1 //===-- StringRef.cpp - Lightweight String References ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/StringRef.h" 11 #include "llvm/ADT/APInt.h" 12 13 using namespace llvm; 14 15 // MSVC emits references to this into the translation units which reference it. 16 #ifndef _MSC_VER 17 const size_t StringRef::npos; 18 #endif 19 20 static char ascii_tolower(char x) { 21 if (x >= 'A' && x <= 'Z') 22 return x - 'A' + 'a'; 23 return x; 24 } 25 26 static bool ascii_isdigit(char x) { 27 return x >= '0' && x <= '9'; 28 } 29 30 /// compare_lower - Compare strings, ignoring case. 31 int StringRef::compare_lower(StringRef RHS) const { 32 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) { 33 char LHC = ascii_tolower(Data[I]); 34 char RHC = ascii_tolower(RHS.Data[I]); 35 if (LHC != RHC) 36 return LHC < RHC ? -1 : 1; 37 } 38 39 if (Length == RHS.Length) 40 return 0; 41 return Length < RHS.Length ? -1 : 1; 42 } 43 44 /// compare_numeric - Compare strings, handle embedded numbers. 45 int StringRef::compare_numeric(StringRef RHS) const { 46 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) { 47 if (Data[I] == RHS.Data[I]) 48 continue; 49 if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) { 50 // The longer sequence of numbers is larger. This doesn't really handle 51 // prefixed zeros well. 52 for (size_t J = I+1; J != E+1; ++J) { 53 bool ld = J < Length && ascii_isdigit(Data[J]); 54 bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]); 55 if (ld != rd) 56 return rd ? -1 : 1; 57 if (!rd) 58 break; 59 } 60 } 61 return Data[I] < RHS.Data[I] ? -1 : 1; 62 } 63 if (Length == RHS.Length) 64 return 0; 65 return Length < RHS.Length ? -1 : 1; 66 } 67 68 // Compute the edit distance between the two given strings. 69 unsigned StringRef::edit_distance(llvm::StringRef Other, 70 bool AllowReplacements) { 71 // The algorithm implemented below is the "classic" 72 // dynamic-programming algorithm for computing the Levenshtein 73 // distance, which is described here: 74 // 75 // http://en.wikipedia.org/wiki/Levenshtein_distance 76 // 77 // Although the algorithm is typically described using an m x n 78 // array, only two rows are used at a time, so this implemenation 79 // just keeps two separate vectors for those two rows. 80 size_type m = size(); 81 size_type n = Other.size(); 82 83 const unsigned SmallBufferSize = 64; 84 unsigned SmallBuffer[SmallBufferSize]; 85 unsigned *Allocated = 0; 86 unsigned *previous = SmallBuffer; 87 if (2*(n + 1) > SmallBufferSize) 88 Allocated = previous = new unsigned [2*(n+1)]; 89 unsigned *current = previous + (n + 1); 90 91 for (unsigned i = 0; i <= n; ++i) 92 previous[i] = i; 93 94 for (size_type y = 1; y <= m; ++y) { 95 current[0] = y; 96 for (size_type x = 1; x <= n; ++x) { 97 if (AllowReplacements) { 98 current[x] = min(previous[x-1] + ((*this)[y-1] == Other[x-1]? 0u:1u), 99 min(current[x-1], previous[x])+1); 100 } 101 else { 102 if ((*this)[y-1] == Other[x-1]) current[x] = previous[x-1]; 103 else current[x] = min(current[x-1], previous[x]) + 1; 104 } 105 } 106 107 unsigned *tmp = current; 108 current = previous; 109 previous = tmp; 110 } 111 112 unsigned Result = previous[n]; 113 delete [] Allocated; 114 115 return Result; 116 } 117 118 //===----------------------------------------------------------------------===// 119 // String Searching 120 //===----------------------------------------------------------------------===// 121 122 123 /// find - Search for the first string \arg Str in the string. 124 /// 125 /// \return - The index of the first occurence of \arg Str, or npos if not 126 /// found. 127 size_t StringRef::find(StringRef Str, size_t From) const { 128 size_t N = Str.size(); 129 if (N > Length) 130 return npos; 131 for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i) 132 if (substr(i, N).equals(Str)) 133 return i; 134 return npos; 135 } 136 137 /// rfind - Search for the last string \arg Str in the string. 138 /// 139 /// \return - The index of the last occurence of \arg Str, or npos if not 140 /// found. 141 size_t StringRef::rfind(StringRef Str) const { 142 size_t N = Str.size(); 143 if (N > Length) 144 return npos; 145 for (size_t i = Length - N + 1, e = 0; i != e;) { 146 --i; 147 if (substr(i, N).equals(Str)) 148 return i; 149 } 150 return npos; 151 } 152 153 /// find_first_of - Find the first character in the string that is in \arg 154 /// Chars, or npos if not found. 155 /// 156 /// Note: O(size() * Chars.size()) 157 StringRef::size_type StringRef::find_first_of(StringRef Chars, 158 size_t From) const { 159 for (size_type i = min(From, Length), e = Length; i != e; ++i) 160 if (Chars.find(Data[i]) != npos) 161 return i; 162 return npos; 163 } 164 165 /// find_first_not_of - Find the first character in the string that is not 166 /// \arg C or npos if not found. 167 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const { 168 for (size_type i = min(From, Length), e = Length; i != e; ++i) 169 if (Data[i] != C) 170 return i; 171 return npos; 172 } 173 174 /// find_first_not_of - Find the first character in the string that is not 175 /// in the string \arg Chars, or npos if not found. 176 /// 177 /// Note: O(size() * Chars.size()) 178 StringRef::size_type StringRef::find_first_not_of(StringRef Chars, 179 size_t From) const { 180 for (size_type i = min(From, Length), e = Length; i != e; ++i) 181 if (Chars.find(Data[i]) == npos) 182 return i; 183 return npos; 184 } 185 186 187 //===----------------------------------------------------------------------===// 188 // Helpful Algorithms 189 //===----------------------------------------------------------------------===// 190 191 /// count - Return the number of non-overlapped occurrences of \arg Str in 192 /// the string. 193 size_t StringRef::count(StringRef Str) const { 194 size_t Count = 0; 195 size_t N = Str.size(); 196 if (N > Length) 197 return 0; 198 for (size_t i = 0, e = Length - N + 1; i != e; ++i) 199 if (substr(i, N).equals(Str)) 200 ++Count; 201 return Count; 202 } 203 204 static unsigned GetAutoSenseRadix(StringRef &Str) { 205 if (Str.startswith("0x")) { 206 Str = Str.substr(2); 207 return 16; 208 } else if (Str.startswith("0b")) { 209 Str = Str.substr(2); 210 return 2; 211 } else if (Str.startswith("0")) { 212 return 8; 213 } else { 214 return 10; 215 } 216 } 217 218 219 /// GetAsUnsignedInteger - Workhorse method that converts a integer character 220 /// sequence of radix up to 36 to an unsigned long long value. 221 static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix, 222 unsigned long long &Result) { 223 // Autosense radix if not specified. 224 if (Radix == 0) 225 Radix = GetAutoSenseRadix(Str); 226 227 // Empty strings (after the radix autosense) are invalid. 228 if (Str.empty()) return true; 229 230 // Parse all the bytes of the string given this radix. Watch for overflow. 231 Result = 0; 232 while (!Str.empty()) { 233 unsigned CharVal; 234 if (Str[0] >= '0' && Str[0] <= '9') 235 CharVal = Str[0]-'0'; 236 else if (Str[0] >= 'a' && Str[0] <= 'z') 237 CharVal = Str[0]-'a'+10; 238 else if (Str[0] >= 'A' && Str[0] <= 'Z') 239 CharVal = Str[0]-'A'+10; 240 else 241 return true; 242 243 // If the parsed value is larger than the integer radix, the string is 244 // invalid. 245 if (CharVal >= Radix) 246 return true; 247 248 // Add in this character. 249 unsigned long long PrevResult = Result; 250 Result = Result*Radix+CharVal; 251 252 // Check for overflow. 253 if (Result < PrevResult) 254 return true; 255 256 Str = Str.substr(1); 257 } 258 259 return false; 260 } 261 262 bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const { 263 return GetAsUnsignedInteger(*this, Radix, Result); 264 } 265 266 267 bool StringRef::getAsInteger(unsigned Radix, long long &Result) const { 268 unsigned long long ULLVal; 269 270 // Handle positive strings first. 271 if (empty() || front() != '-') { 272 if (GetAsUnsignedInteger(*this, Radix, ULLVal) || 273 // Check for value so large it overflows a signed value. 274 (long long)ULLVal < 0) 275 return true; 276 Result = ULLVal; 277 return false; 278 } 279 280 // Get the positive part of the value. 281 if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) || 282 // Reject values so large they'd overflow as negative signed, but allow 283 // "-0". This negates the unsigned so that the negative isn't undefined 284 // on signed overflow. 285 (long long)-ULLVal > 0) 286 return true; 287 288 Result = -ULLVal; 289 return false; 290 } 291 292 bool StringRef::getAsInteger(unsigned Radix, int &Result) const { 293 long long Val; 294 if (getAsInteger(Radix, Val) || 295 (int)Val != Val) 296 return true; 297 Result = Val; 298 return false; 299 } 300 301 bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const { 302 unsigned long long Val; 303 if (getAsInteger(Radix, Val) || 304 (unsigned)Val != Val) 305 return true; 306 Result = Val; 307 return false; 308 } 309 310 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const { 311 StringRef Str = *this; 312 313 // Autosense radix if not specified. 314 if (Radix == 0) 315 Radix = GetAutoSenseRadix(Str); 316 317 assert(Radix > 1 && Radix <= 36); 318 319 // Empty strings (after the radix autosense) are invalid. 320 if (Str.empty()) return true; 321 322 // Skip leading zeroes. This can be a significant improvement if 323 // it means we don't need > 64 bits. 324 while (!Str.empty() && Str.front() == '0') 325 Str = Str.substr(1); 326 327 // If it was nothing but zeroes.... 328 if (Str.empty()) { 329 Result = APInt(64, 0); 330 return false; 331 } 332 333 // (Over-)estimate the required number of bits. 334 unsigned Log2Radix = 0; 335 while ((1U << Log2Radix) < Radix) Log2Radix++; 336 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix); 337 338 unsigned BitWidth = Log2Radix * Str.size(); 339 if (BitWidth < Result.getBitWidth()) 340 BitWidth = Result.getBitWidth(); // don't shrink the result 341 else 342 Result.zext(BitWidth); 343 344 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix 345 if (!IsPowerOf2Radix) { 346 // These must have the same bit-width as Result. 347 RadixAP = APInt(BitWidth, Radix); 348 CharAP = APInt(BitWidth, 0); 349 } 350 351 // Parse all the bytes of the string given this radix. 352 Result = 0; 353 while (!Str.empty()) { 354 unsigned CharVal; 355 if (Str[0] >= '0' && Str[0] <= '9') 356 CharVal = Str[0]-'0'; 357 else if (Str[0] >= 'a' && Str[0] <= 'z') 358 CharVal = Str[0]-'a'+10; 359 else if (Str[0] >= 'A' && Str[0] <= 'Z') 360 CharVal = Str[0]-'A'+10; 361 else 362 return true; 363 364 // If the parsed value is larger than the integer radix, the string is 365 // invalid. 366 if (CharVal >= Radix) 367 return true; 368 369 // Add in this character. 370 if (IsPowerOf2Radix) { 371 Result <<= Log2Radix; 372 Result |= CharVal; 373 } else { 374 Result *= RadixAP; 375 CharAP = CharVal; 376 Result += CharAP; 377 } 378 379 Str = Str.substr(1); 380 } 381 382 return false; 383 } 384