1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Support/YAMLTraits.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/Support/Casting.h"
16 #include "llvm/Support/Errc.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/Format.h"
19 #include "llvm/Support/LineIterator.h"
20 #include "llvm/Support/MemoryBuffer.h"
21 #include "llvm/Support/Unicode.h"
22 #include "llvm/Support/YAMLParser.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cassert>
26 #include <cstdint>
27 #include <cstdlib>
28 #include <cstring>
29 #include <string>
30 #include <vector>
31 
32 using namespace llvm;
33 using namespace yaml;
34 
35 //===----------------------------------------------------------------------===//
36 //  IO
37 //===----------------------------------------------------------------------===//
38 
39 IO::IO(void *Context) : Ctxt(Context) {}
40 
41 IO::~IO() = default;
42 
43 void *IO::getContext() {
44   return Ctxt;
45 }
46 
47 void IO::setContext(void *Context) {
48   Ctxt = Context;
49 }
50 
51 //===----------------------------------------------------------------------===//
52 //  Input
53 //===----------------------------------------------------------------------===//
54 
55 Input::Input(StringRef InputContent, void *Ctxt,
56              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
57     : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
58   if (DiagHandler)
59     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
60   DocIterator = Strm->begin();
61 }
62 
63 Input::Input(MemoryBufferRef Input, void *Ctxt,
64              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
65     : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
66   if (DiagHandler)
67     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
68   DocIterator = Strm->begin();
69 }
70 
71 Input::~Input() = default;
72 
73 std::error_code Input::error() { return EC; }
74 
75 // Pin the vtables to this file.
76 void Input::HNode::anchor() {}
77 void Input::EmptyHNode::anchor() {}
78 void Input::ScalarHNode::anchor() {}
79 void Input::MapHNode::anchor() {}
80 void Input::SequenceHNode::anchor() {}
81 
82 bool Input::outputting() {
83   return false;
84 }
85 
86 bool Input::setCurrentDocument() {
87   if (DocIterator != Strm->end()) {
88     Node *N = DocIterator->getRoot();
89     if (!N) {
90       assert(Strm->failed() && "Root is NULL iff parsing failed");
91       EC = make_error_code(errc::invalid_argument);
92       return false;
93     }
94 
95     if (isa<NullNode>(N)) {
96       // Empty files are allowed and ignored
97       ++DocIterator;
98       return setCurrentDocument();
99     }
100     TopNode = createHNodes(N);
101     CurrentNode = TopNode.get();
102     return true;
103   }
104   return false;
105 }
106 
107 bool Input::nextDocument() {
108   return ++DocIterator != Strm->end();
109 }
110 
111 const Node *Input::getCurrentNode() const {
112   return CurrentNode ? CurrentNode->_node : nullptr;
113 }
114 
115 bool Input::mapTag(StringRef Tag, bool Default) {
116   // CurrentNode can be null if setCurrentDocument() was unable to
117   // parse the document because it was invalid or empty.
118   if (!CurrentNode)
119     return false;
120 
121   std::string foundTag = CurrentNode->_node->getVerbatimTag();
122   if (foundTag.empty()) {
123     // If no tag found and 'Tag' is the default, say it was found.
124     return Default;
125   }
126   // Return true iff found tag matches supplied tag.
127   return Tag.equals(foundTag);
128 }
129 
130 void Input::beginMapping() {
131   if (EC)
132     return;
133   // CurrentNode can be null if the document is empty.
134   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
135   if (MN) {
136     MN->ValidKeys.clear();
137   }
138 }
139 
140 std::vector<StringRef> Input::keys() {
141   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
142   std::vector<StringRef> Ret;
143   if (!MN) {
144     setError(CurrentNode, "not a mapping");
145     return Ret;
146   }
147   for (auto &P : MN->Mapping)
148     Ret.push_back(P.first());
149   return Ret;
150 }
151 
152 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
153                          void *&SaveInfo) {
154   UseDefault = false;
155   if (EC)
156     return false;
157 
158   // CurrentNode is null for empty documents, which is an error in case required
159   // nodes are present.
160   if (!CurrentNode) {
161     if (Required)
162       EC = make_error_code(errc::invalid_argument);
163     return false;
164   }
165 
166   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
167   if (!MN) {
168     if (Required || !isa<EmptyHNode>(CurrentNode))
169       setError(CurrentNode, "not a mapping");
170     return false;
171   }
172   MN->ValidKeys.push_back(Key);
173   HNode *Value = MN->Mapping[Key].get();
174   if (!Value) {
175     if (Required)
176       setError(CurrentNode, Twine("missing required key '") + Key + "'");
177     else
178       UseDefault = true;
179     return false;
180   }
181   SaveInfo = CurrentNode;
182   CurrentNode = Value;
183   return true;
184 }
185 
186 void Input::postflightKey(void *saveInfo) {
187   CurrentNode = reinterpret_cast<HNode *>(saveInfo);
188 }
189 
190 void Input::endMapping() {
191   if (EC)
192     return;
193   // CurrentNode can be null if the document is empty.
194   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
195   if (!MN)
196     return;
197   for (const auto &NN : MN->Mapping) {
198     if (!is_contained(MN->ValidKeys, NN.first())) {
199       setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
200       break;
201     }
202   }
203 }
204 
205 void Input::beginFlowMapping() { beginMapping(); }
206 
207 void Input::endFlowMapping() { endMapping(); }
208 
209 unsigned Input::beginSequence() {
210   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
211     return SQ->Entries.size();
212   if (isa<EmptyHNode>(CurrentNode))
213     return 0;
214   // Treat case where there's a scalar "null" value as an empty sequence.
215   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
216     if (isNull(SN->value()))
217       return 0;
218   }
219   // Any other type of HNode is an error.
220   setError(CurrentNode, "not a sequence");
221   return 0;
222 }
223 
224 void Input::endSequence() {
225 }
226 
227 bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
228   if (EC)
229     return false;
230   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
231     SaveInfo = CurrentNode;
232     CurrentNode = SQ->Entries[Index].get();
233     return true;
234   }
235   return false;
236 }
237 
238 void Input::postflightElement(void *SaveInfo) {
239   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
240 }
241 
242 unsigned Input::beginFlowSequence() { return beginSequence(); }
243 
244 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
245   if (EC)
246     return false;
247   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
248     SaveInfo = CurrentNode;
249     CurrentNode = SQ->Entries[index].get();
250     return true;
251   }
252   return false;
253 }
254 
255 void Input::postflightFlowElement(void *SaveInfo) {
256   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
257 }
258 
259 void Input::endFlowSequence() {
260 }
261 
262 void Input::beginEnumScalar() {
263   ScalarMatchFound = false;
264 }
265 
266 bool Input::matchEnumScalar(const char *Str, bool) {
267   if (ScalarMatchFound)
268     return false;
269   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
270     if (SN->value().equals(Str)) {
271       ScalarMatchFound = true;
272       return true;
273     }
274   }
275   return false;
276 }
277 
278 bool Input::matchEnumFallback() {
279   if (ScalarMatchFound)
280     return false;
281   ScalarMatchFound = true;
282   return true;
283 }
284 
285 void Input::endEnumScalar() {
286   if (!ScalarMatchFound) {
287     setError(CurrentNode, "unknown enumerated scalar");
288   }
289 }
290 
291 bool Input::beginBitSetScalar(bool &DoClear) {
292   BitValuesUsed.clear();
293   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
294     BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
295   } else {
296     setError(CurrentNode, "expected sequence of bit values");
297   }
298   DoClear = true;
299   return true;
300 }
301 
302 bool Input::bitSetMatch(const char *Str, bool) {
303   if (EC)
304     return false;
305   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
306     unsigned Index = 0;
307     for (auto &N : SQ->Entries) {
308       if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
309         if (SN->value().equals(Str)) {
310           BitValuesUsed[Index] = true;
311           return true;
312         }
313       } else {
314         setError(CurrentNode, "unexpected scalar in sequence of bit values");
315       }
316       ++Index;
317     }
318   } else {
319     setError(CurrentNode, "expected sequence of bit values");
320   }
321   return false;
322 }
323 
324 void Input::endBitSetScalar() {
325   if (EC)
326     return;
327   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
328     assert(BitValuesUsed.size() == SQ->Entries.size());
329     for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
330       if (!BitValuesUsed[i]) {
331         setError(SQ->Entries[i].get(), "unknown bit value");
332         return;
333       }
334     }
335   }
336 }
337 
338 void Input::scalarString(StringRef &S, QuotingType) {
339   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
340     S = SN->value();
341   } else {
342     setError(CurrentNode, "unexpected scalar");
343   }
344 }
345 
346 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
347 
348 void Input::scalarTag(std::string &Tag) {
349   Tag = CurrentNode->_node->getVerbatimTag();
350 }
351 
352 void Input::setError(HNode *hnode, const Twine &message) {
353   assert(hnode && "HNode must not be NULL");
354   setError(hnode->_node, message);
355 }
356 
357 NodeKind Input::getNodeKind() {
358   if (isa<ScalarHNode>(CurrentNode))
359     return NodeKind::Scalar;
360   else if (isa<MapHNode>(CurrentNode))
361     return NodeKind::Map;
362   else if (isa<SequenceHNode>(CurrentNode))
363     return NodeKind::Sequence;
364   llvm_unreachable("Unsupported node kind");
365 }
366 
367 void Input::setError(Node *node, const Twine &message) {
368   Strm->printError(node, message);
369   EC = make_error_code(errc::invalid_argument);
370 }
371 
372 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
373   SmallString<128> StringStorage;
374   if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
375     StringRef KeyStr = SN->getValue(StringStorage);
376     if (!StringStorage.empty()) {
377       // Copy string to permanent storage
378       KeyStr = StringStorage.str().copy(StringAllocator);
379     }
380     return llvm::make_unique<ScalarHNode>(N, KeyStr);
381   } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
382     StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
383     return llvm::make_unique<ScalarHNode>(N, ValueCopy);
384   } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
385     auto SQHNode = llvm::make_unique<SequenceHNode>(N);
386     for (Node &SN : *SQ) {
387       auto Entry = createHNodes(&SN);
388       if (EC)
389         break;
390       SQHNode->Entries.push_back(std::move(Entry));
391     }
392     return std::move(SQHNode);
393   } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
394     auto mapHNode = llvm::make_unique<MapHNode>(N);
395     for (KeyValueNode &KVN : *Map) {
396       Node *KeyNode = KVN.getKey();
397       ScalarNode *Key = dyn_cast<ScalarNode>(KeyNode);
398       Node *Value = KVN.getValue();
399       if (!Key || !Value) {
400         if (!Key)
401           setError(KeyNode, "Map key must be a scalar");
402         if (!Value)
403           setError(KeyNode, "Map value must not be empty");
404         break;
405       }
406       StringStorage.clear();
407       StringRef KeyStr = Key->getValue(StringStorage);
408       if (!StringStorage.empty()) {
409         // Copy string to permanent storage
410         KeyStr = StringStorage.str().copy(StringAllocator);
411       }
412       auto ValueHNode = createHNodes(Value);
413       if (EC)
414         break;
415       mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
416     }
417     return std::move(mapHNode);
418   } else if (isa<NullNode>(N)) {
419     return llvm::make_unique<EmptyHNode>(N);
420   } else {
421     setError(N, "unknown node kind");
422     return nullptr;
423   }
424 }
425 
426 void Input::setError(const Twine &Message) {
427   setError(CurrentNode, Message);
428 }
429 
430 bool Input::canElideEmptySequence() {
431   return false;
432 }
433 
434 //===----------------------------------------------------------------------===//
435 //  Output
436 //===----------------------------------------------------------------------===//
437 
438 Output::Output(raw_ostream &yout, void *context, int WrapColumn)
439     : IO(context), Out(yout), WrapColumn(WrapColumn) {}
440 
441 Output::~Output() = default;
442 
443 bool Output::outputting() {
444   return true;
445 }
446 
447 void Output::beginMapping() {
448   StateStack.push_back(inMapFirstKey);
449   NeedsNewLine = true;
450 }
451 
452 bool Output::mapTag(StringRef Tag, bool Use) {
453   if (Use) {
454     // If this tag is being written inside a sequence we should write the start
455     // of the sequence before writing the tag, otherwise the tag won't be
456     // attached to the element in the sequence, but rather the sequence itself.
457     bool SequenceElement = false;
458     if (StateStack.size() > 1) {
459       auto &E = StateStack[StateStack.size() - 2];
460       SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
461     }
462     if (SequenceElement && StateStack.back() == inMapFirstKey) {
463       newLineCheck();
464     } else {
465       output(" ");
466     }
467     output(Tag);
468     if (SequenceElement) {
469       // If we're writing the tag during the first element of a map, the tag
470       // takes the place of the first element in the sequence.
471       if (StateStack.back() == inMapFirstKey) {
472         StateStack.pop_back();
473         StateStack.push_back(inMapOtherKey);
474       }
475       // Tags inside maps in sequences should act as keys in the map from a
476       // formatting perspective, so we always want a newline in a sequence.
477       NeedsNewLine = true;
478     }
479   }
480   return Use;
481 }
482 
483 void Output::endMapping() {
484   // If we did not map anything, we should explicitly emit an empty map
485   if (StateStack.back() == inMapFirstKey)
486     output("{}");
487   StateStack.pop_back();
488 }
489 
490 std::vector<StringRef> Output::keys() {
491   report_fatal_error("invalid call");
492 }
493 
494 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
495                           bool &UseDefault, void *&) {
496   UseDefault = false;
497   if (Required || !SameAsDefault || WriteDefaultValues) {
498     auto State = StateStack.back();
499     if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
500       flowKey(Key);
501     } else {
502       newLineCheck();
503       paddedKey(Key);
504     }
505     return true;
506   }
507   return false;
508 }
509 
510 void Output::postflightKey(void *) {
511   if (StateStack.back() == inMapFirstKey) {
512     StateStack.pop_back();
513     StateStack.push_back(inMapOtherKey);
514   } else if (StateStack.back() == inFlowMapFirstKey) {
515     StateStack.pop_back();
516     StateStack.push_back(inFlowMapOtherKey);
517   }
518 }
519 
520 void Output::beginFlowMapping() {
521   StateStack.push_back(inFlowMapFirstKey);
522   newLineCheck();
523   ColumnAtMapFlowStart = Column;
524   output("{ ");
525 }
526 
527 void Output::endFlowMapping() {
528   StateStack.pop_back();
529   outputUpToEndOfLine(" }");
530 }
531 
532 void Output::beginDocuments() {
533   outputUpToEndOfLine("---");
534 }
535 
536 bool Output::preflightDocument(unsigned index) {
537   if (index > 0)
538     outputUpToEndOfLine("\n---");
539   return true;
540 }
541 
542 void Output::postflightDocument() {
543 }
544 
545 void Output::endDocuments() {
546   output("\n...\n");
547 }
548 
549 unsigned Output::beginSequence() {
550   StateStack.push_back(inSeqFirstElement);
551   NeedsNewLine = true;
552   return 0;
553 }
554 
555 void Output::endSequence() {
556   // If we did not emit anything, we should explicitly emit an empty sequence
557   if (StateStack.back() == inSeqFirstElement)
558     output("[]");
559   StateStack.pop_back();
560 }
561 
562 bool Output::preflightElement(unsigned, void *&) {
563   return true;
564 }
565 
566 void Output::postflightElement(void *) {
567   if (StateStack.back() == inSeqFirstElement) {
568     StateStack.pop_back();
569     StateStack.push_back(inSeqOtherElement);
570   } else if (StateStack.back() == inFlowSeqFirstElement) {
571     StateStack.pop_back();
572     StateStack.push_back(inFlowSeqOtherElement);
573   }
574 }
575 
576 unsigned Output::beginFlowSequence() {
577   StateStack.push_back(inFlowSeqFirstElement);
578   newLineCheck();
579   ColumnAtFlowStart = Column;
580   output("[ ");
581   NeedFlowSequenceComma = false;
582   return 0;
583 }
584 
585 void Output::endFlowSequence() {
586   StateStack.pop_back();
587   outputUpToEndOfLine(" ]");
588 }
589 
590 bool Output::preflightFlowElement(unsigned, void *&) {
591   if (NeedFlowSequenceComma)
592     output(", ");
593   if (WrapColumn && Column > WrapColumn) {
594     output("\n");
595     for (int i = 0; i < ColumnAtFlowStart; ++i)
596       output(" ");
597     Column = ColumnAtFlowStart;
598     output("  ");
599   }
600   return true;
601 }
602 
603 void Output::postflightFlowElement(void *) {
604   NeedFlowSequenceComma = true;
605 }
606 
607 void Output::beginEnumScalar() {
608   EnumerationMatchFound = false;
609 }
610 
611 bool Output::matchEnumScalar(const char *Str, bool Match) {
612   if (Match && !EnumerationMatchFound) {
613     newLineCheck();
614     outputUpToEndOfLine(Str);
615     EnumerationMatchFound = true;
616   }
617   return false;
618 }
619 
620 bool Output::matchEnumFallback() {
621   if (EnumerationMatchFound)
622     return false;
623   EnumerationMatchFound = true;
624   return true;
625 }
626 
627 void Output::endEnumScalar() {
628   if (!EnumerationMatchFound)
629     llvm_unreachable("bad runtime enum value");
630 }
631 
632 bool Output::beginBitSetScalar(bool &DoClear) {
633   newLineCheck();
634   output("[ ");
635   NeedBitValueComma = false;
636   DoClear = false;
637   return true;
638 }
639 
640 bool Output::bitSetMatch(const char *Str, bool Matches) {
641   if (Matches) {
642     if (NeedBitValueComma)
643       output(", ");
644     output(Str);
645     NeedBitValueComma = true;
646   }
647   return false;
648 }
649 
650 void Output::endBitSetScalar() {
651   outputUpToEndOfLine(" ]");
652 }
653 
654 void Output::scalarString(StringRef &S, QuotingType MustQuote) {
655   newLineCheck();
656   if (S.empty()) {
657     // Print '' for the empty string because leaving the field empty is not
658     // allowed.
659     outputUpToEndOfLine("''");
660     return;
661   }
662   if (MustQuote == QuotingType::None) {
663     // Only quote if we must.
664     outputUpToEndOfLine(S);
665     return;
666   }
667 
668   const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
669   output(Quote); // Starting quote.
670 
671   // When using double-quoted strings (and only in that case), non-printable characters may be
672   // present, and will be escaped using a variety of unicode-scalar and special short-form
673   // escapes. This is handled in yaml::escape.
674   if (MustQuote == QuotingType::Double) {
675     output(yaml::escape(S, /* EscapePrintable= */ false));
676     outputUpToEndOfLine(Quote);
677     return;
678   }
679 
680   unsigned i = 0;
681   unsigned j = 0;
682   unsigned End = S.size();
683   const char *Base = S.data();
684 
685   // When using single-quoted strings, any single quote ' must be doubled to be escaped.
686   while (j < End) {
687     if (S[j] == '\'') {                    // Escape quotes.
688       output(StringRef(&Base[i], j - i));  // "flush".
689       output(StringLiteral("''"));         // Print it as ''
690       i = j + 1;
691     }
692     ++j;
693   }
694   output(StringRef(&Base[i], j - i));
695   outputUpToEndOfLine(Quote); // Ending quote.
696 }
697 
698 void Output::blockScalarString(StringRef &S) {
699   if (!StateStack.empty())
700     newLineCheck();
701   output(" |");
702   outputNewLine();
703 
704   unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
705 
706   auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
707   for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
708     for (unsigned I = 0; I < Indent; ++I) {
709       output("  ");
710     }
711     output(*Lines);
712     outputNewLine();
713   }
714 }
715 
716 void Output::scalarTag(std::string &Tag) {
717   if (Tag.empty())
718     return;
719   newLineCheck();
720   output(Tag);
721   output(" ");
722 }
723 
724 void Output::setError(const Twine &message) {
725 }
726 
727 bool Output::canElideEmptySequence() {
728   // Normally, with an optional key/value where the value is an empty sequence,
729   // the whole key/value can be not written.  But, that produces wrong yaml
730   // if the key/value is the only thing in the map and the map is used in
731   // a sequence.  This detects if the this sequence is the first key/value
732   // in map that itself is embedded in a sequnce.
733   if (StateStack.size() < 2)
734     return true;
735   if (StateStack.back() != inMapFirstKey)
736     return true;
737   return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
738 }
739 
740 void Output::output(StringRef s) {
741   Column += s.size();
742   Out << s;
743 }
744 
745 void Output::outputUpToEndOfLine(StringRef s) {
746   output(s);
747   if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
748                              !inFlowMapAnyKey(StateStack.back())))
749     NeedsNewLine = true;
750 }
751 
752 void Output::outputNewLine() {
753   Out << "\n";
754   Column = 0;
755 }
756 
757 // if seq at top, indent as if map, then add "- "
758 // if seq in middle, use "- " if firstKey, else use "  "
759 //
760 
761 void Output::newLineCheck() {
762   if (!NeedsNewLine)
763     return;
764   NeedsNewLine = false;
765 
766   outputNewLine();
767 
768   if (StateStack.size() == 0)
769     return;
770 
771   unsigned Indent = StateStack.size() - 1;
772   bool OutputDash = false;
773 
774   if (StateStack.back() == inSeqFirstElement ||
775       StateStack.back() == inSeqOtherElement) {
776     OutputDash = true;
777   } else if ((StateStack.size() > 1) &&
778              ((StateStack.back() == inMapFirstKey) ||
779               inFlowSeqAnyElement(StateStack.back()) ||
780               (StateStack.back() == inFlowMapFirstKey)) &&
781              inSeqAnyElement(StateStack[StateStack.size() - 2])) {
782     --Indent;
783     OutputDash = true;
784   }
785 
786   for (unsigned i = 0; i < Indent; ++i) {
787     output("  ");
788   }
789   if (OutputDash) {
790     output("- ");
791   }
792 
793 }
794 
795 void Output::paddedKey(StringRef key) {
796   output(key);
797   output(":");
798   const char *spaces = "                ";
799   if (key.size() < strlen(spaces))
800     output(&spaces[key.size()]);
801   else
802     output(" ");
803 }
804 
805 void Output::flowKey(StringRef Key) {
806   if (StateStack.back() == inFlowMapOtherKey)
807     output(", ");
808   if (WrapColumn && Column > WrapColumn) {
809     output("\n");
810     for (int I = 0; I < ColumnAtMapFlowStart; ++I)
811       output(" ");
812     Column = ColumnAtMapFlowStart;
813     output("  ");
814   }
815   output(Key);
816   output(": ");
817 }
818 
819 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
820 
821 bool Output::inSeqAnyElement(InState State) {
822   return State == inSeqFirstElement || State == inSeqOtherElement;
823 }
824 
825 bool Output::inFlowSeqAnyElement(InState State) {
826   return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
827 }
828 
829 bool Output::inMapAnyKey(InState State) {
830   return State == inMapFirstKey || State == inMapOtherKey;
831 }
832 
833 bool Output::inFlowMapAnyKey(InState State) {
834   return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
835 }
836 
837 //===----------------------------------------------------------------------===//
838 //  traits for built-in types
839 //===----------------------------------------------------------------------===//
840 
841 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
842   Out << (Val ? "true" : "false");
843 }
844 
845 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
846   if (Scalar.equals("true")) {
847     Val = true;
848     return StringRef();
849   } else if (Scalar.equals("false")) {
850     Val = false;
851     return StringRef();
852   }
853   return "invalid boolean";
854 }
855 
856 void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
857                                      raw_ostream &Out) {
858   Out << Val;
859 }
860 
861 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
862                                          StringRef &Val) {
863   Val = Scalar;
864   return StringRef();
865 }
866 
867 void ScalarTraits<std::string>::output(const std::string &Val, void *,
868                                      raw_ostream &Out) {
869   Out << Val;
870 }
871 
872 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
873                                          std::string &Val) {
874   Val = Scalar.str();
875   return StringRef();
876 }
877 
878 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
879                                    raw_ostream &Out) {
880   // use temp uin32_t because ostream thinks uint8_t is a character
881   uint32_t Num = Val;
882   Out << Num;
883 }
884 
885 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
886   unsigned long long n;
887   if (getAsUnsignedInteger(Scalar, 0, n))
888     return "invalid number";
889   if (n > 0xFF)
890     return "out of range number";
891   Val = n;
892   return StringRef();
893 }
894 
895 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
896                                     raw_ostream &Out) {
897   Out << Val;
898 }
899 
900 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
901                                         uint16_t &Val) {
902   unsigned long long n;
903   if (getAsUnsignedInteger(Scalar, 0, n))
904     return "invalid number";
905   if (n > 0xFFFF)
906     return "out of range number";
907   Val = n;
908   return StringRef();
909 }
910 
911 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
912                                     raw_ostream &Out) {
913   Out << Val;
914 }
915 
916 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
917                                         uint32_t &Val) {
918   unsigned long long n;
919   if (getAsUnsignedInteger(Scalar, 0, n))
920     return "invalid number";
921   if (n > 0xFFFFFFFFUL)
922     return "out of range number";
923   Val = n;
924   return StringRef();
925 }
926 
927 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
928                                     raw_ostream &Out) {
929   Out << Val;
930 }
931 
932 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
933                                         uint64_t &Val) {
934   unsigned long long N;
935   if (getAsUnsignedInteger(Scalar, 0, N))
936     return "invalid number";
937   Val = N;
938   return StringRef();
939 }
940 
941 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
942   // use temp in32_t because ostream thinks int8_t is a character
943   int32_t Num = Val;
944   Out << Num;
945 }
946 
947 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
948   long long N;
949   if (getAsSignedInteger(Scalar, 0, N))
950     return "invalid number";
951   if ((N > 127) || (N < -128))
952     return "out of range number";
953   Val = N;
954   return StringRef();
955 }
956 
957 void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
958                                    raw_ostream &Out) {
959   Out << Val;
960 }
961 
962 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
963   long long N;
964   if (getAsSignedInteger(Scalar, 0, N))
965     return "invalid number";
966   if ((N > INT16_MAX) || (N < INT16_MIN))
967     return "out of range number";
968   Val = N;
969   return StringRef();
970 }
971 
972 void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
973                                    raw_ostream &Out) {
974   Out << Val;
975 }
976 
977 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
978   long long N;
979   if (getAsSignedInteger(Scalar, 0, N))
980     return "invalid number";
981   if ((N > INT32_MAX) || (N < INT32_MIN))
982     return "out of range number";
983   Val = N;
984   return StringRef();
985 }
986 
987 void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
988                                    raw_ostream &Out) {
989   Out << Val;
990 }
991 
992 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
993   long long N;
994   if (getAsSignedInteger(Scalar, 0, N))
995     return "invalid number";
996   Val = N;
997   return StringRef();
998 }
999 
1000 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
1001   Out << format("%g", Val);
1002 }
1003 
1004 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
1005   if (to_float(Scalar, Val))
1006     return StringRef();
1007   return "invalid floating point number";
1008 }
1009 
1010 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
1011   Out << format("%g", Val);
1012 }
1013 
1014 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
1015   if (to_float(Scalar, Val))
1016     return StringRef();
1017   return "invalid floating point number";
1018 }
1019 
1020 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
1021   uint8_t Num = Val;
1022   Out << format("0x%02X", Num);
1023 }
1024 
1025 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
1026   unsigned long long n;
1027   if (getAsUnsignedInteger(Scalar, 0, n))
1028     return "invalid hex8 number";
1029   if (n > 0xFF)
1030     return "out of range hex8 number";
1031   Val = n;
1032   return StringRef();
1033 }
1034 
1035 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
1036   uint16_t Num = Val;
1037   Out << format("0x%04X", Num);
1038 }
1039 
1040 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
1041   unsigned long long n;
1042   if (getAsUnsignedInteger(Scalar, 0, n))
1043     return "invalid hex16 number";
1044   if (n > 0xFFFF)
1045     return "out of range hex16 number";
1046   Val = n;
1047   return StringRef();
1048 }
1049 
1050 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
1051   uint32_t Num = Val;
1052   Out << format("0x%08X", Num);
1053 }
1054 
1055 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
1056   unsigned long long n;
1057   if (getAsUnsignedInteger(Scalar, 0, n))
1058     return "invalid hex32 number";
1059   if (n > 0xFFFFFFFFUL)
1060     return "out of range hex32 number";
1061   Val = n;
1062   return StringRef();
1063 }
1064 
1065 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
1066   uint64_t Num = Val;
1067   Out << format("0x%016llX", Num);
1068 }
1069 
1070 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
1071   unsigned long long Num;
1072   if (getAsUnsignedInteger(Scalar, 0, Num))
1073     return "invalid hex64 number";
1074   Val = Num;
1075   return StringRef();
1076 }
1077