1 //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of some scaled number algorithms. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Support/ScaledNumber.h" 15 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/Support/Debug.h" 18 19 using namespace llvm; 20 using namespace llvm::ScaledNumbers; 21 22 std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS, 23 uint64_t RHS) { 24 // Separate into two 32-bit digits (U.L). 25 auto getU = [](uint64_t N) { return N >> 32; }; 26 auto getL = [](uint64_t N) { return N & UINT32_MAX; }; 27 uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); 28 29 // Compute cross products. 30 uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; 31 32 // Sum into two 64-bit digits. 33 uint64_t Upper = P1, Lower = P4; 34 auto addWithCarry = [&](uint64_t N) { 35 uint64_t NewLower = Lower + (getL(N) << 32); 36 Upper += getU(N) + (NewLower < Lower); 37 Lower = NewLower; 38 }; 39 addWithCarry(P2); 40 addWithCarry(P3); 41 42 // Check whether the upper digit is empty. 43 if (!Upper) 44 return std::make_pair(Lower, 0); 45 46 // Shift as little as possible to maximize precision. 47 unsigned LeadingZeros = countLeadingZeros(Upper); 48 int Shift = 64 - LeadingZeros; 49 if (LeadingZeros) 50 Upper = Upper << LeadingZeros | Lower >> Shift; 51 return getRounded(Upper, Shift, 52 Shift && (Lower & UINT64_C(1) << (Shift - 1))); 53 } 54 55 static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } 56 57 std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend, 58 uint32_t Divisor) { 59 assert(Dividend && "expected non-zero dividend"); 60 assert(Divisor && "expected non-zero divisor"); 61 62 // Use 64-bit math and canonicalize the dividend to gain precision. 63 uint64_t Dividend64 = Dividend; 64 int Shift = 0; 65 if (int Zeros = countLeadingZeros(Dividend64)) { 66 Shift -= Zeros; 67 Dividend64 <<= Zeros; 68 } 69 uint64_t Quotient = Dividend64 / Divisor; 70 uint64_t Remainder = Dividend64 % Divisor; 71 72 // If Quotient needs to be shifted, leave the rounding to getAdjusted(). 73 if (Quotient > UINT32_MAX) 74 return getAdjusted<uint32_t>(Quotient, Shift); 75 76 // Round based on the value of the next bit. 77 return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor)); 78 } 79 80 std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend, 81 uint64_t Divisor) { 82 assert(Dividend && "expected non-zero dividend"); 83 assert(Divisor && "expected non-zero divisor"); 84 85 // Minimize size of divisor. 86 int Shift = 0; 87 if (int Zeros = countTrailingZeros(Divisor)) { 88 Shift -= Zeros; 89 Divisor >>= Zeros; 90 } 91 92 // Check for powers of two. 93 if (Divisor == 1) 94 return std::make_pair(Dividend, Shift); 95 96 // Maximize size of dividend. 97 if (int Zeros = countLeadingZeros(Dividend)) { 98 Shift -= Zeros; 99 Dividend <<= Zeros; 100 } 101 102 // Start with the result of a divide. 103 uint64_t Quotient = Dividend / Divisor; 104 Dividend %= Divisor; 105 106 // Continue building the quotient with long division. 107 while (!(Quotient >> 63) && Dividend) { 108 // Shift Dividend and check for overflow. 109 bool IsOverflow = Dividend >> 63; 110 Dividend <<= 1; 111 --Shift; 112 113 // Get the next bit of Quotient. 114 Quotient <<= 1; 115 if (IsOverflow || Divisor <= Dividend) { 116 Quotient |= 1; 117 Dividend -= Divisor; 118 } 119 } 120 121 return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor)); 122 } 123 124 int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) { 125 assert(ScaleDiff >= 0 && "wrong argument order"); 126 assert(ScaleDiff < 64 && "numbers too far apart"); 127 128 uint64_t L_adjusted = L >> ScaleDiff; 129 if (L_adjusted < R) 130 return -1; 131 if (L_adjusted > R) 132 return 1; 133 134 return L > L_adjusted << ScaleDiff ? 1 : 0; 135 } 136 137 static void appendDigit(std::string &Str, unsigned D) { 138 assert(D < 10); 139 Str += '0' + D % 10; 140 } 141 142 static void appendNumber(std::string &Str, uint64_t N) { 143 while (N) { 144 appendDigit(Str, N % 10); 145 N /= 10; 146 } 147 } 148 149 static bool doesRoundUp(char Digit) { 150 switch (Digit) { 151 case '5': 152 case '6': 153 case '7': 154 case '8': 155 case '9': 156 return true; 157 default: 158 return false; 159 } 160 } 161 162 static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { 163 assert(E >= ScaledNumbers::MinScale); 164 assert(E <= ScaledNumbers::MaxScale); 165 166 // Find a new E, but don't let it increase past MaxScale. 167 int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D); 168 int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros); 169 int Shift = 63 - (NewE - E); 170 assert(Shift <= LeadingZeros); 171 assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale); 172 D <<= Shift; 173 E = NewE; 174 175 // Check for a denormal. 176 unsigned AdjustedE = E + 16383; 177 if (!(D >> 63)) { 178 assert(E == ScaledNumbers::MaxScale); 179 AdjustedE = 0; 180 } 181 182 // Build the float and print it. 183 uint64_t RawBits[2] = {D, AdjustedE}; 184 APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits)); 185 SmallVector<char, 24> Chars; 186 Float.toString(Chars, Precision, 0); 187 return std::string(Chars.begin(), Chars.end()); 188 } 189 190 static std::string stripTrailingZeros(const std::string &Float) { 191 size_t NonZero = Float.find_last_not_of('0'); 192 assert(NonZero != std::string::npos && "no . in floating point string"); 193 194 if (Float[NonZero] == '.') 195 ++NonZero; 196 197 return Float.substr(0, NonZero + 1); 198 } 199 200 std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width, 201 unsigned Precision) { 202 if (!D) 203 return "0.0"; 204 205 // Canonicalize exponent and digits. 206 uint64_t Above0 = 0; 207 uint64_t Below0 = 0; 208 uint64_t Extra = 0; 209 int ExtraShift = 0; 210 if (E == 0) { 211 Above0 = D; 212 } else if (E > 0) { 213 if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) { 214 D <<= Shift; 215 E -= Shift; 216 217 if (!E) 218 Above0 = D; 219 } 220 } else if (E > -64) { 221 Above0 = D >> -E; 222 Below0 = D << (64 + E); 223 } else if (E == -64) { 224 // Special case: shift by 64 bits is undefined behavior. 225 Below0 = D; 226 } else if (E > -120) { 227 Below0 = D >> (-E - 64); 228 Extra = D << (128 + E); 229 ExtraShift = -64 - E; 230 } 231 232 // Fall back on APFloat for very small and very large numbers. 233 if (!Above0 && !Below0) 234 return toStringAPFloat(D, E, Precision); 235 236 // Append the digits before the decimal. 237 std::string Str; 238 size_t DigitsOut = 0; 239 if (Above0) { 240 appendNumber(Str, Above0); 241 DigitsOut = Str.size(); 242 } else 243 appendDigit(Str, 0); 244 std::reverse(Str.begin(), Str.end()); 245 246 // Return early if there's nothing after the decimal. 247 if (!Below0) 248 return Str + ".0"; 249 250 // Append the decimal and beyond. 251 Str += '.'; 252 uint64_t Error = UINT64_C(1) << (64 - Width); 253 254 // We need to shift Below0 to the right to make space for calculating 255 // digits. Save the precision we're losing in Extra. 256 Extra = (Below0 & 0xf) << 56 | (Extra >> 8); 257 Below0 >>= 4; 258 size_t SinceDot = 0; 259 size_t AfterDot = Str.size(); 260 do { 261 if (ExtraShift) { 262 --ExtraShift; 263 Error *= 5; 264 } else 265 Error *= 10; 266 267 Below0 *= 10; 268 Extra *= 10; 269 Below0 += (Extra >> 60); 270 Extra = Extra & (UINT64_MAX >> 4); 271 appendDigit(Str, Below0 >> 60); 272 Below0 = Below0 & (UINT64_MAX >> 4); 273 if (DigitsOut || Str.back() != '0') 274 ++DigitsOut; 275 ++SinceDot; 276 } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && 277 (!Precision || DigitsOut <= Precision || SinceDot < 2)); 278 279 // Return early for maximum precision. 280 if (!Precision || DigitsOut <= Precision) 281 return stripTrailingZeros(Str); 282 283 // Find where to truncate. 284 size_t Truncate = 285 std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1); 286 287 // Check if there's anything to truncate. 288 if (Truncate >= Str.size()) 289 return stripTrailingZeros(Str); 290 291 bool Carry = doesRoundUp(Str[Truncate]); 292 if (!Carry) 293 return stripTrailingZeros(Str.substr(0, Truncate)); 294 295 // Round with the first truncated digit. 296 for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); 297 I != E; ++I) { 298 if (*I == '.') 299 continue; 300 if (*I == '9') { 301 *I = '0'; 302 continue; 303 } 304 305 ++*I; 306 Carry = false; 307 break; 308 } 309 310 // Add "1" in front if we still need to carry. 311 return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate)); 312 } 313 314 raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E, 315 int Width, unsigned Precision) { 316 return OS << toString(D, E, Width, Precision); 317 } 318 319 void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) { 320 print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E 321 << "]"; 322 } 323