1 //===- AArch64AsmPrinter.cpp - AArch64 LLVM assembly writer ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to the AArch64 assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64.h" 15 #include "AArch64MCInstLower.h" 16 #include "AArch64MachineFunctionInfo.h" 17 #include "AArch64RegisterInfo.h" 18 #include "AArch64Subtarget.h" 19 #include "AArch64TargetObjectFile.h" 20 #include "MCTargetDesc/AArch64AddressingModes.h" 21 #include "MCTargetDesc/AArch64InstPrinter.h" 22 #include "MCTargetDesc/AArch64MCExpr.h" 23 #include "MCTargetDesc/AArch64MCTargetDesc.h" 24 #include "MCTargetDesc/AArch64TargetStreamer.h" 25 #include "TargetInfo/AArch64TargetInfo.h" 26 #include "Utils/AArch64BaseInfo.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/COFF.h" 33 #include "llvm/BinaryFormat/ELF.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/FaultMaps.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineJumpTableInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/MC/MCAsmInfo.h" 47 #include "llvm/MC/MCContext.h" 48 #include "llvm/MC/MCInst.h" 49 #include "llvm/MC/MCInstBuilder.h" 50 #include "llvm/MC/MCSectionELF.h" 51 #include "llvm/MC/MCStreamer.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/MC/TargetRegistry.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <map> 63 #include <memory> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "asm-printer" 68 69 namespace { 70 71 class AArch64AsmPrinter : public AsmPrinter { 72 AArch64MCInstLower MCInstLowering; 73 StackMaps SM; 74 FaultMaps FM; 75 const AArch64Subtarget *STI; 76 bool ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = false; 77 78 public: 79 AArch64AsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 80 : AsmPrinter(TM, std::move(Streamer)), MCInstLowering(OutContext, *this), 81 SM(*this), FM(*this) {} 82 83 StringRef getPassName() const override { return "AArch64 Assembly Printer"; } 84 85 /// Wrapper for MCInstLowering.lowerOperand() for the 86 /// tblgen'erated pseudo lowering. 87 bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp) const { 88 return MCInstLowering.lowerOperand(MO, MCOp); 89 } 90 91 void emitStartOfAsmFile(Module &M) override; 92 void emitJumpTableInfo() override; 93 94 void emitFunctionEntryLabel() override; 95 96 void LowerJumpTableDest(MCStreamer &OutStreamer, const MachineInstr &MI); 97 98 void LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM, 99 const MachineInstr &MI); 100 void LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM, 101 const MachineInstr &MI); 102 void LowerSTATEPOINT(MCStreamer &OutStreamer, StackMaps &SM, 103 const MachineInstr &MI); 104 void LowerFAULTING_OP(const MachineInstr &MI); 105 106 void LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI); 107 void LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI); 108 void LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI); 109 110 typedef std::tuple<unsigned, bool, uint32_t> HwasanMemaccessTuple; 111 std::map<HwasanMemaccessTuple, MCSymbol *> HwasanMemaccessSymbols; 112 void LowerHWASAN_CHECK_MEMACCESS(const MachineInstr &MI); 113 void emitHwasanMemaccessSymbols(Module &M); 114 115 void emitSled(const MachineInstr &MI, SledKind Kind); 116 117 /// tblgen'erated driver function for lowering simple MI->MC 118 /// pseudo instructions. 119 bool emitPseudoExpansionLowering(MCStreamer &OutStreamer, 120 const MachineInstr *MI); 121 122 void emitInstruction(const MachineInstr *MI) override; 123 124 void emitFunctionHeaderComment() override; 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AsmPrinter::getAnalysisUsage(AU); 128 AU.setPreservesAll(); 129 } 130 131 bool runOnMachineFunction(MachineFunction &MF) override { 132 AArch64FI = MF.getInfo<AArch64FunctionInfo>(); 133 STI = static_cast<const AArch64Subtarget*>(&MF.getSubtarget()); 134 135 SetupMachineFunction(MF); 136 137 if (STI->isTargetCOFF()) { 138 bool Internal = MF.getFunction().hasInternalLinkage(); 139 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 140 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 141 int Type = 142 COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 143 144 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 145 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 146 OutStreamer->EmitCOFFSymbolType(Type); 147 OutStreamer->EndCOFFSymbolDef(); 148 } 149 150 // Emit the rest of the function body. 151 emitFunctionBody(); 152 153 // Emit the XRay table for this function. 154 emitXRayTable(); 155 156 // We didn't modify anything. 157 return false; 158 } 159 160 private: 161 void printOperand(const MachineInstr *MI, unsigned OpNum, raw_ostream &O); 162 bool printAsmMRegister(const MachineOperand &MO, char Mode, raw_ostream &O); 163 bool printAsmRegInClass(const MachineOperand &MO, 164 const TargetRegisterClass *RC, unsigned AltName, 165 raw_ostream &O); 166 167 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 168 const char *ExtraCode, raw_ostream &O) override; 169 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, 170 const char *ExtraCode, raw_ostream &O) override; 171 172 void PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS); 173 174 void emitFunctionBodyEnd() override; 175 176 MCSymbol *GetCPISymbol(unsigned CPID) const override; 177 void emitEndOfAsmFile(Module &M) override; 178 179 AArch64FunctionInfo *AArch64FI = nullptr; 180 181 /// Emit the LOHs contained in AArch64FI. 182 void emitLOHs(); 183 184 /// Emit instruction to set float register to zero. 185 void emitFMov0(const MachineInstr &MI); 186 187 using MInstToMCSymbol = std::map<const MachineInstr *, MCSymbol *>; 188 189 MInstToMCSymbol LOHInstToLabel; 190 191 bool shouldEmitWeakSwiftAsyncExtendedFramePointerFlags() const override { 192 return ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags; 193 } 194 }; 195 196 } // end anonymous namespace 197 198 void AArch64AsmPrinter::emitStartOfAsmFile(Module &M) { 199 const Triple &TT = TM.getTargetTriple(); 200 201 if (TT.isOSBinFormatCOFF()) { 202 // Emit an absolute @feat.00 symbol. This appears to be some kind of 203 // compiler features bitfield read by link.exe. 204 MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00")); 205 OutStreamer->BeginCOFFSymbolDef(S); 206 OutStreamer->EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC); 207 OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL); 208 OutStreamer->EndCOFFSymbolDef(); 209 int64_t Feat00Flags = 0; 210 211 if (M.getModuleFlag("cfguard")) { 212 Feat00Flags |= 0x800; // Object is CFG-aware. 213 } 214 215 if (M.getModuleFlag("ehcontguard")) { 216 Feat00Flags |= 0x4000; // Object also has EHCont. 217 } 218 219 OutStreamer->emitSymbolAttribute(S, MCSA_Global); 220 OutStreamer->emitAssignment( 221 S, MCConstantExpr::create(Feat00Flags, MMI->getContext())); 222 } 223 224 if (!TT.isOSBinFormatELF()) 225 return; 226 227 // Assemble feature flags that may require creation of a note section. 228 unsigned Flags = 0; 229 if (const auto *BTE = mdconst::extract_or_null<ConstantInt>( 230 M.getModuleFlag("branch-target-enforcement"))) 231 if (BTE->getZExtValue()) 232 Flags |= ELF::GNU_PROPERTY_AARCH64_FEATURE_1_BTI; 233 234 if (const auto *Sign = mdconst::extract_or_null<ConstantInt>( 235 M.getModuleFlag("sign-return-address"))) 236 if (Sign->getZExtValue()) 237 Flags |= ELF::GNU_PROPERTY_AARCH64_FEATURE_1_PAC; 238 239 if (Flags == 0) 240 return; 241 242 // Emit a .note.gnu.property section with the flags. 243 if (auto *TS = static_cast<AArch64TargetStreamer *>( 244 OutStreamer->getTargetStreamer())) 245 TS->emitNoteSection(Flags); 246 } 247 248 void AArch64AsmPrinter::emitFunctionHeaderComment() { 249 const AArch64FunctionInfo *FI = MF->getInfo<AArch64FunctionInfo>(); 250 Optional<std::string> OutlinerString = FI->getOutliningStyle(); 251 if (OutlinerString != None) 252 OutStreamer->GetCommentOS() << ' ' << OutlinerString; 253 } 254 255 void AArch64AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) 256 { 257 const Function &F = MF->getFunction(); 258 if (F.hasFnAttribute("patchable-function-entry")) { 259 unsigned Num; 260 if (F.getFnAttribute("patchable-function-entry") 261 .getValueAsString() 262 .getAsInteger(10, Num)) 263 return; 264 emitNops(Num); 265 return; 266 } 267 268 emitSled(MI, SledKind::FUNCTION_ENTER); 269 } 270 271 void AArch64AsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) { 272 emitSled(MI, SledKind::FUNCTION_EXIT); 273 } 274 275 void AArch64AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) { 276 emitSled(MI, SledKind::TAIL_CALL); 277 } 278 279 void AArch64AsmPrinter::emitSled(const MachineInstr &MI, SledKind Kind) { 280 static const int8_t NoopsInSledCount = 7; 281 // We want to emit the following pattern: 282 // 283 // .Lxray_sled_N: 284 // ALIGN 285 // B #32 286 // ; 7 NOP instructions (28 bytes) 287 // .tmpN 288 // 289 // We need the 28 bytes (7 instructions) because at runtime, we'd be patching 290 // over the full 32 bytes (8 instructions) with the following pattern: 291 // 292 // STP X0, X30, [SP, #-16]! ; push X0 and the link register to the stack 293 // LDR W0, #12 ; W0 := function ID 294 // LDR X16,#12 ; X16 := addr of __xray_FunctionEntry or __xray_FunctionExit 295 // BLR X16 ; call the tracing trampoline 296 // ;DATA: 32 bits of function ID 297 // ;DATA: lower 32 bits of the address of the trampoline 298 // ;DATA: higher 32 bits of the address of the trampoline 299 // LDP X0, X30, [SP], #16 ; pop X0 and the link register from the stack 300 // 301 OutStreamer->emitCodeAlignment(4, &getSubtargetInfo()); 302 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 303 OutStreamer->emitLabel(CurSled); 304 auto Target = OutContext.createTempSymbol(); 305 306 // Emit "B #32" instruction, which jumps over the next 28 bytes. 307 // The operand has to be the number of 4-byte instructions to jump over, 308 // including the current instruction. 309 EmitToStreamer(*OutStreamer, MCInstBuilder(AArch64::B).addImm(8)); 310 311 for (int8_t I = 0; I < NoopsInSledCount; I++) 312 EmitToStreamer(*OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0)); 313 314 OutStreamer->emitLabel(Target); 315 recordSled(CurSled, MI, Kind, 2); 316 } 317 318 void AArch64AsmPrinter::LowerHWASAN_CHECK_MEMACCESS(const MachineInstr &MI) { 319 Register Reg = MI.getOperand(0).getReg(); 320 bool IsShort = 321 MI.getOpcode() == AArch64::HWASAN_CHECK_MEMACCESS_SHORTGRANULES; 322 uint32_t AccessInfo = MI.getOperand(1).getImm(); 323 MCSymbol *&Sym = 324 HwasanMemaccessSymbols[HwasanMemaccessTuple(Reg, IsShort, AccessInfo)]; 325 if (!Sym) { 326 // FIXME: Make this work on non-ELF. 327 if (!TM.getTargetTriple().isOSBinFormatELF()) 328 report_fatal_error("llvm.hwasan.check.memaccess only supported on ELF"); 329 330 std::string SymName = "__hwasan_check_x" + utostr(Reg - AArch64::X0) + "_" + 331 utostr(AccessInfo); 332 if (IsShort) 333 SymName += "_short_v2"; 334 Sym = OutContext.getOrCreateSymbol(SymName); 335 } 336 337 EmitToStreamer(*OutStreamer, 338 MCInstBuilder(AArch64::BL) 339 .addExpr(MCSymbolRefExpr::create(Sym, OutContext))); 340 } 341 342 void AArch64AsmPrinter::emitHwasanMemaccessSymbols(Module &M) { 343 if (HwasanMemaccessSymbols.empty()) 344 return; 345 346 const Triple &TT = TM.getTargetTriple(); 347 assert(TT.isOSBinFormatELF()); 348 std::unique_ptr<MCSubtargetInfo> STI( 349 TM.getTarget().createMCSubtargetInfo(TT.str(), "", "")); 350 assert(STI && "Unable to create subtarget info"); 351 352 MCSymbol *HwasanTagMismatchV1Sym = 353 OutContext.getOrCreateSymbol("__hwasan_tag_mismatch"); 354 MCSymbol *HwasanTagMismatchV2Sym = 355 OutContext.getOrCreateSymbol("__hwasan_tag_mismatch_v2"); 356 357 const MCSymbolRefExpr *HwasanTagMismatchV1Ref = 358 MCSymbolRefExpr::create(HwasanTagMismatchV1Sym, OutContext); 359 const MCSymbolRefExpr *HwasanTagMismatchV2Ref = 360 MCSymbolRefExpr::create(HwasanTagMismatchV2Sym, OutContext); 361 362 for (auto &P : HwasanMemaccessSymbols) { 363 unsigned Reg = std::get<0>(P.first); 364 bool IsShort = std::get<1>(P.first); 365 uint32_t AccessInfo = std::get<2>(P.first); 366 const MCSymbolRefExpr *HwasanTagMismatchRef = 367 IsShort ? HwasanTagMismatchV2Ref : HwasanTagMismatchV1Ref; 368 MCSymbol *Sym = P.second; 369 370 bool HasMatchAllTag = 371 (AccessInfo >> HWASanAccessInfo::HasMatchAllShift) & 1; 372 uint8_t MatchAllTag = 373 (AccessInfo >> HWASanAccessInfo::MatchAllShift) & 0xff; 374 unsigned Size = 375 1 << ((AccessInfo >> HWASanAccessInfo::AccessSizeShift) & 0xf); 376 bool CompileKernel = 377 (AccessInfo >> HWASanAccessInfo::CompileKernelShift) & 1; 378 379 OutStreamer->SwitchSection(OutContext.getELFSection( 380 ".text.hot", ELF::SHT_PROGBITS, 381 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 382 Sym->getName(), /*IsComdat=*/true)); 383 384 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); 385 OutStreamer->emitSymbolAttribute(Sym, MCSA_Weak); 386 OutStreamer->emitSymbolAttribute(Sym, MCSA_Hidden); 387 OutStreamer->emitLabel(Sym); 388 389 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SBFMXri) 390 .addReg(AArch64::X16) 391 .addReg(Reg) 392 .addImm(4) 393 .addImm(55), 394 *STI); 395 OutStreamer->emitInstruction( 396 MCInstBuilder(AArch64::LDRBBroX) 397 .addReg(AArch64::W16) 398 .addReg(IsShort ? AArch64::X20 : AArch64::X9) 399 .addReg(AArch64::X16) 400 .addImm(0) 401 .addImm(0), 402 *STI); 403 OutStreamer->emitInstruction( 404 MCInstBuilder(AArch64::SUBSXrs) 405 .addReg(AArch64::XZR) 406 .addReg(AArch64::X16) 407 .addReg(Reg) 408 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSR, 56)), 409 *STI); 410 MCSymbol *HandleMismatchOrPartialSym = OutContext.createTempSymbol(); 411 OutStreamer->emitInstruction( 412 MCInstBuilder(AArch64::Bcc) 413 .addImm(AArch64CC::NE) 414 .addExpr(MCSymbolRefExpr::create(HandleMismatchOrPartialSym, 415 OutContext)), 416 *STI); 417 MCSymbol *ReturnSym = OutContext.createTempSymbol(); 418 OutStreamer->emitLabel(ReturnSym); 419 OutStreamer->emitInstruction( 420 MCInstBuilder(AArch64::RET).addReg(AArch64::LR), *STI); 421 OutStreamer->emitLabel(HandleMismatchOrPartialSym); 422 423 if (HasMatchAllTag) { 424 OutStreamer->emitInstruction(MCInstBuilder(AArch64::UBFMXri) 425 .addReg(AArch64::X16) 426 .addReg(Reg) 427 .addImm(56) 428 .addImm(63), 429 *STI); 430 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSXri) 431 .addReg(AArch64::XZR) 432 .addReg(AArch64::X16) 433 .addImm(MatchAllTag) 434 .addImm(0), 435 *STI); 436 OutStreamer->emitInstruction( 437 MCInstBuilder(AArch64::Bcc) 438 .addImm(AArch64CC::EQ) 439 .addExpr(MCSymbolRefExpr::create(ReturnSym, OutContext)), 440 *STI); 441 } 442 443 if (IsShort) { 444 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSWri) 445 .addReg(AArch64::WZR) 446 .addReg(AArch64::W16) 447 .addImm(15) 448 .addImm(0), 449 *STI); 450 MCSymbol *HandleMismatchSym = OutContext.createTempSymbol(); 451 OutStreamer->emitInstruction( 452 MCInstBuilder(AArch64::Bcc) 453 .addImm(AArch64CC::HI) 454 .addExpr(MCSymbolRefExpr::create(HandleMismatchSym, OutContext)), 455 *STI); 456 457 OutStreamer->emitInstruction( 458 MCInstBuilder(AArch64::ANDXri) 459 .addReg(AArch64::X17) 460 .addReg(Reg) 461 .addImm(AArch64_AM::encodeLogicalImmediate(0xf, 64)), 462 *STI); 463 if (Size != 1) 464 OutStreamer->emitInstruction(MCInstBuilder(AArch64::ADDXri) 465 .addReg(AArch64::X17) 466 .addReg(AArch64::X17) 467 .addImm(Size - 1) 468 .addImm(0), 469 *STI); 470 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSWrs) 471 .addReg(AArch64::WZR) 472 .addReg(AArch64::W16) 473 .addReg(AArch64::W17) 474 .addImm(0), 475 *STI); 476 OutStreamer->emitInstruction( 477 MCInstBuilder(AArch64::Bcc) 478 .addImm(AArch64CC::LS) 479 .addExpr(MCSymbolRefExpr::create(HandleMismatchSym, OutContext)), 480 *STI); 481 482 OutStreamer->emitInstruction( 483 MCInstBuilder(AArch64::ORRXri) 484 .addReg(AArch64::X16) 485 .addReg(Reg) 486 .addImm(AArch64_AM::encodeLogicalImmediate(0xf, 64)), 487 *STI); 488 OutStreamer->emitInstruction(MCInstBuilder(AArch64::LDRBBui) 489 .addReg(AArch64::W16) 490 .addReg(AArch64::X16) 491 .addImm(0), 492 *STI); 493 OutStreamer->emitInstruction( 494 MCInstBuilder(AArch64::SUBSXrs) 495 .addReg(AArch64::XZR) 496 .addReg(AArch64::X16) 497 .addReg(Reg) 498 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSR, 56)), 499 *STI); 500 OutStreamer->emitInstruction( 501 MCInstBuilder(AArch64::Bcc) 502 .addImm(AArch64CC::EQ) 503 .addExpr(MCSymbolRefExpr::create(ReturnSym, OutContext)), 504 *STI); 505 506 OutStreamer->emitLabel(HandleMismatchSym); 507 } 508 509 OutStreamer->emitInstruction(MCInstBuilder(AArch64::STPXpre) 510 .addReg(AArch64::SP) 511 .addReg(AArch64::X0) 512 .addReg(AArch64::X1) 513 .addReg(AArch64::SP) 514 .addImm(-32), 515 *STI); 516 OutStreamer->emitInstruction(MCInstBuilder(AArch64::STPXi) 517 .addReg(AArch64::FP) 518 .addReg(AArch64::LR) 519 .addReg(AArch64::SP) 520 .addImm(29), 521 *STI); 522 523 if (Reg != AArch64::X0) 524 OutStreamer->emitInstruction(MCInstBuilder(AArch64::ORRXrs) 525 .addReg(AArch64::X0) 526 .addReg(AArch64::XZR) 527 .addReg(Reg) 528 .addImm(0), 529 *STI); 530 OutStreamer->emitInstruction( 531 MCInstBuilder(AArch64::MOVZXi) 532 .addReg(AArch64::X1) 533 .addImm(AccessInfo & HWASanAccessInfo::RuntimeMask) 534 .addImm(0), 535 *STI); 536 537 if (CompileKernel) { 538 // The Linux kernel's dynamic loader doesn't support GOT relative 539 // relocations, but it doesn't support late binding either, so just call 540 // the function directly. 541 OutStreamer->emitInstruction( 542 MCInstBuilder(AArch64::B).addExpr(HwasanTagMismatchRef), *STI); 543 } else { 544 // Intentionally load the GOT entry and branch to it, rather than possibly 545 // late binding the function, which may clobber the registers before we 546 // have a chance to save them. 547 OutStreamer->emitInstruction( 548 MCInstBuilder(AArch64::ADRP) 549 .addReg(AArch64::X16) 550 .addExpr(AArch64MCExpr::create( 551 HwasanTagMismatchRef, AArch64MCExpr::VariantKind::VK_GOT_PAGE, 552 OutContext)), 553 *STI); 554 OutStreamer->emitInstruction( 555 MCInstBuilder(AArch64::LDRXui) 556 .addReg(AArch64::X16) 557 .addReg(AArch64::X16) 558 .addExpr(AArch64MCExpr::create( 559 HwasanTagMismatchRef, AArch64MCExpr::VariantKind::VK_GOT_LO12, 560 OutContext)), 561 *STI); 562 OutStreamer->emitInstruction( 563 MCInstBuilder(AArch64::BR).addReg(AArch64::X16), *STI); 564 } 565 } 566 } 567 568 void AArch64AsmPrinter::emitEndOfAsmFile(Module &M) { 569 emitHwasanMemaccessSymbols(M); 570 571 const Triple &TT = TM.getTargetTriple(); 572 if (TT.isOSBinFormatMachO()) { 573 // Funny Darwin hack: This flag tells the linker that no global symbols 574 // contain code that falls through to other global symbols (e.g. the obvious 575 // implementation of multiple entry points). If this doesn't occur, the 576 // linker can safely perform dead code stripping. Since LLVM never 577 // generates code that does this, it is always safe to set. 578 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 579 } 580 581 // Emit stack and fault map information. 582 emitStackMaps(SM); 583 FM.serializeToFaultMapSection(); 584 585 } 586 587 void AArch64AsmPrinter::emitLOHs() { 588 SmallVector<MCSymbol *, 3> MCArgs; 589 590 for (const auto &D : AArch64FI->getLOHContainer()) { 591 for (const MachineInstr *MI : D.getArgs()) { 592 MInstToMCSymbol::iterator LabelIt = LOHInstToLabel.find(MI); 593 assert(LabelIt != LOHInstToLabel.end() && 594 "Label hasn't been inserted for LOH related instruction"); 595 MCArgs.push_back(LabelIt->second); 596 } 597 OutStreamer->emitLOHDirective(D.getKind(), MCArgs); 598 MCArgs.clear(); 599 } 600 } 601 602 void AArch64AsmPrinter::emitFunctionBodyEnd() { 603 if (!AArch64FI->getLOHRelated().empty()) 604 emitLOHs(); 605 } 606 607 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 608 MCSymbol *AArch64AsmPrinter::GetCPISymbol(unsigned CPID) const { 609 // Darwin uses a linker-private symbol name for constant-pools (to 610 // avoid addends on the relocation?), ELF has no such concept and 611 // uses a normal private symbol. 612 if (!getDataLayout().getLinkerPrivateGlobalPrefix().empty()) 613 return OutContext.getOrCreateSymbol( 614 Twine(getDataLayout().getLinkerPrivateGlobalPrefix()) + "CPI" + 615 Twine(getFunctionNumber()) + "_" + Twine(CPID)); 616 617 return AsmPrinter::GetCPISymbol(CPID); 618 } 619 620 void AArch64AsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum, 621 raw_ostream &O) { 622 const MachineOperand &MO = MI->getOperand(OpNum); 623 switch (MO.getType()) { 624 default: 625 llvm_unreachable("<unknown operand type>"); 626 case MachineOperand::MO_Register: { 627 Register Reg = MO.getReg(); 628 assert(Register::isPhysicalRegister(Reg)); 629 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 630 O << AArch64InstPrinter::getRegisterName(Reg); 631 break; 632 } 633 case MachineOperand::MO_Immediate: { 634 O << MO.getImm(); 635 break; 636 } 637 case MachineOperand::MO_GlobalAddress: { 638 PrintSymbolOperand(MO, O); 639 break; 640 } 641 case MachineOperand::MO_BlockAddress: { 642 MCSymbol *Sym = GetBlockAddressSymbol(MO.getBlockAddress()); 643 Sym->print(O, MAI); 644 break; 645 } 646 } 647 } 648 649 bool AArch64AsmPrinter::printAsmMRegister(const MachineOperand &MO, char Mode, 650 raw_ostream &O) { 651 Register Reg = MO.getReg(); 652 switch (Mode) { 653 default: 654 return true; // Unknown mode. 655 case 'w': 656 Reg = getWRegFromXReg(Reg); 657 break; 658 case 'x': 659 Reg = getXRegFromWReg(Reg); 660 break; 661 case 't': 662 Reg = getXRegFromXRegTuple(Reg); 663 break; 664 } 665 666 O << AArch64InstPrinter::getRegisterName(Reg); 667 return false; 668 } 669 670 // Prints the register in MO using class RC using the offset in the 671 // new register class. This should not be used for cross class 672 // printing. 673 bool AArch64AsmPrinter::printAsmRegInClass(const MachineOperand &MO, 674 const TargetRegisterClass *RC, 675 unsigned AltName, raw_ostream &O) { 676 assert(MO.isReg() && "Should only get here with a register!"); 677 const TargetRegisterInfo *RI = STI->getRegisterInfo(); 678 Register Reg = MO.getReg(); 679 unsigned RegToPrint = RC->getRegister(RI->getEncodingValue(Reg)); 680 if (!RI->regsOverlap(RegToPrint, Reg)) 681 return true; 682 O << AArch64InstPrinter::getRegisterName(RegToPrint, AltName); 683 return false; 684 } 685 686 bool AArch64AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 687 const char *ExtraCode, raw_ostream &O) { 688 const MachineOperand &MO = MI->getOperand(OpNum); 689 690 // First try the generic code, which knows about modifiers like 'c' and 'n'. 691 if (!AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O)) 692 return false; 693 694 // Does this asm operand have a single letter operand modifier? 695 if (ExtraCode && ExtraCode[0]) { 696 if (ExtraCode[1] != 0) 697 return true; // Unknown modifier. 698 699 switch (ExtraCode[0]) { 700 default: 701 return true; // Unknown modifier. 702 case 'w': // Print W register 703 case 'x': // Print X register 704 if (MO.isReg()) 705 return printAsmMRegister(MO, ExtraCode[0], O); 706 if (MO.isImm() && MO.getImm() == 0) { 707 unsigned Reg = ExtraCode[0] == 'w' ? AArch64::WZR : AArch64::XZR; 708 O << AArch64InstPrinter::getRegisterName(Reg); 709 return false; 710 } 711 printOperand(MI, OpNum, O); 712 return false; 713 case 'b': // Print B register. 714 case 'h': // Print H register. 715 case 's': // Print S register. 716 case 'd': // Print D register. 717 case 'q': // Print Q register. 718 case 'z': // Print Z register. 719 if (MO.isReg()) { 720 const TargetRegisterClass *RC; 721 switch (ExtraCode[0]) { 722 case 'b': 723 RC = &AArch64::FPR8RegClass; 724 break; 725 case 'h': 726 RC = &AArch64::FPR16RegClass; 727 break; 728 case 's': 729 RC = &AArch64::FPR32RegClass; 730 break; 731 case 'd': 732 RC = &AArch64::FPR64RegClass; 733 break; 734 case 'q': 735 RC = &AArch64::FPR128RegClass; 736 break; 737 case 'z': 738 RC = &AArch64::ZPRRegClass; 739 break; 740 default: 741 return true; 742 } 743 return printAsmRegInClass(MO, RC, AArch64::NoRegAltName, O); 744 } 745 printOperand(MI, OpNum, O); 746 return false; 747 } 748 } 749 750 // According to ARM, we should emit x and v registers unless we have a 751 // modifier. 752 if (MO.isReg()) { 753 Register Reg = MO.getReg(); 754 755 // If this is a w or x register, print an x register. 756 if (AArch64::GPR32allRegClass.contains(Reg) || 757 AArch64::GPR64allRegClass.contains(Reg)) 758 return printAsmMRegister(MO, 'x', O); 759 760 // If this is an x register tuple, print an x register. 761 if (AArch64::GPR64x8ClassRegClass.contains(Reg)) 762 return printAsmMRegister(MO, 't', O); 763 764 unsigned AltName = AArch64::NoRegAltName; 765 const TargetRegisterClass *RegClass; 766 if (AArch64::ZPRRegClass.contains(Reg)) { 767 RegClass = &AArch64::ZPRRegClass; 768 } else if (AArch64::PPRRegClass.contains(Reg)) { 769 RegClass = &AArch64::PPRRegClass; 770 } else { 771 RegClass = &AArch64::FPR128RegClass; 772 AltName = AArch64::vreg; 773 } 774 775 // If this is a b, h, s, d, or q register, print it as a v register. 776 return printAsmRegInClass(MO, RegClass, AltName, O); 777 } 778 779 printOperand(MI, OpNum, O); 780 return false; 781 } 782 783 bool AArch64AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 784 unsigned OpNum, 785 const char *ExtraCode, 786 raw_ostream &O) { 787 if (ExtraCode && ExtraCode[0] && ExtraCode[0] != 'a') 788 return true; // Unknown modifier. 789 790 const MachineOperand &MO = MI->getOperand(OpNum); 791 assert(MO.isReg() && "unexpected inline asm memory operand"); 792 O << "[" << AArch64InstPrinter::getRegisterName(MO.getReg()) << "]"; 793 return false; 794 } 795 796 void AArch64AsmPrinter::PrintDebugValueComment(const MachineInstr *MI, 797 raw_ostream &OS) { 798 unsigned NOps = MI->getNumOperands(); 799 assert(NOps == 4); 800 OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: "; 801 // cast away const; DIetc do not take const operands for some reason. 802 OS << MI->getDebugVariable()->getName(); 803 OS << " <- "; 804 // Frame address. Currently handles register +- offset only. 805 assert(MI->isIndirectDebugValue()); 806 OS << '['; 807 for (unsigned I = 0, E = std::distance(MI->debug_operands().begin(), 808 MI->debug_operands().end()); 809 I < E; ++I) { 810 if (I != 0) 811 OS << ", "; 812 printOperand(MI, I, OS); 813 } 814 OS << ']'; 815 OS << "+"; 816 printOperand(MI, NOps - 2, OS); 817 } 818 819 void AArch64AsmPrinter::emitJumpTableInfo() { 820 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 821 if (!MJTI) return; 822 823 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 824 if (JT.empty()) return; 825 826 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 827 MCSection *ReadOnlySec = TLOF.getSectionForJumpTable(MF->getFunction(), TM); 828 OutStreamer->SwitchSection(ReadOnlySec); 829 830 auto AFI = MF->getInfo<AArch64FunctionInfo>(); 831 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 832 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 833 834 // If this jump table was deleted, ignore it. 835 if (JTBBs.empty()) continue; 836 837 unsigned Size = AFI->getJumpTableEntrySize(JTI); 838 emitAlignment(Align(Size)); 839 OutStreamer->emitLabel(GetJTISymbol(JTI)); 840 841 const MCSymbol *BaseSym = AArch64FI->getJumpTableEntryPCRelSymbol(JTI); 842 const MCExpr *Base = MCSymbolRefExpr::create(BaseSym, OutContext); 843 844 for (auto *JTBB : JTBBs) { 845 const MCExpr *Value = 846 MCSymbolRefExpr::create(JTBB->getSymbol(), OutContext); 847 848 // Each entry is: 849 // .byte/.hword (LBB - Lbase)>>2 850 // or plain: 851 // .word LBB - Lbase 852 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 853 if (Size != 4) 854 Value = MCBinaryExpr::createLShr( 855 Value, MCConstantExpr::create(2, OutContext), OutContext); 856 857 OutStreamer->emitValue(Value, Size); 858 } 859 } 860 } 861 862 void AArch64AsmPrinter::emitFunctionEntryLabel() { 863 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall || 864 MF->getFunction().getCallingConv() == 865 CallingConv::AArch64_SVE_VectorCall || 866 STI->getRegisterInfo()->hasSVEArgsOrReturn(MF)) { 867 auto *TS = 868 static_cast<AArch64TargetStreamer *>(OutStreamer->getTargetStreamer()); 869 TS->emitDirectiveVariantPCS(CurrentFnSym); 870 } 871 872 return AsmPrinter::emitFunctionEntryLabel(); 873 } 874 875 /// Small jump tables contain an unsigned byte or half, representing the offset 876 /// from the lowest-addressed possible destination to the desired basic 877 /// block. Since all instructions are 4-byte aligned, this is further compressed 878 /// by counting in instructions rather than bytes (i.e. divided by 4). So, to 879 /// materialize the correct destination we need: 880 /// 881 /// adr xDest, .LBB0_0 882 /// ldrb wScratch, [xTable, xEntry] (with "lsl #1" for ldrh). 883 /// add xDest, xDest, xScratch (with "lsl #2" for smaller entries) 884 void AArch64AsmPrinter::LowerJumpTableDest(llvm::MCStreamer &OutStreamer, 885 const llvm::MachineInstr &MI) { 886 Register DestReg = MI.getOperand(0).getReg(); 887 Register ScratchReg = MI.getOperand(1).getReg(); 888 Register ScratchRegW = 889 STI->getRegisterInfo()->getSubReg(ScratchReg, AArch64::sub_32); 890 Register TableReg = MI.getOperand(2).getReg(); 891 Register EntryReg = MI.getOperand(3).getReg(); 892 int JTIdx = MI.getOperand(4).getIndex(); 893 int Size = AArch64FI->getJumpTableEntrySize(JTIdx); 894 895 // This has to be first because the compression pass based its reachability 896 // calculations on the start of the JumpTableDest instruction. 897 auto Label = 898 MF->getInfo<AArch64FunctionInfo>()->getJumpTableEntryPCRelSymbol(JTIdx); 899 900 // If we don't already have a symbol to use as the base, use the ADR 901 // instruction itself. 902 if (!Label) { 903 Label = MF->getContext().createTempSymbol(); 904 AArch64FI->setJumpTableEntryInfo(JTIdx, Size, Label); 905 OutStreamer.emitLabel(Label); 906 } 907 908 auto LabelExpr = MCSymbolRefExpr::create(Label, MF->getContext()); 909 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::ADR) 910 .addReg(DestReg) 911 .addExpr(LabelExpr)); 912 913 // Load the number of instruction-steps to offset from the label. 914 unsigned LdrOpcode; 915 switch (Size) { 916 case 1: LdrOpcode = AArch64::LDRBBroX; break; 917 case 2: LdrOpcode = AArch64::LDRHHroX; break; 918 case 4: LdrOpcode = AArch64::LDRSWroX; break; 919 default: 920 llvm_unreachable("Unknown jump table size"); 921 } 922 923 EmitToStreamer(OutStreamer, MCInstBuilder(LdrOpcode) 924 .addReg(Size == 4 ? ScratchReg : ScratchRegW) 925 .addReg(TableReg) 926 .addReg(EntryReg) 927 .addImm(0) 928 .addImm(Size == 1 ? 0 : 1)); 929 930 // Add to the already materialized base label address, multiplying by 4 if 931 // compressed. 932 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::ADDXrs) 933 .addReg(DestReg) 934 .addReg(DestReg) 935 .addReg(ScratchReg) 936 .addImm(Size == 4 ? 0 : 2)); 937 } 938 939 void AArch64AsmPrinter::LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM, 940 const MachineInstr &MI) { 941 unsigned NumNOPBytes = StackMapOpers(&MI).getNumPatchBytes(); 942 943 auto &Ctx = OutStreamer.getContext(); 944 MCSymbol *MILabel = Ctx.createTempSymbol(); 945 OutStreamer.emitLabel(MILabel); 946 947 SM.recordStackMap(*MILabel, MI); 948 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 949 950 // Scan ahead to trim the shadow. 951 const MachineBasicBlock &MBB = *MI.getParent(); 952 MachineBasicBlock::const_iterator MII(MI); 953 ++MII; 954 while (NumNOPBytes > 0) { 955 if (MII == MBB.end() || MII->isCall() || 956 MII->getOpcode() == AArch64::DBG_VALUE || 957 MII->getOpcode() == TargetOpcode::PATCHPOINT || 958 MII->getOpcode() == TargetOpcode::STACKMAP) 959 break; 960 ++MII; 961 NumNOPBytes -= 4; 962 } 963 964 // Emit nops. 965 for (unsigned i = 0; i < NumNOPBytes; i += 4) 966 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0)); 967 } 968 969 // Lower a patchpoint of the form: 970 // [<def>], <id>, <numBytes>, <target>, <numArgs> 971 void AArch64AsmPrinter::LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM, 972 const MachineInstr &MI) { 973 auto &Ctx = OutStreamer.getContext(); 974 MCSymbol *MILabel = Ctx.createTempSymbol(); 975 OutStreamer.emitLabel(MILabel); 976 SM.recordPatchPoint(*MILabel, MI); 977 978 PatchPointOpers Opers(&MI); 979 980 int64_t CallTarget = Opers.getCallTarget().getImm(); 981 unsigned EncodedBytes = 0; 982 if (CallTarget) { 983 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 984 "High 16 bits of call target should be zero."); 985 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 986 EncodedBytes = 16; 987 // Materialize the jump address: 988 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVZXi) 989 .addReg(ScratchReg) 990 .addImm((CallTarget >> 32) & 0xFFFF) 991 .addImm(32)); 992 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKXi) 993 .addReg(ScratchReg) 994 .addReg(ScratchReg) 995 .addImm((CallTarget >> 16) & 0xFFFF) 996 .addImm(16)); 997 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKXi) 998 .addReg(ScratchReg) 999 .addReg(ScratchReg) 1000 .addImm(CallTarget & 0xFFFF) 1001 .addImm(0)); 1002 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::BLR).addReg(ScratchReg)); 1003 } 1004 // Emit padding. 1005 unsigned NumBytes = Opers.getNumPatchBytes(); 1006 assert(NumBytes >= EncodedBytes && 1007 "Patchpoint can't request size less than the length of a call."); 1008 assert((NumBytes - EncodedBytes) % 4 == 0 && 1009 "Invalid number of NOP bytes requested!"); 1010 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 1011 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0)); 1012 } 1013 1014 void AArch64AsmPrinter::LowerSTATEPOINT(MCStreamer &OutStreamer, StackMaps &SM, 1015 const MachineInstr &MI) { 1016 StatepointOpers SOpers(&MI); 1017 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) { 1018 assert(PatchBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 1019 for (unsigned i = 0; i < PatchBytes; i += 4) 1020 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0)); 1021 } else { 1022 // Lower call target and choose correct opcode 1023 const MachineOperand &CallTarget = SOpers.getCallTarget(); 1024 MCOperand CallTargetMCOp; 1025 unsigned CallOpcode; 1026 switch (CallTarget.getType()) { 1027 case MachineOperand::MO_GlobalAddress: 1028 case MachineOperand::MO_ExternalSymbol: 1029 MCInstLowering.lowerOperand(CallTarget, CallTargetMCOp); 1030 CallOpcode = AArch64::BL; 1031 break; 1032 case MachineOperand::MO_Immediate: 1033 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm()); 1034 CallOpcode = AArch64::BL; 1035 break; 1036 case MachineOperand::MO_Register: 1037 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg()); 1038 CallOpcode = AArch64::BLR; 1039 break; 1040 default: 1041 llvm_unreachable("Unsupported operand type in statepoint call target"); 1042 break; 1043 } 1044 1045 EmitToStreamer(OutStreamer, 1046 MCInstBuilder(CallOpcode).addOperand(CallTargetMCOp)); 1047 } 1048 1049 auto &Ctx = OutStreamer.getContext(); 1050 MCSymbol *MILabel = Ctx.createTempSymbol(); 1051 OutStreamer.emitLabel(MILabel); 1052 SM.recordStatepoint(*MILabel, MI); 1053 } 1054 1055 void AArch64AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI) { 1056 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>, 1057 // <opcode>, <operands> 1058 1059 Register DefRegister = FaultingMI.getOperand(0).getReg(); 1060 FaultMaps::FaultKind FK = 1061 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm()); 1062 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol(); 1063 unsigned Opcode = FaultingMI.getOperand(3).getImm(); 1064 unsigned OperandsBeginIdx = 4; 1065 1066 auto &Ctx = OutStreamer->getContext(); 1067 MCSymbol *FaultingLabel = Ctx.createTempSymbol(); 1068 OutStreamer->emitLabel(FaultingLabel); 1069 1070 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!"); 1071 FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel); 1072 1073 MCInst MI; 1074 MI.setOpcode(Opcode); 1075 1076 if (DefRegister != (Register)0) 1077 MI.addOperand(MCOperand::createReg(DefRegister)); 1078 1079 for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx, 1080 E = FaultingMI.operands_end(); 1081 I != E; ++I) { 1082 MCOperand Dest; 1083 lowerOperand(*I, Dest); 1084 MI.addOperand(Dest); 1085 } 1086 1087 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName()); 1088 OutStreamer->emitInstruction(MI, getSubtargetInfo()); 1089 } 1090 1091 void AArch64AsmPrinter::emitFMov0(const MachineInstr &MI) { 1092 Register DestReg = MI.getOperand(0).getReg(); 1093 if (STI->hasZeroCycleZeroingFP() && !STI->hasZeroCycleZeroingFPWorkaround()) { 1094 // Convert H/S register to corresponding D register 1095 if (AArch64::H0 <= DestReg && DestReg <= AArch64::H31) 1096 DestReg = AArch64::D0 + (DestReg - AArch64::H0); 1097 else if (AArch64::S0 <= DestReg && DestReg <= AArch64::S31) 1098 DestReg = AArch64::D0 + (DestReg - AArch64::S0); 1099 else 1100 assert(AArch64::D0 <= DestReg && DestReg <= AArch64::D31); 1101 1102 MCInst MOVI; 1103 MOVI.setOpcode(AArch64::MOVID); 1104 MOVI.addOperand(MCOperand::createReg(DestReg)); 1105 MOVI.addOperand(MCOperand::createImm(0)); 1106 EmitToStreamer(*OutStreamer, MOVI); 1107 } else { 1108 MCInst FMov; 1109 switch (MI.getOpcode()) { 1110 default: llvm_unreachable("Unexpected opcode"); 1111 case AArch64::FMOVH0: 1112 FMov.setOpcode(AArch64::FMOVWHr); 1113 FMov.addOperand(MCOperand::createReg(DestReg)); 1114 FMov.addOperand(MCOperand::createReg(AArch64::WZR)); 1115 break; 1116 case AArch64::FMOVS0: 1117 FMov.setOpcode(AArch64::FMOVWSr); 1118 FMov.addOperand(MCOperand::createReg(DestReg)); 1119 FMov.addOperand(MCOperand::createReg(AArch64::WZR)); 1120 break; 1121 case AArch64::FMOVD0: 1122 FMov.setOpcode(AArch64::FMOVXDr); 1123 FMov.addOperand(MCOperand::createReg(DestReg)); 1124 FMov.addOperand(MCOperand::createReg(AArch64::XZR)); 1125 break; 1126 } 1127 EmitToStreamer(*OutStreamer, FMov); 1128 } 1129 } 1130 1131 // Simple pseudo-instructions have their lowering (with expansion to real 1132 // instructions) auto-generated. 1133 #include "AArch64GenMCPseudoLowering.inc" 1134 1135 void AArch64AsmPrinter::emitInstruction(const MachineInstr *MI) { 1136 // Do any auto-generated pseudo lowerings. 1137 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1138 return; 1139 1140 if (MI->getOpcode() == AArch64::ADRP) { 1141 for (auto &Opd : MI->operands()) { 1142 if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) == 1143 "swift_async_extendedFramePointerFlags") { 1144 ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true; 1145 } 1146 } 1147 } 1148 1149 if (AArch64FI->getLOHRelated().count(MI)) { 1150 // Generate a label for LOH related instruction 1151 MCSymbol *LOHLabel = createTempSymbol("loh"); 1152 // Associate the instruction with the label 1153 LOHInstToLabel[MI] = LOHLabel; 1154 OutStreamer->emitLabel(LOHLabel); 1155 } 1156 1157 AArch64TargetStreamer *TS = 1158 static_cast<AArch64TargetStreamer *>(OutStreamer->getTargetStreamer()); 1159 // Do any manual lowerings. 1160 switch (MI->getOpcode()) { 1161 default: 1162 break; 1163 case AArch64::HINT: { 1164 // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for 1165 // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be 1166 // non-empty. If MI is the initial BTI, place the 1167 // __patchable_function_entries label after BTI. 1168 if (CurrentPatchableFunctionEntrySym && 1169 CurrentPatchableFunctionEntrySym == CurrentFnBegin && 1170 MI == &MF->front().front()) { 1171 int64_t Imm = MI->getOperand(0).getImm(); 1172 if ((Imm & 32) && (Imm & 6)) { 1173 MCInst Inst; 1174 MCInstLowering.Lower(MI, Inst); 1175 EmitToStreamer(*OutStreamer, Inst); 1176 CurrentPatchableFunctionEntrySym = createTempSymbol("patch"); 1177 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 1178 return; 1179 } 1180 } 1181 break; 1182 } 1183 case AArch64::MOVMCSym: { 1184 Register DestReg = MI->getOperand(0).getReg(); 1185 const MachineOperand &MO_Sym = MI->getOperand(1); 1186 MachineOperand Hi_MOSym(MO_Sym), Lo_MOSym(MO_Sym); 1187 MCOperand Hi_MCSym, Lo_MCSym; 1188 1189 Hi_MOSym.setTargetFlags(AArch64II::MO_G1 | AArch64II::MO_S); 1190 Lo_MOSym.setTargetFlags(AArch64II::MO_G0 | AArch64II::MO_NC); 1191 1192 MCInstLowering.lowerOperand(Hi_MOSym, Hi_MCSym); 1193 MCInstLowering.lowerOperand(Lo_MOSym, Lo_MCSym); 1194 1195 MCInst MovZ; 1196 MovZ.setOpcode(AArch64::MOVZXi); 1197 MovZ.addOperand(MCOperand::createReg(DestReg)); 1198 MovZ.addOperand(Hi_MCSym); 1199 MovZ.addOperand(MCOperand::createImm(16)); 1200 EmitToStreamer(*OutStreamer, MovZ); 1201 1202 MCInst MovK; 1203 MovK.setOpcode(AArch64::MOVKXi); 1204 MovK.addOperand(MCOperand::createReg(DestReg)); 1205 MovK.addOperand(MCOperand::createReg(DestReg)); 1206 MovK.addOperand(Lo_MCSym); 1207 MovK.addOperand(MCOperand::createImm(0)); 1208 EmitToStreamer(*OutStreamer, MovK); 1209 return; 1210 } 1211 case AArch64::MOVIv2d_ns: 1212 // If the target has <rdar://problem/16473581>, lower this 1213 // instruction to movi.16b instead. 1214 if (STI->hasZeroCycleZeroingFPWorkaround() && 1215 MI->getOperand(1).getImm() == 0) { 1216 MCInst TmpInst; 1217 TmpInst.setOpcode(AArch64::MOVIv16b_ns); 1218 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1219 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(1).getImm())); 1220 EmitToStreamer(*OutStreamer, TmpInst); 1221 return; 1222 } 1223 break; 1224 1225 case AArch64::DBG_VALUE: 1226 case AArch64::DBG_VALUE_LIST: { 1227 if (isVerbose() && OutStreamer->hasRawTextSupport()) { 1228 SmallString<128> TmpStr; 1229 raw_svector_ostream OS(TmpStr); 1230 PrintDebugValueComment(MI, OS); 1231 OutStreamer->emitRawText(StringRef(OS.str())); 1232 } 1233 return; 1234 1235 case AArch64::EMITBKEY: { 1236 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1237 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1238 ExceptionHandlingType != ExceptionHandling::ARM) 1239 return; 1240 1241 if (getFunctionCFISectionType(*MF) == CFISection::None) 1242 return; 1243 1244 OutStreamer->emitCFIBKeyFrame(); 1245 return; 1246 } 1247 } 1248 1249 // Tail calls use pseudo instructions so they have the proper code-gen 1250 // attributes (isCall, isReturn, etc.). We lower them to the real 1251 // instruction here. 1252 case AArch64::TCRETURNri: 1253 case AArch64::TCRETURNriBTI: 1254 case AArch64::TCRETURNriALL: { 1255 MCInst TmpInst; 1256 TmpInst.setOpcode(AArch64::BR); 1257 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1258 EmitToStreamer(*OutStreamer, TmpInst); 1259 return; 1260 } 1261 case AArch64::TCRETURNdi: { 1262 MCOperand Dest; 1263 MCInstLowering.lowerOperand(MI->getOperand(0), Dest); 1264 MCInst TmpInst; 1265 TmpInst.setOpcode(AArch64::B); 1266 TmpInst.addOperand(Dest); 1267 EmitToStreamer(*OutStreamer, TmpInst); 1268 return; 1269 } 1270 case AArch64::SpeculationBarrierISBDSBEndBB: { 1271 // Print DSB SYS + ISB 1272 MCInst TmpInstDSB; 1273 TmpInstDSB.setOpcode(AArch64::DSB); 1274 TmpInstDSB.addOperand(MCOperand::createImm(0xf)); 1275 EmitToStreamer(*OutStreamer, TmpInstDSB); 1276 MCInst TmpInstISB; 1277 TmpInstISB.setOpcode(AArch64::ISB); 1278 TmpInstISB.addOperand(MCOperand::createImm(0xf)); 1279 EmitToStreamer(*OutStreamer, TmpInstISB); 1280 return; 1281 } 1282 case AArch64::SpeculationBarrierSBEndBB: { 1283 // Print SB 1284 MCInst TmpInstSB; 1285 TmpInstSB.setOpcode(AArch64::SB); 1286 EmitToStreamer(*OutStreamer, TmpInstSB); 1287 return; 1288 } 1289 case AArch64::TLSDESC_CALLSEQ: { 1290 /// lower this to: 1291 /// adrp x0, :tlsdesc:var 1292 /// ldr x1, [x0, #:tlsdesc_lo12:var] 1293 /// add x0, x0, #:tlsdesc_lo12:var 1294 /// .tlsdesccall var 1295 /// blr x1 1296 /// (TPIDR_EL0 offset now in x0) 1297 const MachineOperand &MO_Sym = MI->getOperand(0); 1298 MachineOperand MO_TLSDESC_LO12(MO_Sym), MO_TLSDESC(MO_Sym); 1299 MCOperand Sym, SymTLSDescLo12, SymTLSDesc; 1300 MO_TLSDESC_LO12.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGEOFF); 1301 MO_TLSDESC.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGE); 1302 MCInstLowering.lowerOperand(MO_Sym, Sym); 1303 MCInstLowering.lowerOperand(MO_TLSDESC_LO12, SymTLSDescLo12); 1304 MCInstLowering.lowerOperand(MO_TLSDESC, SymTLSDesc); 1305 1306 MCInst Adrp; 1307 Adrp.setOpcode(AArch64::ADRP); 1308 Adrp.addOperand(MCOperand::createReg(AArch64::X0)); 1309 Adrp.addOperand(SymTLSDesc); 1310 EmitToStreamer(*OutStreamer, Adrp); 1311 1312 MCInst Ldr; 1313 if (STI->isTargetILP32()) { 1314 Ldr.setOpcode(AArch64::LDRWui); 1315 Ldr.addOperand(MCOperand::createReg(AArch64::W1)); 1316 } else { 1317 Ldr.setOpcode(AArch64::LDRXui); 1318 Ldr.addOperand(MCOperand::createReg(AArch64::X1)); 1319 } 1320 Ldr.addOperand(MCOperand::createReg(AArch64::X0)); 1321 Ldr.addOperand(SymTLSDescLo12); 1322 Ldr.addOperand(MCOperand::createImm(0)); 1323 EmitToStreamer(*OutStreamer, Ldr); 1324 1325 MCInst Add; 1326 if (STI->isTargetILP32()) { 1327 Add.setOpcode(AArch64::ADDWri); 1328 Add.addOperand(MCOperand::createReg(AArch64::W0)); 1329 Add.addOperand(MCOperand::createReg(AArch64::W0)); 1330 } else { 1331 Add.setOpcode(AArch64::ADDXri); 1332 Add.addOperand(MCOperand::createReg(AArch64::X0)); 1333 Add.addOperand(MCOperand::createReg(AArch64::X0)); 1334 } 1335 Add.addOperand(SymTLSDescLo12); 1336 Add.addOperand(MCOperand::createImm(AArch64_AM::getShiftValue(0))); 1337 EmitToStreamer(*OutStreamer, Add); 1338 1339 // Emit a relocation-annotation. This expands to no code, but requests 1340 // the following instruction gets an R_AARCH64_TLSDESC_CALL. 1341 MCInst TLSDescCall; 1342 TLSDescCall.setOpcode(AArch64::TLSDESCCALL); 1343 TLSDescCall.addOperand(Sym); 1344 EmitToStreamer(*OutStreamer, TLSDescCall); 1345 1346 MCInst Blr; 1347 Blr.setOpcode(AArch64::BLR); 1348 Blr.addOperand(MCOperand::createReg(AArch64::X1)); 1349 EmitToStreamer(*OutStreamer, Blr); 1350 1351 return; 1352 } 1353 1354 case AArch64::JumpTableDest32: 1355 case AArch64::JumpTableDest16: 1356 case AArch64::JumpTableDest8: 1357 LowerJumpTableDest(*OutStreamer, *MI); 1358 return; 1359 1360 case AArch64::FMOVH0: 1361 case AArch64::FMOVS0: 1362 case AArch64::FMOVD0: 1363 emitFMov0(*MI); 1364 return; 1365 1366 case TargetOpcode::STACKMAP: 1367 return LowerSTACKMAP(*OutStreamer, SM, *MI); 1368 1369 case TargetOpcode::PATCHPOINT: 1370 return LowerPATCHPOINT(*OutStreamer, SM, *MI); 1371 1372 case TargetOpcode::STATEPOINT: 1373 return LowerSTATEPOINT(*OutStreamer, SM, *MI); 1374 1375 case TargetOpcode::FAULTING_OP: 1376 return LowerFAULTING_OP(*MI); 1377 1378 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: 1379 LowerPATCHABLE_FUNCTION_ENTER(*MI); 1380 return; 1381 1382 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1383 LowerPATCHABLE_FUNCTION_EXIT(*MI); 1384 return; 1385 1386 case TargetOpcode::PATCHABLE_TAIL_CALL: 1387 LowerPATCHABLE_TAIL_CALL(*MI); 1388 return; 1389 1390 case AArch64::HWASAN_CHECK_MEMACCESS: 1391 case AArch64::HWASAN_CHECK_MEMACCESS_SHORTGRANULES: 1392 LowerHWASAN_CHECK_MEMACCESS(*MI); 1393 return; 1394 1395 case AArch64::SEH_StackAlloc: 1396 TS->emitARM64WinCFIAllocStack(MI->getOperand(0).getImm()); 1397 return; 1398 1399 case AArch64::SEH_SaveFPLR: 1400 TS->emitARM64WinCFISaveFPLR(MI->getOperand(0).getImm()); 1401 return; 1402 1403 case AArch64::SEH_SaveFPLR_X: 1404 assert(MI->getOperand(0).getImm() < 0 && 1405 "Pre increment SEH opcode must have a negative offset"); 1406 TS->emitARM64WinCFISaveFPLRX(-MI->getOperand(0).getImm()); 1407 return; 1408 1409 case AArch64::SEH_SaveReg: 1410 TS->emitARM64WinCFISaveReg(MI->getOperand(0).getImm(), 1411 MI->getOperand(1).getImm()); 1412 return; 1413 1414 case AArch64::SEH_SaveReg_X: 1415 assert(MI->getOperand(1).getImm() < 0 && 1416 "Pre increment SEH opcode must have a negative offset"); 1417 TS->emitARM64WinCFISaveRegX(MI->getOperand(0).getImm(), 1418 -MI->getOperand(1).getImm()); 1419 return; 1420 1421 case AArch64::SEH_SaveRegP: 1422 if (MI->getOperand(1).getImm() == 30 && MI->getOperand(0).getImm() >= 19 && 1423 MI->getOperand(0).getImm() <= 28) { 1424 assert((MI->getOperand(0).getImm() - 19) % 2 == 0 && 1425 "Register paired with LR must be odd"); 1426 TS->emitARM64WinCFISaveLRPair(MI->getOperand(0).getImm(), 1427 MI->getOperand(2).getImm()); 1428 return; 1429 } 1430 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) && 1431 "Non-consecutive registers not allowed for save_regp"); 1432 TS->emitARM64WinCFISaveRegP(MI->getOperand(0).getImm(), 1433 MI->getOperand(2).getImm()); 1434 return; 1435 1436 case AArch64::SEH_SaveRegP_X: 1437 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) && 1438 "Non-consecutive registers not allowed for save_regp_x"); 1439 assert(MI->getOperand(2).getImm() < 0 && 1440 "Pre increment SEH opcode must have a negative offset"); 1441 TS->emitARM64WinCFISaveRegPX(MI->getOperand(0).getImm(), 1442 -MI->getOperand(2).getImm()); 1443 return; 1444 1445 case AArch64::SEH_SaveFReg: 1446 TS->emitARM64WinCFISaveFReg(MI->getOperand(0).getImm(), 1447 MI->getOperand(1).getImm()); 1448 return; 1449 1450 case AArch64::SEH_SaveFReg_X: 1451 assert(MI->getOperand(1).getImm() < 0 && 1452 "Pre increment SEH opcode must have a negative offset"); 1453 TS->emitARM64WinCFISaveFRegX(MI->getOperand(0).getImm(), 1454 -MI->getOperand(1).getImm()); 1455 return; 1456 1457 case AArch64::SEH_SaveFRegP: 1458 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) && 1459 "Non-consecutive registers not allowed for save_regp"); 1460 TS->emitARM64WinCFISaveFRegP(MI->getOperand(0).getImm(), 1461 MI->getOperand(2).getImm()); 1462 return; 1463 1464 case AArch64::SEH_SaveFRegP_X: 1465 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) && 1466 "Non-consecutive registers not allowed for save_regp_x"); 1467 assert(MI->getOperand(2).getImm() < 0 && 1468 "Pre increment SEH opcode must have a negative offset"); 1469 TS->emitARM64WinCFISaveFRegPX(MI->getOperand(0).getImm(), 1470 -MI->getOperand(2).getImm()); 1471 return; 1472 1473 case AArch64::SEH_SetFP: 1474 TS->emitARM64WinCFISetFP(); 1475 return; 1476 1477 case AArch64::SEH_AddFP: 1478 TS->emitARM64WinCFIAddFP(MI->getOperand(0).getImm()); 1479 return; 1480 1481 case AArch64::SEH_Nop: 1482 TS->emitARM64WinCFINop(); 1483 return; 1484 1485 case AArch64::SEH_PrologEnd: 1486 TS->emitARM64WinCFIPrologEnd(); 1487 return; 1488 1489 case AArch64::SEH_EpilogStart: 1490 TS->emitARM64WinCFIEpilogStart(); 1491 return; 1492 1493 case AArch64::SEH_EpilogEnd: 1494 TS->emitARM64WinCFIEpilogEnd(); 1495 return; 1496 } 1497 1498 // Finally, do the automated lowerings for everything else. 1499 MCInst TmpInst; 1500 MCInstLowering.Lower(MI, TmpInst); 1501 EmitToStreamer(*OutStreamer, TmpInst); 1502 } 1503 1504 // Force static initialization. 1505 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64AsmPrinter() { 1506 RegisterAsmPrinter<AArch64AsmPrinter> X(getTheAArch64leTarget()); 1507 RegisterAsmPrinter<AArch64AsmPrinter> Y(getTheAArch64beTarget()); 1508 RegisterAsmPrinter<AArch64AsmPrinter> Z(getTheARM64Target()); 1509 RegisterAsmPrinter<AArch64AsmPrinter> W(getTheARM64_32Target()); 1510 RegisterAsmPrinter<AArch64AsmPrinter> V(getTheAArch64_32Target()); 1511 } 1512