1 //===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Local-dynamic access to thread-local variables proceeds in three stages. 11 // 12 // 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated 13 // in much the same way as a general-dynamic TLS-descriptor access against 14 // the special symbol _TLS_MODULE_BASE. 15 // 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using 16 // instructions with "dtprel" modifiers. 17 // 3. These two are added, together with TPIDR_EL0, to obtain the variable's 18 // true address. 19 // 20 // This is only better than general-dynamic access to the variable if two or 21 // more of the first stage TLS-descriptor calculations can be combined. This 22 // pass looks through a function and performs such combinations. 23 // 24 //===----------------------------------------------------------------------===// 25 #include "AArch64.h" 26 #include "AArch64InstrInfo.h" 27 #include "AArch64MachineFunctionInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 using namespace llvm; 34 35 #define TLSCLEANUP_PASS_NAME "AArch64 Local Dynamic TLS Access Clean-up" 36 37 namespace { 38 struct LDTLSCleanup : public MachineFunctionPass { 39 static char ID; 40 LDTLSCleanup() : MachineFunctionPass(ID) { 41 initializeLDTLSCleanupPass(*PassRegistry::getPassRegistry()); 42 } 43 44 bool runOnMachineFunction(MachineFunction &MF) override { 45 if (skipFunction(MF.getFunction())) 46 return false; 47 48 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 49 if (AFI->getNumLocalDynamicTLSAccesses() < 2) { 50 // No point folding accesses if there isn't at least two. 51 return false; 52 } 53 54 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 55 return VisitNode(DT->getRootNode(), 0); 56 } 57 58 // Visit the dominator subtree rooted at Node in pre-order. 59 // If TLSBaseAddrReg is non-null, then use that to replace any 60 // TLS_base_addr instructions. Otherwise, create the register 61 // when the first such instruction is seen, and then use it 62 // as we encounter more instructions. 63 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 64 MachineBasicBlock *BB = Node->getBlock(); 65 bool Changed = false; 66 67 // Traverse the current block. 68 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 69 ++I) { 70 switch (I->getOpcode()) { 71 case AArch64::TLSDESC_CALLSEQ: 72 // Make sure it's a local dynamic access. 73 if (!I->getOperand(0).isSymbol() || 74 strcmp(I->getOperand(0).getSymbolName(), "_TLS_MODULE_BASE_")) 75 break; 76 77 if (TLSBaseAddrReg) 78 I = replaceTLSBaseAddrCall(*I, TLSBaseAddrReg); 79 else 80 I = setRegister(*I, &TLSBaseAddrReg); 81 Changed = true; 82 break; 83 default: 84 break; 85 } 86 } 87 88 // Visit the children of this block in the dominator tree. 89 for (MachineDomTreeNode *N : *Node) { 90 Changed |= VisitNode(N, TLSBaseAddrReg); 91 } 92 93 return Changed; 94 } 95 96 // Replace the TLS_base_addr instruction I with a copy from 97 // TLSBaseAddrReg, returning the new instruction. 98 MachineInstr *replaceTLSBaseAddrCall(MachineInstr &I, 99 unsigned TLSBaseAddrReg) { 100 MachineFunction *MF = I.getParent()->getParent(); 101 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 102 103 // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the 104 // code sequence assumes the address will be. 105 MachineInstr *Copy = BuildMI(*I.getParent(), I, I.getDebugLoc(), 106 TII->get(TargetOpcode::COPY), AArch64::X0) 107 .addReg(TLSBaseAddrReg); 108 109 // Erase the TLS_base_addr instruction. 110 I.eraseFromParent(); 111 112 return Copy; 113 } 114 115 // Create a virtual register in *TLSBaseAddrReg, and populate it by 116 // inserting a copy instruction after I. Returns the new instruction. 117 MachineInstr *setRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { 118 MachineFunction *MF = I.getParent()->getParent(); 119 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 120 121 // Create a virtual register for the TLS base address. 122 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 123 *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass); 124 125 // Insert a copy from X0 to TLSBaseAddrReg for later. 126 MachineInstr *Copy = 127 BuildMI(*I.getParent(), ++I.getIterator(), I.getDebugLoc(), 128 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 129 .addReg(AArch64::X0); 130 131 return Copy; 132 } 133 134 StringRef getPassName() const override { return TLSCLEANUP_PASS_NAME; } 135 136 void getAnalysisUsage(AnalysisUsage &AU) const override { 137 AU.setPreservesCFG(); 138 AU.addRequired<MachineDominatorTree>(); 139 MachineFunctionPass::getAnalysisUsage(AU); 140 } 141 }; 142 } 143 144 INITIALIZE_PASS(LDTLSCleanup, "aarch64-local-dynamic-tls-cleanup", 145 TLSCLEANUP_PASS_NAME, false, false) 146 147 char LDTLSCleanup::ID = 0; 148 FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() { 149 return new LDTLSCleanup(); 150 } 151