1 //===-- StringRef.cpp - Lightweight String References ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/ADT/OwningPtr.h" 13 #include "llvm/ADT/edit_distance.h" 14 #include <bitset> 15 16 using namespace llvm; 17 18 // MSVC emits references to this into the translation units which reference it. 19 #ifndef _MSC_VER 20 const size_t StringRef::npos; 21 #endif 22 23 static char ascii_tolower(char x) { 24 if (x >= 'A' && x <= 'Z') 25 return x - 'A' + 'a'; 26 return x; 27 } 28 29 static char ascii_toupper(char x) { 30 if (x >= 'a' && x <= 'z') 31 return x - 'a' + 'A'; 32 return x; 33 } 34 35 static bool ascii_isdigit(char x) { 36 return x >= '0' && x <= '9'; 37 } 38 39 /// compare_lower - Compare strings, ignoring case. 40 int StringRef::compare_lower(StringRef RHS) const { 41 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) { 42 unsigned char LHC = ascii_tolower(Data[I]); 43 unsigned char RHC = ascii_tolower(RHS.Data[I]); 44 if (LHC != RHC) 45 return LHC < RHC ? -1 : 1; 46 } 47 48 if (Length == RHS.Length) 49 return 0; 50 return Length < RHS.Length ? -1 : 1; 51 } 52 53 /// compare_numeric - Compare strings, handle embedded numbers. 54 int StringRef::compare_numeric(StringRef RHS) const { 55 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) { 56 // Check for sequences of digits. 57 if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) { 58 // The longer sequence of numbers is considered larger. 59 // This doesn't really handle prefixed zeros well. 60 size_t J; 61 for (J = I + 1; J != E + 1; ++J) { 62 bool ld = J < Length && ascii_isdigit(Data[J]); 63 bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]); 64 if (ld != rd) 65 return rd ? -1 : 1; 66 if (!rd) 67 break; 68 } 69 // The two number sequences have the same length (J-I), just memcmp them. 70 if (int Res = compareMemory(Data + I, RHS.Data + I, J - I)) 71 return Res < 0 ? -1 : 1; 72 // Identical number sequences, continue search after the numbers. 73 I = J - 1; 74 continue; 75 } 76 if (Data[I] != RHS.Data[I]) 77 return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1; 78 } 79 if (Length == RHS.Length) 80 return 0; 81 return Length < RHS.Length ? -1 : 1; 82 } 83 84 // Compute the edit distance between the two given strings. 85 unsigned StringRef::edit_distance(llvm::StringRef Other, 86 bool AllowReplacements, 87 unsigned MaxEditDistance) { 88 return llvm::ComputeEditDistance( 89 llvm::ArrayRef<char>(data(), size()), 90 llvm::ArrayRef<char>(Other.data(), Other.size()), 91 AllowReplacements, MaxEditDistance); 92 } 93 94 //===----------------------------------------------------------------------===// 95 // String Operations 96 //===----------------------------------------------------------------------===// 97 98 std::string StringRef::lower() const { 99 std::string Result(size(), char()); 100 for (size_type i = 0, e = size(); i != e; ++i) { 101 Result[i] = ascii_tolower(Data[i]); 102 } 103 return Result; 104 } 105 106 std::string StringRef::upper() const { 107 std::string Result(size(), char()); 108 for (size_type i = 0, e = size(); i != e; ++i) { 109 Result[i] = ascii_toupper(Data[i]); 110 } 111 return Result; 112 } 113 114 //===----------------------------------------------------------------------===// 115 // String Searching 116 //===----------------------------------------------------------------------===// 117 118 119 /// find - Search for the first string \arg Str in the string. 120 /// 121 /// \return - The index of the first occurrence of \arg Str, or npos if not 122 /// found. 123 size_t StringRef::find(StringRef Str, size_t From) const { 124 size_t N = Str.size(); 125 if (N > Length) 126 return npos; 127 128 // For short haystacks or unsupported needles fall back to the naive algorithm 129 if (Length < 16 || N > 255 || N == 0) { 130 for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i) 131 if (substr(i, N).equals(Str)) 132 return i; 133 return npos; 134 } 135 136 if (From >= Length) 137 return npos; 138 139 // Build the bad char heuristic table, with uint8_t to reduce cache thrashing. 140 uint8_t BadCharSkip[256]; 141 std::memset(BadCharSkip, N, 256); 142 for (unsigned i = 0; i != N-1; ++i) 143 BadCharSkip[(uint8_t)Str[i]] = N-1-i; 144 145 unsigned Len = Length-From, Pos = From; 146 while (Len >= N) { 147 if (substr(Pos, N).equals(Str)) // See if this is the correct substring. 148 return Pos; 149 150 // Otherwise skip the appropriate number of bytes. 151 uint8_t Skip = BadCharSkip[(uint8_t)(*this)[Pos+N-1]]; 152 Len -= Skip; 153 Pos += Skip; 154 } 155 156 return npos; 157 } 158 159 /// rfind - Search for the last string \arg Str in the string. 160 /// 161 /// \return - The index of the last occurrence of \arg Str, or npos if not 162 /// found. 163 size_t StringRef::rfind(StringRef Str) const { 164 size_t N = Str.size(); 165 if (N > Length) 166 return npos; 167 for (size_t i = Length - N + 1, e = 0; i != e;) { 168 --i; 169 if (substr(i, N).equals(Str)) 170 return i; 171 } 172 return npos; 173 } 174 175 /// find_first_of - Find the first character in the string that is in \arg 176 /// Chars, or npos if not found. 177 /// 178 /// Note: O(size() + Chars.size()) 179 StringRef::size_type StringRef::find_first_of(StringRef Chars, 180 size_t From) const { 181 std::bitset<1 << CHAR_BIT> CharBits; 182 for (size_type i = 0; i != Chars.size(); ++i) 183 CharBits.set((unsigned char)Chars[i]); 184 185 for (size_type i = min(From, Length), e = Length; i != e; ++i) 186 if (CharBits.test((unsigned char)Data[i])) 187 return i; 188 return npos; 189 } 190 191 /// find_first_not_of - Find the first character in the string that is not 192 /// \arg C or npos if not found. 193 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const { 194 for (size_type i = min(From, Length), e = Length; i != e; ++i) 195 if (Data[i] != C) 196 return i; 197 return npos; 198 } 199 200 /// find_first_not_of - Find the first character in the string that is not 201 /// in the string \arg Chars, or npos if not found. 202 /// 203 /// Note: O(size() + Chars.size()) 204 StringRef::size_type StringRef::find_first_not_of(StringRef Chars, 205 size_t From) const { 206 std::bitset<1 << CHAR_BIT> CharBits; 207 for (size_type i = 0; i != Chars.size(); ++i) 208 CharBits.set((unsigned char)Chars[i]); 209 210 for (size_type i = min(From, Length), e = Length; i != e; ++i) 211 if (!CharBits.test((unsigned char)Data[i])) 212 return i; 213 return npos; 214 } 215 216 /// find_last_of - Find the last character in the string that is in \arg C, 217 /// or npos if not found. 218 /// 219 /// Note: O(size() + Chars.size()) 220 StringRef::size_type StringRef::find_last_of(StringRef Chars, 221 size_t From) const { 222 std::bitset<1 << CHAR_BIT> CharBits; 223 for (size_type i = 0; i != Chars.size(); ++i) 224 CharBits.set((unsigned char)Chars[i]); 225 226 for (size_type i = min(From, Length) - 1, e = -1; i != e; --i) 227 if (CharBits.test((unsigned char)Data[i])) 228 return i; 229 return npos; 230 } 231 232 void StringRef::split(SmallVectorImpl<StringRef> &A, 233 StringRef Separators, int MaxSplit, 234 bool KeepEmpty) const { 235 StringRef rest = *this; 236 237 // rest.data() is used to distinguish cases like "a," that splits into 238 // "a" + "" and "a" that splits into "a" + 0. 239 for (int splits = 0; 240 rest.data() != NULL && (MaxSplit < 0 || splits < MaxSplit); 241 ++splits) { 242 std::pair<StringRef, StringRef> p = rest.split(Separators); 243 244 if (KeepEmpty || p.first.size() != 0) 245 A.push_back(p.first); 246 rest = p.second; 247 } 248 // If we have a tail left, add it. 249 if (rest.data() != NULL && (rest.size() != 0 || KeepEmpty)) 250 A.push_back(rest); 251 } 252 253 //===----------------------------------------------------------------------===// 254 // Helpful Algorithms 255 //===----------------------------------------------------------------------===// 256 257 /// count - Return the number of non-overlapped occurrences of \arg Str in 258 /// the string. 259 size_t StringRef::count(StringRef Str) const { 260 size_t Count = 0; 261 size_t N = Str.size(); 262 if (N > Length) 263 return 0; 264 for (size_t i = 0, e = Length - N + 1; i != e; ++i) 265 if (substr(i, N).equals(Str)) 266 ++Count; 267 return Count; 268 } 269 270 static unsigned GetAutoSenseRadix(StringRef &Str) { 271 if (Str.startswith("0x")) { 272 Str = Str.substr(2); 273 return 16; 274 } else if (Str.startswith("0b")) { 275 Str = Str.substr(2); 276 return 2; 277 } else if (Str.startswith("0")) { 278 return 8; 279 } else { 280 return 10; 281 } 282 } 283 284 285 /// GetAsUnsignedInteger - Workhorse method that converts a integer character 286 /// sequence of radix up to 36 to an unsigned long long value. 287 static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix, 288 unsigned long long &Result) { 289 // Autosense radix if not specified. 290 if (Radix == 0) 291 Radix = GetAutoSenseRadix(Str); 292 293 // Empty strings (after the radix autosense) are invalid. 294 if (Str.empty()) return true; 295 296 // Parse all the bytes of the string given this radix. Watch for overflow. 297 Result = 0; 298 while (!Str.empty()) { 299 unsigned CharVal; 300 if (Str[0] >= '0' && Str[0] <= '9') 301 CharVal = Str[0]-'0'; 302 else if (Str[0] >= 'a' && Str[0] <= 'z') 303 CharVal = Str[0]-'a'+10; 304 else if (Str[0] >= 'A' && Str[0] <= 'Z') 305 CharVal = Str[0]-'A'+10; 306 else 307 return true; 308 309 // If the parsed value is larger than the integer radix, the string is 310 // invalid. 311 if (CharVal >= Radix) 312 return true; 313 314 // Add in this character. 315 unsigned long long PrevResult = Result; 316 Result = Result*Radix+CharVal; 317 318 // Check for overflow. 319 if (Result < PrevResult) 320 return true; 321 322 Str = Str.substr(1); 323 } 324 325 return false; 326 } 327 328 bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const { 329 return GetAsUnsignedInteger(*this, Radix, Result); 330 } 331 332 333 bool StringRef::getAsInteger(unsigned Radix, long long &Result) const { 334 unsigned long long ULLVal; 335 336 // Handle positive strings first. 337 if (empty() || front() != '-') { 338 if (GetAsUnsignedInteger(*this, Radix, ULLVal) || 339 // Check for value so large it overflows a signed value. 340 (long long)ULLVal < 0) 341 return true; 342 Result = ULLVal; 343 return false; 344 } 345 346 // Get the positive part of the value. 347 if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) || 348 // Reject values so large they'd overflow as negative signed, but allow 349 // "-0". This negates the unsigned so that the negative isn't undefined 350 // on signed overflow. 351 (long long)-ULLVal > 0) 352 return true; 353 354 Result = -ULLVal; 355 return false; 356 } 357 358 bool StringRef::getAsInteger(unsigned Radix, int &Result) const { 359 long long Val; 360 if (getAsInteger(Radix, Val) || 361 (int)Val != Val) 362 return true; 363 Result = Val; 364 return false; 365 } 366 367 bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const { 368 unsigned long long Val; 369 if (getAsInteger(Radix, Val) || 370 (unsigned)Val != Val) 371 return true; 372 Result = Val; 373 return false; 374 } 375 376 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const { 377 StringRef Str = *this; 378 379 // Autosense radix if not specified. 380 if (Radix == 0) 381 Radix = GetAutoSenseRadix(Str); 382 383 assert(Radix > 1 && Radix <= 36); 384 385 // Empty strings (after the radix autosense) are invalid. 386 if (Str.empty()) return true; 387 388 // Skip leading zeroes. This can be a significant improvement if 389 // it means we don't need > 64 bits. 390 while (!Str.empty() && Str.front() == '0') 391 Str = Str.substr(1); 392 393 // If it was nothing but zeroes.... 394 if (Str.empty()) { 395 Result = APInt(64, 0); 396 return false; 397 } 398 399 // (Over-)estimate the required number of bits. 400 unsigned Log2Radix = 0; 401 while ((1U << Log2Radix) < Radix) Log2Radix++; 402 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix); 403 404 unsigned BitWidth = Log2Radix * Str.size(); 405 if (BitWidth < Result.getBitWidth()) 406 BitWidth = Result.getBitWidth(); // don't shrink the result 407 else 408 Result = Result.zext(BitWidth); 409 410 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix 411 if (!IsPowerOf2Radix) { 412 // These must have the same bit-width as Result. 413 RadixAP = APInt(BitWidth, Radix); 414 CharAP = APInt(BitWidth, 0); 415 } 416 417 // Parse all the bytes of the string given this radix. 418 Result = 0; 419 while (!Str.empty()) { 420 unsigned CharVal; 421 if (Str[0] >= '0' && Str[0] <= '9') 422 CharVal = Str[0]-'0'; 423 else if (Str[0] >= 'a' && Str[0] <= 'z') 424 CharVal = Str[0]-'a'+10; 425 else if (Str[0] >= 'A' && Str[0] <= 'Z') 426 CharVal = Str[0]-'A'+10; 427 else 428 return true; 429 430 // If the parsed value is larger than the integer radix, the string is 431 // invalid. 432 if (CharVal >= Radix) 433 return true; 434 435 // Add in this character. 436 if (IsPowerOf2Radix) { 437 Result <<= Log2Radix; 438 Result |= CharVal; 439 } else { 440 Result *= RadixAP; 441 CharAP = CharVal; 442 Result += CharAP; 443 } 444 445 Str = Str.substr(1); 446 } 447 448 return false; 449 } 450