contains(PairedReg) && 2436 !RegInfo->isReservedReg(MF, PairedReg)) 2437 ExtraCSSpill = PairedReg; 2438 } 2439 } 2440 2441 if (MF.getFunction().getCallingConv() == CallingConv::Win64 && 2442 !Subtarget.isTargetWindows()) { 2443 // For Windows calling convention on a non-windows OS, where X18 is treated 2444 // as reserved, back up X18 when entering non-windows code (marked with the 2445 // Windows calling convention) and restore when returning regardless of 2446 // whether the individual function uses it - it might call other functions 2447 // that clobber it. 2448 SavedRegs.set(AArch64::X18); 2449 } 2450 2451 // Calculates the callee saved stack size. 2452 unsigned CSStackSize = 0; 2453 unsigned SVECSStackSize = 0; 2454 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2455 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2456 for (unsigned Reg : SavedRegs.set_bits()) { 2457 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8; 2458 if (AArch64::PPRRegClass.contains(Reg) || 2459 AArch64::ZPRRegClass.contains(Reg)) 2460 SVECSStackSize += RegSize; 2461 else 2462 CSStackSize += RegSize; 2463 } 2464 2465 // Save number of saved regs, so we can easily update CSStackSize later. 2466 unsigned NumSavedRegs = SavedRegs.count(); 2467 2468 // The frame record needs to be created by saving the appropriate registers 2469 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); 2470 if (hasFP(MF) || 2471 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { 2472 SavedRegs.set(AArch64::FP); 2473 SavedRegs.set(AArch64::LR); 2474 } 2475 2476 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; 2477 for (unsigned Reg 2478 : SavedRegs.set_bits()) dbgs() 2479 << ' ' << printReg(Reg, RegInfo); 2480 dbgs() << "\n";); 2481 2482 // If any callee-saved registers are used, the frame cannot be eliminated. 2483 int64_t SVEStackSize = 2484 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); 2485 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; 2486 2487 // The CSR spill slots have not been allocated yet, so estimateStackSize 2488 // won't include them. 2489 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); 2490 2491 // Conservatively always assume BigStack when there are SVE spills. 2492 bool BigStack = SVEStackSize || 2493 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit; 2494 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) 2495 AFI->setHasStackFrame(true); 2496 2497 // Estimate if we might need to scavenge a register at some point in order 2498 // to materialize a stack offset. If so, either spill one additional 2499 // callee-saved register or reserve a special spill slot to facilitate 2500 // register scavenging. If we already spilled an extra callee-saved register 2501 // above to keep the number of spills even, we don't need to do anything else 2502 // here. 2503 if (BigStack) { 2504 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { 2505 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) 2506 << " to get a scratch register.\n"); 2507 SavedRegs.set(UnspilledCSGPR); 2508 // MachO's compact unwind format relies on all registers being stored in 2509 // pairs, so if we need to spill one extra for BigStack, then we need to 2510 // store the pair. 2511 if (produceCompactUnwindFrame(MF)) 2512 SavedRegs.set(UnspilledCSGPRPaired); 2513 ExtraCSSpill = UnspilledCSGPR; 2514 } 2515 2516 // If we didn't find an extra callee-saved register to spill, create 2517 // an emergency spill slot. 2518 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { 2519 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2520 const TargetRegisterClass &RC = AArch64::GPR64RegClass; 2521 unsigned Size = TRI->getSpillSize(RC); 2522 unsigned Align = TRI->getSpillAlignment(RC); 2523 int FI = MFI.CreateStackObject(Size, Align, false); 2524 RS->addScavengingFrameIndex(FI); 2525 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI 2526 << " as the emergency spill slot.\n"); 2527 } 2528 } 2529 2530 // Adding the size of additional 64bit GPR saves. 2531 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); 2532 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); 2533 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " 2534 << EstimatedStackSize + AlignedCSStackSize 2535 << " bytes.\n"); 2536 2537 assert((!MFI.isCalleeSavedInfoValid() || 2538 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && 2539 "Should not invalidate callee saved info"); 2540 2541 // Round up to register pair alignment to avoid additional SP adjustment 2542 // instructions. 2543 AFI->setCalleeSavedStackSize(AlignedCSStackSize); 2544 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); 2545 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); 2546 } 2547 2548 bool AArch64FrameLowering::enableStackSlotScavenging( 2549 const MachineFunction &MF) const { 2550 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2551 return AFI->hasCalleeSaveStackFreeSpace(); 2552 } 2553 2554 /// returns true if there are any SVE callee saves. 2555 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, 2556 int &Min, int &Max) { 2557 Min = std::numeric_limits<int>::max(); 2558 Max = std::numeric_limits<int>::min(); 2559 2560 if (!MFI.isCalleeSavedInfoValid()) 2561 return false; 2562 2563 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2564 for (auto &CS : CSI) { 2565 if (AArch64::ZPRRegClass.contains(CS.getReg()) || 2566 AArch64::PPRRegClass.contains(CS.getReg())) { 2567 assert((Max == std::numeric_limits<int>::min() || 2568 Max + 1 == CS.getFrameIdx()) && 2569 "SVE CalleeSaves are not consecutive"); 2570 2571 Min = std::min(Min, CS.getFrameIdx()); 2572 Max = std::max(Max, CS.getFrameIdx()); 2573 } 2574 } 2575 return Min != std::numeric_limits<int>::max(); 2576 } 2577 2578 // Process all the SVE stack objects and determine offsets for each 2579 // object. If AssignOffsets is true, the offsets get assigned. 2580 // Fills in the first and last callee-saved frame indices into 2581 // Min/MaxCSFrameIndex, respectively. 2582 // Returns the size of the stack. 2583 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, 2584 int &MinCSFrameIndex, 2585 int &MaxCSFrameIndex, 2586 bool AssignOffsets) { 2587 // First process all fixed stack objects. 2588 int64_t Offset = 0; 2589 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) 2590 if (MFI.getStackID(I) == TargetStackID::SVEVector) { 2591 int64_t FixedOffset = -MFI.getObjectOffset(I); 2592 if (FixedOffset > Offset) 2593 Offset = FixedOffset; 2594 } 2595 2596 auto Assign = [&MFI](int FI, int64_t Offset) { 2597 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); 2598 MFI.setObjectOffset(FI, Offset); 2599 }; 2600 2601 // Then process all callee saved slots. 2602 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { 2603 // Make sure to align the last callee save slot. 2604 MFI.setObjectAlignment(MaxCSFrameIndex, Align(16)); 2605 2606 // Assign offsets to the callee save slots. 2607 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { 2608 Offset += MFI.getObjectSize(I); 2609 Offset = alignTo(Offset, MFI.getObjectAlign(I)); 2610 if (AssignOffsets) 2611 Assign(I, -Offset); 2612 } 2613 } 2614 2615 // Create a buffer of SVE objects to allocate and sort it. 2616 SmallVector<int, 8> ObjectsToAllocate; 2617 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 2618 unsigned StackID = MFI.getStackID(I); 2619 if (StackID != TargetStackID::SVEVector) 2620 continue; 2621 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) 2622 continue; 2623 if (MFI.isDeadObjectIndex(I)) 2624 continue; 2625 2626 ObjectsToAllocate.push_back(I); 2627 } 2628 2629 // Allocate all SVE locals and spills 2630 for (unsigned FI : ObjectsToAllocate) { 2631 Align Alignment = MFI.getObjectAlign(FI); 2632 // FIXME: Given that the length of SVE vectors is not necessarily a power of 2633 // two, we'd need to align every object dynamically at runtime if the 2634 // alignment is larger than 16. This is not yet supported. 2635 if (Alignment > Align(16)) 2636 report_fatal_error( 2637 "Alignment of scalable vectors > 16 bytes is not yet supported"); 2638 2639 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment); 2640 if (AssignOffsets) 2641 Assign(FI, -Offset); 2642 } 2643 2644 return Offset; 2645 } 2646 2647 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( 2648 MachineFrameInfo &MFI) const { 2649 int MinCSFrameIndex, MaxCSFrameIndex; 2650 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); 2651 } 2652 2653 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( 2654 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { 2655 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, 2656 true); 2657 } 2658 2659 void AArch64FrameLowering::processFunctionBeforeFrameFinalized( 2660 MachineFunction &MF, RegScavenger *RS) const { 2661 MachineFrameInfo &MFI = MF.getFrameInfo(); 2662 2663 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && 2664 "Upwards growing stack unsupported"); 2665 2666 int MinCSFrameIndex, MaxCSFrameIndex; 2667 int64_t SVEStackSize = 2668 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); 2669 2670 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2671 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); 2672 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); 2673 2674 // If this function isn't doing Win64-style C++ EH, we don't need to do 2675 // anything. 2676 if (!MF.hasEHFunclets()) 2677 return; 2678 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2679 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 2680 2681 MachineBasicBlock &MBB = MF.front(); 2682 auto MBBI = MBB.begin(); 2683 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 2684 ++MBBI; 2685 2686 // Create an UnwindHelp object. 2687 // The UnwindHelp object is allocated at the start of the fixed object area 2688 int64_t FixedObject = 2689 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); 2690 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, 2691 /*SPOffset*/ -FixedObject, 2692 /*IsImmutable=*/false); 2693 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 2694 2695 // We need to store -2 into the UnwindHelp object at the start of the 2696 // function. 2697 DebugLoc DL; 2698 RS->enterBasicBlockEnd(MBB); 2699 RS->backward(std::prev(MBBI)); 2700 unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); 2701 assert(DstReg && "There must be a free register after frame setup"); 2702 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); 2703 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) 2704 .addReg(DstReg, getKillRegState(true)) 2705 .addFrameIndex(UnwindHelpFI) 2706 .addImm(0); 2707 } 2708 2709 namespace { 2710 struct TagStoreInstr { 2711 MachineInstr *MI; 2712 int64_t Offset, Size; 2713 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size) 2714 : MI(MI), Offset(Offset), Size(Size) {} 2715 }; 2716 2717 class TagStoreEdit { 2718 MachineFunction *MF; 2719 MachineBasicBlock *MBB; 2720 MachineRegisterInfo *MRI; 2721 // Tag store instructions that are being replaced. 2722 SmallVector<TagStoreInstr, 8> TagStores; 2723 // Combined memref arguments of the above instructions. 2724 SmallVector<MachineMemOperand *, 8> CombinedMemRefs; 2725 2726 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg + 2727 // FrameRegOffset + Size) with the address tag of SP. 2728 Register FrameReg; 2729 StackOffset FrameRegOffset; 2730 int64_t Size; 2731 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end. 2732 Optional<int64_t> FrameRegUpdate; 2733 // MIFlags for any FrameReg updating instructions. 2734 unsigned FrameRegUpdateFlags; 2735 2736 // Use zeroing instruction variants. 2737 bool ZeroData; 2738 DebugLoc DL; 2739 2740 void emitUnrolled(MachineBasicBlock::iterator InsertI); 2741 void emitLoop(MachineBasicBlock::iterator InsertI); 2742 2743 public: 2744 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData) 2745 : MBB(MBB), ZeroData(ZeroData) { 2746 MF = MBB->getParent(); 2747 MRI = &MF->getRegInfo(); 2748 } 2749 // Add an instruction to be replaced. Instructions must be added in the 2750 // ascending order of Offset, and have to be adjacent. 2751 void addInstruction(TagStoreInstr I) { 2752 assert((TagStores.empty() || 2753 TagStores.back().Offset + TagStores.back().Size == I.Offset) && 2754 "Non-adjacent tag store instructions."); 2755 TagStores.push_back(I); 2756 } 2757 void clear() { TagStores.clear(); } 2758 // Emit equivalent code at the given location, and erase the current set of 2759 // instructions. May skip if the replacement is not profitable. May invalidate 2760 // the input iterator and replace it with a valid one. 2761 void emitCode(MachineBasicBlock::iterator &InsertI, 2762 const AArch64FrameLowering *TFI, bool IsLast); 2763 }; 2764 2765 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) { 2766 const AArch64InstrInfo *TII = 2767 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 2768 2769 const int64_t kMinOffset = -256 * 16; 2770 const int64_t kMaxOffset = 255 * 16; 2771 2772 Register BaseReg = FrameReg; 2773 int64_t BaseRegOffsetBytes = FrameRegOffset.getBytes(); 2774 if (BaseRegOffsetBytes < kMinOffset || 2775 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) { 2776 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2777 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg, 2778 {BaseRegOffsetBytes, MVT::i8}, TII); 2779 BaseReg = ScratchReg; 2780 BaseRegOffsetBytes = 0; 2781 } 2782 2783 MachineInstr *LastI = nullptr; 2784 while (Size) { 2785 int64_t InstrSize = (Size > 16) ? 32 : 16; 2786 unsigned Opcode = 2787 InstrSize == 16 2788 ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset) 2789 : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset); 2790 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode)) 2791 .addReg(AArch64::SP) 2792 .addReg(BaseReg) 2793 .addImm(BaseRegOffsetBytes / 16) 2794 .setMemRefs(CombinedMemRefs); 2795 // A store to [BaseReg, #0] should go last for an opportunity to fold the 2796 // final SP adjustment in the epilogue. 2797 if (BaseRegOffsetBytes == 0) 2798 LastI = I; 2799 BaseRegOffsetBytes += InstrSize; 2800 Size -= InstrSize; 2801 } 2802 2803 if (LastI) 2804 MBB->splice(InsertI, MBB, LastI); 2805 } 2806 2807 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) { 2808 const AArch64InstrInfo *TII = 2809 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 2810 2811 Register BaseReg = FrameRegUpdate 2812 ? FrameReg 2813 : MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2814 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2815 2816 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII); 2817 2818 int64_t LoopSize = Size; 2819 // If the loop size is not a multiple of 32, split off one 16-byte store at 2820 // the end to fold BaseReg update into. 2821 if (FrameRegUpdate && *FrameRegUpdate) 2822 LoopSize -= LoopSize % 32; 2823 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL, 2824 TII->get(ZeroData ? AArch64::STZGloop_wback 2825 : AArch64::STGloop_wback)) 2826 .addDef(SizeReg) 2827 .addDef(BaseReg) 2828 .addImm(LoopSize) 2829 .addReg(BaseReg) 2830 .setMemRefs(CombinedMemRefs); 2831 if (FrameRegUpdate) 2832 LoopI->setFlags(FrameRegUpdateFlags); 2833 2834 int64_t ExtraBaseRegUpdate = 2835 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getBytes() - Size) : 0; 2836 if (LoopSize < Size) { 2837 assert(FrameRegUpdate); 2838 assert(Size - LoopSize == 16); 2839 // Tag 16 more bytes at BaseReg and update BaseReg. 2840 BuildMI(*MBB, InsertI, DL, 2841 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex)) 2842 .addDef(BaseReg) 2843 .addReg(BaseReg) 2844 .addReg(BaseReg) 2845 .addImm(1 + ExtraBaseRegUpdate / 16) 2846 .setMemRefs(CombinedMemRefs) 2847 .setMIFlags(FrameRegUpdateFlags); 2848 } else if (ExtraBaseRegUpdate) { 2849 // Update BaseReg. 2850 BuildMI( 2851 *MBB, InsertI, DL, 2852 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri)) 2853 .addDef(BaseReg) 2854 .addReg(BaseReg) 2855 .addImm(std::abs(ExtraBaseRegUpdate)) 2856 .addImm(0) 2857 .setMIFlags(FrameRegUpdateFlags); 2858 } 2859 } 2860 2861 // Check if *II is a register update that can be merged into STGloop that ends 2862 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the 2863 // end of the loop. 2864 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg, 2865 int64_t Size, int64_t *TotalOffset) { 2866 MachineInstr &MI = *II; 2867 if ((MI.getOpcode() == AArch64::ADDXri || 2868 MI.getOpcode() == AArch64::SUBXri) && 2869 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) { 2870 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm()); 2871 int64_t Offset = MI.getOperand(2).getImm() << Shift; 2872 if (MI.getOpcode() == AArch64::SUBXri) 2873 Offset = -Offset; 2874 int64_t AbsPostOffset = std::abs(Offset - Size); 2875 const int64_t kMaxOffset = 2876 0xFFF; // Max encoding for unshifted ADDXri / SUBXri 2877 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) { 2878 *TotalOffset = Offset; 2879 return true; 2880 } 2881 } 2882 return false; 2883 } 2884 2885 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE, 2886 SmallVectorImpl<MachineMemOperand *> &MemRefs) { 2887 MemRefs.clear(); 2888 for (auto &TS : TSE) { 2889 MachineInstr *MI = TS.MI; 2890 // An instruction without memory operands may access anything. Be 2891 // conservative and return an empty list. 2892 if (MI->memoperands_empty()) { 2893 MemRefs.clear(); 2894 return; 2895 } 2896 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end()); 2897 } 2898 } 2899 2900 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI, 2901 const AArch64FrameLowering *TFI, bool IsLast) { 2902 if (TagStores.empty()) 2903 return; 2904 TagStoreInstr &FirstTagStore = TagStores[0]; 2905 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1]; 2906 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size; 2907 DL = TagStores[0].MI->getDebugLoc(); 2908 2909 Register Reg; 2910 FrameRegOffset = TFI->resolveFrameOffsetReference( 2911 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg, 2912 /*PreferFP=*/false, /*ForSimm=*/true); 2913 FrameReg = Reg; 2914 FrameRegUpdate = None; 2915 2916 mergeMemRefs(TagStores, CombinedMemRefs); 2917 2918 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n"; 2919 for (const auto &Instr 2920 : TagStores) { dbgs() << " " << *Instr.MI; }); 2921 2922 // Size threshold where a loop becomes shorter than a linear sequence of 2923 // tagging instructions. 2924 const int kSetTagLoopThreshold = 176; 2925 if (Size < kSetTagLoopThreshold) { 2926 if (TagStores.size() < 2) 2927 return; 2928 emitUnrolled(InsertI); 2929 } else { 2930 MachineInstr *UpdateInstr = nullptr; 2931 int64_t TotalOffset; 2932 if (IsLast) { 2933 // See if we can merge base register update into the STGloop. 2934 // This is done in AArch64LoadStoreOptimizer for "normal" stores, 2935 // but STGloop is way too unusual for that, and also it only 2936 // realistically happens in function epilogue. Also, STGloop is expanded 2937 // before that pass. 2938 if (InsertI != MBB->end() && 2939 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getBytes() + Size, 2940 &TotalOffset)) { 2941 UpdateInstr = &*InsertI++; 2942 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n " 2943 << *UpdateInstr); 2944 } 2945 } 2946 2947 if (!UpdateInstr && TagStores.size() < 2) 2948 return; 2949 2950 if (UpdateInstr) { 2951 FrameRegUpdate = TotalOffset; 2952 FrameRegUpdateFlags = UpdateInstr->getFlags(); 2953 } 2954 emitLoop(InsertI); 2955 if (UpdateInstr) 2956 UpdateInstr->eraseFromParent(); 2957 } 2958 2959 for (auto &TS : TagStores) 2960 TS.MI->eraseFromParent(); 2961 } 2962 2963 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset, 2964 int64_t &Size, bool &ZeroData) { 2965 MachineFunction &MF = *MI.getParent()->getParent(); 2966 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2967 2968 unsigned Opcode = MI.getOpcode(); 2969 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset || 2970 Opcode == AArch64::STZ2GOffset); 2971 2972 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) { 2973 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead()) 2974 return false; 2975 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI()) 2976 return false; 2977 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex()); 2978 Size = MI.getOperand(2).getImm(); 2979 return true; 2980 } 2981 2982 if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset) 2983 Size = 16; 2984 else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset) 2985 Size = 32; 2986 else 2987 return false; 2988 2989 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI()) 2990 return false; 2991 2992 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) + 2993 16 * MI.getOperand(2).getImm(); 2994 return true; 2995 } 2996 2997 // Detect a run of memory tagging instructions for adjacent stack frame slots, 2998 // and replace them with a shorter instruction sequence: 2999 // * replace STG + STG with ST2G 3000 // * replace STGloop + STGloop with STGloop 3001 // This code needs to run when stack slot offsets are already known, but before 3002 // FrameIndex operands in STG instructions are eliminated. 3003 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II, 3004 const AArch64FrameLowering *TFI, 3005 RegScavenger *RS) { 3006 bool FirstZeroData; 3007 int64_t Size, Offset; 3008 MachineInstr &MI = *II; 3009 MachineBasicBlock *MBB = MI.getParent(); 3010 MachineBasicBlock::iterator NextI = ++II; 3011 if (&MI == &MBB->instr_back()) 3012 return II; 3013 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData)) 3014 return II; 3015 3016 SmallVector<TagStoreInstr, 4> Instrs; 3017 Instrs.emplace_back(&MI, Offset, Size); 3018 3019 constexpr int kScanLimit = 10; 3020 int Count = 0; 3021 for (MachineBasicBlock::iterator E = MBB->end(); 3022 NextI != E && Count < kScanLimit; ++NextI) { 3023 MachineInstr &MI = *NextI; 3024 bool ZeroData; 3025 int64_t Size, Offset; 3026 // Collect instructions that update memory tags with a FrameIndex operand 3027 // and (when applicable) constant size, and whose output registers are dead 3028 // (the latter is almost always the case in practice). Since these 3029 // instructions effectively have no inputs or outputs, we are free to skip 3030 // any non-aliasing instructions in between without tracking used registers. 3031 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) { 3032 if (ZeroData != FirstZeroData) 3033 break; 3034 Instrs.emplace_back(&MI, Offset, Size); 3035 continue; 3036 } 3037 3038 // Only count non-transient, non-tagging instructions toward the scan 3039 // limit. 3040 if (!MI.isTransient()) 3041 ++Count; 3042 3043 // Just in case, stop before the epilogue code starts. 3044 if (MI.getFlag(MachineInstr::FrameSetup) || 3045 MI.getFlag(MachineInstr::FrameDestroy)) 3046 break; 3047 3048 // Reject anything that may alias the collected instructions. 3049 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects()) 3050 break; 3051 } 3052 3053 // New code will be inserted after the last tagging instruction we've found. 3054 MachineBasicBlock::iterator InsertI = Instrs.back().MI; 3055 InsertI++; 3056 3057 llvm::stable_sort(Instrs, 3058 [](const TagStoreInstr &Left, const TagStoreInstr &Right) { 3059 return Left.Offset < Right.Offset; 3060 }); 3061 3062 // Make sure that we don't have any overlapping stores. 3063 int64_t CurOffset = Instrs[0].Offset; 3064 for (auto &Instr : Instrs) { 3065 if (CurOffset > Instr.Offset) 3066 return NextI; 3067 CurOffset = Instr.Offset + Instr.Size; 3068 } 3069 3070 // Find contiguous runs of tagged memory and emit shorter instruction 3071 // sequencies for them when possible. 3072 TagStoreEdit TSE(MBB, FirstZeroData); 3073 Optional<int64_t> EndOffset; 3074 for (auto &Instr : Instrs) { 3075 if (EndOffset && *EndOffset != Instr.Offset) { 3076 // Found a gap. 3077 TSE.emitCode(InsertI, TFI, /*IsLast = */ false); 3078 TSE.clear(); 3079 } 3080 3081 TSE.addInstruction(Instr); 3082 EndOffset = Instr.Offset + Instr.Size; 3083 } 3084 3085 TSE.emitCode(InsertI, TFI, /*IsLast = */ true); 3086 3087 return InsertI; 3088 } 3089 } // namespace 3090 3091 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3092 MachineFunction &MF, RegScavenger *RS = nullptr) const { 3093 if (StackTaggingMergeSetTag) 3094 for (auto &BB : MF) 3095 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) 3096 II = tryMergeAdjacentSTG(II, this, RS); 3097 } 3098 3099 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP 3100 /// before the update. This is easily retrieved as it is exactly the offset 3101 /// that is set in processFunctionBeforeFrameFinalized. 3102 int AArch64FrameLowering::getFrameIndexReferencePreferSP( 3103 const MachineFunction &MF, int FI, Register &FrameReg, 3104 bool IgnoreSPUpdates) const { 3105 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3106 if (IgnoreSPUpdates) { 3107 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " 3108 << MFI.getObjectOffset(FI) << "\n"); 3109 FrameReg = AArch64::SP; 3110 return MFI.getObjectOffset(FI); 3111 } 3112 3113 return getFrameIndexReference(MF, FI, FrameReg); 3114 } 3115 3116 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve 3117 /// the parent's frame pointer 3118 unsigned AArch64FrameLowering::getWinEHParentFrameOffset( 3119 const MachineFunction &MF) const { 3120 return 0; 3121 } 3122 3123 /// Funclets only need to account for space for the callee saved registers, 3124 /// as the locals are accounted for in the parent's stack frame. 3125 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( 3126 const MachineFunction &MF) const { 3127 // This is the size of the pushed CSRs. 3128 unsigned CSSize = 3129 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize(); 3130 // This is the amount of stack a funclet needs to allocate. 3131 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), 3132 getStackAlign()); 3133 } 3134