1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Support/YAMLTraits.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/Support/Casting.h"
16 #include "llvm/Support/Errc.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/Format.h"
19 #include "llvm/Support/LineIterator.h"
20 #include "llvm/Support/MemoryBuffer.h"
21 #include "llvm/Support/Unicode.h"
22 #include "llvm/Support/YAMLParser.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cassert>
26 #include <cstdint>
27 #include <cstdlib>
28 #include <cstring>
29 #include <string>
30 #include <vector>
31 
32 using namespace llvm;
33 using namespace yaml;
34 
35 //===----------------------------------------------------------------------===//
36 //  IO
37 //===----------------------------------------------------------------------===//
38 
39 IO::IO(void *Context) : Ctxt(Context) {}
40 
41 IO::~IO() = default;
42 
43 void *IO::getContext() const {
44   return Ctxt;
45 }
46 
47 void IO::setContext(void *Context) {
48   Ctxt = Context;
49 }
50 
51 void IO::setAllowUnknownKeys(bool Allow) {
52   llvm_unreachable("Only supported for Input");
53 }
54 
55 //===----------------------------------------------------------------------===//
56 //  Input
57 //===----------------------------------------------------------------------===//
58 
59 Input::Input(StringRef InputContent, void *Ctxt,
60              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
61     : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
62   if (DiagHandler)
63     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
64   DocIterator = Strm->begin();
65 }
66 
67 Input::Input(MemoryBufferRef Input, void *Ctxt,
68              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
69     : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
70   if (DiagHandler)
71     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
72   DocIterator = Strm->begin();
73 }
74 
75 Input::~Input() = default;
76 
77 std::error_code Input::error() { return EC; }
78 
79 // Pin the vtables to this file.
80 void Input::HNode::anchor() {}
81 void Input::EmptyHNode::anchor() {}
82 void Input::ScalarHNode::anchor() {}
83 void Input::MapHNode::anchor() {}
84 void Input::SequenceHNode::anchor() {}
85 
86 bool Input::outputting() const {
87   return false;
88 }
89 
90 bool Input::setCurrentDocument() {
91   if (DocIterator != Strm->end()) {
92     Node *N = DocIterator->getRoot();
93     if (!N) {
94       EC = make_error_code(errc::invalid_argument);
95       return false;
96     }
97 
98     if (isa<NullNode>(N)) {
99       // Empty files are allowed and ignored
100       ++DocIterator;
101       return setCurrentDocument();
102     }
103     TopNode = createHNodes(N);
104     CurrentNode = TopNode.get();
105     return true;
106   }
107   return false;
108 }
109 
110 bool Input::nextDocument() {
111   return ++DocIterator != Strm->end();
112 }
113 
114 const Node *Input::getCurrentNode() const {
115   return CurrentNode ? CurrentNode->_node : nullptr;
116 }
117 
118 bool Input::mapTag(StringRef Tag, bool Default) {
119   // CurrentNode can be null if setCurrentDocument() was unable to
120   // parse the document because it was invalid or empty.
121   if (!CurrentNode)
122     return false;
123 
124   std::string foundTag = CurrentNode->_node->getVerbatimTag();
125   if (foundTag.empty()) {
126     // If no tag found and 'Tag' is the default, say it was found.
127     return Default;
128   }
129   // Return true iff found tag matches supplied tag.
130   return Tag.equals(foundTag);
131 }
132 
133 void Input::beginMapping() {
134   if (EC)
135     return;
136   // CurrentNode can be null if the document is empty.
137   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
138   if (MN) {
139     MN->ValidKeys.clear();
140   }
141 }
142 
143 std::vector<StringRef> Input::keys() {
144   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
145   std::vector<StringRef> Ret;
146   if (!MN) {
147     setError(CurrentNode, "not a mapping");
148     return Ret;
149   }
150   for (auto &P : MN->Mapping)
151     Ret.push_back(P.first());
152   return Ret;
153 }
154 
155 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
156                          void *&SaveInfo) {
157   UseDefault = false;
158   if (EC)
159     return false;
160 
161   // CurrentNode is null for empty documents, which is an error in case required
162   // nodes are present.
163   if (!CurrentNode) {
164     if (Required)
165       EC = make_error_code(errc::invalid_argument);
166     return false;
167   }
168 
169   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
170   if (!MN) {
171     if (Required || !isa<EmptyHNode>(CurrentNode))
172       setError(CurrentNode, "not a mapping");
173     else
174       UseDefault = true;
175     return false;
176   }
177   MN->ValidKeys.push_back(Key);
178   HNode *Value = MN->Mapping[Key].first.get();
179   if (!Value) {
180     if (Required)
181       setError(CurrentNode, Twine("missing required key '") + Key + "'");
182     else
183       UseDefault = true;
184     return false;
185   }
186   SaveInfo = CurrentNode;
187   CurrentNode = Value;
188   return true;
189 }
190 
191 void Input::postflightKey(void *saveInfo) {
192   CurrentNode = reinterpret_cast<HNode *>(saveInfo);
193 }
194 
195 void Input::endMapping() {
196   if (EC)
197     return;
198   // CurrentNode can be null if the document is empty.
199   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
200   if (!MN)
201     return;
202   for (const auto &NN : MN->Mapping) {
203     if (!is_contained(MN->ValidKeys, NN.first())) {
204       const SMRange &ReportLoc = NN.second.second;
205       if (!AllowUnknownKeys) {
206         setError(ReportLoc, Twine("unknown key '") + NN.first() + "'");
207         break;
208       } else
209         reportWarning(ReportLoc, Twine("unknown key '") + NN.first() + "'");
210     }
211   }
212 }
213 
214 void Input::beginFlowMapping() { beginMapping(); }
215 
216 void Input::endFlowMapping() { endMapping(); }
217 
218 unsigned Input::beginSequence() {
219   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
220     return SQ->Entries.size();
221   if (isa<EmptyHNode>(CurrentNode))
222     return 0;
223   // Treat case where there's a scalar "null" value as an empty sequence.
224   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
225     if (isNull(SN->value()))
226       return 0;
227   }
228   // Any other type of HNode is an error.
229   setError(CurrentNode, "not a sequence");
230   return 0;
231 }
232 
233 void Input::endSequence() {
234 }
235 
236 bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
237   if (EC)
238     return false;
239   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
240     SaveInfo = CurrentNode;
241     CurrentNode = SQ->Entries[Index].get();
242     return true;
243   }
244   return false;
245 }
246 
247 void Input::postflightElement(void *SaveInfo) {
248   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
249 }
250 
251 unsigned Input::beginFlowSequence() { return beginSequence(); }
252 
253 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
254   if (EC)
255     return false;
256   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
257     SaveInfo = CurrentNode;
258     CurrentNode = SQ->Entries[index].get();
259     return true;
260   }
261   return false;
262 }
263 
264 void Input::postflightFlowElement(void *SaveInfo) {
265   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
266 }
267 
268 void Input::endFlowSequence() {
269 }
270 
271 void Input::beginEnumScalar() {
272   ScalarMatchFound = false;
273 }
274 
275 bool Input::matchEnumScalar(const char *Str, bool) {
276   if (ScalarMatchFound)
277     return false;
278   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
279     if (SN->value().equals(Str)) {
280       ScalarMatchFound = true;
281       return true;
282     }
283   }
284   return false;
285 }
286 
287 bool Input::matchEnumFallback() {
288   if (ScalarMatchFound)
289     return false;
290   ScalarMatchFound = true;
291   return true;
292 }
293 
294 void Input::endEnumScalar() {
295   if (!ScalarMatchFound) {
296     setError(CurrentNode, "unknown enumerated scalar");
297   }
298 }
299 
300 bool Input::beginBitSetScalar(bool &DoClear) {
301   BitValuesUsed.clear();
302   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
303     BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
304   } else {
305     setError(CurrentNode, "expected sequence of bit values");
306   }
307   DoClear = true;
308   return true;
309 }
310 
311 bool Input::bitSetMatch(const char *Str, bool) {
312   if (EC)
313     return false;
314   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
315     unsigned Index = 0;
316     for (auto &N : SQ->Entries) {
317       if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
318         if (SN->value().equals(Str)) {
319           BitValuesUsed[Index] = true;
320           return true;
321         }
322       } else {
323         setError(CurrentNode, "unexpected scalar in sequence of bit values");
324       }
325       ++Index;
326     }
327   } else {
328     setError(CurrentNode, "expected sequence of bit values");
329   }
330   return false;
331 }
332 
333 void Input::endBitSetScalar() {
334   if (EC)
335     return;
336   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
337     assert(BitValuesUsed.size() == SQ->Entries.size());
338     for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
339       if (!BitValuesUsed[i]) {
340         setError(SQ->Entries[i].get(), "unknown bit value");
341         return;
342       }
343     }
344   }
345 }
346 
347 void Input::scalarString(StringRef &S, QuotingType) {
348   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
349     S = SN->value();
350   } else {
351     setError(CurrentNode, "unexpected scalar");
352   }
353 }
354 
355 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
356 
357 void Input::scalarTag(std::string &Tag) {
358   Tag = CurrentNode->_node->getVerbatimTag();
359 }
360 
361 void Input::setError(HNode *hnode, const Twine &message) {
362   assert(hnode && "HNode must not be NULL");
363   setError(hnode->_node, message);
364 }
365 
366 NodeKind Input::getNodeKind() {
367   if (isa<ScalarHNode>(CurrentNode))
368     return NodeKind::Scalar;
369   else if (isa<MapHNode>(CurrentNode))
370     return NodeKind::Map;
371   else if (isa<SequenceHNode>(CurrentNode))
372     return NodeKind::Sequence;
373   llvm_unreachable("Unsupported node kind");
374 }
375 
376 void Input::setError(Node *node, const Twine &message) {
377   Strm->printError(node, message);
378   EC = make_error_code(errc::invalid_argument);
379 }
380 
381 void Input::setError(const SMRange &range, const Twine &message) {
382   Strm->printError(range, message);
383   EC = make_error_code(errc::invalid_argument);
384 }
385 
386 void Input::reportWarning(HNode *hnode, const Twine &message) {
387   assert(hnode && "HNode must not be NULL");
388   Strm->printError(hnode->_node, message, SourceMgr::DK_Warning);
389 }
390 
391 void Input::reportWarning(Node *node, const Twine &message) {
392   Strm->printError(node, message, SourceMgr::DK_Warning);
393 }
394 
395 void Input::reportWarning(const SMRange &range, const Twine &message) {
396   Strm->printError(range, message, SourceMgr::DK_Warning);
397 }
398 
399 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
400   SmallString<128> StringStorage;
401   if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
402     StringRef KeyStr = SN->getValue(StringStorage);
403     if (!StringStorage.empty()) {
404       // Copy string to permanent storage
405       KeyStr = StringStorage.str().copy(StringAllocator);
406     }
407     return std::make_unique<ScalarHNode>(N, KeyStr);
408   } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
409     StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
410     return std::make_unique<ScalarHNode>(N, ValueCopy);
411   } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
412     auto SQHNode = std::make_unique<SequenceHNode>(N);
413     for (Node &SN : *SQ) {
414       auto Entry = createHNodes(&SN);
415       if (EC)
416         break;
417       SQHNode->Entries.push_back(std::move(Entry));
418     }
419     return std::move(SQHNode);
420   } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
421     auto mapHNode = std::make_unique<MapHNode>(N);
422     for (KeyValueNode &KVN : *Map) {
423       Node *KeyNode = KVN.getKey();
424       ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
425       Node *Value = KVN.getValue();
426       if (!Key || !Value) {
427         if (!Key)
428           setError(KeyNode, "Map key must be a scalar");
429         if (!Value)
430           setError(KeyNode, "Map value must not be empty");
431         break;
432       }
433       StringStorage.clear();
434       StringRef KeyStr = Key->getValue(StringStorage);
435       if (!StringStorage.empty()) {
436         // Copy string to permanent storage
437         KeyStr = StringStorage.str().copy(StringAllocator);
438       }
439       auto ValueHNode = createHNodes(Value);
440       if (EC)
441         break;
442       mapHNode->Mapping[KeyStr] =
443           std::make_pair(std::move(ValueHNode), KeyNode->getSourceRange());
444     }
445     return std::move(mapHNode);
446   } else if (isa<NullNode>(N)) {
447     return std::make_unique<EmptyHNode>(N);
448   } else {
449     setError(N, "unknown node kind");
450     return nullptr;
451   }
452 }
453 
454 void Input::setError(const Twine &Message) {
455   setError(CurrentNode, Message);
456 }
457 
458 void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; }
459 
460 bool Input::canElideEmptySequence() {
461   return false;
462 }
463 
464 //===----------------------------------------------------------------------===//
465 //  Output
466 //===----------------------------------------------------------------------===//
467 
468 Output::Output(raw_ostream &yout, void *context, int WrapColumn)
469     : IO(context), Out(yout), WrapColumn(WrapColumn) {}
470 
471 Output::~Output() = default;
472 
473 bool Output::outputting() const {
474   return true;
475 }
476 
477 void Output::beginMapping() {
478   StateStack.push_back(inMapFirstKey);
479   PaddingBeforeContainer = Padding;
480   Padding = "\n";
481 }
482 
483 bool Output::mapTag(StringRef Tag, bool Use) {
484   if (Use) {
485     // If this tag is being written inside a sequence we should write the start
486     // of the sequence before writing the tag, otherwise the tag won't be
487     // attached to the element in the sequence, but rather the sequence itself.
488     bool SequenceElement = false;
489     if (StateStack.size() > 1) {
490       auto &E = StateStack[StateStack.size() - 2];
491       SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
492     }
493     if (SequenceElement && StateStack.back() == inMapFirstKey) {
494       newLineCheck();
495     } else {
496       output(" ");
497     }
498     output(Tag);
499     if (SequenceElement) {
500       // If we're writing the tag during the first element of a map, the tag
501       // takes the place of the first element in the sequence.
502       if (StateStack.back() == inMapFirstKey) {
503         StateStack.pop_back();
504         StateStack.push_back(inMapOtherKey);
505       }
506       // Tags inside maps in sequences should act as keys in the map from a
507       // formatting perspective, so we always want a newline in a sequence.
508       Padding = "\n";
509     }
510   }
511   return Use;
512 }
513 
514 void Output::endMapping() {
515   // If we did not map anything, we should explicitly emit an empty map
516   if (StateStack.back() == inMapFirstKey) {
517     Padding = PaddingBeforeContainer;
518     newLineCheck();
519     output("{}");
520     Padding = "\n";
521   }
522   StateStack.pop_back();
523 }
524 
525 std::vector<StringRef> Output::keys() {
526   report_fatal_error("invalid call");
527 }
528 
529 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
530                           bool &UseDefault, void *&SaveInfo) {
531   UseDefault = false;
532   SaveInfo = nullptr;
533   if (Required || !SameAsDefault || WriteDefaultValues) {
534     auto State = StateStack.back();
535     if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
536       flowKey(Key);
537     } else {
538       newLineCheck();
539       paddedKey(Key);
540     }
541     return true;
542   }
543   return false;
544 }
545 
546 void Output::postflightKey(void *) {
547   if (StateStack.back() == inMapFirstKey) {
548     StateStack.pop_back();
549     StateStack.push_back(inMapOtherKey);
550   } else if (StateStack.back() == inFlowMapFirstKey) {
551     StateStack.pop_back();
552     StateStack.push_back(inFlowMapOtherKey);
553   }
554 }
555 
556 void Output::beginFlowMapping() {
557   StateStack.push_back(inFlowMapFirstKey);
558   newLineCheck();
559   ColumnAtMapFlowStart = Column;
560   output("{ ");
561 }
562 
563 void Output::endFlowMapping() {
564   StateStack.pop_back();
565   outputUpToEndOfLine(" }");
566 }
567 
568 void Output::beginDocuments() {
569   outputUpToEndOfLine("---");
570 }
571 
572 bool Output::preflightDocument(unsigned index) {
573   if (index > 0)
574     outputUpToEndOfLine("\n---");
575   return true;
576 }
577 
578 void Output::postflightDocument() {
579 }
580 
581 void Output::endDocuments() {
582   output("\n...\n");
583 }
584 
585 unsigned Output::beginSequence() {
586   StateStack.push_back(inSeqFirstElement);
587   PaddingBeforeContainer = Padding;
588   Padding = "\n";
589   return 0;
590 }
591 
592 void Output::endSequence() {
593   // If we did not emit anything, we should explicitly emit an empty sequence
594   if (StateStack.back() == inSeqFirstElement) {
595     Padding = PaddingBeforeContainer;
596     newLineCheck(/*EmptySequence=*/true);
597     output("[]");
598     Padding = "\n";
599   }
600   StateStack.pop_back();
601 }
602 
603 bool Output::preflightElement(unsigned, void *&SaveInfo) {
604   SaveInfo = nullptr;
605   return true;
606 }
607 
608 void Output::postflightElement(void *) {
609   if (StateStack.back() == inSeqFirstElement) {
610     StateStack.pop_back();
611     StateStack.push_back(inSeqOtherElement);
612   } else if (StateStack.back() == inFlowSeqFirstElement) {
613     StateStack.pop_back();
614     StateStack.push_back(inFlowSeqOtherElement);
615   }
616 }
617 
618 unsigned Output::beginFlowSequence() {
619   StateStack.push_back(inFlowSeqFirstElement);
620   newLineCheck();
621   ColumnAtFlowStart = Column;
622   output("[ ");
623   NeedFlowSequenceComma = false;
624   return 0;
625 }
626 
627 void Output::endFlowSequence() {
628   StateStack.pop_back();
629   outputUpToEndOfLine(" ]");
630 }
631 
632 bool Output::preflightFlowElement(unsigned, void *&SaveInfo) {
633   if (NeedFlowSequenceComma)
634     output(", ");
635   if (WrapColumn && Column > WrapColumn) {
636     output("\n");
637     for (int i = 0; i < ColumnAtFlowStart; ++i)
638       output(" ");
639     Column = ColumnAtFlowStart;
640     output("  ");
641   }
642   SaveInfo = nullptr;
643   return true;
644 }
645 
646 void Output::postflightFlowElement(void *) {
647   NeedFlowSequenceComma = true;
648 }
649 
650 void Output::beginEnumScalar() {
651   EnumerationMatchFound = false;
652 }
653 
654 bool Output::matchEnumScalar(const char *Str, bool Match) {
655   if (Match && !EnumerationMatchFound) {
656     newLineCheck();
657     outputUpToEndOfLine(Str);
658     EnumerationMatchFound = true;
659   }
660   return false;
661 }
662 
663 bool Output::matchEnumFallback() {
664   if (EnumerationMatchFound)
665     return false;
666   EnumerationMatchFound = true;
667   return true;
668 }
669 
670 void Output::endEnumScalar() {
671   if (!EnumerationMatchFound)
672     llvm_unreachable("bad runtime enum value");
673 }
674 
675 bool Output::beginBitSetScalar(bool &DoClear) {
676   newLineCheck();
677   output("[ ");
678   NeedBitValueComma = false;
679   DoClear = false;
680   return true;
681 }
682 
683 bool Output::bitSetMatch(const char *Str, bool Matches) {
684   if (Matches) {
685     if (NeedBitValueComma)
686       output(", ");
687     output(Str);
688     NeedBitValueComma = true;
689   }
690   return false;
691 }
692 
693 void Output::endBitSetScalar() {
694   outputUpToEndOfLine(" ]");
695 }
696 
697 void Output::scalarString(StringRef &S, QuotingType MustQuote) {
698   newLineCheck();
699   if (S.empty()) {
700     // Print '' for the empty string because leaving the field empty is not
701     // allowed.
702     outputUpToEndOfLine("''");
703     return;
704   }
705   if (MustQuote == QuotingType::None) {
706     // Only quote if we must.
707     outputUpToEndOfLine(S);
708     return;
709   }
710 
711   const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
712   output(Quote); // Starting quote.
713 
714   // When using double-quoted strings (and only in that case), non-printable characters may be
715   // present, and will be escaped using a variety of unicode-scalar and special short-form
716   // escapes. This is handled in yaml::escape.
717   if (MustQuote == QuotingType::Double) {
718     output(yaml::escape(S, /* EscapePrintable= */ false));
719     outputUpToEndOfLine(Quote);
720     return;
721   }
722 
723   unsigned i = 0;
724   unsigned j = 0;
725   unsigned End = S.size();
726   const char *Base = S.data();
727 
728   // When using single-quoted strings, any single quote ' must be doubled to be escaped.
729   while (j < End) {
730     if (S[j] == '\'') {                    // Escape quotes.
731       output(StringRef(&Base[i], j - i));  // "flush".
732       output(StringLiteral("''"));         // Print it as ''
733       i = j + 1;
734     }
735     ++j;
736   }
737   output(StringRef(&Base[i], j - i));
738   outputUpToEndOfLine(Quote); // Ending quote.
739 }
740 
741 void Output::blockScalarString(StringRef &S) {
742   if (!StateStack.empty())
743     newLineCheck();
744   output(" |");
745   outputNewLine();
746 
747   unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
748 
749   auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
750   for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
751     for (unsigned I = 0; I < Indent; ++I) {
752       output("  ");
753     }
754     output(*Lines);
755     outputNewLine();
756   }
757 }
758 
759 void Output::scalarTag(std::string &Tag) {
760   if (Tag.empty())
761     return;
762   newLineCheck();
763   output(Tag);
764   output(" ");
765 }
766 
767 void Output::setError(const Twine &message) {
768 }
769 
770 bool Output::canElideEmptySequence() {
771   // Normally, with an optional key/value where the value is an empty sequence,
772   // the whole key/value can be not written.  But, that produces wrong yaml
773   // if the key/value is the only thing in the map and the map is used in
774   // a sequence.  This detects if the this sequence is the first key/value
775   // in map that itself is embedded in a sequence.
776   if (StateStack.size() < 2)
777     return true;
778   if (StateStack.back() != inMapFirstKey)
779     return true;
780   return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
781 }
782 
783 void Output::output(StringRef s) {
784   Column += s.size();
785   Out << s;
786 }
787 
788 void Output::outputUpToEndOfLine(StringRef s) {
789   output(s);
790   if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
791                              !inFlowMapAnyKey(StateStack.back())))
792     Padding = "\n";
793 }
794 
795 void Output::outputNewLine() {
796   Out << "\n";
797   Column = 0;
798 }
799 
800 // if seq at top, indent as if map, then add "- "
801 // if seq in middle, use "- " if firstKey, else use "  "
802 //
803 
804 void Output::newLineCheck(bool EmptySequence) {
805   if (Padding != "\n") {
806     output(Padding);
807     Padding = {};
808     return;
809   }
810   outputNewLine();
811   Padding = {};
812 
813   if (StateStack.size() == 0 || EmptySequence)
814     return;
815 
816   unsigned Indent = StateStack.size() - 1;
817   bool OutputDash = false;
818 
819   if (StateStack.back() == inSeqFirstElement ||
820       StateStack.back() == inSeqOtherElement) {
821     OutputDash = true;
822   } else if ((StateStack.size() > 1) &&
823              ((StateStack.back() == inMapFirstKey) ||
824               inFlowSeqAnyElement(StateStack.back()) ||
825               (StateStack.back() == inFlowMapFirstKey)) &&
826              inSeqAnyElement(StateStack[StateStack.size() - 2])) {
827     --Indent;
828     OutputDash = true;
829   }
830 
831   for (unsigned i = 0; i < Indent; ++i) {
832     output("  ");
833   }
834   if (OutputDash) {
835     output("- ");
836   }
837 }
838 
839 void Output::paddedKey(StringRef key) {
840   output(key);
841   output(":");
842   const char *spaces = "                ";
843   if (key.size() < strlen(spaces))
844     Padding = &spaces[key.size()];
845   else
846     Padding = " ";
847 }
848 
849 void Output::flowKey(StringRef Key) {
850   if (StateStack.back() == inFlowMapOtherKey)
851     output(", ");
852   if (WrapColumn && Column > WrapColumn) {
853     output("\n");
854     for (int I = 0; I < ColumnAtMapFlowStart; ++I)
855       output(" ");
856     Column = ColumnAtMapFlowStart;
857     output("  ");
858   }
859   output(Key);
860   output(": ");
861 }
862 
863 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
864 
865 bool Output::inSeqAnyElement(InState State) {
866   return State == inSeqFirstElement || State == inSeqOtherElement;
867 }
868 
869 bool Output::inFlowSeqAnyElement(InState State) {
870   return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
871 }
872 
873 bool Output::inMapAnyKey(InState State) {
874   return State == inMapFirstKey || State == inMapOtherKey;
875 }
876 
877 bool Output::inFlowMapAnyKey(InState State) {
878   return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
879 }
880 
881 //===----------------------------------------------------------------------===//
882 //  traits for built-in types
883 //===----------------------------------------------------------------------===//
884 
885 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
886   Out << (Val ? "true" : "false");
887 }
888 
889 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
890   if (llvm::Optional<bool> Parsed = parseBool(Scalar)) {
891     Val = *Parsed;
892     return StringRef();
893   }
894   return "invalid boolean";
895 }
896 
897 void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
898                                      raw_ostream &Out) {
899   Out << Val;
900 }
901 
902 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
903                                          StringRef &Val) {
904   Val = Scalar;
905   return StringRef();
906 }
907 
908 void ScalarTraits<std::string>::output(const std::string &Val, void *,
909                                        raw_ostream &Out) {
910   Out << Val;
911 }
912 
913 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
914                                            std::string &Val) {
915   Val = Scalar.str();
916   return StringRef();
917 }
918 
919 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
920                                    raw_ostream &Out) {
921   // use temp uin32_t because ostream thinks uint8_t is a character
922   uint32_t Num = Val;
923   Out << Num;
924 }
925 
926 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
927   unsigned long long n;
928   if (getAsUnsignedInteger(Scalar, 0, n))
929     return "invalid number";
930   if (n > 0xFF)
931     return "out of range number";
932   Val = n;
933   return StringRef();
934 }
935 
936 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
937                                     raw_ostream &Out) {
938   Out << Val;
939 }
940 
941 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
942                                         uint16_t &Val) {
943   unsigned long long n;
944   if (getAsUnsignedInteger(Scalar, 0, n))
945     return "invalid number";
946   if (n > 0xFFFF)
947     return "out of range number";
948   Val = n;
949   return StringRef();
950 }
951 
952 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
953                                     raw_ostream &Out) {
954   Out << Val;
955 }
956 
957 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
958                                         uint32_t &Val) {
959   unsigned long long n;
960   if (getAsUnsignedInteger(Scalar, 0, n))
961     return "invalid number";
962   if (n > 0xFFFFFFFFUL)
963     return "out of range number";
964   Val = n;
965   return StringRef();
966 }
967 
968 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
969                                     raw_ostream &Out) {
970   Out << Val;
971 }
972 
973 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
974                                         uint64_t &Val) {
975   unsigned long long N;
976   if (getAsUnsignedInteger(Scalar, 0, N))
977     return "invalid number";
978   Val = N;
979   return StringRef();
980 }
981 
982 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
983   // use temp in32_t because ostream thinks int8_t is a character
984   int32_t Num = Val;
985   Out << Num;
986 }
987 
988 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
989   long long N;
990   if (getAsSignedInteger(Scalar, 0, N))
991     return "invalid number";
992   if ((N > 127) || (N < -128))
993     return "out of range number";
994   Val = N;
995   return StringRef();
996 }
997 
998 void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
999                                    raw_ostream &Out) {
1000   Out << Val;
1001 }
1002 
1003 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
1004   long long N;
1005   if (getAsSignedInteger(Scalar, 0, N))
1006     return "invalid number";
1007   if ((N > INT16_MAX) || (N < INT16_MIN))
1008     return "out of range number";
1009   Val = N;
1010   return StringRef();
1011 }
1012 
1013 void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
1014                                    raw_ostream &Out) {
1015   Out << Val;
1016 }
1017 
1018 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
1019   long long N;
1020   if (getAsSignedInteger(Scalar, 0, N))
1021     return "invalid number";
1022   if ((N > INT32_MAX) || (N < INT32_MIN))
1023     return "out of range number";
1024   Val = N;
1025   return StringRef();
1026 }
1027 
1028 void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
1029                                    raw_ostream &Out) {
1030   Out << Val;
1031 }
1032 
1033 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
1034   long long N;
1035   if (getAsSignedInteger(Scalar, 0, N))
1036     return "invalid number";
1037   Val = N;
1038   return StringRef();
1039 }
1040 
1041 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
1042   Out << format("%g", Val);
1043 }
1044 
1045 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
1046   if (to_float(Scalar, Val))
1047     return StringRef();
1048   return "invalid floating point number";
1049 }
1050 
1051 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
1052   Out << format("%g", Val);
1053 }
1054 
1055 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
1056   if (to_float(Scalar, Val))
1057     return StringRef();
1058   return "invalid floating point number";
1059 }
1060 
1061 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
1062   Out << format("0x%" PRIX8, (uint8_t)Val);
1063 }
1064 
1065 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
1066   unsigned long long n;
1067   if (getAsUnsignedInteger(Scalar, 0, n))
1068     return "invalid hex8 number";
1069   if (n > 0xFF)
1070     return "out of range hex8 number";
1071   Val = n;
1072   return StringRef();
1073 }
1074 
1075 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
1076   Out << format("0x%" PRIX16, (uint16_t)Val);
1077 }
1078 
1079 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
1080   unsigned long long n;
1081   if (getAsUnsignedInteger(Scalar, 0, n))
1082     return "invalid hex16 number";
1083   if (n > 0xFFFF)
1084     return "out of range hex16 number";
1085   Val = n;
1086   return StringRef();
1087 }
1088 
1089 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
1090   Out << format("0x%" PRIX32, (uint32_t)Val);
1091 }
1092 
1093 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
1094   unsigned long long n;
1095   if (getAsUnsignedInteger(Scalar, 0, n))
1096     return "invalid hex32 number";
1097   if (n > 0xFFFFFFFFUL)
1098     return "out of range hex32 number";
1099   Val = n;
1100   return StringRef();
1101 }
1102 
1103 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
1104   Out << format("0x%" PRIX64, (uint64_t)Val);
1105 }
1106 
1107 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
1108   unsigned long long Num;
1109   if (getAsUnsignedInteger(Scalar, 0, Num))
1110     return "invalid hex64 number";
1111   Val = Num;
1112   return StringRef();
1113 }
1114 
1115 void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *,
1116                                         llvm::raw_ostream &Out) {
1117   Out << Val.getAsString();
1118 }
1119 
1120 StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *,
1121                                             VersionTuple &Val) {
1122   if (Val.tryParse(Scalar))
1123     return "invalid version format";
1124   return StringRef();
1125 }
1126