1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Support/YAMLTraits.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/Support/Casting.h"
16 #include "llvm/Support/Errc.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/Format.h"
19 #include "llvm/Support/LineIterator.h"
20 #include "llvm/Support/MemoryBuffer.h"
21 #include "llvm/Support/Unicode.h"
22 #include "llvm/Support/YAMLParser.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cassert>
26 #include <cstdint>
27 #include <cstdlib>
28 #include <cstring>
29 #include <string>
30 #include <vector>
31 
32 using namespace llvm;
33 using namespace yaml;
34 
35 //===----------------------------------------------------------------------===//
36 //  IO
37 //===----------------------------------------------------------------------===//
38 
39 IO::IO(void *Context) : Ctxt(Context) {}
40 
41 IO::~IO() = default;
42 
43 void *IO::getContext() const {
44   return Ctxt;
45 }
46 
47 void IO::setContext(void *Context) {
48   Ctxt = Context;
49 }
50 
51 void IO::setAllowUnknownKeys(bool Allow) {
52   llvm_unreachable("Only supported for Input");
53 }
54 
55 //===----------------------------------------------------------------------===//
56 //  Input
57 //===----------------------------------------------------------------------===//
58 
59 Input::Input(StringRef InputContent, void *Ctxt,
60              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
61     : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
62   if (DiagHandler)
63     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
64   DocIterator = Strm->begin();
65 }
66 
67 Input::Input(MemoryBufferRef Input, void *Ctxt,
68              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
69     : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
70   if (DiagHandler)
71     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
72   DocIterator = Strm->begin();
73 }
74 
75 Input::~Input() = default;
76 
77 std::error_code Input::error() { return EC; }
78 
79 // Pin the vtables to this file.
80 void Input::HNode::anchor() {}
81 void Input::EmptyHNode::anchor() {}
82 void Input::ScalarHNode::anchor() {}
83 void Input::MapHNode::anchor() {}
84 void Input::SequenceHNode::anchor() {}
85 
86 bool Input::outputting() const {
87   return false;
88 }
89 
90 bool Input::setCurrentDocument() {
91   if (DocIterator != Strm->end()) {
92     Node *N = DocIterator->getRoot();
93     if (!N) {
94       EC = make_error_code(errc::invalid_argument);
95       return false;
96     }
97 
98     if (isa<NullNode>(N)) {
99       // Empty files are allowed and ignored
100       ++DocIterator;
101       return setCurrentDocument();
102     }
103     TopNode = createHNodes(N);
104     CurrentNode = TopNode.get();
105     return true;
106   }
107   return false;
108 }
109 
110 bool Input::nextDocument() {
111   return ++DocIterator != Strm->end();
112 }
113 
114 const Node *Input::getCurrentNode() const {
115   return CurrentNode ? CurrentNode->_node : nullptr;
116 }
117 
118 bool Input::mapTag(StringRef Tag, bool Default) {
119   // CurrentNode can be null if setCurrentDocument() was unable to
120   // parse the document because it was invalid or empty.
121   if (!CurrentNode)
122     return false;
123 
124   std::string foundTag = CurrentNode->_node->getVerbatimTag();
125   if (foundTag.empty()) {
126     // If no tag found and 'Tag' is the default, say it was found.
127     return Default;
128   }
129   // Return true iff found tag matches supplied tag.
130   return Tag.equals(foundTag);
131 }
132 
133 void Input::beginMapping() {
134   if (EC)
135     return;
136   // CurrentNode can be null if the document is empty.
137   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
138   if (MN) {
139     MN->ValidKeys.clear();
140   }
141 }
142 
143 std::vector<StringRef> Input::keys() {
144   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
145   std::vector<StringRef> Ret;
146   if (!MN) {
147     setError(CurrentNode, "not a mapping");
148     return Ret;
149   }
150   for (auto &P : MN->Mapping)
151     Ret.push_back(P.first());
152   return Ret;
153 }
154 
155 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
156                          void *&SaveInfo) {
157   UseDefault = false;
158   if (EC)
159     return false;
160 
161   // CurrentNode is null for empty documents, which is an error in case required
162   // nodes are present.
163   if (!CurrentNode) {
164     if (Required)
165       EC = make_error_code(errc::invalid_argument);
166     return false;
167   }
168 
169   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
170   if (!MN) {
171     if (Required || !isa<EmptyHNode>(CurrentNode))
172       setError(CurrentNode, "not a mapping");
173     else
174       UseDefault = true;
175     return false;
176   }
177   MN->ValidKeys.push_back(Key);
178   HNode *Value = MN->Mapping[Key].get();
179   if (!Value) {
180     if (Required)
181       setError(CurrentNode, Twine("missing required key '") + Key + "'");
182     else
183       UseDefault = true;
184     return false;
185   }
186   SaveInfo = CurrentNode;
187   CurrentNode = Value;
188   return true;
189 }
190 
191 void Input::postflightKey(void *saveInfo) {
192   CurrentNode = reinterpret_cast<HNode *>(saveInfo);
193 }
194 
195 void Input::endMapping() {
196   if (EC)
197     return;
198   // CurrentNode can be null if the document is empty.
199   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
200   if (!MN)
201     return;
202   for (const auto &NN : MN->Mapping) {
203     if (!is_contained(MN->ValidKeys, NN.first())) {
204       HNode *ReportNode = NN.second.get();
205       if (!AllowUnknownKeys) {
206         setError(ReportNode, Twine("unknown key '") + NN.first() + "'");
207         break;
208       } else
209         reportWarning(ReportNode, Twine("unknown key '") + NN.first() + "'");
210     }
211   }
212 }
213 
214 void Input::beginFlowMapping() { beginMapping(); }
215 
216 void Input::endFlowMapping() { endMapping(); }
217 
218 unsigned Input::beginSequence() {
219   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
220     return SQ->Entries.size();
221   if (isa<EmptyHNode>(CurrentNode))
222     return 0;
223   // Treat case where there's a scalar "null" value as an empty sequence.
224   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
225     if (isNull(SN->value()))
226       return 0;
227   }
228   // Any other type of HNode is an error.
229   setError(CurrentNode, "not a sequence");
230   return 0;
231 }
232 
233 void Input::endSequence() {
234 }
235 
236 bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
237   if (EC)
238     return false;
239   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
240     SaveInfo = CurrentNode;
241     CurrentNode = SQ->Entries[Index].get();
242     return true;
243   }
244   return false;
245 }
246 
247 void Input::postflightElement(void *SaveInfo) {
248   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
249 }
250 
251 unsigned Input::beginFlowSequence() { return beginSequence(); }
252 
253 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
254   if (EC)
255     return false;
256   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
257     SaveInfo = CurrentNode;
258     CurrentNode = SQ->Entries[index].get();
259     return true;
260   }
261   return false;
262 }
263 
264 void Input::postflightFlowElement(void *SaveInfo) {
265   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
266 }
267 
268 void Input::endFlowSequence() {
269 }
270 
271 void Input::beginEnumScalar() {
272   ScalarMatchFound = false;
273 }
274 
275 bool Input::matchEnumScalar(const char *Str, bool) {
276   if (ScalarMatchFound)
277     return false;
278   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
279     if (SN->value().equals(Str)) {
280       ScalarMatchFound = true;
281       return true;
282     }
283   }
284   return false;
285 }
286 
287 bool Input::matchEnumFallback() {
288   if (ScalarMatchFound)
289     return false;
290   ScalarMatchFound = true;
291   return true;
292 }
293 
294 void Input::endEnumScalar() {
295   if (!ScalarMatchFound) {
296     setError(CurrentNode, "unknown enumerated scalar");
297   }
298 }
299 
300 bool Input::beginBitSetScalar(bool &DoClear) {
301   BitValuesUsed.clear();
302   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
303     BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
304   } else {
305     setError(CurrentNode, "expected sequence of bit values");
306   }
307   DoClear = true;
308   return true;
309 }
310 
311 bool Input::bitSetMatch(const char *Str, bool) {
312   if (EC)
313     return false;
314   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
315     unsigned Index = 0;
316     for (auto &N : SQ->Entries) {
317       if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
318         if (SN->value().equals(Str)) {
319           BitValuesUsed[Index] = true;
320           return true;
321         }
322       } else {
323         setError(CurrentNode, "unexpected scalar in sequence of bit values");
324       }
325       ++Index;
326     }
327   } else {
328     setError(CurrentNode, "expected sequence of bit values");
329   }
330   return false;
331 }
332 
333 void Input::endBitSetScalar() {
334   if (EC)
335     return;
336   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
337     assert(BitValuesUsed.size() == SQ->Entries.size());
338     for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
339       if (!BitValuesUsed[i]) {
340         setError(SQ->Entries[i].get(), "unknown bit value");
341         return;
342       }
343     }
344   }
345 }
346 
347 void Input::scalarString(StringRef &S, QuotingType) {
348   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
349     S = SN->value();
350   } else {
351     setError(CurrentNode, "unexpected scalar");
352   }
353 }
354 
355 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
356 
357 void Input::scalarTag(std::string &Tag) {
358   Tag = CurrentNode->_node->getVerbatimTag();
359 }
360 
361 void Input::setError(HNode *hnode, const Twine &message) {
362   assert(hnode && "HNode must not be NULL");
363   setError(hnode->_node, message);
364 }
365 
366 NodeKind Input::getNodeKind() {
367   if (isa<ScalarHNode>(CurrentNode))
368     return NodeKind::Scalar;
369   else if (isa<MapHNode>(CurrentNode))
370     return NodeKind::Map;
371   else if (isa<SequenceHNode>(CurrentNode))
372     return NodeKind::Sequence;
373   llvm_unreachable("Unsupported node kind");
374 }
375 
376 void Input::setError(Node *node, const Twine &message) {
377   Strm->printError(node, message);
378   EC = make_error_code(errc::invalid_argument);
379 }
380 
381 void Input::reportWarning(HNode *hnode, const Twine &message) {
382   assert(hnode && "HNode must not be NULL");
383   Strm->printError(hnode->_node, message, SourceMgr::DK_Warning);
384 }
385 
386 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
387   SmallString<128> StringStorage;
388   if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
389     StringRef KeyStr = SN->getValue(StringStorage);
390     if (!StringStorage.empty()) {
391       // Copy string to permanent storage
392       KeyStr = StringStorage.str().copy(StringAllocator);
393     }
394     return std::make_unique<ScalarHNode>(N, KeyStr);
395   } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
396     StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
397     return std::make_unique<ScalarHNode>(N, ValueCopy);
398   } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
399     auto SQHNode = std::make_unique<SequenceHNode>(N);
400     for (Node &SN : *SQ) {
401       auto Entry = createHNodes(&SN);
402       if (EC)
403         break;
404       SQHNode->Entries.push_back(std::move(Entry));
405     }
406     return std::move(SQHNode);
407   } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
408     auto mapHNode = std::make_unique<MapHNode>(N);
409     for (KeyValueNode &KVN : *Map) {
410       Node *KeyNode = KVN.getKey();
411       ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
412       Node *Value = KVN.getValue();
413       if (!Key || !Value) {
414         if (!Key)
415           setError(KeyNode, "Map key must be a scalar");
416         if (!Value)
417           setError(KeyNode, "Map value must not be empty");
418         break;
419       }
420       StringStorage.clear();
421       StringRef KeyStr = Key->getValue(StringStorage);
422       if (!StringStorage.empty()) {
423         // Copy string to permanent storage
424         KeyStr = StringStorage.str().copy(StringAllocator);
425       }
426       auto ValueHNode = createHNodes(Value);
427       if (EC)
428         break;
429       mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
430     }
431     return std::move(mapHNode);
432   } else if (isa<NullNode>(N)) {
433     return std::make_unique<EmptyHNode>(N);
434   } else {
435     setError(N, "unknown node kind");
436     return nullptr;
437   }
438 }
439 
440 void Input::setError(const Twine &Message) {
441   setError(CurrentNode, Message);
442 }
443 
444 void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; }
445 
446 bool Input::canElideEmptySequence() {
447   return false;
448 }
449 
450 //===----------------------------------------------------------------------===//
451 //  Output
452 //===----------------------------------------------------------------------===//
453 
454 Output::Output(raw_ostream &yout, void *context, int WrapColumn)
455     : IO(context), Out(yout), WrapColumn(WrapColumn) {}
456 
457 Output::~Output() = default;
458 
459 bool Output::outputting() const {
460   return true;
461 }
462 
463 void Output::beginMapping() {
464   StateStack.push_back(inMapFirstKey);
465   PaddingBeforeContainer = Padding;
466   Padding = "\n";
467 }
468 
469 bool Output::mapTag(StringRef Tag, bool Use) {
470   if (Use) {
471     // If this tag is being written inside a sequence we should write the start
472     // of the sequence before writing the tag, otherwise the tag won't be
473     // attached to the element in the sequence, but rather the sequence itself.
474     bool SequenceElement = false;
475     if (StateStack.size() > 1) {
476       auto &E = StateStack[StateStack.size() - 2];
477       SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
478     }
479     if (SequenceElement && StateStack.back() == inMapFirstKey) {
480       newLineCheck();
481     } else {
482       output(" ");
483     }
484     output(Tag);
485     if (SequenceElement) {
486       // If we're writing the tag during the first element of a map, the tag
487       // takes the place of the first element in the sequence.
488       if (StateStack.back() == inMapFirstKey) {
489         StateStack.pop_back();
490         StateStack.push_back(inMapOtherKey);
491       }
492       // Tags inside maps in sequences should act as keys in the map from a
493       // formatting perspective, so we always want a newline in a sequence.
494       Padding = "\n";
495     }
496   }
497   return Use;
498 }
499 
500 void Output::endMapping() {
501   // If we did not map anything, we should explicitly emit an empty map
502   if (StateStack.back() == inMapFirstKey) {
503     Padding = PaddingBeforeContainer;
504     newLineCheck();
505     output("{}");
506     Padding = "\n";
507   }
508   StateStack.pop_back();
509 }
510 
511 std::vector<StringRef> Output::keys() {
512   report_fatal_error("invalid call");
513 }
514 
515 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
516                           bool &UseDefault, void *&) {
517   UseDefault = false;
518   if (Required || !SameAsDefault || WriteDefaultValues) {
519     auto State = StateStack.back();
520     if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
521       flowKey(Key);
522     } else {
523       newLineCheck();
524       paddedKey(Key);
525     }
526     return true;
527   }
528   return false;
529 }
530 
531 void Output::postflightKey(void *) {
532   if (StateStack.back() == inMapFirstKey) {
533     StateStack.pop_back();
534     StateStack.push_back(inMapOtherKey);
535   } else if (StateStack.back() == inFlowMapFirstKey) {
536     StateStack.pop_back();
537     StateStack.push_back(inFlowMapOtherKey);
538   }
539 }
540 
541 void Output::beginFlowMapping() {
542   StateStack.push_back(inFlowMapFirstKey);
543   newLineCheck();
544   ColumnAtMapFlowStart = Column;
545   output("{ ");
546 }
547 
548 void Output::endFlowMapping() {
549   StateStack.pop_back();
550   outputUpToEndOfLine(" }");
551 }
552 
553 void Output::beginDocuments() {
554   outputUpToEndOfLine("---");
555 }
556 
557 bool Output::preflightDocument(unsigned index) {
558   if (index > 0)
559     outputUpToEndOfLine("\n---");
560   return true;
561 }
562 
563 void Output::postflightDocument() {
564 }
565 
566 void Output::endDocuments() {
567   output("\n...\n");
568 }
569 
570 unsigned Output::beginSequence() {
571   StateStack.push_back(inSeqFirstElement);
572   PaddingBeforeContainer = Padding;
573   Padding = "\n";
574   return 0;
575 }
576 
577 void Output::endSequence() {
578   // If we did not emit anything, we should explicitly emit an empty sequence
579   if (StateStack.back() == inSeqFirstElement) {
580     Padding = PaddingBeforeContainer;
581     newLineCheck();
582     output("[]");
583     Padding = "\n";
584   }
585   StateStack.pop_back();
586 }
587 
588 bool Output::preflightElement(unsigned, void *&) {
589   return true;
590 }
591 
592 void Output::postflightElement(void *) {
593   if (StateStack.back() == inSeqFirstElement) {
594     StateStack.pop_back();
595     StateStack.push_back(inSeqOtherElement);
596   } else if (StateStack.back() == inFlowSeqFirstElement) {
597     StateStack.pop_back();
598     StateStack.push_back(inFlowSeqOtherElement);
599   }
600 }
601 
602 unsigned Output::beginFlowSequence() {
603   StateStack.push_back(inFlowSeqFirstElement);
604   newLineCheck();
605   ColumnAtFlowStart = Column;
606   output("[ ");
607   NeedFlowSequenceComma = false;
608   return 0;
609 }
610 
611 void Output::endFlowSequence() {
612   StateStack.pop_back();
613   outputUpToEndOfLine(" ]");
614 }
615 
616 bool Output::preflightFlowElement(unsigned, void *&) {
617   if (NeedFlowSequenceComma)
618     output(", ");
619   if (WrapColumn && Column > WrapColumn) {
620     output("\n");
621     for (int i = 0; i < ColumnAtFlowStart; ++i)
622       output(" ");
623     Column = ColumnAtFlowStart;
624     output("  ");
625   }
626   return true;
627 }
628 
629 void Output::postflightFlowElement(void *) {
630   NeedFlowSequenceComma = true;
631 }
632 
633 void Output::beginEnumScalar() {
634   EnumerationMatchFound = false;
635 }
636 
637 bool Output::matchEnumScalar(const char *Str, bool Match) {
638   if (Match && !EnumerationMatchFound) {
639     newLineCheck();
640     outputUpToEndOfLine(Str);
641     EnumerationMatchFound = true;
642   }
643   return false;
644 }
645 
646 bool Output::matchEnumFallback() {
647   if (EnumerationMatchFound)
648     return false;
649   EnumerationMatchFound = true;
650   return true;
651 }
652 
653 void Output::endEnumScalar() {
654   if (!EnumerationMatchFound)
655     llvm_unreachable("bad runtime enum value");
656 }
657 
658 bool Output::beginBitSetScalar(bool &DoClear) {
659   newLineCheck();
660   output("[ ");
661   NeedBitValueComma = false;
662   DoClear = false;
663   return true;
664 }
665 
666 bool Output::bitSetMatch(const char *Str, bool Matches) {
667   if (Matches) {
668     if (NeedBitValueComma)
669       output(", ");
670     output(Str);
671     NeedBitValueComma = true;
672   }
673   return false;
674 }
675 
676 void Output::endBitSetScalar() {
677   outputUpToEndOfLine(" ]");
678 }
679 
680 void Output::scalarString(StringRef &S, QuotingType MustQuote) {
681   newLineCheck();
682   if (S.empty()) {
683     // Print '' for the empty string because leaving the field empty is not
684     // allowed.
685     outputUpToEndOfLine("''");
686     return;
687   }
688   if (MustQuote == QuotingType::None) {
689     // Only quote if we must.
690     outputUpToEndOfLine(S);
691     return;
692   }
693 
694   const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
695   output(Quote); // Starting quote.
696 
697   // When using double-quoted strings (and only in that case), non-printable characters may be
698   // present, and will be escaped using a variety of unicode-scalar and special short-form
699   // escapes. This is handled in yaml::escape.
700   if (MustQuote == QuotingType::Double) {
701     output(yaml::escape(S, /* EscapePrintable= */ false));
702     outputUpToEndOfLine(Quote);
703     return;
704   }
705 
706   unsigned i = 0;
707   unsigned j = 0;
708   unsigned End = S.size();
709   const char *Base = S.data();
710 
711   // When using single-quoted strings, any single quote ' must be doubled to be escaped.
712   while (j < End) {
713     if (S[j] == '\'') {                    // Escape quotes.
714       output(StringRef(&Base[i], j - i));  // "flush".
715       output(StringLiteral("''"));         // Print it as ''
716       i = j + 1;
717     }
718     ++j;
719   }
720   output(StringRef(&Base[i], j - i));
721   outputUpToEndOfLine(Quote); // Ending quote.
722 }
723 
724 void Output::blockScalarString(StringRef &S) {
725   if (!StateStack.empty())
726     newLineCheck();
727   output(" |");
728   outputNewLine();
729 
730   unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
731 
732   auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
733   for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
734     for (unsigned I = 0; I < Indent; ++I) {
735       output("  ");
736     }
737     output(*Lines);
738     outputNewLine();
739   }
740 }
741 
742 void Output::scalarTag(std::string &Tag) {
743   if (Tag.empty())
744     return;
745   newLineCheck();
746   output(Tag);
747   output(" ");
748 }
749 
750 void Output::setError(const Twine &message) {
751 }
752 
753 bool Output::canElideEmptySequence() {
754   // Normally, with an optional key/value where the value is an empty sequence,
755   // the whole key/value can be not written.  But, that produces wrong yaml
756   // if the key/value is the only thing in the map and the map is used in
757   // a sequence.  This detects if the this sequence is the first key/value
758   // in map that itself is embedded in a sequence.
759   if (StateStack.size() < 2)
760     return true;
761   if (StateStack.back() != inMapFirstKey)
762     return true;
763   return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
764 }
765 
766 void Output::output(StringRef s) {
767   Column += s.size();
768   Out << s;
769 }
770 
771 void Output::outputUpToEndOfLine(StringRef s) {
772   output(s);
773   if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
774                              !inFlowMapAnyKey(StateStack.back())))
775     Padding = "\n";
776 }
777 
778 void Output::outputNewLine() {
779   Out << "\n";
780   Column = 0;
781 }
782 
783 // if seq at top, indent as if map, then add "- "
784 // if seq in middle, use "- " if firstKey, else use "  "
785 //
786 
787 void Output::newLineCheck() {
788   if (Padding != "\n") {
789     output(Padding);
790     Padding = {};
791     return;
792   }
793   outputNewLine();
794   Padding = {};
795 
796   if (StateStack.size() == 0)
797     return;
798 
799   unsigned Indent = StateStack.size() - 1;
800   bool OutputDash = false;
801 
802   if (StateStack.back() == inSeqFirstElement ||
803       StateStack.back() == inSeqOtherElement) {
804     OutputDash = true;
805   } else if ((StateStack.size() > 1) &&
806              ((StateStack.back() == inMapFirstKey) ||
807               inFlowSeqAnyElement(StateStack.back()) ||
808               (StateStack.back() == inFlowMapFirstKey)) &&
809              inSeqAnyElement(StateStack[StateStack.size() - 2])) {
810     --Indent;
811     OutputDash = true;
812   }
813 
814   for (unsigned i = 0; i < Indent; ++i) {
815     output("  ");
816   }
817   if (OutputDash) {
818     output("- ");
819   }
820 
821 }
822 
823 void Output::paddedKey(StringRef key) {
824   output(key);
825   output(":");
826   const char *spaces = "                ";
827   if (key.size() < strlen(spaces))
828     Padding = &spaces[key.size()];
829   else
830     Padding = " ";
831 }
832 
833 void Output::flowKey(StringRef Key) {
834   if (StateStack.back() == inFlowMapOtherKey)
835     output(", ");
836   if (WrapColumn && Column > WrapColumn) {
837     output("\n");
838     for (int I = 0; I < ColumnAtMapFlowStart; ++I)
839       output(" ");
840     Column = ColumnAtMapFlowStart;
841     output("  ");
842   }
843   output(Key);
844   output(": ");
845 }
846 
847 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
848 
849 bool Output::inSeqAnyElement(InState State) {
850   return State == inSeqFirstElement || State == inSeqOtherElement;
851 }
852 
853 bool Output::inFlowSeqAnyElement(InState State) {
854   return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
855 }
856 
857 bool Output::inMapAnyKey(InState State) {
858   return State == inMapFirstKey || State == inMapOtherKey;
859 }
860 
861 bool Output::inFlowMapAnyKey(InState State) {
862   return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
863 }
864 
865 //===----------------------------------------------------------------------===//
866 //  traits for built-in types
867 //===----------------------------------------------------------------------===//
868 
869 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
870   Out << (Val ? "true" : "false");
871 }
872 
873 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
874   if (Scalar.equals("true")) {
875     Val = true;
876     return StringRef();
877   } else if (Scalar.equals("false")) {
878     Val = false;
879     return StringRef();
880   }
881   return "invalid boolean";
882 }
883 
884 void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
885                                      raw_ostream &Out) {
886   Out << Val;
887 }
888 
889 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
890                                          StringRef &Val) {
891   Val = Scalar;
892   return StringRef();
893 }
894 
895 void ScalarTraits<std::string>::output(const std::string &Val, void *,
896                                        raw_ostream &Out) {
897   Out << Val;
898 }
899 
900 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
901                                            std::string &Val) {
902   Val = Scalar.str();
903   return StringRef();
904 }
905 
906 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
907                                    raw_ostream &Out) {
908   // use temp uin32_t because ostream thinks uint8_t is a character
909   uint32_t Num = Val;
910   Out << Num;
911 }
912 
913 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
914   unsigned long long n;
915   if (getAsUnsignedInteger(Scalar, 0, n))
916     return "invalid number";
917   if (n > 0xFF)
918     return "out of range number";
919   Val = n;
920   return StringRef();
921 }
922 
923 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
924                                     raw_ostream &Out) {
925   Out << Val;
926 }
927 
928 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
929                                         uint16_t &Val) {
930   unsigned long long n;
931   if (getAsUnsignedInteger(Scalar, 0, n))
932     return "invalid number";
933   if (n > 0xFFFF)
934     return "out of range number";
935   Val = n;
936   return StringRef();
937 }
938 
939 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
940                                     raw_ostream &Out) {
941   Out << Val;
942 }
943 
944 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
945                                         uint32_t &Val) {
946   unsigned long long n;
947   if (getAsUnsignedInteger(Scalar, 0, n))
948     return "invalid number";
949   if (n > 0xFFFFFFFFUL)
950     return "out of range number";
951   Val = n;
952   return StringRef();
953 }
954 
955 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
956                                     raw_ostream &Out) {
957   Out << Val;
958 }
959 
960 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
961                                         uint64_t &Val) {
962   unsigned long long N;
963   if (getAsUnsignedInteger(Scalar, 0, N))
964     return "invalid number";
965   Val = N;
966   return StringRef();
967 }
968 
969 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
970   // use temp in32_t because ostream thinks int8_t is a character
971   int32_t Num = Val;
972   Out << Num;
973 }
974 
975 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
976   long long N;
977   if (getAsSignedInteger(Scalar, 0, N))
978     return "invalid number";
979   if ((N > 127) || (N < -128))
980     return "out of range number";
981   Val = N;
982   return StringRef();
983 }
984 
985 void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
986                                    raw_ostream &Out) {
987   Out << Val;
988 }
989 
990 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
991   long long N;
992   if (getAsSignedInteger(Scalar, 0, N))
993     return "invalid number";
994   if ((N > INT16_MAX) || (N < INT16_MIN))
995     return "out of range number";
996   Val = N;
997   return StringRef();
998 }
999 
1000 void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
1001                                    raw_ostream &Out) {
1002   Out << Val;
1003 }
1004 
1005 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
1006   long long N;
1007   if (getAsSignedInteger(Scalar, 0, N))
1008     return "invalid number";
1009   if ((N > INT32_MAX) || (N < INT32_MIN))
1010     return "out of range number";
1011   Val = N;
1012   return StringRef();
1013 }
1014 
1015 void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
1016                                    raw_ostream &Out) {
1017   Out << Val;
1018 }
1019 
1020 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
1021   long long N;
1022   if (getAsSignedInteger(Scalar, 0, N))
1023     return "invalid number";
1024   Val = N;
1025   return StringRef();
1026 }
1027 
1028 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
1029   Out << format("%g", Val);
1030 }
1031 
1032 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
1033   if (to_float(Scalar, Val))
1034     return StringRef();
1035   return "invalid floating point number";
1036 }
1037 
1038 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
1039   Out << format("%g", Val);
1040 }
1041 
1042 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
1043   if (to_float(Scalar, Val))
1044     return StringRef();
1045   return "invalid floating point number";
1046 }
1047 
1048 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
1049   uint8_t Num = Val;
1050   Out << format("0x%02X", Num);
1051 }
1052 
1053 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
1054   unsigned long long n;
1055   if (getAsUnsignedInteger(Scalar, 0, n))
1056     return "invalid hex8 number";
1057   if (n > 0xFF)
1058     return "out of range hex8 number";
1059   Val = n;
1060   return StringRef();
1061 }
1062 
1063 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
1064   uint16_t Num = Val;
1065   Out << format("0x%04X", Num);
1066 }
1067 
1068 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
1069   unsigned long long n;
1070   if (getAsUnsignedInteger(Scalar, 0, n))
1071     return "invalid hex16 number";
1072   if (n > 0xFFFF)
1073     return "out of range hex16 number";
1074   Val = n;
1075   return StringRef();
1076 }
1077 
1078 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
1079   uint32_t Num = Val;
1080   Out << format("0x%08X", Num);
1081 }
1082 
1083 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
1084   unsigned long long n;
1085   if (getAsUnsignedInteger(Scalar, 0, n))
1086     return "invalid hex32 number";
1087   if (n > 0xFFFFFFFFUL)
1088     return "out of range hex32 number";
1089   Val = n;
1090   return StringRef();
1091 }
1092 
1093 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
1094   uint64_t Num = Val;
1095   Out << format("0x%016llX", Num);
1096 }
1097 
1098 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
1099   unsigned long long Num;
1100   if (getAsUnsignedInteger(Scalar, 0, Num))
1101     return "invalid hex64 number";
1102   Val = Num;
1103   return StringRef();
1104 }
1105 
1106 void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *,
1107                                         llvm::raw_ostream &Out) {
1108   Out << Val.getAsString();
1109 }
1110 
1111 StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *,
1112                                             VersionTuple &Val) {
1113   if (Val.tryParse(Scalar))
1114     return "invalid version format";
1115   return StringRef();
1116 }
1117