1 //===- Record.cpp - Record implementation ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implement the tablegen record classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/TableGen/Record.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/Support/DataTypes.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/TableGen/Error.h" 26 27 using namespace llvm; 28 29 //===----------------------------------------------------------------------===// 30 // std::string wrapper for DenseMap purposes 31 //===----------------------------------------------------------------------===// 32 33 namespace llvm { 34 35 /// TableGenStringKey - This is a wrapper for std::string suitable for 36 /// using as a key to a DenseMap. Because there isn't a particularly 37 /// good way to indicate tombstone or empty keys for strings, we want 38 /// to wrap std::string to indicate that this is a "special" string 39 /// not expected to take on certain values (those of the tombstone and 40 /// empty keys). This makes things a little safer as it clarifies 41 /// that DenseMap is really not appropriate for general strings. 42 43 class TableGenStringKey { 44 public: 45 TableGenStringKey(const std::string &str) : data(str) {} 46 TableGenStringKey(const char *str) : data(str) {} 47 48 const std::string &str() const { return data; } 49 50 friend hash_code hash_value(const TableGenStringKey &Value) { 51 using llvm::hash_value; 52 return hash_value(Value.str()); 53 } 54 private: 55 std::string data; 56 }; 57 58 /// Specialize DenseMapInfo for TableGenStringKey. 59 template<> struct DenseMapInfo<TableGenStringKey> { 60 static inline TableGenStringKey getEmptyKey() { 61 TableGenStringKey Empty("<<<EMPTY KEY>>>"); 62 return Empty; 63 } 64 static inline TableGenStringKey getTombstoneKey() { 65 TableGenStringKey Tombstone("<<<TOMBSTONE KEY>>>"); 66 return Tombstone; 67 } 68 static unsigned getHashValue(const TableGenStringKey& Val) { 69 using llvm::hash_value; 70 return hash_value(Val); 71 } 72 static bool isEqual(const TableGenStringKey& LHS, 73 const TableGenStringKey& RHS) { 74 return LHS.str() == RHS.str(); 75 } 76 }; 77 78 } // namespace llvm 79 80 //===----------------------------------------------------------------------===// 81 // Type implementations 82 //===----------------------------------------------------------------------===// 83 84 BitRecTy BitRecTy::Shared; 85 IntRecTy IntRecTy::Shared; 86 StringRecTy StringRecTy::Shared; 87 DagRecTy DagRecTy::Shared; 88 89 void RecTy::anchor() { } 90 void RecTy::dump() const { print(errs()); } 91 92 ListRecTy *RecTy::getListTy() { 93 if (!ListTy) 94 ListTy = new ListRecTy(this); 95 return ListTy; 96 } 97 98 bool RecTy::baseClassOf(const RecTy *RHS) const{ 99 assert (RHS && "NULL pointer"); 100 return Kind == RHS->getRecTyKind(); 101 } 102 103 Init *BitRecTy::convertValue(BitsInit *BI) { 104 if (BI->getNumBits() != 1) return 0; // Only accept if just one bit! 105 return BI->getBit(0); 106 } 107 108 Init *BitRecTy::convertValue(IntInit *II) { 109 int64_t Val = II->getValue(); 110 if (Val != 0 && Val != 1) return 0; // Only accept 0 or 1 for a bit! 111 112 return BitInit::get(Val != 0); 113 } 114 115 Init *BitRecTy::convertValue(TypedInit *VI) { 116 RecTy *Ty = VI->getType(); 117 if (isa<BitRecTy>(Ty) || isa<BitsRecTy>(Ty) || isa<IntRecTy>(Ty)) 118 return VI; // Accept variable if it is already of bit type! 119 return 0; 120 } 121 122 bool BitRecTy::baseClassOf(const RecTy *RHS) const{ 123 if(RecTy::baseClassOf(RHS) || getRecTyKind() == IntRecTyKind) 124 return true; 125 if(const BitsRecTy *BitsTy = dyn_cast<BitsRecTy>(RHS)) 126 return BitsTy->getNumBits() == 1; 127 return false; 128 } 129 130 BitsRecTy *BitsRecTy::get(unsigned Sz) { 131 static std::vector<BitsRecTy*> Shared; 132 if (Sz >= Shared.size()) 133 Shared.resize(Sz + 1); 134 BitsRecTy *&Ty = Shared[Sz]; 135 if (!Ty) 136 Ty = new BitsRecTy(Sz); 137 return Ty; 138 } 139 140 std::string BitsRecTy::getAsString() const { 141 return "bits<" + utostr(Size) + ">"; 142 } 143 144 Init *BitsRecTy::convertValue(UnsetInit *UI) { 145 SmallVector<Init *, 16> NewBits(Size); 146 147 for (unsigned i = 0; i != Size; ++i) 148 NewBits[i] = UnsetInit::get(); 149 150 return BitsInit::get(NewBits); 151 } 152 153 Init *BitsRecTy::convertValue(BitInit *UI) { 154 if (Size != 1) return 0; // Can only convert single bit. 155 return BitsInit::get(UI); 156 } 157 158 /// canFitInBitfield - Return true if the number of bits is large enough to hold 159 /// the integer value. 160 static bool canFitInBitfield(int64_t Value, unsigned NumBits) { 161 // For example, with NumBits == 4, we permit Values from [-7 .. 15]. 162 return (NumBits >= sizeof(Value) * 8) || 163 (Value >> NumBits == 0) || (Value >> (NumBits-1) == -1); 164 } 165 166 /// convertValue from Int initializer to bits type: Split the integer up into the 167 /// appropriate bits. 168 /// 169 Init *BitsRecTy::convertValue(IntInit *II) { 170 int64_t Value = II->getValue(); 171 // Make sure this bitfield is large enough to hold the integer value. 172 if (!canFitInBitfield(Value, Size)) 173 return 0; 174 175 SmallVector<Init *, 16> NewBits(Size); 176 177 for (unsigned i = 0; i != Size; ++i) 178 NewBits[i] = BitInit::get(Value & (1LL << i)); 179 180 return BitsInit::get(NewBits); 181 } 182 183 Init *BitsRecTy::convertValue(BitsInit *BI) { 184 // If the number of bits is right, return it. Otherwise we need to expand or 185 // truncate. 186 if (BI->getNumBits() == Size) return BI; 187 return 0; 188 } 189 190 Init *BitsRecTy::convertValue(TypedInit *VI) { 191 if (Size == 1 && isa<BitRecTy>(VI->getType())) 192 return BitsInit::get(VI); 193 194 if (VI->getType()->typeIsConvertibleTo(this)) { 195 SmallVector<Init *, 16> NewBits(Size); 196 197 for (unsigned i = 0; i != Size; ++i) 198 NewBits[i] = VarBitInit::get(VI, i); 199 return BitsInit::get(NewBits); 200 } 201 202 return 0; 203 } 204 205 bool BitsRecTy::baseClassOf(const RecTy *RHS) const{ 206 if (RecTy::baseClassOf(RHS)) //argument and the receiver are the same type 207 return cast<BitsRecTy>(RHS)->Size == Size; 208 RecTyKind kind = RHS->getRecTyKind(); 209 return (kind == BitRecTyKind && Size == 1) || (kind == IntRecTyKind); 210 } 211 212 Init *IntRecTy::convertValue(BitInit *BI) { 213 return IntInit::get(BI->getValue()); 214 } 215 216 Init *IntRecTy::convertValue(BitsInit *BI) { 217 int64_t Result = 0; 218 for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) 219 if (BitInit *Bit = dyn_cast<BitInit>(BI->getBit(i))) { 220 Result |= Bit->getValue() << i; 221 } else { 222 return 0; 223 } 224 return IntInit::get(Result); 225 } 226 227 Init *IntRecTy::convertValue(TypedInit *TI) { 228 if (TI->getType()->typeIsConvertibleTo(this)) 229 return TI; // Accept variable if already of the right type! 230 return 0; 231 } 232 233 bool IntRecTy::baseClassOf(const RecTy *RHS) const{ 234 RecTyKind kind = RHS->getRecTyKind(); 235 return kind==BitRecTyKind || kind==BitsRecTyKind || kind==IntRecTyKind; 236 } 237 238 Init *StringRecTy::convertValue(UnOpInit *BO) { 239 if (BO->getOpcode() == UnOpInit::CAST) { 240 Init *L = BO->getOperand()->convertInitializerTo(this); 241 if (L == 0) return 0; 242 if (L != BO->getOperand()) 243 return UnOpInit::get(UnOpInit::CAST, L, new StringRecTy); 244 return BO; 245 } 246 247 return convertValue((TypedInit*)BO); 248 } 249 250 Init *StringRecTy::convertValue(BinOpInit *BO) { 251 if (BO->getOpcode() == BinOpInit::STRCONCAT) { 252 Init *L = BO->getLHS()->convertInitializerTo(this); 253 Init *R = BO->getRHS()->convertInitializerTo(this); 254 if (L == 0 || R == 0) return 0; 255 if (L != BO->getLHS() || R != BO->getRHS()) 256 return BinOpInit::get(BinOpInit::STRCONCAT, L, R, new StringRecTy); 257 return BO; 258 } 259 260 return convertValue((TypedInit*)BO); 261 } 262 263 264 Init *StringRecTy::convertValue(TypedInit *TI) { 265 if (isa<StringRecTy>(TI->getType())) 266 return TI; // Accept variable if already of the right type! 267 return 0; 268 } 269 270 std::string ListRecTy::getAsString() const { 271 return "list<" + Ty->getAsString() + ">"; 272 } 273 274 Init *ListRecTy::convertValue(ListInit *LI) { 275 std::vector<Init*> Elements; 276 277 // Verify that all of the elements of the list are subclasses of the 278 // appropriate class! 279 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) 280 if (Init *CI = LI->getElement(i)->convertInitializerTo(Ty)) 281 Elements.push_back(CI); 282 else 283 return 0; 284 285 if (!isa<ListRecTy>(LI->getType())) 286 return 0; 287 288 return ListInit::get(Elements, this); 289 } 290 291 Init *ListRecTy::convertValue(TypedInit *TI) { 292 // Ensure that TI is compatible with our class. 293 if (ListRecTy *LRT = dyn_cast<ListRecTy>(TI->getType())) 294 if (LRT->getElementType()->typeIsConvertibleTo(getElementType())) 295 return TI; 296 return 0; 297 } 298 299 bool ListRecTy::baseClassOf(const RecTy *RHS) const{ 300 if(const ListRecTy* ListTy = dyn_cast<ListRecTy>(RHS)) 301 return ListTy->getElementType()->typeIsConvertibleTo(Ty); 302 return false; 303 } 304 305 Init *DagRecTy::convertValue(TypedInit *TI) { 306 if (TI->getType()->typeIsConvertibleTo(this)) 307 return TI; 308 return 0; 309 } 310 311 Init *DagRecTy::convertValue(UnOpInit *BO) { 312 if (BO->getOpcode() == UnOpInit::CAST) { 313 Init *L = BO->getOperand()->convertInitializerTo(this); 314 if (L == 0) return 0; 315 if (L != BO->getOperand()) 316 return UnOpInit::get(UnOpInit::CAST, L, new DagRecTy); 317 return BO; 318 } 319 return 0; 320 } 321 322 Init *DagRecTy::convertValue(BinOpInit *BO) { 323 if (BO->getOpcode() == BinOpInit::CONCAT) { 324 Init *L = BO->getLHS()->convertInitializerTo(this); 325 Init *R = BO->getRHS()->convertInitializerTo(this); 326 if (L == 0 || R == 0) return 0; 327 if (L != BO->getLHS() || R != BO->getRHS()) 328 return BinOpInit::get(BinOpInit::CONCAT, L, R, new DagRecTy); 329 return BO; 330 } 331 return 0; 332 } 333 334 RecordRecTy *RecordRecTy::get(Record *R) { 335 return dyn_cast<RecordRecTy>(R->getDefInit()->getType()); 336 } 337 338 std::string RecordRecTy::getAsString() const { 339 return Rec->getName(); 340 } 341 342 Init *RecordRecTy::convertValue(DefInit *DI) { 343 // Ensure that DI is a subclass of Rec. 344 if (!DI->getDef()->isSubClassOf(Rec)) 345 return 0; 346 return DI; 347 } 348 349 Init *RecordRecTy::convertValue(TypedInit *TI) { 350 // Ensure that TI is compatible with Rec. 351 if (RecordRecTy *RRT = dyn_cast<RecordRecTy>(TI->getType())) 352 if (RRT->getRecord()->isSubClassOf(getRecord()) || 353 RRT->getRecord() == getRecord()) 354 return TI; 355 return 0; 356 } 357 358 bool RecordRecTy::baseClassOf(const RecTy *RHS) const{ 359 const RecordRecTy *RTy = dyn_cast<RecordRecTy>(RHS); 360 if (!RTy) 361 return false; 362 363 if (Rec == RTy->getRecord() || RTy->getRecord()->isSubClassOf(Rec)) 364 return true; 365 366 const std::vector<Record*> &SC = Rec->getSuperClasses(); 367 for (unsigned i = 0, e = SC.size(); i != e; ++i) 368 if (RTy->getRecord()->isSubClassOf(SC[i])) 369 return true; 370 371 return false; 372 } 373 374 /// resolveTypes - Find a common type that T1 and T2 convert to. 375 /// Return 0 if no such type exists. 376 /// 377 RecTy *llvm::resolveTypes(RecTy *T1, RecTy *T2) { 378 if (T1->typeIsConvertibleTo(T2)) 379 return T2; 380 if (T2->typeIsConvertibleTo(T1)) 381 return T1; 382 383 // If one is a Record type, check superclasses 384 if (RecordRecTy *RecTy1 = dyn_cast<RecordRecTy>(T1)) { 385 // See if T2 inherits from a type T1 also inherits from 386 const std::vector<Record *> &T1SuperClasses = 387 RecTy1->getRecord()->getSuperClasses(); 388 for(std::vector<Record *>::const_iterator i = T1SuperClasses.begin(), 389 iend = T1SuperClasses.end(); 390 i != iend; 391 ++i) { 392 RecordRecTy *SuperRecTy1 = RecordRecTy::get(*i); 393 RecTy *NewType1 = resolveTypes(SuperRecTy1, T2); 394 if (NewType1 != 0) { 395 if (NewType1 != SuperRecTy1) { 396 delete SuperRecTy1; 397 } 398 return NewType1; 399 } 400 } 401 } 402 if (RecordRecTy *RecTy2 = dyn_cast<RecordRecTy>(T2)) { 403 // See if T1 inherits from a type T2 also inherits from 404 const std::vector<Record *> &T2SuperClasses = 405 RecTy2->getRecord()->getSuperClasses(); 406 for (std::vector<Record *>::const_iterator i = T2SuperClasses.begin(), 407 iend = T2SuperClasses.end(); 408 i != iend; 409 ++i) { 410 RecordRecTy *SuperRecTy2 = RecordRecTy::get(*i); 411 RecTy *NewType2 = resolveTypes(T1, SuperRecTy2); 412 if (NewType2 != 0) { 413 if (NewType2 != SuperRecTy2) { 414 delete SuperRecTy2; 415 } 416 return NewType2; 417 } 418 } 419 } 420 return 0; 421 } 422 423 424 //===----------------------------------------------------------------------===// 425 // Initializer implementations 426 //===----------------------------------------------------------------------===// 427 428 void Init::anchor() { } 429 void Init::dump() const { return print(errs()); } 430 431 void UnsetInit::anchor() { } 432 433 UnsetInit *UnsetInit::get() { 434 static UnsetInit TheInit; 435 return &TheInit; 436 } 437 438 void BitInit::anchor() { } 439 440 BitInit *BitInit::get(bool V) { 441 static BitInit True(true); 442 static BitInit False(false); 443 444 return V ? &True : &False; 445 } 446 447 static void 448 ProfileBitsInit(FoldingSetNodeID &ID, ArrayRef<Init *> Range) { 449 ID.AddInteger(Range.size()); 450 451 for (ArrayRef<Init *>::iterator i = Range.begin(), 452 iend = Range.end(); 453 i != iend; 454 ++i) 455 ID.AddPointer(*i); 456 } 457 458 BitsInit *BitsInit::get(ArrayRef<Init *> Range) { 459 typedef FoldingSet<BitsInit> Pool; 460 static Pool ThePool; 461 462 FoldingSetNodeID ID; 463 ProfileBitsInit(ID, Range); 464 465 void *IP = 0; 466 if (BitsInit *I = ThePool.FindNodeOrInsertPos(ID, IP)) 467 return I; 468 469 BitsInit *I = new BitsInit(Range); 470 ThePool.InsertNode(I, IP); 471 472 return I; 473 } 474 475 void BitsInit::Profile(FoldingSetNodeID &ID) const { 476 ProfileBitsInit(ID, Bits); 477 } 478 479 Init * 480 BitsInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const { 481 SmallVector<Init *, 16> NewBits(Bits.size()); 482 483 for (unsigned i = 0, e = Bits.size(); i != e; ++i) { 484 if (Bits[i] >= getNumBits()) 485 return 0; 486 NewBits[i] = getBit(Bits[i]); 487 } 488 return BitsInit::get(NewBits); 489 } 490 491 std::string BitsInit::getAsString() const { 492 std::string Result = "{ "; 493 for (unsigned i = 0, e = getNumBits(); i != e; ++i) { 494 if (i) Result += ", "; 495 if (Init *Bit = getBit(e-i-1)) 496 Result += Bit->getAsString(); 497 else 498 Result += "*"; 499 } 500 return Result + " }"; 501 } 502 503 // Fix bit initializer to preserve the behavior that bit reference from a unset 504 // bits initializer will resolve into VarBitInit to keep the field name and bit 505 // number used in targets with fixed insn length. 506 static Init *fixBitInit(const RecordVal *RV, Init *Before, Init *After) { 507 if (RV || After != UnsetInit::get()) 508 return After; 509 return Before; 510 } 511 512 // resolveReferences - If there are any field references that refer to fields 513 // that have been filled in, we can propagate the values now. 514 // 515 Init *BitsInit::resolveReferences(Record &R, const RecordVal *RV) const { 516 bool Changed = false; 517 SmallVector<Init *, 16> NewBits(getNumBits()); 518 519 Init *CachedInit = 0; 520 Init *CachedBitVar = 0; 521 bool CachedBitVarChanged = false; 522 523 for (unsigned i = 0, e = getNumBits(); i != e; ++i) { 524 Init *CurBit = Bits[i]; 525 Init *CurBitVar = CurBit->getBitVar(); 526 527 NewBits[i] = CurBit; 528 529 if (CurBitVar == CachedBitVar) { 530 if (CachedBitVarChanged) { 531 Init *Bit = CachedInit->getBit(CurBit->getBitNum()); 532 NewBits[i] = fixBitInit(RV, CurBit, Bit); 533 } 534 continue; 535 } 536 CachedBitVar = CurBitVar; 537 CachedBitVarChanged = false; 538 539 Init *B; 540 do { 541 B = CurBitVar; 542 CurBitVar = CurBitVar->resolveReferences(R, RV); 543 CachedBitVarChanged |= B != CurBitVar; 544 Changed |= B != CurBitVar; 545 } while (B != CurBitVar); 546 CachedInit = CurBitVar; 547 548 if (CachedBitVarChanged) { 549 Init *Bit = CurBitVar->getBit(CurBit->getBitNum()); 550 NewBits[i] = fixBitInit(RV, CurBit, Bit); 551 } 552 } 553 554 if (Changed) 555 return BitsInit::get(NewBits); 556 557 return const_cast<BitsInit *>(this); 558 } 559 560 IntInit *IntInit::get(int64_t V) { 561 typedef DenseMap<int64_t, IntInit *> Pool; 562 static Pool ThePool; 563 564 IntInit *&I = ThePool[V]; 565 if (!I) I = new IntInit(V); 566 return I; 567 } 568 569 std::string IntInit::getAsString() const { 570 return itostr(Value); 571 } 572 573 Init * 574 IntInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const { 575 SmallVector<Init *, 16> NewBits(Bits.size()); 576 577 for (unsigned i = 0, e = Bits.size(); i != e; ++i) { 578 if (Bits[i] >= 64) 579 return 0; 580 581 NewBits[i] = BitInit::get(Value & (INT64_C(1) << Bits[i])); 582 } 583 return BitsInit::get(NewBits); 584 } 585 586 void StringInit::anchor() { } 587 588 StringInit *StringInit::get(StringRef V) { 589 typedef StringMap<StringInit *> Pool; 590 static Pool ThePool; 591 592 StringInit *&I = ThePool[V]; 593 if (!I) I = new StringInit(V); 594 return I; 595 } 596 597 static void ProfileListInit(FoldingSetNodeID &ID, 598 ArrayRef<Init *> Range, 599 RecTy *EltTy) { 600 ID.AddInteger(Range.size()); 601 ID.AddPointer(EltTy); 602 603 for (ArrayRef<Init *>::iterator i = Range.begin(), 604 iend = Range.end(); 605 i != iend; 606 ++i) 607 ID.AddPointer(*i); 608 } 609 610 ListInit *ListInit::get(ArrayRef<Init *> Range, RecTy *EltTy) { 611 typedef FoldingSet<ListInit> Pool; 612 static Pool ThePool; 613 614 // Just use the FoldingSetNodeID to compute a hash. Use a DenseMap 615 // for actual storage. 616 FoldingSetNodeID ID; 617 ProfileListInit(ID, Range, EltTy); 618 619 void *IP = 0; 620 if (ListInit *I = ThePool.FindNodeOrInsertPos(ID, IP)) 621 return I; 622 623 ListInit *I = new ListInit(Range, EltTy); 624 ThePool.InsertNode(I, IP); 625 return I; 626 } 627 628 void ListInit::Profile(FoldingSetNodeID &ID) const { 629 ListRecTy *ListType = dyn_cast<ListRecTy>(getType()); 630 assert(ListType && "Bad type for ListInit!"); 631 RecTy *EltTy = ListType->getElementType(); 632 633 ProfileListInit(ID, Values, EltTy); 634 } 635 636 Init * 637 ListInit::convertInitListSlice(const std::vector<unsigned> &Elements) const { 638 std::vector<Init*> Vals; 639 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 640 if (Elements[i] >= getSize()) 641 return 0; 642 Vals.push_back(getElement(Elements[i])); 643 } 644 return ListInit::get(Vals, getType()); 645 } 646 647 Record *ListInit::getElementAsRecord(unsigned i) const { 648 assert(i < Values.size() && "List element index out of range!"); 649 DefInit *DI = dyn_cast<DefInit>(Values[i]); 650 if (DI == 0) 651 PrintFatalError("Expected record in list!"); 652 return DI->getDef(); 653 } 654 655 Init *ListInit::resolveReferences(Record &R, const RecordVal *RV) const { 656 std::vector<Init*> Resolved; 657 Resolved.reserve(getSize()); 658 bool Changed = false; 659 660 for (unsigned i = 0, e = getSize(); i != e; ++i) { 661 Init *E; 662 Init *CurElt = getElement(i); 663 664 do { 665 E = CurElt; 666 CurElt = CurElt->resolveReferences(R, RV); 667 Changed |= E != CurElt; 668 } while (E != CurElt); 669 Resolved.push_back(E); 670 } 671 672 if (Changed) 673 return ListInit::get(Resolved, getType()); 674 return const_cast<ListInit *>(this); 675 } 676 677 Init *ListInit::resolveListElementReference(Record &R, const RecordVal *IRV, 678 unsigned Elt) const { 679 if (Elt >= getSize()) 680 return 0; // Out of range reference. 681 Init *E = getElement(Elt); 682 // If the element is set to some value, or if we are resolving a reference 683 // to a specific variable and that variable is explicitly unset, then 684 // replace the VarListElementInit with it. 685 if (IRV || !isa<UnsetInit>(E)) 686 return E; 687 return 0; 688 } 689 690 std::string ListInit::getAsString() const { 691 std::string Result = "["; 692 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 693 if (i) Result += ", "; 694 Result += Values[i]->getAsString(); 695 } 696 return Result + "]"; 697 } 698 699 Init *OpInit::resolveListElementReference(Record &R, const RecordVal *IRV, 700 unsigned Elt) const { 701 Init *Resolved = resolveReferences(R, IRV); 702 OpInit *OResolved = dyn_cast<OpInit>(Resolved); 703 if (OResolved) { 704 Resolved = OResolved->Fold(&R, 0); 705 } 706 707 if (Resolved != this) { 708 TypedInit *Typed = dyn_cast<TypedInit>(Resolved); 709 assert(Typed && "Expected typed init for list reference"); 710 if (Typed) { 711 Init *New = Typed->resolveListElementReference(R, IRV, Elt); 712 if (New) 713 return New; 714 return VarListElementInit::get(Typed, Elt); 715 } 716 } 717 718 return 0; 719 } 720 721 Init *OpInit::getBit(unsigned Bit) const { 722 if (getType() == BitRecTy::get()) 723 return const_cast<OpInit*>(this); 724 return VarBitInit::get(const_cast<OpInit*>(this), Bit); 725 } 726 727 UnOpInit *UnOpInit::get(UnaryOp opc, Init *lhs, RecTy *Type) { 728 typedef std::pair<std::pair<unsigned, Init *>, RecTy *> Key; 729 730 typedef DenseMap<Key, UnOpInit *> Pool; 731 static Pool ThePool; 732 733 Key TheKey(std::make_pair(std::make_pair(opc, lhs), Type)); 734 735 UnOpInit *&I = ThePool[TheKey]; 736 if (!I) I = new UnOpInit(opc, lhs, Type); 737 return I; 738 } 739 740 Init *UnOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const { 741 switch (getOpcode()) { 742 case CAST: { 743 if (getType()->getAsString() == "string") { 744 if (StringInit *LHSs = dyn_cast<StringInit>(LHS)) 745 return LHSs; 746 747 if (DefInit *LHSd = dyn_cast<DefInit>(LHS)) 748 return StringInit::get(LHSd->getDef()->getName()); 749 750 if (IntInit *LHSi = dyn_cast<IntInit>(LHS)) 751 return StringInit::get(LHSi->getAsString()); 752 } else { 753 if (StringInit *LHSs = dyn_cast<StringInit>(LHS)) { 754 std::string Name = LHSs->getValue(); 755 756 // From TGParser::ParseIDValue 757 if (CurRec) { 758 if (const RecordVal *RV = CurRec->getValue(Name)) { 759 if (RV->getType() != getType()) 760 PrintFatalError("type mismatch in cast"); 761 return VarInit::get(Name, RV->getType()); 762 } 763 764 Init *TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name, 765 ":"); 766 767 if (CurRec->isTemplateArg(TemplateArgName)) { 768 const RecordVal *RV = CurRec->getValue(TemplateArgName); 769 assert(RV && "Template arg doesn't exist??"); 770 771 if (RV->getType() != getType()) 772 PrintFatalError("type mismatch in cast"); 773 774 return VarInit::get(TemplateArgName, RV->getType()); 775 } 776 } 777 778 if (CurMultiClass) { 779 Init *MCName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::"); 780 781 if (CurMultiClass->Rec.isTemplateArg(MCName)) { 782 const RecordVal *RV = CurMultiClass->Rec.getValue(MCName); 783 assert(RV && "Template arg doesn't exist??"); 784 785 if (RV->getType() != getType()) 786 PrintFatalError("type mismatch in cast"); 787 788 return VarInit::get(MCName, RV->getType()); 789 } 790 } 791 792 if (Record *D = (CurRec->getRecords()).getDef(Name)) 793 return DefInit::get(D); 794 795 PrintFatalError(CurRec->getLoc(), 796 "Undefined reference:'" + Name + "'\n"); 797 } 798 } 799 break; 800 } 801 case HEAD: { 802 if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) { 803 if (LHSl->getSize() == 0) { 804 assert(0 && "Empty list in car"); 805 return 0; 806 } 807 return LHSl->getElement(0); 808 } 809 break; 810 } 811 case TAIL: { 812 if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) { 813 if (LHSl->getSize() == 0) { 814 assert(0 && "Empty list in cdr"); 815 return 0; 816 } 817 // Note the +1. We can't just pass the result of getValues() 818 // directly. 819 ArrayRef<Init *>::iterator begin = LHSl->getValues().begin()+1; 820 ArrayRef<Init *>::iterator end = LHSl->getValues().end(); 821 ListInit *Result = 822 ListInit::get(ArrayRef<Init *>(begin, end - begin), 823 LHSl->getType()); 824 return Result; 825 } 826 break; 827 } 828 case EMPTY: { 829 if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) { 830 if (LHSl->getSize() == 0) { 831 return IntInit::get(1); 832 } else { 833 return IntInit::get(0); 834 } 835 } 836 if (StringInit *LHSs = dyn_cast<StringInit>(LHS)) { 837 if (LHSs->getValue().empty()) { 838 return IntInit::get(1); 839 } else { 840 return IntInit::get(0); 841 } 842 } 843 844 break; 845 } 846 } 847 return const_cast<UnOpInit *>(this); 848 } 849 850 Init *UnOpInit::resolveReferences(Record &R, const RecordVal *RV) const { 851 Init *lhs = LHS->resolveReferences(R, RV); 852 853 if (LHS != lhs) 854 return (UnOpInit::get(getOpcode(), lhs, getType()))->Fold(&R, 0); 855 return Fold(&R, 0); 856 } 857 858 std::string UnOpInit::getAsString() const { 859 std::string Result; 860 switch (Opc) { 861 case CAST: Result = "!cast<" + getType()->getAsString() + ">"; break; 862 case HEAD: Result = "!head"; break; 863 case TAIL: Result = "!tail"; break; 864 case EMPTY: Result = "!empty"; break; 865 } 866 return Result + "(" + LHS->getAsString() + ")"; 867 } 868 869 BinOpInit *BinOpInit::get(BinaryOp opc, Init *lhs, 870 Init *rhs, RecTy *Type) { 871 typedef std::pair< 872 std::pair<std::pair<unsigned, Init *>, Init *>, 873 RecTy * 874 > Key; 875 876 typedef DenseMap<Key, BinOpInit *> Pool; 877 static Pool ThePool; 878 879 Key TheKey(std::make_pair(std::make_pair(std::make_pair(opc, lhs), rhs), 880 Type)); 881 882 BinOpInit *&I = ThePool[TheKey]; 883 if (!I) I = new BinOpInit(opc, lhs, rhs, Type); 884 return I; 885 } 886 887 Init *BinOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const { 888 switch (getOpcode()) { 889 case CONCAT: { 890 DagInit *LHSs = dyn_cast<DagInit>(LHS); 891 DagInit *RHSs = dyn_cast<DagInit>(RHS); 892 if (LHSs && RHSs) { 893 DefInit *LOp = dyn_cast<DefInit>(LHSs->getOperator()); 894 DefInit *ROp = dyn_cast<DefInit>(RHSs->getOperator()); 895 if (LOp == 0 || ROp == 0 || LOp->getDef() != ROp->getDef()) 896 PrintFatalError("Concated Dag operators do not match!"); 897 std::vector<Init*> Args; 898 std::vector<std::string> ArgNames; 899 for (unsigned i = 0, e = LHSs->getNumArgs(); i != e; ++i) { 900 Args.push_back(LHSs->getArg(i)); 901 ArgNames.push_back(LHSs->getArgName(i)); 902 } 903 for (unsigned i = 0, e = RHSs->getNumArgs(); i != e; ++i) { 904 Args.push_back(RHSs->getArg(i)); 905 ArgNames.push_back(RHSs->getArgName(i)); 906 } 907 return DagInit::get(LHSs->getOperator(), "", Args, ArgNames); 908 } 909 break; 910 } 911 case STRCONCAT: { 912 StringInit *LHSs = dyn_cast<StringInit>(LHS); 913 StringInit *RHSs = dyn_cast<StringInit>(RHS); 914 if (LHSs && RHSs) 915 return StringInit::get(LHSs->getValue() + RHSs->getValue()); 916 break; 917 } 918 case EQ: { 919 // try to fold eq comparison for 'bit' and 'int', otherwise fallback 920 // to string objects. 921 IntInit *L = 922 dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get())); 923 IntInit *R = 924 dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get())); 925 926 if (L && R) 927 return IntInit::get(L->getValue() == R->getValue()); 928 929 StringInit *LHSs = dyn_cast<StringInit>(LHS); 930 StringInit *RHSs = dyn_cast<StringInit>(RHS); 931 932 // Make sure we've resolved 933 if (LHSs && RHSs) 934 return IntInit::get(LHSs->getValue() == RHSs->getValue()); 935 936 break; 937 } 938 case ADD: 939 case SHL: 940 case SRA: 941 case SRL: { 942 IntInit *LHSi = dyn_cast<IntInit>(LHS); 943 IntInit *RHSi = dyn_cast<IntInit>(RHS); 944 if (LHSi && RHSi) { 945 int64_t LHSv = LHSi->getValue(), RHSv = RHSi->getValue(); 946 int64_t Result; 947 switch (getOpcode()) { 948 default: llvm_unreachable("Bad opcode!"); 949 case ADD: Result = LHSv + RHSv; break; 950 case SHL: Result = LHSv << RHSv; break; 951 case SRA: Result = LHSv >> RHSv; break; 952 case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break; 953 } 954 return IntInit::get(Result); 955 } 956 break; 957 } 958 } 959 return const_cast<BinOpInit *>(this); 960 } 961 962 Init *BinOpInit::resolveReferences(Record &R, const RecordVal *RV) const { 963 Init *lhs = LHS->resolveReferences(R, RV); 964 Init *rhs = RHS->resolveReferences(R, RV); 965 966 if (LHS != lhs || RHS != rhs) 967 return (BinOpInit::get(getOpcode(), lhs, rhs, getType()))->Fold(&R, 0); 968 return Fold(&R, 0); 969 } 970 971 std::string BinOpInit::getAsString() const { 972 std::string Result; 973 switch (Opc) { 974 case CONCAT: Result = "!con"; break; 975 case ADD: Result = "!add"; break; 976 case SHL: Result = "!shl"; break; 977 case SRA: Result = "!sra"; break; 978 case SRL: Result = "!srl"; break; 979 case EQ: Result = "!eq"; break; 980 case STRCONCAT: Result = "!strconcat"; break; 981 } 982 return Result + "(" + LHS->getAsString() + ", " + RHS->getAsString() + ")"; 983 } 984 985 TernOpInit *TernOpInit::get(TernaryOp opc, Init *lhs, 986 Init *mhs, Init *rhs, 987 RecTy *Type) { 988 typedef std::pair< 989 std::pair< 990 std::pair<std::pair<unsigned, RecTy *>, Init *>, 991 Init * 992 >, 993 Init * 994 > Key; 995 996 typedef DenseMap<Key, TernOpInit *> Pool; 997 static Pool ThePool; 998 999 Key TheKey(std::make_pair(std::make_pair(std::make_pair(std::make_pair(opc, 1000 Type), 1001 lhs), 1002 mhs), 1003 rhs)); 1004 1005 TernOpInit *&I = ThePool[TheKey]; 1006 if (!I) I = new TernOpInit(opc, lhs, mhs, rhs, Type); 1007 return I; 1008 } 1009 1010 static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type, 1011 Record *CurRec, MultiClass *CurMultiClass); 1012 1013 static Init *EvaluateOperation(OpInit *RHSo, Init *LHS, Init *Arg, 1014 RecTy *Type, Record *CurRec, 1015 MultiClass *CurMultiClass) { 1016 std::vector<Init *> NewOperands; 1017 1018 TypedInit *TArg = dyn_cast<TypedInit>(Arg); 1019 1020 // If this is a dag, recurse 1021 if (TArg && TArg->getType()->getAsString() == "dag") { 1022 Init *Result = ForeachHelper(LHS, Arg, RHSo, Type, 1023 CurRec, CurMultiClass); 1024 if (Result != 0) { 1025 return Result; 1026 } else { 1027 return 0; 1028 } 1029 } 1030 1031 for (int i = 0; i < RHSo->getNumOperands(); ++i) { 1032 OpInit *RHSoo = dyn_cast<OpInit>(RHSo->getOperand(i)); 1033 1034 if (RHSoo) { 1035 Init *Result = EvaluateOperation(RHSoo, LHS, Arg, 1036 Type, CurRec, CurMultiClass); 1037 if (Result != 0) { 1038 NewOperands.push_back(Result); 1039 } else { 1040 NewOperands.push_back(Arg); 1041 } 1042 } else if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) { 1043 NewOperands.push_back(Arg); 1044 } else { 1045 NewOperands.push_back(RHSo->getOperand(i)); 1046 } 1047 } 1048 1049 // Now run the operator and use its result as the new leaf 1050 const OpInit *NewOp = RHSo->clone(NewOperands); 1051 Init *NewVal = NewOp->Fold(CurRec, CurMultiClass); 1052 if (NewVal != NewOp) 1053 return NewVal; 1054 1055 return 0; 1056 } 1057 1058 static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type, 1059 Record *CurRec, MultiClass *CurMultiClass) { 1060 DagInit *MHSd = dyn_cast<DagInit>(MHS); 1061 ListInit *MHSl = dyn_cast<ListInit>(MHS); 1062 1063 OpInit *RHSo = dyn_cast<OpInit>(RHS); 1064 1065 if (!RHSo) { 1066 PrintFatalError(CurRec->getLoc(), "!foreach requires an operator\n"); 1067 } 1068 1069 TypedInit *LHSt = dyn_cast<TypedInit>(LHS); 1070 1071 if (!LHSt) 1072 PrintFatalError(CurRec->getLoc(), "!foreach requires typed variable\n"); 1073 1074 if ((MHSd && isa<DagRecTy>(Type)) || (MHSl && isa<ListRecTy>(Type))) { 1075 if (MHSd) { 1076 Init *Val = MHSd->getOperator(); 1077 Init *Result = EvaluateOperation(RHSo, LHS, Val, 1078 Type, CurRec, CurMultiClass); 1079 if (Result != 0) { 1080 Val = Result; 1081 } 1082 1083 std::vector<std::pair<Init *, std::string> > args; 1084 for (unsigned int i = 0; i < MHSd->getNumArgs(); ++i) { 1085 Init *Arg; 1086 std::string ArgName; 1087 Arg = MHSd->getArg(i); 1088 ArgName = MHSd->getArgName(i); 1089 1090 // Process args 1091 Init *Result = EvaluateOperation(RHSo, LHS, Arg, Type, 1092 CurRec, CurMultiClass); 1093 if (Result != 0) { 1094 Arg = Result; 1095 } 1096 1097 // TODO: Process arg names 1098 args.push_back(std::make_pair(Arg, ArgName)); 1099 } 1100 1101 return DagInit::get(Val, "", args); 1102 } 1103 if (MHSl) { 1104 std::vector<Init *> NewOperands; 1105 std::vector<Init *> NewList(MHSl->begin(), MHSl->end()); 1106 1107 for (std::vector<Init *>::iterator li = NewList.begin(), 1108 liend = NewList.end(); 1109 li != liend; 1110 ++li) { 1111 Init *Item = *li; 1112 NewOperands.clear(); 1113 for(int i = 0; i < RHSo->getNumOperands(); ++i) { 1114 // First, replace the foreach variable with the list item 1115 if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) { 1116 NewOperands.push_back(Item); 1117 } else { 1118 NewOperands.push_back(RHSo->getOperand(i)); 1119 } 1120 } 1121 1122 // Now run the operator and use its result as the new list item 1123 const OpInit *NewOp = RHSo->clone(NewOperands); 1124 Init *NewItem = NewOp->Fold(CurRec, CurMultiClass); 1125 if (NewItem != NewOp) 1126 *li = NewItem; 1127 } 1128 return ListInit::get(NewList, MHSl->getType()); 1129 } 1130 } 1131 return 0; 1132 } 1133 1134 Init *TernOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const { 1135 switch (getOpcode()) { 1136 case SUBST: { 1137 DefInit *LHSd = dyn_cast<DefInit>(LHS); 1138 VarInit *LHSv = dyn_cast<VarInit>(LHS); 1139 StringInit *LHSs = dyn_cast<StringInit>(LHS); 1140 1141 DefInit *MHSd = dyn_cast<DefInit>(MHS); 1142 VarInit *MHSv = dyn_cast<VarInit>(MHS); 1143 StringInit *MHSs = dyn_cast<StringInit>(MHS); 1144 1145 DefInit *RHSd = dyn_cast<DefInit>(RHS); 1146 VarInit *RHSv = dyn_cast<VarInit>(RHS); 1147 StringInit *RHSs = dyn_cast<StringInit>(RHS); 1148 1149 if ((LHSd && MHSd && RHSd) 1150 || (LHSv && MHSv && RHSv) 1151 || (LHSs && MHSs && RHSs)) { 1152 if (RHSd) { 1153 Record *Val = RHSd->getDef(); 1154 if (LHSd->getAsString() == RHSd->getAsString()) { 1155 Val = MHSd->getDef(); 1156 } 1157 return DefInit::get(Val); 1158 } 1159 if (RHSv) { 1160 std::string Val = RHSv->getName(); 1161 if (LHSv->getAsString() == RHSv->getAsString()) { 1162 Val = MHSv->getName(); 1163 } 1164 return VarInit::get(Val, getType()); 1165 } 1166 if (RHSs) { 1167 std::string Val = RHSs->getValue(); 1168 1169 std::string::size_type found; 1170 std::string::size_type idx = 0; 1171 do { 1172 found = Val.find(LHSs->getValue(), idx); 1173 if (found != std::string::npos) { 1174 Val.replace(found, LHSs->getValue().size(), MHSs->getValue()); 1175 } 1176 idx = found + MHSs->getValue().size(); 1177 } while (found != std::string::npos); 1178 1179 return StringInit::get(Val); 1180 } 1181 } 1182 break; 1183 } 1184 1185 case FOREACH: { 1186 Init *Result = ForeachHelper(LHS, MHS, RHS, getType(), 1187 CurRec, CurMultiClass); 1188 if (Result != 0) { 1189 return Result; 1190 } 1191 break; 1192 } 1193 1194 case IF: { 1195 IntInit *LHSi = dyn_cast<IntInit>(LHS); 1196 if (Init *I = LHS->convertInitializerTo(IntRecTy::get())) 1197 LHSi = dyn_cast<IntInit>(I); 1198 if (LHSi) { 1199 if (LHSi->getValue()) { 1200 return MHS; 1201 } else { 1202 return RHS; 1203 } 1204 } 1205 break; 1206 } 1207 } 1208 1209 return const_cast<TernOpInit *>(this); 1210 } 1211 1212 Init *TernOpInit::resolveReferences(Record &R, 1213 const RecordVal *RV) const { 1214 Init *lhs = LHS->resolveReferences(R, RV); 1215 1216 if (Opc == IF && lhs != LHS) { 1217 IntInit *Value = dyn_cast<IntInit>(lhs); 1218 if (Init *I = lhs->convertInitializerTo(IntRecTy::get())) 1219 Value = dyn_cast<IntInit>(I); 1220 if (Value != 0) { 1221 // Short-circuit 1222 if (Value->getValue()) { 1223 Init *mhs = MHS->resolveReferences(R, RV); 1224 return (TernOpInit::get(getOpcode(), lhs, mhs, 1225 RHS, getType()))->Fold(&R, 0); 1226 } else { 1227 Init *rhs = RHS->resolveReferences(R, RV); 1228 return (TernOpInit::get(getOpcode(), lhs, MHS, 1229 rhs, getType()))->Fold(&R, 0); 1230 } 1231 } 1232 } 1233 1234 Init *mhs = MHS->resolveReferences(R, RV); 1235 Init *rhs = RHS->resolveReferences(R, RV); 1236 1237 if (LHS != lhs || MHS != mhs || RHS != rhs) 1238 return (TernOpInit::get(getOpcode(), lhs, mhs, rhs, 1239 getType()))->Fold(&R, 0); 1240 return Fold(&R, 0); 1241 } 1242 1243 std::string TernOpInit::getAsString() const { 1244 std::string Result; 1245 switch (Opc) { 1246 case SUBST: Result = "!subst"; break; 1247 case FOREACH: Result = "!foreach"; break; 1248 case IF: Result = "!if"; break; 1249 } 1250 return Result + "(" + LHS->getAsString() + ", " + MHS->getAsString() + ", " 1251 + RHS->getAsString() + ")"; 1252 } 1253 1254 RecTy *TypedInit::getFieldType(const std::string &FieldName) const { 1255 if (RecordRecTy *RecordType = dyn_cast<RecordRecTy>(getType())) 1256 if (RecordVal *Field = RecordType->getRecord()->getValue(FieldName)) 1257 return Field->getType(); 1258 return 0; 1259 } 1260 1261 Init * 1262 TypedInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const { 1263 BitsRecTy *T = dyn_cast<BitsRecTy>(getType()); 1264 if (T == 0) return 0; // Cannot subscript a non-bits variable. 1265 unsigned NumBits = T->getNumBits(); 1266 1267 SmallVector<Init *, 16> NewBits(Bits.size()); 1268 for (unsigned i = 0, e = Bits.size(); i != e; ++i) { 1269 if (Bits[i] >= NumBits) 1270 return 0; 1271 1272 NewBits[i] = VarBitInit::get(const_cast<TypedInit *>(this), Bits[i]); 1273 } 1274 return BitsInit::get(NewBits); 1275 } 1276 1277 Init * 1278 TypedInit::convertInitListSlice(const std::vector<unsigned> &Elements) const { 1279 ListRecTy *T = dyn_cast<ListRecTy>(getType()); 1280 if (T == 0) return 0; // Cannot subscript a non-list variable. 1281 1282 if (Elements.size() == 1) 1283 return VarListElementInit::get(const_cast<TypedInit *>(this), Elements[0]); 1284 1285 std::vector<Init*> ListInits; 1286 ListInits.reserve(Elements.size()); 1287 for (unsigned i = 0, e = Elements.size(); i != e; ++i) 1288 ListInits.push_back(VarListElementInit::get(const_cast<TypedInit *>(this), 1289 Elements[i])); 1290 return ListInit::get(ListInits, T); 1291 } 1292 1293 1294 VarInit *VarInit::get(const std::string &VN, RecTy *T) { 1295 Init *Value = StringInit::get(VN); 1296 return VarInit::get(Value, T); 1297 } 1298 1299 VarInit *VarInit::get(Init *VN, RecTy *T) { 1300 typedef std::pair<RecTy *, Init *> Key; 1301 typedef DenseMap<Key, VarInit *> Pool; 1302 static Pool ThePool; 1303 1304 Key TheKey(std::make_pair(T, VN)); 1305 1306 VarInit *&I = ThePool[TheKey]; 1307 if (!I) I = new VarInit(VN, T); 1308 return I; 1309 } 1310 1311 const std::string &VarInit::getName() const { 1312 StringInit *NameString = dyn_cast<StringInit>(getNameInit()); 1313 assert(NameString && "VarInit name is not a string!"); 1314 return NameString->getValue(); 1315 } 1316 1317 Init *VarInit::getBit(unsigned Bit) const { 1318 if (getType() == BitRecTy::get()) 1319 return const_cast<VarInit*>(this); 1320 return VarBitInit::get(const_cast<VarInit*>(this), Bit); 1321 } 1322 1323 Init *VarInit::resolveListElementReference(Record &R, 1324 const RecordVal *IRV, 1325 unsigned Elt) const { 1326 if (R.isTemplateArg(getNameInit())) return 0; 1327 if (IRV && IRV->getNameInit() != getNameInit()) return 0; 1328 1329 RecordVal *RV = R.getValue(getNameInit()); 1330 assert(RV && "Reference to a non-existent variable?"); 1331 ListInit *LI = dyn_cast<ListInit>(RV->getValue()); 1332 if (!LI) { 1333 TypedInit *VI = dyn_cast<TypedInit>(RV->getValue()); 1334 assert(VI && "Invalid list element!"); 1335 return VarListElementInit::get(VI, Elt); 1336 } 1337 1338 if (Elt >= LI->getSize()) 1339 return 0; // Out of range reference. 1340 Init *E = LI->getElement(Elt); 1341 // If the element is set to some value, or if we are resolving a reference 1342 // to a specific variable and that variable is explicitly unset, then 1343 // replace the VarListElementInit with it. 1344 if (IRV || !isa<UnsetInit>(E)) 1345 return E; 1346 return 0; 1347 } 1348 1349 1350 RecTy *VarInit::getFieldType(const std::string &FieldName) const { 1351 if (RecordRecTy *RTy = dyn_cast<RecordRecTy>(getType())) 1352 if (const RecordVal *RV = RTy->getRecord()->getValue(FieldName)) 1353 return RV->getType(); 1354 return 0; 1355 } 1356 1357 Init *VarInit::getFieldInit(Record &R, const RecordVal *RV, 1358 const std::string &FieldName) const { 1359 if (isa<RecordRecTy>(getType())) 1360 if (const RecordVal *Val = R.getValue(VarName)) { 1361 if (RV != Val && (RV || isa<UnsetInit>(Val->getValue()))) 1362 return 0; 1363 Init *TheInit = Val->getValue(); 1364 assert(TheInit != this && "Infinite loop detected!"); 1365 if (Init *I = TheInit->getFieldInit(R, RV, FieldName)) 1366 return I; 1367 else 1368 return 0; 1369 } 1370 return 0; 1371 } 1372 1373 /// resolveReferences - This method is used by classes that refer to other 1374 /// variables which may not be defined at the time the expression is formed. 1375 /// If a value is set for the variable later, this method will be called on 1376 /// users of the value to allow the value to propagate out. 1377 /// 1378 Init *VarInit::resolveReferences(Record &R, const RecordVal *RV) const { 1379 if (RecordVal *Val = R.getValue(VarName)) 1380 if (RV == Val || (RV == 0 && !isa<UnsetInit>(Val->getValue()))) 1381 return Val->getValue(); 1382 return const_cast<VarInit *>(this); 1383 } 1384 1385 VarBitInit *VarBitInit::get(TypedInit *T, unsigned B) { 1386 typedef std::pair<TypedInit *, unsigned> Key; 1387 typedef DenseMap<Key, VarBitInit *> Pool; 1388 1389 static Pool ThePool; 1390 1391 Key TheKey(std::make_pair(T, B)); 1392 1393 VarBitInit *&I = ThePool[TheKey]; 1394 if (!I) I = new VarBitInit(T, B); 1395 return I; 1396 } 1397 1398 std::string VarBitInit::getAsString() const { 1399 return TI->getAsString() + "{" + utostr(Bit) + "}"; 1400 } 1401 1402 Init *VarBitInit::resolveReferences(Record &R, const RecordVal *RV) const { 1403 Init *I = TI->resolveReferences(R, RV); 1404 if (TI != I) 1405 return I->getBit(getBitNum()); 1406 1407 return const_cast<VarBitInit*>(this); 1408 } 1409 1410 VarListElementInit *VarListElementInit::get(TypedInit *T, 1411 unsigned E) { 1412 typedef std::pair<TypedInit *, unsigned> Key; 1413 typedef DenseMap<Key, VarListElementInit *> Pool; 1414 1415 static Pool ThePool; 1416 1417 Key TheKey(std::make_pair(T, E)); 1418 1419 VarListElementInit *&I = ThePool[TheKey]; 1420 if (!I) I = new VarListElementInit(T, E); 1421 return I; 1422 } 1423 1424 std::string VarListElementInit::getAsString() const { 1425 return TI->getAsString() + "[" + utostr(Element) + "]"; 1426 } 1427 1428 Init * 1429 VarListElementInit::resolveReferences(Record &R, const RecordVal *RV) const { 1430 if (Init *I = getVariable()->resolveListElementReference(R, RV, 1431 getElementNum())) 1432 return I; 1433 return const_cast<VarListElementInit *>(this); 1434 } 1435 1436 Init *VarListElementInit::getBit(unsigned Bit) const { 1437 if (getType() == BitRecTy::get()) 1438 return const_cast<VarListElementInit*>(this); 1439 return VarBitInit::get(const_cast<VarListElementInit*>(this), Bit); 1440 } 1441 1442 Init *VarListElementInit:: resolveListElementReference(Record &R, 1443 const RecordVal *RV, 1444 unsigned Elt) const { 1445 Init *Result = TI->resolveListElementReference(R, RV, Element); 1446 1447 if (Result) { 1448 if (TypedInit *TInit = dyn_cast<TypedInit>(Result)) { 1449 Init *Result2 = TInit->resolveListElementReference(R, RV, Elt); 1450 if (Result2) return Result2; 1451 return new VarListElementInit(TInit, Elt); 1452 } 1453 return Result; 1454 } 1455 1456 return 0; 1457 } 1458 1459 DefInit *DefInit::get(Record *R) { 1460 return R->getDefInit(); 1461 } 1462 1463 RecTy *DefInit::getFieldType(const std::string &FieldName) const { 1464 if (const RecordVal *RV = Def->getValue(FieldName)) 1465 return RV->getType(); 1466 return 0; 1467 } 1468 1469 Init *DefInit::getFieldInit(Record &R, const RecordVal *RV, 1470 const std::string &FieldName) const { 1471 return Def->getValue(FieldName)->getValue(); 1472 } 1473 1474 1475 std::string DefInit::getAsString() const { 1476 return Def->getName(); 1477 } 1478 1479 FieldInit *FieldInit::get(Init *R, const std::string &FN) { 1480 typedef std::pair<Init *, TableGenStringKey> Key; 1481 typedef DenseMap<Key, FieldInit *> Pool; 1482 static Pool ThePool; 1483 1484 Key TheKey(std::make_pair(R, FN)); 1485 1486 FieldInit *&I = ThePool[TheKey]; 1487 if (!I) I = new FieldInit(R, FN); 1488 return I; 1489 } 1490 1491 Init *FieldInit::getBit(unsigned Bit) const { 1492 if (getType() == BitRecTy::get()) 1493 return const_cast<FieldInit*>(this); 1494 return VarBitInit::get(const_cast<FieldInit*>(this), Bit); 1495 } 1496 1497 Init *FieldInit::resolveListElementReference(Record &R, const RecordVal *RV, 1498 unsigned Elt) const { 1499 if (Init *ListVal = Rec->getFieldInit(R, RV, FieldName)) 1500 if (ListInit *LI = dyn_cast<ListInit>(ListVal)) { 1501 if (Elt >= LI->getSize()) return 0; 1502 Init *E = LI->getElement(Elt); 1503 1504 // If the element is set to some value, or if we are resolving a 1505 // reference to a specific variable and that variable is explicitly 1506 // unset, then replace the VarListElementInit with it. 1507 if (RV || !isa<UnsetInit>(E)) 1508 return E; 1509 } 1510 return 0; 1511 } 1512 1513 Init *FieldInit::resolveReferences(Record &R, const RecordVal *RV) const { 1514 Init *NewRec = RV ? Rec->resolveReferences(R, RV) : Rec; 1515 1516 Init *BitsVal = NewRec->getFieldInit(R, RV, FieldName); 1517 if (BitsVal) { 1518 Init *BVR = BitsVal->resolveReferences(R, RV); 1519 return BVR->isComplete() ? BVR : const_cast<FieldInit *>(this); 1520 } 1521 1522 if (NewRec != Rec) { 1523 return FieldInit::get(NewRec, FieldName); 1524 } 1525 return const_cast<FieldInit *>(this); 1526 } 1527 1528 void ProfileDagInit(FoldingSetNodeID &ID, 1529 Init *V, 1530 const std::string &VN, 1531 ArrayRef<Init *> ArgRange, 1532 ArrayRef<std::string> NameRange) { 1533 ID.AddPointer(V); 1534 ID.AddString(VN); 1535 1536 ArrayRef<Init *>::iterator Arg = ArgRange.begin(); 1537 ArrayRef<std::string>::iterator Name = NameRange.begin(); 1538 while (Arg != ArgRange.end()) { 1539 assert(Name != NameRange.end() && "Arg name underflow!"); 1540 ID.AddPointer(*Arg++); 1541 ID.AddString(*Name++); 1542 } 1543 assert(Name == NameRange.end() && "Arg name overflow!"); 1544 } 1545 1546 DagInit * 1547 DagInit::get(Init *V, const std::string &VN, 1548 ArrayRef<Init *> ArgRange, 1549 ArrayRef<std::string> NameRange) { 1550 typedef FoldingSet<DagInit> Pool; 1551 static Pool ThePool; 1552 1553 FoldingSetNodeID ID; 1554 ProfileDagInit(ID, V, VN, ArgRange, NameRange); 1555 1556 void *IP = 0; 1557 if (DagInit *I = ThePool.FindNodeOrInsertPos(ID, IP)) 1558 return I; 1559 1560 DagInit *I = new DagInit(V, VN, ArgRange, NameRange); 1561 ThePool.InsertNode(I, IP); 1562 1563 return I; 1564 } 1565 1566 DagInit * 1567 DagInit::get(Init *V, const std::string &VN, 1568 const std::vector<std::pair<Init*, std::string> > &args) { 1569 typedef std::pair<Init*, std::string> PairType; 1570 1571 std::vector<Init *> Args; 1572 std::vector<std::string> Names; 1573 1574 for (std::vector<PairType>::const_iterator i = args.begin(), 1575 iend = args.end(); 1576 i != iend; 1577 ++i) { 1578 Args.push_back(i->first); 1579 Names.push_back(i->second); 1580 } 1581 1582 return DagInit::get(V, VN, Args, Names); 1583 } 1584 1585 void DagInit::Profile(FoldingSetNodeID &ID) const { 1586 ProfileDagInit(ID, Val, ValName, Args, ArgNames); 1587 } 1588 1589 Init *DagInit::resolveReferences(Record &R, const RecordVal *RV) const { 1590 std::vector<Init*> NewArgs; 1591 for (unsigned i = 0, e = Args.size(); i != e; ++i) 1592 NewArgs.push_back(Args[i]->resolveReferences(R, RV)); 1593 1594 Init *Op = Val->resolveReferences(R, RV); 1595 1596 if (Args != NewArgs || Op != Val) 1597 return DagInit::get(Op, ValName, NewArgs, ArgNames); 1598 1599 return const_cast<DagInit *>(this); 1600 } 1601 1602 1603 std::string DagInit::getAsString() const { 1604 std::string Result = "(" + Val->getAsString(); 1605 if (!ValName.empty()) 1606 Result += ":" + ValName; 1607 if (Args.size()) { 1608 Result += " " + Args[0]->getAsString(); 1609 if (!ArgNames[0].empty()) Result += ":$" + ArgNames[0]; 1610 for (unsigned i = 1, e = Args.size(); i != e; ++i) { 1611 Result += ", " + Args[i]->getAsString(); 1612 if (!ArgNames[i].empty()) Result += ":$" + ArgNames[i]; 1613 } 1614 } 1615 return Result + ")"; 1616 } 1617 1618 1619 //===----------------------------------------------------------------------===// 1620 // Other implementations 1621 //===----------------------------------------------------------------------===// 1622 1623 RecordVal::RecordVal(Init *N, RecTy *T, unsigned P) 1624 : Name(N), Ty(T), Prefix(P) { 1625 Value = Ty->convertValue(UnsetInit::get()); 1626 assert(Value && "Cannot create unset value for current type!"); 1627 } 1628 1629 RecordVal::RecordVal(const std::string &N, RecTy *T, unsigned P) 1630 : Name(StringInit::get(N)), Ty(T), Prefix(P) { 1631 Value = Ty->convertValue(UnsetInit::get()); 1632 assert(Value && "Cannot create unset value for current type!"); 1633 } 1634 1635 const std::string &RecordVal::getName() const { 1636 StringInit *NameString = dyn_cast<StringInit>(Name); 1637 assert(NameString && "RecordVal name is not a string!"); 1638 return NameString->getValue(); 1639 } 1640 1641 void RecordVal::dump() const { errs() << *this; } 1642 1643 void RecordVal::print(raw_ostream &OS, bool PrintSem) const { 1644 if (getPrefix()) OS << "field "; 1645 OS << *getType() << " " << getNameInitAsString(); 1646 1647 if (getValue()) 1648 OS << " = " << *getValue(); 1649 1650 if (PrintSem) OS << ";\n"; 1651 } 1652 1653 unsigned Record::LastID = 0; 1654 1655 void Record::init() { 1656 checkName(); 1657 1658 // Every record potentially has a def at the top. This value is 1659 // replaced with the top-level def name at instantiation time. 1660 RecordVal DN("NAME", StringRecTy::get(), 0); 1661 addValue(DN); 1662 } 1663 1664 void Record::checkName() { 1665 // Ensure the record name has string type. 1666 const TypedInit *TypedName = dyn_cast<const TypedInit>(Name); 1667 assert(TypedName && "Record name is not typed!"); 1668 RecTy *Type = TypedName->getType(); 1669 if (!isa<StringRecTy>(Type)) 1670 PrintFatalError(getLoc(), "Record name is not a string!"); 1671 } 1672 1673 DefInit *Record::getDefInit() { 1674 if (!TheInit) 1675 TheInit = new DefInit(this, new RecordRecTy(this)); 1676 return TheInit; 1677 } 1678 1679 const std::string &Record::getName() const { 1680 const StringInit *NameString = dyn_cast<StringInit>(Name); 1681 assert(NameString && "Record name is not a string!"); 1682 return NameString->getValue(); 1683 } 1684 1685 void Record::setName(Init *NewName) { 1686 if (TrackedRecords.getDef(Name->getAsUnquotedString()) == this) { 1687 TrackedRecords.removeDef(Name->getAsUnquotedString()); 1688 TrackedRecords.addDef(this); 1689 } else if (TrackedRecords.getClass(Name->getAsUnquotedString()) == this) { 1690 TrackedRecords.removeClass(Name->getAsUnquotedString()); 1691 TrackedRecords.addClass(this); 1692 } // Otherwise this isn't yet registered. 1693 Name = NewName; 1694 checkName(); 1695 // DO NOT resolve record values to the name at this point because 1696 // there might be default values for arguments of this def. Those 1697 // arguments might not have been resolved yet so we don't want to 1698 // prematurely assume values for those arguments were not passed to 1699 // this def. 1700 // 1701 // Nonetheless, it may be that some of this Record's values 1702 // reference the record name. Indeed, the reason for having the 1703 // record name be an Init is to provide this flexibility. The extra 1704 // resolve steps after completely instantiating defs takes care of 1705 // this. See TGParser::ParseDef and TGParser::ParseDefm. 1706 } 1707 1708 void Record::setName(const std::string &Name) { 1709 setName(StringInit::get(Name)); 1710 } 1711 1712 /// resolveReferencesTo - If anything in this record refers to RV, replace the 1713 /// reference to RV with the RHS of RV. If RV is null, we resolve all possible 1714 /// references. 1715 void Record::resolveReferencesTo(const RecordVal *RV) { 1716 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 1717 if (RV == &Values[i]) // Skip resolve the same field as the given one 1718 continue; 1719 if (Init *V = Values[i].getValue()) 1720 if (Values[i].setValue(V->resolveReferences(*this, RV))) 1721 PrintFatalError(getLoc(), "Invalid value is found when setting '" 1722 + Values[i].getNameInitAsString() 1723 + "' after resolving references" 1724 + (RV ? " against '" + RV->getNameInitAsString() 1725 + "' of (" 1726 + RV->getValue()->getAsUnquotedString() + ")" 1727 : "") 1728 + "\n"); 1729 } 1730 Init *OldName = getNameInit(); 1731 Init *NewName = Name->resolveReferences(*this, RV); 1732 if (NewName != OldName) { 1733 // Re-register with RecordKeeper. 1734 setName(NewName); 1735 } 1736 } 1737 1738 void Record::dump() const { errs() << *this; } 1739 1740 raw_ostream &llvm::operator<<(raw_ostream &OS, const Record &R) { 1741 OS << R.getNameInitAsString(); 1742 1743 const std::vector<Init *> &TArgs = R.getTemplateArgs(); 1744 if (!TArgs.empty()) { 1745 OS << "<"; 1746 for (unsigned i = 0, e = TArgs.size(); i != e; ++i) { 1747 if (i) OS << ", "; 1748 const RecordVal *RV = R.getValue(TArgs[i]); 1749 assert(RV && "Template argument record not found??"); 1750 RV->print(OS, false); 1751 } 1752 OS << ">"; 1753 } 1754 1755 OS << " {"; 1756 const std::vector<Record*> &SC = R.getSuperClasses(); 1757 if (!SC.empty()) { 1758 OS << "\t//"; 1759 for (unsigned i = 0, e = SC.size(); i != e; ++i) 1760 OS << " " << SC[i]->getNameInitAsString(); 1761 } 1762 OS << "\n"; 1763 1764 const std::vector<RecordVal> &Vals = R.getValues(); 1765 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 1766 if (Vals[i].getPrefix() && !R.isTemplateArg(Vals[i].getName())) 1767 OS << Vals[i]; 1768 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 1769 if (!Vals[i].getPrefix() && !R.isTemplateArg(Vals[i].getName())) 1770 OS << Vals[i]; 1771 1772 return OS << "}\n"; 1773 } 1774 1775 /// getValueInit - Return the initializer for a value with the specified name, 1776 /// or abort if the field does not exist. 1777 /// 1778 Init *Record::getValueInit(StringRef FieldName) const { 1779 const RecordVal *R = getValue(FieldName); 1780 if (R == 0 || R->getValue() == 0) 1781 PrintFatalError(getLoc(), "Record `" + getName() + 1782 "' does not have a field named `" + FieldName.str() + "'!\n"); 1783 return R->getValue(); 1784 } 1785 1786 1787 /// getValueAsString - This method looks up the specified field and returns its 1788 /// value as a string, aborts if the field does not exist or if 1789 /// the value is not a string. 1790 /// 1791 std::string Record::getValueAsString(StringRef FieldName) const { 1792 const RecordVal *R = getValue(FieldName); 1793 if (R == 0 || R->getValue() == 0) 1794 PrintFatalError(getLoc(), "Record `" + getName() + 1795 "' does not have a field named `" + FieldName.str() + "'!\n"); 1796 1797 if (StringInit *SI = dyn_cast<StringInit>(R->getValue())) 1798 return SI->getValue(); 1799 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1800 FieldName.str() + "' does not have a string initializer!"); 1801 } 1802 1803 /// getValueAsBitsInit - This method looks up the specified field and returns 1804 /// its value as a BitsInit, aborts if the field does not exist or if 1805 /// the value is not the right type. 1806 /// 1807 BitsInit *Record::getValueAsBitsInit(StringRef FieldName) const { 1808 const RecordVal *R = getValue(FieldName); 1809 if (R == 0 || R->getValue() == 0) 1810 PrintFatalError(getLoc(), "Record `" + getName() + 1811 "' does not have a field named `" + FieldName.str() + "'!\n"); 1812 1813 if (BitsInit *BI = dyn_cast<BitsInit>(R->getValue())) 1814 return BI; 1815 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1816 FieldName.str() + "' does not have a BitsInit initializer!"); 1817 } 1818 1819 /// getValueAsListInit - This method looks up the specified field and returns 1820 /// its value as a ListInit, aborting if the field does not exist or if 1821 /// the value is not the right type. 1822 /// 1823 ListInit *Record::getValueAsListInit(StringRef FieldName) const { 1824 const RecordVal *R = getValue(FieldName); 1825 if (R == 0 || R->getValue() == 0) 1826 PrintFatalError(getLoc(), "Record `" + getName() + 1827 "' does not have a field named `" + FieldName.str() + "'!\n"); 1828 1829 if (ListInit *LI = dyn_cast<ListInit>(R->getValue())) 1830 return LI; 1831 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1832 FieldName.str() + "' does not have a list initializer!"); 1833 } 1834 1835 /// getValueAsListOfDefs - This method looks up the specified field and returns 1836 /// its value as a vector of records, aborting if the field does not exist 1837 /// or if the value is not the right type. 1838 /// 1839 std::vector<Record*> 1840 Record::getValueAsListOfDefs(StringRef FieldName) const { 1841 ListInit *List = getValueAsListInit(FieldName); 1842 std::vector<Record*> Defs; 1843 for (unsigned i = 0; i < List->getSize(); i++) { 1844 if (DefInit *DI = dyn_cast<DefInit>(List->getElement(i))) { 1845 Defs.push_back(DI->getDef()); 1846 } else { 1847 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1848 FieldName.str() + "' list is not entirely DefInit!"); 1849 } 1850 } 1851 return Defs; 1852 } 1853 1854 /// getValueAsInt - This method looks up the specified field and returns its 1855 /// value as an int64_t, aborting if the field does not exist or if the value 1856 /// is not the right type. 1857 /// 1858 int64_t Record::getValueAsInt(StringRef FieldName) const { 1859 const RecordVal *R = getValue(FieldName); 1860 if (R == 0 || R->getValue() == 0) 1861 PrintFatalError(getLoc(), "Record `" + getName() + 1862 "' does not have a field named `" + FieldName.str() + "'!\n"); 1863 1864 if (IntInit *II = dyn_cast<IntInit>(R->getValue())) 1865 return II->getValue(); 1866 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1867 FieldName.str() + "' does not have an int initializer!"); 1868 } 1869 1870 /// getValueAsListOfInts - This method looks up the specified field and returns 1871 /// its value as a vector of integers, aborting if the field does not exist or 1872 /// if the value is not the right type. 1873 /// 1874 std::vector<int64_t> 1875 Record::getValueAsListOfInts(StringRef FieldName) const { 1876 ListInit *List = getValueAsListInit(FieldName); 1877 std::vector<int64_t> Ints; 1878 for (unsigned i = 0; i < List->getSize(); i++) { 1879 if (IntInit *II = dyn_cast<IntInit>(List->getElement(i))) { 1880 Ints.push_back(II->getValue()); 1881 } else { 1882 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1883 FieldName.str() + "' does not have a list of ints initializer!"); 1884 } 1885 } 1886 return Ints; 1887 } 1888 1889 /// getValueAsListOfStrings - This method looks up the specified field and 1890 /// returns its value as a vector of strings, aborting if the field does not 1891 /// exist or if the value is not the right type. 1892 /// 1893 std::vector<std::string> 1894 Record::getValueAsListOfStrings(StringRef FieldName) const { 1895 ListInit *List = getValueAsListInit(FieldName); 1896 std::vector<std::string> Strings; 1897 for (unsigned i = 0; i < List->getSize(); i++) { 1898 if (StringInit *II = dyn_cast<StringInit>(List->getElement(i))) { 1899 Strings.push_back(II->getValue()); 1900 } else { 1901 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1902 FieldName.str() + "' does not have a list of strings initializer!"); 1903 } 1904 } 1905 return Strings; 1906 } 1907 1908 /// getValueAsDef - This method looks up the specified field and returns its 1909 /// value as a Record, aborting if the field does not exist or if the value 1910 /// is not the right type. 1911 /// 1912 Record *Record::getValueAsDef(StringRef FieldName) const { 1913 const RecordVal *R = getValue(FieldName); 1914 if (R == 0 || R->getValue() == 0) 1915 PrintFatalError(getLoc(), "Record `" + getName() + 1916 "' does not have a field named `" + FieldName.str() + "'!\n"); 1917 1918 if (DefInit *DI = dyn_cast<DefInit>(R->getValue())) 1919 return DI->getDef(); 1920 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1921 FieldName.str() + "' does not have a def initializer!"); 1922 } 1923 1924 /// getValueAsBit - This method looks up the specified field and returns its 1925 /// value as a bit, aborting if the field does not exist or if the value is 1926 /// not the right type. 1927 /// 1928 bool Record::getValueAsBit(StringRef FieldName) const { 1929 const RecordVal *R = getValue(FieldName); 1930 if (R == 0 || R->getValue() == 0) 1931 PrintFatalError(getLoc(), "Record `" + getName() + 1932 "' does not have a field named `" + FieldName.str() + "'!\n"); 1933 1934 if (BitInit *BI = dyn_cast<BitInit>(R->getValue())) 1935 return BI->getValue(); 1936 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1937 FieldName.str() + "' does not have a bit initializer!"); 1938 } 1939 1940 bool Record::getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const { 1941 const RecordVal *R = getValue(FieldName); 1942 if (R == 0 || R->getValue() == 0) 1943 PrintFatalError(getLoc(), "Record `" + getName() + 1944 "' does not have a field named `" + FieldName.str() + "'!\n"); 1945 1946 if (R->getValue() == UnsetInit::get()) { 1947 Unset = true; 1948 return false; 1949 } 1950 Unset = false; 1951 if (BitInit *BI = dyn_cast<BitInit>(R->getValue())) 1952 return BI->getValue(); 1953 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1954 FieldName.str() + "' does not have a bit initializer!"); 1955 } 1956 1957 /// getValueAsDag - This method looks up the specified field and returns its 1958 /// value as an Dag, aborting if the field does not exist or if the value is 1959 /// not the right type. 1960 /// 1961 DagInit *Record::getValueAsDag(StringRef FieldName) const { 1962 const RecordVal *R = getValue(FieldName); 1963 if (R == 0 || R->getValue() == 0) 1964 PrintFatalError(getLoc(), "Record `" + getName() + 1965 "' does not have a field named `" + FieldName.str() + "'!\n"); 1966 1967 if (DagInit *DI = dyn_cast<DagInit>(R->getValue())) 1968 return DI; 1969 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 1970 FieldName.str() + "' does not have a dag initializer!"); 1971 } 1972 1973 1974 void MultiClass::dump() const { 1975 errs() << "Record:\n"; 1976 Rec.dump(); 1977 1978 errs() << "Defs:\n"; 1979 for (RecordVector::const_iterator r = DefPrototypes.begin(), 1980 rend = DefPrototypes.end(); 1981 r != rend; 1982 ++r) { 1983 (*r)->dump(); 1984 } 1985 } 1986 1987 1988 void RecordKeeper::dump() const { errs() << *this; } 1989 1990 raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) { 1991 OS << "------------- Classes -----------------\n"; 1992 const std::map<std::string, Record*> &Classes = RK.getClasses(); 1993 for (std::map<std::string, Record*>::const_iterator I = Classes.begin(), 1994 E = Classes.end(); I != E; ++I) 1995 OS << "class " << *I->second; 1996 1997 OS << "------------- Defs -----------------\n"; 1998 const std::map<std::string, Record*> &Defs = RK.getDefs(); 1999 for (std::map<std::string, Record*>::const_iterator I = Defs.begin(), 2000 E = Defs.end(); I != E; ++I) 2001 OS << "def " << *I->second; 2002 return OS; 2003 } 2004 2005 2006 /// getAllDerivedDefinitions - This method returns all concrete definitions 2007 /// that derive from the specified class name. If a class with the specified 2008 /// name does not exist, an error is printed and true is returned. 2009 std::vector<Record*> 2010 RecordKeeper::getAllDerivedDefinitions(const std::string &ClassName) const { 2011 Record *Class = getClass(ClassName); 2012 if (!Class) 2013 PrintFatalError("ERROR: Couldn't find the `" + ClassName + "' class!\n"); 2014 2015 std::vector<Record*> Defs; 2016 for (std::map<std::string, Record*>::const_iterator I = getDefs().begin(), 2017 E = getDefs().end(); I != E; ++I) 2018 if (I->second->isSubClassOf(Class)) 2019 Defs.push_back(I->second); 2020 2021 return Defs; 2022 } 2023 2024 /// QualifyName - Return an Init with a qualifier prefix referring 2025 /// to CurRec's name. 2026 Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass, 2027 Init *Name, const std::string &Scoper) { 2028 RecTy *Type = dyn_cast<TypedInit>(Name)->getType(); 2029 2030 BinOpInit *NewName = 2031 BinOpInit::get(BinOpInit::STRCONCAT, 2032 BinOpInit::get(BinOpInit::STRCONCAT, 2033 CurRec.getNameInit(), 2034 StringInit::get(Scoper), 2035 Type)->Fold(&CurRec, CurMultiClass), 2036 Name, 2037 Type); 2038 2039 if (CurMultiClass && Scoper != "::") { 2040 NewName = 2041 BinOpInit::get(BinOpInit::STRCONCAT, 2042 BinOpInit::get(BinOpInit::STRCONCAT, 2043 CurMultiClass->Rec.getNameInit(), 2044 StringInit::get("::"), 2045 Type)->Fold(&CurRec, CurMultiClass), 2046 NewName->Fold(&CurRec, CurMultiClass), 2047 Type); 2048 } 2049 2050 return NewName->Fold(&CurRec, CurMultiClass); 2051 } 2052 2053 /// QualifyName - Return an Init with a qualifier prefix referring 2054 /// to CurRec's name. 2055 Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass, 2056 const std::string &Name, 2057 const std::string &Scoper) { 2058 return QualifyName(CurRec, CurMultiClass, StringInit::get(Name), Scoper); 2059 } 2060