1 //===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Local-dynamic access to thread-local variables proceeds in three stages. 11 // 12 // 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated 13 // in much the same way as a general-dynamic TLS-descriptor access against 14 // the special symbol _TLS_MODULE_BASE. 15 // 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using 16 // instructions with "dtprel" modifiers. 17 // 3. These two are added, together with TPIDR_EL0, to obtain the variable's 18 // true address. 19 // 20 // This is only better than general-dynamic access to the variable if two or 21 // more of the first stage TLS-descriptor calculations can be combined. This 22 // pass looks through a function and performs such combinations. 23 // 24 //===----------------------------------------------------------------------===// 25 #include "AArch64.h" 26 #include "AArch64InstrInfo.h" 27 #include "AArch64MachineFunctionInfo.h" 28 #include "AArch64TargetMachine.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 using namespace llvm; 35 36 #define TLSCLEANUP_PASS_NAME "AArch64 Local Dynamic TLS Access Clean-up" 37 38 namespace { 39 struct LDTLSCleanup : public MachineFunctionPass { 40 static char ID; 41 LDTLSCleanup() : MachineFunctionPass(ID) { 42 initializeLDTLSCleanupPass(*PassRegistry::getPassRegistry()); 43 } 44 45 bool runOnMachineFunction(MachineFunction &MF) override { 46 if (skipFunction(*MF.getFunction())) 47 return false; 48 49 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 50 if (AFI->getNumLocalDynamicTLSAccesses() < 2) { 51 // No point folding accesses if there isn't at least two. 52 return false; 53 } 54 55 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 56 return VisitNode(DT->getRootNode(), 0); 57 } 58 59 // Visit the dominator subtree rooted at Node in pre-order. 60 // If TLSBaseAddrReg is non-null, then use that to replace any 61 // TLS_base_addr instructions. Otherwise, create the register 62 // when the first such instruction is seen, and then use it 63 // as we encounter more instructions. 64 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 65 MachineBasicBlock *BB = Node->getBlock(); 66 bool Changed = false; 67 68 // Traverse the current block. 69 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 70 ++I) { 71 switch (I->getOpcode()) { 72 case AArch64::TLSDESC_CALLSEQ: 73 // Make sure it's a local dynamic access. 74 if (!I->getOperand(0).isSymbol() || 75 strcmp(I->getOperand(0).getSymbolName(), "_TLS_MODULE_BASE_")) 76 break; 77 78 if (TLSBaseAddrReg) 79 I = replaceTLSBaseAddrCall(*I, TLSBaseAddrReg); 80 else 81 I = setRegister(*I, &TLSBaseAddrReg); 82 Changed = true; 83 break; 84 default: 85 break; 86 } 87 } 88 89 // Visit the children of this block in the dominator tree. 90 for (MachineDomTreeNode *N : *Node) { 91 Changed |= VisitNode(N, TLSBaseAddrReg); 92 } 93 94 return Changed; 95 } 96 97 // Replace the TLS_base_addr instruction I with a copy from 98 // TLSBaseAddrReg, returning the new instruction. 99 MachineInstr *replaceTLSBaseAddrCall(MachineInstr &I, 100 unsigned TLSBaseAddrReg) { 101 MachineFunction *MF = I.getParent()->getParent(); 102 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 103 104 // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the 105 // code sequence assumes the address will be. 106 MachineInstr *Copy = BuildMI(*I.getParent(), I, I.getDebugLoc(), 107 TII->get(TargetOpcode::COPY), AArch64::X0) 108 .addReg(TLSBaseAddrReg); 109 110 // Erase the TLS_base_addr instruction. 111 I.eraseFromParent(); 112 113 return Copy; 114 } 115 116 // Create a virtal register in *TLSBaseAddrReg, and populate it by 117 // inserting a copy instruction after I. Returns the new instruction. 118 MachineInstr *setRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { 119 MachineFunction *MF = I.getParent()->getParent(); 120 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 121 122 // Create a virtual register for the TLS base address. 123 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 124 *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass); 125 126 // Insert a copy from X0 to TLSBaseAddrReg for later. 127 MachineInstr *Copy = 128 BuildMI(*I.getParent(), ++I.getIterator(), I.getDebugLoc(), 129 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 130 .addReg(AArch64::X0); 131 132 return Copy; 133 } 134 135 StringRef getPassName() const override { return TLSCLEANUP_PASS_NAME; } 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override { 138 AU.setPreservesCFG(); 139 AU.addRequired<MachineDominatorTree>(); 140 MachineFunctionPass::getAnalysisUsage(AU); 141 } 142 }; 143 } 144 145 INITIALIZE_PASS(LDTLSCleanup, "aarch64-local-dynamic-tls-cleanup", 146 TLSCLEANUP_PASS_NAME, false, false) 147 148 char LDTLSCleanup::ID = 0; 149 FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() { 150 return new LDTLSCleanup(); 151 } 152