1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/YAMLTraits.h" 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/StringExtras.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/ADT/Twine.h" 15 #include "llvm/Support/Casting.h" 16 #include "llvm/Support/Errc.h" 17 #include "llvm/Support/ErrorHandling.h" 18 #include "llvm/Support/Format.h" 19 #include "llvm/Support/LineIterator.h" 20 #include "llvm/Support/MemoryBuffer.h" 21 #include "llvm/Support/YAMLParser.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <algorithm> 24 #include <cassert> 25 #include <cstdint> 26 #include <cstring> 27 #include <string> 28 #include <vector> 29 30 using namespace llvm; 31 using namespace yaml; 32 33 //===----------------------------------------------------------------------===// 34 // IO 35 //===----------------------------------------------------------------------===// 36 37 IO::IO(void *Context) : Ctxt(Context) {} 38 39 IO::~IO() = default; 40 41 void *IO::getContext() const { 42 return Ctxt; 43 } 44 45 void IO::setContext(void *Context) { 46 Ctxt = Context; 47 } 48 49 void IO::setAllowUnknownKeys(bool Allow) { 50 llvm_unreachable("Only supported for Input"); 51 } 52 53 //===----------------------------------------------------------------------===// 54 // Input 55 //===----------------------------------------------------------------------===// 56 57 Input::Input(StringRef InputContent, void *Ctxt, 58 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) 59 : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) { 60 if (DiagHandler) 61 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); 62 DocIterator = Strm->begin(); 63 } 64 65 Input::Input(MemoryBufferRef Input, void *Ctxt, 66 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) 67 : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) { 68 if (DiagHandler) 69 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); 70 DocIterator = Strm->begin(); 71 } 72 73 Input::~Input() = default; 74 75 std::error_code Input::error() { return EC; } 76 77 // Pin the vtables to this file. 78 void Input::HNode::anchor() {} 79 void Input::EmptyHNode::anchor() {} 80 void Input::ScalarHNode::anchor() {} 81 void Input::MapHNode::anchor() {} 82 void Input::SequenceHNode::anchor() {} 83 84 bool Input::outputting() const { 85 return false; 86 } 87 88 bool Input::setCurrentDocument() { 89 if (DocIterator != Strm->end()) { 90 Node *N = DocIterator->getRoot(); 91 if (!N) { 92 EC = make_error_code(errc::invalid_argument); 93 return false; 94 } 95 96 if (isa<NullNode>(N)) { 97 // Empty files are allowed and ignored 98 ++DocIterator; 99 return setCurrentDocument(); 100 } 101 TopNode = createHNodes(N); 102 CurrentNode = TopNode.get(); 103 return true; 104 } 105 return false; 106 } 107 108 bool Input::nextDocument() { 109 return ++DocIterator != Strm->end(); 110 } 111 112 const Node *Input::getCurrentNode() const { 113 return CurrentNode ? CurrentNode->_node : nullptr; 114 } 115 116 bool Input::mapTag(StringRef Tag, bool Default) { 117 // CurrentNode can be null if setCurrentDocument() was unable to 118 // parse the document because it was invalid or empty. 119 if (!CurrentNode) 120 return false; 121 122 std::string foundTag = CurrentNode->_node->getVerbatimTag(); 123 if (foundTag.empty()) { 124 // If no tag found and 'Tag' is the default, say it was found. 125 return Default; 126 } 127 // Return true iff found tag matches supplied tag. 128 return Tag.equals(foundTag); 129 } 130 131 void Input::beginMapping() { 132 if (EC) 133 return; 134 // CurrentNode can be null if the document is empty. 135 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); 136 if (MN) { 137 MN->ValidKeys.clear(); 138 } 139 } 140 141 std::vector<StringRef> Input::keys() { 142 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); 143 std::vector<StringRef> Ret; 144 if (!MN) { 145 setError(CurrentNode, "not a mapping"); 146 return Ret; 147 } 148 for (auto &P : MN->Mapping) 149 Ret.push_back(P.first()); 150 return Ret; 151 } 152 153 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault, 154 void *&SaveInfo) { 155 UseDefault = false; 156 if (EC) 157 return false; 158 159 // CurrentNode is null for empty documents, which is an error in case required 160 // nodes are present. 161 if (!CurrentNode) { 162 if (Required) 163 EC = make_error_code(errc::invalid_argument); 164 return false; 165 } 166 167 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); 168 if (!MN) { 169 if (Required || !isa<EmptyHNode>(CurrentNode)) 170 setError(CurrentNode, "not a mapping"); 171 else 172 UseDefault = true; 173 return false; 174 } 175 MN->ValidKeys.push_back(Key); 176 HNode *Value = MN->Mapping[Key].first.get(); 177 if (!Value) { 178 if (Required) 179 setError(CurrentNode, Twine("missing required key '") + Key + "'"); 180 else 181 UseDefault = true; 182 return false; 183 } 184 SaveInfo = CurrentNode; 185 CurrentNode = Value; 186 return true; 187 } 188 189 void Input::postflightKey(void *saveInfo) { 190 CurrentNode = reinterpret_cast<HNode *>(saveInfo); 191 } 192 193 void Input::endMapping() { 194 if (EC) 195 return; 196 // CurrentNode can be null if the document is empty. 197 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); 198 if (!MN) 199 return; 200 for (const auto &NN : MN->Mapping) { 201 if (!is_contained(MN->ValidKeys, NN.first())) { 202 const SMRange &ReportLoc = NN.second.second; 203 if (!AllowUnknownKeys) { 204 setError(ReportLoc, Twine("unknown key '") + NN.first() + "'"); 205 break; 206 } else 207 reportWarning(ReportLoc, Twine("unknown key '") + NN.first() + "'"); 208 } 209 } 210 } 211 212 void Input::beginFlowMapping() { beginMapping(); } 213 214 void Input::endFlowMapping() { endMapping(); } 215 216 unsigned Input::beginSequence() { 217 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) 218 return SQ->Entries.size(); 219 if (isa<EmptyHNode>(CurrentNode)) 220 return 0; 221 // Treat case where there's a scalar "null" value as an empty sequence. 222 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 223 if (isNull(SN->value())) 224 return 0; 225 } 226 // Any other type of HNode is an error. 227 setError(CurrentNode, "not a sequence"); 228 return 0; 229 } 230 231 void Input::endSequence() { 232 } 233 234 bool Input::preflightElement(unsigned Index, void *&SaveInfo) { 235 if (EC) 236 return false; 237 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 238 SaveInfo = CurrentNode; 239 CurrentNode = SQ->Entries[Index].get(); 240 return true; 241 } 242 return false; 243 } 244 245 void Input::postflightElement(void *SaveInfo) { 246 CurrentNode = reinterpret_cast<HNode *>(SaveInfo); 247 } 248 249 unsigned Input::beginFlowSequence() { return beginSequence(); } 250 251 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) { 252 if (EC) 253 return false; 254 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 255 SaveInfo = CurrentNode; 256 CurrentNode = SQ->Entries[index].get(); 257 return true; 258 } 259 return false; 260 } 261 262 void Input::postflightFlowElement(void *SaveInfo) { 263 CurrentNode = reinterpret_cast<HNode *>(SaveInfo); 264 } 265 266 void Input::endFlowSequence() { 267 } 268 269 void Input::beginEnumScalar() { 270 ScalarMatchFound = false; 271 } 272 273 bool Input::matchEnumScalar(const char *Str, bool) { 274 if (ScalarMatchFound) 275 return false; 276 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 277 if (SN->value().equals(Str)) { 278 ScalarMatchFound = true; 279 return true; 280 } 281 } 282 return false; 283 } 284 285 bool Input::matchEnumFallback() { 286 if (ScalarMatchFound) 287 return false; 288 ScalarMatchFound = true; 289 return true; 290 } 291 292 void Input::endEnumScalar() { 293 if (!ScalarMatchFound) { 294 setError(CurrentNode, "unknown enumerated scalar"); 295 } 296 } 297 298 bool Input::beginBitSetScalar(bool &DoClear) { 299 BitValuesUsed.clear(); 300 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 301 BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false); 302 } else { 303 setError(CurrentNode, "expected sequence of bit values"); 304 } 305 DoClear = true; 306 return true; 307 } 308 309 bool Input::bitSetMatch(const char *Str, bool) { 310 if (EC) 311 return false; 312 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 313 unsigned Index = 0; 314 for (auto &N : SQ->Entries) { 315 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) { 316 if (SN->value().equals(Str)) { 317 BitValuesUsed[Index] = true; 318 return true; 319 } 320 } else { 321 setError(CurrentNode, "unexpected scalar in sequence of bit values"); 322 } 323 ++Index; 324 } 325 } else { 326 setError(CurrentNode, "expected sequence of bit values"); 327 } 328 return false; 329 } 330 331 void Input::endBitSetScalar() { 332 if (EC) 333 return; 334 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 335 assert(BitValuesUsed.size() == SQ->Entries.size()); 336 for (unsigned i = 0; i < SQ->Entries.size(); ++i) { 337 if (!BitValuesUsed[i]) { 338 setError(SQ->Entries[i].get(), "unknown bit value"); 339 return; 340 } 341 } 342 } 343 } 344 345 void Input::scalarString(StringRef &S, QuotingType) { 346 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 347 S = SN->value(); 348 } else { 349 setError(CurrentNode, "unexpected scalar"); 350 } 351 } 352 353 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); } 354 355 void Input::scalarTag(std::string &Tag) { 356 Tag = CurrentNode->_node->getVerbatimTag(); 357 } 358 359 void Input::setError(HNode *hnode, const Twine &message) { 360 assert(hnode && "HNode must not be NULL"); 361 setError(hnode->_node, message); 362 } 363 364 NodeKind Input::getNodeKind() { 365 if (isa<ScalarHNode>(CurrentNode)) 366 return NodeKind::Scalar; 367 else if (isa<MapHNode>(CurrentNode)) 368 return NodeKind::Map; 369 else if (isa<SequenceHNode>(CurrentNode)) 370 return NodeKind::Sequence; 371 llvm_unreachable("Unsupported node kind"); 372 } 373 374 void Input::setError(Node *node, const Twine &message) { 375 Strm->printError(node, message); 376 EC = make_error_code(errc::invalid_argument); 377 } 378 379 void Input::setError(const SMRange &range, const Twine &message) { 380 Strm->printError(range, message); 381 EC = make_error_code(errc::invalid_argument); 382 } 383 384 void Input::reportWarning(HNode *hnode, const Twine &message) { 385 assert(hnode && "HNode must not be NULL"); 386 Strm->printError(hnode->_node, message, SourceMgr::DK_Warning); 387 } 388 389 void Input::reportWarning(Node *node, const Twine &message) { 390 Strm->printError(node, message, SourceMgr::DK_Warning); 391 } 392 393 void Input::reportWarning(const SMRange &range, const Twine &message) { 394 Strm->printError(range, message, SourceMgr::DK_Warning); 395 } 396 397 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) { 398 SmallString<128> StringStorage; 399 if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) { 400 StringRef KeyStr = SN->getValue(StringStorage); 401 if (!StringStorage.empty()) { 402 // Copy string to permanent storage 403 KeyStr = StringStorage.str().copy(StringAllocator); 404 } 405 return std::make_unique<ScalarHNode>(N, KeyStr); 406 } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) { 407 StringRef ValueCopy = BSN->getValue().copy(StringAllocator); 408 return std::make_unique<ScalarHNode>(N, ValueCopy); 409 } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) { 410 auto SQHNode = std::make_unique<SequenceHNode>(N); 411 for (Node &SN : *SQ) { 412 auto Entry = createHNodes(&SN); 413 if (EC) 414 break; 415 SQHNode->Entries.push_back(std::move(Entry)); 416 } 417 return std::move(SQHNode); 418 } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) { 419 auto mapHNode = std::make_unique<MapHNode>(N); 420 for (KeyValueNode &KVN : *Map) { 421 Node *KeyNode = KVN.getKey(); 422 ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode); 423 Node *Value = KVN.getValue(); 424 if (!Key || !Value) { 425 if (!Key) 426 setError(KeyNode, "Map key must be a scalar"); 427 if (!Value) 428 setError(KeyNode, "Map value must not be empty"); 429 break; 430 } 431 StringStorage.clear(); 432 StringRef KeyStr = Key->getValue(StringStorage); 433 if (!StringStorage.empty()) { 434 // Copy string to permanent storage 435 KeyStr = StringStorage.str().copy(StringAllocator); 436 } 437 auto ValueHNode = createHNodes(Value); 438 if (EC) 439 break; 440 mapHNode->Mapping[KeyStr] = 441 std::make_pair(std::move(ValueHNode), KeyNode->getSourceRange()); 442 } 443 return std::move(mapHNode); 444 } else if (isa<NullNode>(N)) { 445 return std::make_unique<EmptyHNode>(N); 446 } else { 447 setError(N, "unknown node kind"); 448 return nullptr; 449 } 450 } 451 452 void Input::setError(const Twine &Message) { 453 setError(CurrentNode, Message); 454 } 455 456 void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; } 457 458 bool Input::canElideEmptySequence() { 459 return false; 460 } 461 462 //===----------------------------------------------------------------------===// 463 // Output 464 //===----------------------------------------------------------------------===// 465 466 Output::Output(raw_ostream &yout, void *context, int WrapColumn) 467 : IO(context), Out(yout), WrapColumn(WrapColumn) {} 468 469 Output::~Output() = default; 470 471 bool Output::outputting() const { 472 return true; 473 } 474 475 void Output::beginMapping() { 476 StateStack.push_back(inMapFirstKey); 477 PaddingBeforeContainer = Padding; 478 Padding = "\n"; 479 } 480 481 bool Output::mapTag(StringRef Tag, bool Use) { 482 if (Use) { 483 // If this tag is being written inside a sequence we should write the start 484 // of the sequence before writing the tag, otherwise the tag won't be 485 // attached to the element in the sequence, but rather the sequence itself. 486 bool SequenceElement = false; 487 if (StateStack.size() > 1) { 488 auto &E = StateStack[StateStack.size() - 2]; 489 SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E); 490 } 491 if (SequenceElement && StateStack.back() == inMapFirstKey) { 492 newLineCheck(); 493 } else { 494 output(" "); 495 } 496 output(Tag); 497 if (SequenceElement) { 498 // If we're writing the tag during the first element of a map, the tag 499 // takes the place of the first element in the sequence. 500 if (StateStack.back() == inMapFirstKey) { 501 StateStack.pop_back(); 502 StateStack.push_back(inMapOtherKey); 503 } 504 // Tags inside maps in sequences should act as keys in the map from a 505 // formatting perspective, so we always want a newline in a sequence. 506 Padding = "\n"; 507 } 508 } 509 return Use; 510 } 511 512 void Output::endMapping() { 513 // If we did not map anything, we should explicitly emit an empty map 514 if (StateStack.back() == inMapFirstKey) { 515 Padding = PaddingBeforeContainer; 516 newLineCheck(); 517 output("{}"); 518 Padding = "\n"; 519 } 520 StateStack.pop_back(); 521 } 522 523 std::vector<StringRef> Output::keys() { 524 report_fatal_error("invalid call"); 525 } 526 527 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault, 528 bool &UseDefault, void *&SaveInfo) { 529 UseDefault = false; 530 SaveInfo = nullptr; 531 if (Required || !SameAsDefault || WriteDefaultValues) { 532 auto State = StateStack.back(); 533 if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) { 534 flowKey(Key); 535 } else { 536 newLineCheck(); 537 paddedKey(Key); 538 } 539 return true; 540 } 541 return false; 542 } 543 544 void Output::postflightKey(void *) { 545 if (StateStack.back() == inMapFirstKey) { 546 StateStack.pop_back(); 547 StateStack.push_back(inMapOtherKey); 548 } else if (StateStack.back() == inFlowMapFirstKey) { 549 StateStack.pop_back(); 550 StateStack.push_back(inFlowMapOtherKey); 551 } 552 } 553 554 void Output::beginFlowMapping() { 555 StateStack.push_back(inFlowMapFirstKey); 556 newLineCheck(); 557 ColumnAtMapFlowStart = Column; 558 output("{ "); 559 } 560 561 void Output::endFlowMapping() { 562 StateStack.pop_back(); 563 outputUpToEndOfLine(" }"); 564 } 565 566 void Output::beginDocuments() { 567 outputUpToEndOfLine("---"); 568 } 569 570 bool Output::preflightDocument(unsigned index) { 571 if (index > 0) 572 outputUpToEndOfLine("\n---"); 573 return true; 574 } 575 576 void Output::postflightDocument() { 577 } 578 579 void Output::endDocuments() { 580 output("\n...\n"); 581 } 582 583 unsigned Output::beginSequence() { 584 StateStack.push_back(inSeqFirstElement); 585 PaddingBeforeContainer = Padding; 586 Padding = "\n"; 587 return 0; 588 } 589 590 void Output::endSequence() { 591 // If we did not emit anything, we should explicitly emit an empty sequence 592 if (StateStack.back() == inSeqFirstElement) { 593 Padding = PaddingBeforeContainer; 594 newLineCheck(/*EmptySequence=*/true); 595 output("[]"); 596 Padding = "\n"; 597 } 598 StateStack.pop_back(); 599 } 600 601 bool Output::preflightElement(unsigned, void *&SaveInfo) { 602 SaveInfo = nullptr; 603 return true; 604 } 605 606 void Output::postflightElement(void *) { 607 if (StateStack.back() == inSeqFirstElement) { 608 StateStack.pop_back(); 609 StateStack.push_back(inSeqOtherElement); 610 } else if (StateStack.back() == inFlowSeqFirstElement) { 611 StateStack.pop_back(); 612 StateStack.push_back(inFlowSeqOtherElement); 613 } 614 } 615 616 unsigned Output::beginFlowSequence() { 617 StateStack.push_back(inFlowSeqFirstElement); 618 newLineCheck(); 619 ColumnAtFlowStart = Column; 620 output("[ "); 621 NeedFlowSequenceComma = false; 622 return 0; 623 } 624 625 void Output::endFlowSequence() { 626 StateStack.pop_back(); 627 outputUpToEndOfLine(" ]"); 628 } 629 630 bool Output::preflightFlowElement(unsigned, void *&SaveInfo) { 631 if (NeedFlowSequenceComma) 632 output(", "); 633 if (WrapColumn && Column > WrapColumn) { 634 output("\n"); 635 for (int i = 0; i < ColumnAtFlowStart; ++i) 636 output(" "); 637 Column = ColumnAtFlowStart; 638 output(" "); 639 } 640 SaveInfo = nullptr; 641 return true; 642 } 643 644 void Output::postflightFlowElement(void *) { 645 NeedFlowSequenceComma = true; 646 } 647 648 void Output::beginEnumScalar() { 649 EnumerationMatchFound = false; 650 } 651 652 bool Output::matchEnumScalar(const char *Str, bool Match) { 653 if (Match && !EnumerationMatchFound) { 654 newLineCheck(); 655 outputUpToEndOfLine(Str); 656 EnumerationMatchFound = true; 657 } 658 return false; 659 } 660 661 bool Output::matchEnumFallback() { 662 if (EnumerationMatchFound) 663 return false; 664 EnumerationMatchFound = true; 665 return true; 666 } 667 668 void Output::endEnumScalar() { 669 if (!EnumerationMatchFound) 670 llvm_unreachable("bad runtime enum value"); 671 } 672 673 bool Output::beginBitSetScalar(bool &DoClear) { 674 newLineCheck(); 675 output("[ "); 676 NeedBitValueComma = false; 677 DoClear = false; 678 return true; 679 } 680 681 bool Output::bitSetMatch(const char *Str, bool Matches) { 682 if (Matches) { 683 if (NeedBitValueComma) 684 output(", "); 685 output(Str); 686 NeedBitValueComma = true; 687 } 688 return false; 689 } 690 691 void Output::endBitSetScalar() { 692 outputUpToEndOfLine(" ]"); 693 } 694 695 void Output::scalarString(StringRef &S, QuotingType MustQuote) { 696 newLineCheck(); 697 if (S.empty()) { 698 // Print '' for the empty string because leaving the field empty is not 699 // allowed. 700 outputUpToEndOfLine("''"); 701 return; 702 } 703 if (MustQuote == QuotingType::None) { 704 // Only quote if we must. 705 outputUpToEndOfLine(S); 706 return; 707 } 708 709 const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\""; 710 output(Quote); // Starting quote. 711 712 // When using double-quoted strings (and only in that case), non-printable characters may be 713 // present, and will be escaped using a variety of unicode-scalar and special short-form 714 // escapes. This is handled in yaml::escape. 715 if (MustQuote == QuotingType::Double) { 716 output(yaml::escape(S, /* EscapePrintable= */ false)); 717 outputUpToEndOfLine(Quote); 718 return; 719 } 720 721 unsigned i = 0; 722 unsigned j = 0; 723 unsigned End = S.size(); 724 const char *Base = S.data(); 725 726 // When using single-quoted strings, any single quote ' must be doubled to be escaped. 727 while (j < End) { 728 if (S[j] == '\'') { // Escape quotes. 729 output(StringRef(&Base[i], j - i)); // "flush". 730 output(StringLiteral("''")); // Print it as '' 731 i = j + 1; 732 } 733 ++j; 734 } 735 output(StringRef(&Base[i], j - i)); 736 outputUpToEndOfLine(Quote); // Ending quote. 737 } 738 739 void Output::blockScalarString(StringRef &S) { 740 if (!StateStack.empty()) 741 newLineCheck(); 742 output(" |"); 743 outputNewLine(); 744 745 unsigned Indent = StateStack.empty() ? 1 : StateStack.size(); 746 747 auto Buffer = MemoryBuffer::getMemBuffer(S, "", false); 748 for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) { 749 for (unsigned I = 0; I < Indent; ++I) { 750 output(" "); 751 } 752 output(*Lines); 753 outputNewLine(); 754 } 755 } 756 757 void Output::scalarTag(std::string &Tag) { 758 if (Tag.empty()) 759 return; 760 newLineCheck(); 761 output(Tag); 762 output(" "); 763 } 764 765 void Output::setError(const Twine &message) { 766 } 767 768 bool Output::canElideEmptySequence() { 769 // Normally, with an optional key/value where the value is an empty sequence, 770 // the whole key/value can be not written. But, that produces wrong yaml 771 // if the key/value is the only thing in the map and the map is used in 772 // a sequence. This detects if the this sequence is the first key/value 773 // in map that itself is embedded in a sequence. 774 if (StateStack.size() < 2) 775 return true; 776 if (StateStack.back() != inMapFirstKey) 777 return true; 778 return !inSeqAnyElement(StateStack[StateStack.size() - 2]); 779 } 780 781 void Output::output(StringRef s) { 782 Column += s.size(); 783 Out << s; 784 } 785 786 void Output::outputUpToEndOfLine(StringRef s) { 787 output(s); 788 if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) && 789 !inFlowMapAnyKey(StateStack.back()))) 790 Padding = "\n"; 791 } 792 793 void Output::outputNewLine() { 794 Out << "\n"; 795 Column = 0; 796 } 797 798 // if seq at top, indent as if map, then add "- " 799 // if seq in middle, use "- " if firstKey, else use " " 800 // 801 802 void Output::newLineCheck(bool EmptySequence) { 803 if (Padding != "\n") { 804 output(Padding); 805 Padding = {}; 806 return; 807 } 808 outputNewLine(); 809 Padding = {}; 810 811 if (StateStack.size() == 0 || EmptySequence) 812 return; 813 814 unsigned Indent = StateStack.size() - 1; 815 bool OutputDash = false; 816 817 if (StateStack.back() == inSeqFirstElement || 818 StateStack.back() == inSeqOtherElement) { 819 OutputDash = true; 820 } else if ((StateStack.size() > 1) && 821 ((StateStack.back() == inMapFirstKey) || 822 inFlowSeqAnyElement(StateStack.back()) || 823 (StateStack.back() == inFlowMapFirstKey)) && 824 inSeqAnyElement(StateStack[StateStack.size() - 2])) { 825 --Indent; 826 OutputDash = true; 827 } 828 829 for (unsigned i = 0; i < Indent; ++i) { 830 output(" "); 831 } 832 if (OutputDash) { 833 output("- "); 834 } 835 } 836 837 void Output::paddedKey(StringRef key) { 838 output(key); 839 output(":"); 840 const char *spaces = " "; 841 if (key.size() < strlen(spaces)) 842 Padding = &spaces[key.size()]; 843 else 844 Padding = " "; 845 } 846 847 void Output::flowKey(StringRef Key) { 848 if (StateStack.back() == inFlowMapOtherKey) 849 output(", "); 850 if (WrapColumn && Column > WrapColumn) { 851 output("\n"); 852 for (int I = 0; I < ColumnAtMapFlowStart; ++I) 853 output(" "); 854 Column = ColumnAtMapFlowStart; 855 output(" "); 856 } 857 output(Key); 858 output(": "); 859 } 860 861 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); } 862 863 bool Output::inSeqAnyElement(InState State) { 864 return State == inSeqFirstElement || State == inSeqOtherElement; 865 } 866 867 bool Output::inFlowSeqAnyElement(InState State) { 868 return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement; 869 } 870 871 bool Output::inMapAnyKey(InState State) { 872 return State == inMapFirstKey || State == inMapOtherKey; 873 } 874 875 bool Output::inFlowMapAnyKey(InState State) { 876 return State == inFlowMapFirstKey || State == inFlowMapOtherKey; 877 } 878 879 //===----------------------------------------------------------------------===// 880 // traits for built-in types 881 //===----------------------------------------------------------------------===// 882 883 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) { 884 Out << (Val ? "true" : "false"); 885 } 886 887 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) { 888 if (llvm::Optional<bool> Parsed = parseBool(Scalar)) { 889 Val = *Parsed; 890 return StringRef(); 891 } 892 return "invalid boolean"; 893 } 894 895 void ScalarTraits<StringRef>::output(const StringRef &Val, void *, 896 raw_ostream &Out) { 897 Out << Val; 898 } 899 900 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *, 901 StringRef &Val) { 902 Val = Scalar; 903 return StringRef(); 904 } 905 906 void ScalarTraits<std::string>::output(const std::string &Val, void *, 907 raw_ostream &Out) { 908 Out << Val; 909 } 910 911 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *, 912 std::string &Val) { 913 Val = Scalar.str(); 914 return StringRef(); 915 } 916 917 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *, 918 raw_ostream &Out) { 919 // use temp uin32_t because ostream thinks uint8_t is a character 920 uint32_t Num = Val; 921 Out << Num; 922 } 923 924 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) { 925 unsigned long long n; 926 if (getAsUnsignedInteger(Scalar, 0, n)) 927 return "invalid number"; 928 if (n > 0xFF) 929 return "out of range number"; 930 Val = n; 931 return StringRef(); 932 } 933 934 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *, 935 raw_ostream &Out) { 936 Out << Val; 937 } 938 939 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *, 940 uint16_t &Val) { 941 unsigned long long n; 942 if (getAsUnsignedInteger(Scalar, 0, n)) 943 return "invalid number"; 944 if (n > 0xFFFF) 945 return "out of range number"; 946 Val = n; 947 return StringRef(); 948 } 949 950 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *, 951 raw_ostream &Out) { 952 Out << Val; 953 } 954 955 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *, 956 uint32_t &Val) { 957 unsigned long long n; 958 if (getAsUnsignedInteger(Scalar, 0, n)) 959 return "invalid number"; 960 if (n > 0xFFFFFFFFUL) 961 return "out of range number"; 962 Val = n; 963 return StringRef(); 964 } 965 966 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *, 967 raw_ostream &Out) { 968 Out << Val; 969 } 970 971 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *, 972 uint64_t &Val) { 973 unsigned long long N; 974 if (getAsUnsignedInteger(Scalar, 0, N)) 975 return "invalid number"; 976 Val = N; 977 return StringRef(); 978 } 979 980 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) { 981 // use temp in32_t because ostream thinks int8_t is a character 982 int32_t Num = Val; 983 Out << Num; 984 } 985 986 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) { 987 long long N; 988 if (getAsSignedInteger(Scalar, 0, N)) 989 return "invalid number"; 990 if ((N > 127) || (N < -128)) 991 return "out of range number"; 992 Val = N; 993 return StringRef(); 994 } 995 996 void ScalarTraits<int16_t>::output(const int16_t &Val, void *, 997 raw_ostream &Out) { 998 Out << Val; 999 } 1000 1001 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) { 1002 long long N; 1003 if (getAsSignedInteger(Scalar, 0, N)) 1004 return "invalid number"; 1005 if ((N > INT16_MAX) || (N < INT16_MIN)) 1006 return "out of range number"; 1007 Val = N; 1008 return StringRef(); 1009 } 1010 1011 void ScalarTraits<int32_t>::output(const int32_t &Val, void *, 1012 raw_ostream &Out) { 1013 Out << Val; 1014 } 1015 1016 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) { 1017 long long N; 1018 if (getAsSignedInteger(Scalar, 0, N)) 1019 return "invalid number"; 1020 if ((N > INT32_MAX) || (N < INT32_MIN)) 1021 return "out of range number"; 1022 Val = N; 1023 return StringRef(); 1024 } 1025 1026 void ScalarTraits<int64_t>::output(const int64_t &Val, void *, 1027 raw_ostream &Out) { 1028 Out << Val; 1029 } 1030 1031 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) { 1032 long long N; 1033 if (getAsSignedInteger(Scalar, 0, N)) 1034 return "invalid number"; 1035 Val = N; 1036 return StringRef(); 1037 } 1038 1039 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) { 1040 Out << format("%g", Val); 1041 } 1042 1043 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) { 1044 if (to_float(Scalar, Val)) 1045 return StringRef(); 1046 return "invalid floating point number"; 1047 } 1048 1049 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) { 1050 Out << format("%g", Val); 1051 } 1052 1053 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) { 1054 if (to_float(Scalar, Val)) 1055 return StringRef(); 1056 return "invalid floating point number"; 1057 } 1058 1059 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) { 1060 Out << format("0x%" PRIX8, (uint8_t)Val); 1061 } 1062 1063 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) { 1064 unsigned long long n; 1065 if (getAsUnsignedInteger(Scalar, 0, n)) 1066 return "invalid hex8 number"; 1067 if (n > 0xFF) 1068 return "out of range hex8 number"; 1069 Val = n; 1070 return StringRef(); 1071 } 1072 1073 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) { 1074 Out << format("0x%" PRIX16, (uint16_t)Val); 1075 } 1076 1077 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) { 1078 unsigned long long n; 1079 if (getAsUnsignedInteger(Scalar, 0, n)) 1080 return "invalid hex16 number"; 1081 if (n > 0xFFFF) 1082 return "out of range hex16 number"; 1083 Val = n; 1084 return StringRef(); 1085 } 1086 1087 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) { 1088 Out << format("0x%" PRIX32, (uint32_t)Val); 1089 } 1090 1091 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) { 1092 unsigned long long n; 1093 if (getAsUnsignedInteger(Scalar, 0, n)) 1094 return "invalid hex32 number"; 1095 if (n > 0xFFFFFFFFUL) 1096 return "out of range hex32 number"; 1097 Val = n; 1098 return StringRef(); 1099 } 1100 1101 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) { 1102 Out << format("0x%" PRIX64, (uint64_t)Val); 1103 } 1104 1105 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) { 1106 unsigned long long Num; 1107 if (getAsUnsignedInteger(Scalar, 0, Num)) 1108 return "invalid hex64 number"; 1109 Val = Num; 1110 return StringRef(); 1111 } 1112 1113 void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *, 1114 llvm::raw_ostream &Out) { 1115 Out << Val.getAsString(); 1116 } 1117 1118 StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *, 1119 VersionTuple &Val) { 1120 if (Val.tryParse(Scalar)) 1121 return "invalid version format"; 1122 return StringRef(); 1123 } 1124