1 //===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SmallPtrSet class. See SmallPtrSet.h for an 11 // overview of the algorithm. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/Support/MathExtras.h" 18 #include <algorithm> 19 #include <cstdlib> 20 21 using namespace llvm; 22 23 void SmallPtrSetImplBase::shrink_and_clear() { 24 assert(!isSmall() && "Can't shrink a small set!"); 25 free(CurArray); 26 27 // Reduce the number of buckets. 28 CurArraySize = NumElements > 16 ? 1 << (Log2_32_Ceil(NumElements) + 1) : 32; 29 NumElements = NumTombstones = 0; 30 31 // Install the new array. Clear all the buckets to empty. 32 CurArray = (const void**)malloc(sizeof(void*) * CurArraySize); 33 assert(CurArray && "Failed to allocate memory?"); 34 memset(CurArray, -1, CurArraySize*sizeof(void*)); 35 } 36 37 std::pair<const void *const *, bool> 38 SmallPtrSetImplBase::insert_imp(const void *Ptr) { 39 if (isSmall()) { 40 // Check to see if it is already in the set. 41 for (const void **APtr = SmallArray, **E = SmallArray+NumElements; 42 APtr != E; ++APtr) 43 if (*APtr == Ptr) 44 return std::make_pair(APtr, false); 45 46 // Nope, there isn't. If we stay small, just 'pushback' now. 47 if (NumElements < CurArraySize) { 48 SmallArray[NumElements++] = Ptr; 49 return std::make_pair(SmallArray + (NumElements - 1), true); 50 } 51 // Otherwise, hit the big set case, which will call grow. 52 } 53 54 if (NumElements*4 >= CurArraySize*3) { 55 // If more than 3/4 of the array is full, grow. 56 Grow(CurArraySize < 64 ? 128 : CurArraySize*2); 57 } else if (CurArraySize-(NumElements+NumTombstones) < CurArraySize/8) { 58 // If fewer of 1/8 of the array is empty (meaning that many are filled with 59 // tombstones), rehash. 60 Grow(CurArraySize); 61 } 62 63 // Okay, we know we have space. Find a hash bucket. 64 const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr)); 65 if (*Bucket == Ptr) 66 return std::make_pair(Bucket, false); // Already inserted, good. 67 68 // Otherwise, insert it! 69 if (*Bucket == getTombstoneMarker()) 70 --NumTombstones; 71 *Bucket = Ptr; 72 ++NumElements; // Track density. 73 return std::make_pair(Bucket, true); 74 } 75 76 bool SmallPtrSetImplBase::erase_imp(const void * Ptr) { 77 if (isSmall()) { 78 // Check to see if it is in the set. 79 for (const void **APtr = SmallArray, **E = SmallArray+NumElements; 80 APtr != E; ++APtr) 81 if (*APtr == Ptr) { 82 // If it is in the set, replace this element. 83 *APtr = E[-1]; 84 E[-1] = getEmptyMarker(); 85 --NumElements; 86 return true; 87 } 88 89 return false; 90 } 91 92 // Okay, we know we have space. Find a hash bucket. 93 void **Bucket = const_cast<void**>(FindBucketFor(Ptr)); 94 if (*Bucket != Ptr) return false; // Not in the set? 95 96 // Set this as a tombstone. 97 *Bucket = getTombstoneMarker(); 98 --NumElements; 99 ++NumTombstones; 100 return true; 101 } 102 103 const void * const *SmallPtrSetImplBase::FindBucketFor(const void *Ptr) const { 104 unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1); 105 unsigned ArraySize = CurArraySize; 106 unsigned ProbeAmt = 1; 107 const void *const *Array = CurArray; 108 const void *const *Tombstone = nullptr; 109 while (1) { 110 // Found Ptr's bucket? 111 if (Array[Bucket] == Ptr) 112 return Array+Bucket; 113 114 // If we found an empty bucket, the pointer doesn't exist in the set. 115 // Return a tombstone if we've seen one so far, or the empty bucket if 116 // not. 117 if (Array[Bucket] == getEmptyMarker()) 118 return Tombstone ? Tombstone : Array+Bucket; 119 120 // If this is a tombstone, remember it. If Ptr ends up not in the set, we 121 // prefer to return it than something that would require more probing. 122 if (Array[Bucket] == getTombstoneMarker() && !Tombstone) 123 Tombstone = Array+Bucket; // Remember the first tombstone found. 124 125 // It's a hash collision or a tombstone. Reprobe. 126 Bucket = (Bucket + ProbeAmt++) & (ArraySize-1); 127 } 128 } 129 130 /// Grow - Allocate a larger backing store for the buckets and move it over. 131 /// 132 void SmallPtrSetImplBase::Grow(unsigned NewSize) { 133 // Allocate at twice as many buckets, but at least 128. 134 unsigned OldSize = CurArraySize; 135 136 const void **OldBuckets = CurArray; 137 bool WasSmall = isSmall(); 138 139 // Install the new array. Clear all the buckets to empty. 140 CurArray = (const void**)malloc(sizeof(void*) * NewSize); 141 assert(CurArray && "Failed to allocate memory?"); 142 CurArraySize = NewSize; 143 memset(CurArray, -1, NewSize*sizeof(void*)); 144 145 // Copy over all the elements. 146 if (WasSmall) { 147 // Small sets store their elements in order. 148 for (const void **BucketPtr = OldBuckets, **E = OldBuckets+NumElements; 149 BucketPtr != E; ++BucketPtr) { 150 const void *Elt = *BucketPtr; 151 *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt); 152 } 153 } else { 154 // Copy over all valid entries. 155 for (const void **BucketPtr = OldBuckets, **E = OldBuckets+OldSize; 156 BucketPtr != E; ++BucketPtr) { 157 // Copy over the element if it is valid. 158 const void *Elt = *BucketPtr; 159 if (Elt != getTombstoneMarker() && Elt != getEmptyMarker()) 160 *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt); 161 } 162 163 free(OldBuckets); 164 NumTombstones = 0; 165 } 166 } 167 168 SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage, 169 const SmallPtrSetImplBase& that) { 170 SmallArray = SmallStorage; 171 172 // If we're becoming small, prepare to insert into our stack space 173 if (that.isSmall()) { 174 CurArray = SmallArray; 175 // Otherwise, allocate new heap space (unless we were the same size) 176 } else { 177 CurArray = (const void**)malloc(sizeof(void*) * that.CurArraySize); 178 assert(CurArray && "Failed to allocate memory?"); 179 } 180 181 // Copy over the new array size 182 CurArraySize = that.CurArraySize; 183 184 // Copy over the contents from the other set 185 memcpy(CurArray, that.CurArray, sizeof(void*)*CurArraySize); 186 187 NumElements = that.NumElements; 188 NumTombstones = that.NumTombstones; 189 } 190 191 SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage, 192 unsigned SmallSize, 193 SmallPtrSetImplBase &&that) { 194 SmallArray = SmallStorage; 195 196 // Copy over the basic members. 197 CurArraySize = that.CurArraySize; 198 NumElements = that.NumElements; 199 NumTombstones = that.NumTombstones; 200 201 // When small, just copy into our small buffer. 202 if (that.isSmall()) { 203 CurArray = SmallArray; 204 memcpy(CurArray, that.CurArray, sizeof(void *) * CurArraySize); 205 } else { 206 // Otherwise, we steal the large memory allocation and no copy is needed. 207 CurArray = that.CurArray; 208 that.CurArray = that.SmallArray; 209 } 210 211 // Make the "that" object small and empty. 212 that.CurArraySize = SmallSize; 213 assert(that.CurArray == that.SmallArray); 214 that.NumElements = 0; 215 that.NumTombstones = 0; 216 } 217 218 /// CopyFrom - implement operator= from a smallptrset that has the same pointer 219 /// type, but may have a different small size. 220 void SmallPtrSetImplBase::CopyFrom(const SmallPtrSetImplBase &RHS) { 221 assert(&RHS != this && "Self-copy should be handled by the caller."); 222 223 if (isSmall() && RHS.isSmall()) 224 assert(CurArraySize == RHS.CurArraySize && 225 "Cannot assign sets with different small sizes"); 226 227 // If we're becoming small, prepare to insert into our stack space 228 if (RHS.isSmall()) { 229 if (!isSmall()) 230 free(CurArray); 231 CurArray = SmallArray; 232 // Otherwise, allocate new heap space (unless we were the same size) 233 } else if (CurArraySize != RHS.CurArraySize) { 234 if (isSmall()) 235 CurArray = (const void**)malloc(sizeof(void*) * RHS.CurArraySize); 236 else { 237 const void **T = (const void**)realloc(CurArray, 238 sizeof(void*) * RHS.CurArraySize); 239 if (!T) 240 free(CurArray); 241 CurArray = T; 242 } 243 assert(CurArray && "Failed to allocate memory?"); 244 } 245 246 // Copy over the new array size 247 CurArraySize = RHS.CurArraySize; 248 249 // Copy over the contents from the other set 250 memcpy(CurArray, RHS.CurArray, sizeof(void*)*CurArraySize); 251 252 NumElements = RHS.NumElements; 253 NumTombstones = RHS.NumTombstones; 254 } 255 256 void SmallPtrSetImplBase::MoveFrom(unsigned SmallSize, 257 SmallPtrSetImplBase &&RHS) { 258 assert(&RHS != this && "Self-move should be handled by the caller."); 259 260 if (!isSmall()) 261 free(CurArray); 262 263 if (RHS.isSmall()) { 264 // Copy a small RHS rather than moving. 265 CurArray = SmallArray; 266 memcpy(CurArray, RHS.CurArray, sizeof(void*)*RHS.CurArraySize); 267 } else { 268 CurArray = RHS.CurArray; 269 RHS.CurArray = RHS.SmallArray; 270 } 271 272 // Copy the rest of the trivial members. 273 CurArraySize = RHS.CurArraySize; 274 NumElements = RHS.NumElements; 275 NumTombstones = RHS.NumTombstones; 276 277 // Make the RHS small and empty. 278 RHS.CurArraySize = SmallSize; 279 assert(RHS.CurArray == RHS.SmallArray); 280 RHS.NumElements = 0; 281 RHS.NumTombstones = 0; 282 } 283 284 void SmallPtrSetImplBase::swap(SmallPtrSetImplBase &RHS) { 285 if (this == &RHS) return; 286 287 // We can only avoid copying elements if neither set is small. 288 if (!this->isSmall() && !RHS.isSmall()) { 289 std::swap(this->CurArray, RHS.CurArray); 290 std::swap(this->CurArraySize, RHS.CurArraySize); 291 std::swap(this->NumElements, RHS.NumElements); 292 std::swap(this->NumTombstones, RHS.NumTombstones); 293 return; 294 } 295 296 // FIXME: From here on we assume that both sets have the same small size. 297 298 // If only RHS is small, copy the small elements into LHS and move the pointer 299 // from LHS to RHS. 300 if (!this->isSmall() && RHS.isSmall()) { 301 std::copy(RHS.SmallArray, RHS.SmallArray+RHS.CurArraySize, 302 this->SmallArray); 303 std::swap(this->NumElements, RHS.NumElements); 304 std::swap(this->CurArraySize, RHS.CurArraySize); 305 RHS.CurArray = this->CurArray; 306 RHS.NumTombstones = this->NumTombstones; 307 this->CurArray = this->SmallArray; 308 this->NumTombstones = 0; 309 return; 310 } 311 312 // If only LHS is small, copy the small elements into RHS and move the pointer 313 // from RHS to LHS. 314 if (this->isSmall() && !RHS.isSmall()) { 315 std::copy(this->SmallArray, this->SmallArray+this->CurArraySize, 316 RHS.SmallArray); 317 std::swap(RHS.NumElements, this->NumElements); 318 std::swap(RHS.CurArraySize, this->CurArraySize); 319 this->CurArray = RHS.CurArray; 320 this->NumTombstones = RHS.NumTombstones; 321 RHS.CurArray = RHS.SmallArray; 322 RHS.NumTombstones = 0; 323 return; 324 } 325 326 // Both a small, just swap the small elements. 327 assert(this->isSmall() && RHS.isSmall()); 328 assert(this->CurArraySize == RHS.CurArraySize); 329 std::swap_ranges(this->SmallArray, this->SmallArray+this->CurArraySize, 330 RHS.SmallArray); 331 std::swap(this->NumElements, RHS.NumElements); 332 } 333 334 SmallPtrSetImplBase::~SmallPtrSetImplBase() { 335 if (!isSmall()) 336 free(CurArray); 337 } 338