1*8423a6f3SJohn McCall //===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===// 2*8423a6f3SJohn McCall // 3*8423a6f3SJohn McCall // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*8423a6f3SJohn McCall // See https://llvm.org/LICENSE.txt for license information. 5*8423a6f3SJohn McCall // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*8423a6f3SJohn McCall // 7*8423a6f3SJohn McCall //===----------------------------------------------------------------------===// 8*8423a6f3SJohn McCall // 9*8423a6f3SJohn McCall // This file implements the performOptimizedStructLayout interface. 10*8423a6f3SJohn McCall // 11*8423a6f3SJohn McCall //===----------------------------------------------------------------------===// 12*8423a6f3SJohn McCall 13*8423a6f3SJohn McCall #include "llvm/Support/OptimizedStructLayout.h" 14*8423a6f3SJohn McCall 15*8423a6f3SJohn McCall using namespace llvm; 16*8423a6f3SJohn McCall 17*8423a6f3SJohn McCall using Field = OptimizedStructLayoutField; 18*8423a6f3SJohn McCall 19*8423a6f3SJohn McCall #ifndef NDEBUG 20*8423a6f3SJohn McCall static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size, 21*8423a6f3SJohn McCall Align MaxAlign) { 22*8423a6f3SJohn McCall uint64_t LastEnd = 0; 23*8423a6f3SJohn McCall Align ComputedMaxAlign; 24*8423a6f3SJohn McCall for (auto &Field : Fields) { 25*8423a6f3SJohn McCall assert(Field.hasFixedOffset() && 26*8423a6f3SJohn McCall "didn't assign a fixed offset to field"); 27*8423a6f3SJohn McCall assert(isAligned(Field.Alignment, Field.Offset) && 28*8423a6f3SJohn McCall "didn't assign a correctly-aligned offset to field"); 29*8423a6f3SJohn McCall assert(Field.Offset >= LastEnd && 30*8423a6f3SJohn McCall "didn't assign offsets in ascending order"); 31*8423a6f3SJohn McCall LastEnd = Field.getEndOffset(); 32*8423a6f3SJohn McCall assert(Field.Alignment <= MaxAlign && 33*8423a6f3SJohn McCall "didn't compute MaxAlign correctly"); 34*8423a6f3SJohn McCall ComputedMaxAlign = std::max(Field.Alignment, MaxAlign); 35*8423a6f3SJohn McCall } 36*8423a6f3SJohn McCall assert(LastEnd == Size && "didn't compute LastEnd correctly"); 37*8423a6f3SJohn McCall assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly"); 38*8423a6f3SJohn McCall } 39*8423a6f3SJohn McCall #endif 40*8423a6f3SJohn McCall 41*8423a6f3SJohn McCall std::pair<uint64_t, Align> 42*8423a6f3SJohn McCall llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) { 43*8423a6f3SJohn McCall #ifndef NDEBUG 44*8423a6f3SJohn McCall // Do some simple precondition checks. 45*8423a6f3SJohn McCall { 46*8423a6f3SJohn McCall bool InFixedPrefix = true; 47*8423a6f3SJohn McCall size_t LastEnd = 0; 48*8423a6f3SJohn McCall for (auto &Field : Fields) { 49*8423a6f3SJohn McCall assert(Field.Size > 0 && "field of zero size"); 50*8423a6f3SJohn McCall if (Field.hasFixedOffset()) { 51*8423a6f3SJohn McCall assert(InFixedPrefix && 52*8423a6f3SJohn McCall "fixed-offset fields are not a strict prefix of array"); 53*8423a6f3SJohn McCall assert(LastEnd <= Field.Offset && 54*8423a6f3SJohn McCall "fixed-offset fields overlap or are not in order"); 55*8423a6f3SJohn McCall LastEnd = Field.getEndOffset(); 56*8423a6f3SJohn McCall assert(LastEnd > Field.Offset && 57*8423a6f3SJohn McCall "overflow in fixed-offset end offset"); 58*8423a6f3SJohn McCall } else { 59*8423a6f3SJohn McCall InFixedPrefix = false; 60*8423a6f3SJohn McCall } 61*8423a6f3SJohn McCall } 62*8423a6f3SJohn McCall } 63*8423a6f3SJohn McCall #endif 64*8423a6f3SJohn McCall 65*8423a6f3SJohn McCall // Do an initial pass over the fields. 66*8423a6f3SJohn McCall Align MaxAlign; 67*8423a6f3SJohn McCall 68*8423a6f3SJohn McCall // Find the first flexible-offset field, tracking MaxAlign. 69*8423a6f3SJohn McCall auto FirstFlexible = Fields.begin(), E = Fields.end(); 70*8423a6f3SJohn McCall while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) { 71*8423a6f3SJohn McCall MaxAlign = std::max(MaxAlign, FirstFlexible->Alignment); 72*8423a6f3SJohn McCall ++FirstFlexible; 73*8423a6f3SJohn McCall } 74*8423a6f3SJohn McCall 75*8423a6f3SJohn McCall // If there are no flexible fields, we're done. 76*8423a6f3SJohn McCall if (FirstFlexible == E) { 77*8423a6f3SJohn McCall uint64_t Size = 0; 78*8423a6f3SJohn McCall if (!Fields.empty()) 79*8423a6f3SJohn McCall Size = Fields.back().getEndOffset(); 80*8423a6f3SJohn McCall 81*8423a6f3SJohn McCall #ifndef NDEBUG 82*8423a6f3SJohn McCall checkValidLayout(Fields, Size, MaxAlign); 83*8423a6f3SJohn McCall #endif 84*8423a6f3SJohn McCall return std::make_pair(Size, MaxAlign); 85*8423a6f3SJohn McCall } 86*8423a6f3SJohn McCall 87*8423a6f3SJohn McCall // Walk over the flexible-offset fields, tracking MaxAlign and 88*8423a6f3SJohn McCall // assigning them a unique number in order of their appearance. 89*8423a6f3SJohn McCall // We'll use this unique number in the comparison below so that 90*8423a6f3SJohn McCall // we can use array_pod_sort, which isn't stable. We won't use it 91*8423a6f3SJohn McCall // past that point. 92*8423a6f3SJohn McCall { 93*8423a6f3SJohn McCall uintptr_t UniqueNumber = 0; 94*8423a6f3SJohn McCall for (auto I = FirstFlexible; I != E; ++I) { 95*8423a6f3SJohn McCall I->Scratch = reinterpret_cast<void*>(UniqueNumber++); 96*8423a6f3SJohn McCall MaxAlign = std::max(MaxAlign, I->Alignment); 97*8423a6f3SJohn McCall } 98*8423a6f3SJohn McCall } 99*8423a6f3SJohn McCall 100*8423a6f3SJohn McCall // Sort the flexible elements in order of decreasing alignment, 101*8423a6f3SJohn McCall // then decreasing size, and then the original order as recorded 102*8423a6f3SJohn McCall // in Scratch. The decreasing-size aspect of this is only really 103*8423a6f3SJohn McCall // important if we get into the gap-filling stage below, but it 104*8423a6f3SJohn McCall // doesn't hurt here. 105*8423a6f3SJohn McCall array_pod_sort(FirstFlexible, E, 106*8423a6f3SJohn McCall [](const Field *lhs, const Field *rhs) -> int { 107*8423a6f3SJohn McCall // Decreasing alignment. 108*8423a6f3SJohn McCall if (lhs->Alignment != rhs->Alignment) 109*8423a6f3SJohn McCall return (lhs->Alignment < rhs->Alignment ? 1 : -1); 110*8423a6f3SJohn McCall 111*8423a6f3SJohn McCall // Decreasing size. 112*8423a6f3SJohn McCall if (lhs->Size != rhs->Size) 113*8423a6f3SJohn McCall return (lhs->Size < rhs->Size ? 1 : -1); 114*8423a6f3SJohn McCall 115*8423a6f3SJohn McCall // Original order. 116*8423a6f3SJohn McCall auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch); 117*8423a6f3SJohn McCall auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch); 118*8423a6f3SJohn McCall if (lhsNumber != rhsNumber) 119*8423a6f3SJohn McCall return (lhsNumber < rhsNumber ? -1 : 1); 120*8423a6f3SJohn McCall 121*8423a6f3SJohn McCall return 0; 122*8423a6f3SJohn McCall }); 123*8423a6f3SJohn McCall 124*8423a6f3SJohn McCall // Do a quick check for whether that sort alone has given us a perfect 125*8423a6f3SJohn McCall // layout with no interior padding. This is very common: if the 126*8423a6f3SJohn McCall // fixed-layout fields have no interior padding, and they end at a 127*8423a6f3SJohn McCall // sufficiently-aligned offset for all the flexible-layout fields, 128*8423a6f3SJohn McCall // and the flexible-layout fields all have sizes that are multiples 129*8423a6f3SJohn McCall // of their alignment, then this will reliably trigger. 130*8423a6f3SJohn McCall { 131*8423a6f3SJohn McCall bool HasPadding = false; 132*8423a6f3SJohn McCall uint64_t LastEnd = 0; 133*8423a6f3SJohn McCall 134*8423a6f3SJohn McCall // Walk the fixed-offset fields. 135*8423a6f3SJohn McCall for (auto I = Fields.begin(); I != FirstFlexible; ++I) { 136*8423a6f3SJohn McCall assert(I->hasFixedOffset()); 137*8423a6f3SJohn McCall if (LastEnd != I->Offset) { 138*8423a6f3SJohn McCall HasPadding = true; 139*8423a6f3SJohn McCall break; 140*8423a6f3SJohn McCall } 141*8423a6f3SJohn McCall LastEnd = I->getEndOffset(); 142*8423a6f3SJohn McCall } 143*8423a6f3SJohn McCall 144*8423a6f3SJohn McCall // Walk the flexible-offset fields, optimistically assigning fixed 145*8423a6f3SJohn McCall // offsets. Note that we maintain a strict division between the 146*8423a6f3SJohn McCall // fixed-offset and flexible-offset fields, so if we end up 147*8423a6f3SJohn McCall // discovering padding later in this loop, we can just abandon this 148*8423a6f3SJohn McCall // work and we'll ignore the offsets we already assigned. 149*8423a6f3SJohn McCall if (!HasPadding) { 150*8423a6f3SJohn McCall for (auto I = FirstFlexible; I != E; ++I) { 151*8423a6f3SJohn McCall auto Offset = alignTo(LastEnd, I->Alignment); 152*8423a6f3SJohn McCall if (LastEnd != Offset) { 153*8423a6f3SJohn McCall HasPadding = true; 154*8423a6f3SJohn McCall break; 155*8423a6f3SJohn McCall } 156*8423a6f3SJohn McCall I->Offset = Offset; 157*8423a6f3SJohn McCall LastEnd = I->getEndOffset(); 158*8423a6f3SJohn McCall } 159*8423a6f3SJohn McCall } 160*8423a6f3SJohn McCall 161*8423a6f3SJohn McCall // If we already have a perfect layout, we're done. 162*8423a6f3SJohn McCall if (!HasPadding) { 163*8423a6f3SJohn McCall #ifndef NDEBUG 164*8423a6f3SJohn McCall checkValidLayout(Fields, LastEnd, MaxAlign); 165*8423a6f3SJohn McCall #endif 166*8423a6f3SJohn McCall return std::make_pair(LastEnd, MaxAlign); 167*8423a6f3SJohn McCall } 168*8423a6f3SJohn McCall } 169*8423a6f3SJohn McCall 170*8423a6f3SJohn McCall // The algorithm sketch at this point is as follows. 171*8423a6f3SJohn McCall // 172*8423a6f3SJohn McCall // Consider the padding gaps between fixed-offset fields in ascending 173*8423a6f3SJohn McCall // order. Let LastEnd be the offset of the first byte following the 174*8423a6f3SJohn McCall // field before the gap, or 0 if the gap is at the beginning of the 175*8423a6f3SJohn McCall // structure. Find the "best" flexible-offset field according to the 176*8423a6f3SJohn McCall // criteria below. If no such field exists, proceed to the next gap. 177*8423a6f3SJohn McCall // Otherwise, add the field at the first properly-aligned offset for 178*8423a6f3SJohn McCall // that field that is >= LastEnd, then update LastEnd and repeat in 179*8423a6f3SJohn McCall // order to fill any remaining gap following that field. 180*8423a6f3SJohn McCall // 181*8423a6f3SJohn McCall // Next, let LastEnd to be the offset of the first byte following the 182*8423a6f3SJohn McCall // last fixed-offset field, or 0 if there are no fixed-offset fields. 183*8423a6f3SJohn McCall // While there are flexible-offset fields remaining, find the "best" 184*8423a6f3SJohn McCall // flexible-offset field according to the criteria below, add it at 185*8423a6f3SJohn McCall // the first properly-aligned offset for that field that is >= LastEnd, 186*8423a6f3SJohn McCall // and update LastEnd to the first byte following the field. 187*8423a6f3SJohn McCall // 188*8423a6f3SJohn McCall // The "best" field is chosen by the following criteria, considered 189*8423a6f3SJohn McCall // strictly in order: 190*8423a6f3SJohn McCall // 191*8423a6f3SJohn McCall // - When filling a gap betweeen fields, the field must fit. 192*8423a6f3SJohn McCall // - A field is preferred if it requires less padding following LastEnd. 193*8423a6f3SJohn McCall // - A field is preferred if it is more aligned. 194*8423a6f3SJohn McCall // - A field is preferred if it is larger. 195*8423a6f3SJohn McCall // - A field is preferred if it appeared earlier in the initial order. 196*8423a6f3SJohn McCall // 197*8423a6f3SJohn McCall // Minimizing leading padding is a greedy attempt to avoid padding 198*8423a6f3SJohn McCall // entirely. Preferring more-aligned fields is an attempt to eliminate 199*8423a6f3SJohn McCall // stricter constraints earlier, with the idea that weaker alignment 200*8423a6f3SJohn McCall // constraints may be resolvable with less padding elsewhere. These 201*8423a6f3SJohn McCall // These two rules are sufficient to ensure that we get the optimal 202*8423a6f3SJohn McCall // layout in the "C-style" case. Preferring larger fields tends to take 203*8423a6f3SJohn McCall // better advantage of large gaps and may be more likely to have a size 204*8423a6f3SJohn McCall // that's a multiple of a useful alignment. Preferring the initial 205*8423a6f3SJohn McCall // order may help somewhat with locality but is mostly just a way of 206*8423a6f3SJohn McCall // ensuring deterministic output. 207*8423a6f3SJohn McCall // 208*8423a6f3SJohn McCall // Note that this algorithm does not guarantee a minimal layout. Picking 209*8423a6f3SJohn McCall // a larger object greedily may leave a gap that cannot be filled as 210*8423a6f3SJohn McCall // efficiently. Unfortunately, solving this perfectly is an NP-complete 211*8423a6f3SJohn McCall // problem (by reduction from bin-packing: let B_i be the bin sizes and 212*8423a6f3SJohn McCall // O_j be the object sizes; add fixed-offset fields such that the gaps 213*8423a6f3SJohn McCall // between them have size B_i, and add flexible-offset fields with 214*8423a6f3SJohn McCall // alignment 1 and size O_j; if the layout size is equal to the end of 215*8423a6f3SJohn McCall // the last fixed-layout field, the objects fit in the bins; note that 216*8423a6f3SJohn McCall // this doesn't even require the complexity of alignment). 217*8423a6f3SJohn McCall 218*8423a6f3SJohn McCall // The implementation below is essentially just an optimized version of 219*8423a6f3SJohn McCall // scanning the list of remaining fields looking for the best, which 220*8423a6f3SJohn McCall // would be O(n^2). In the worst case, it doesn't improve on that. 221*8423a6f3SJohn McCall // However, in practice it'll just scan the array of alignment bins 222*8423a6f3SJohn McCall // and consider the first few elements from one or two bins. The 223*8423a6f3SJohn McCall // number of bins is bounded by a small constant: alignments are powers 224*8423a6f3SJohn McCall // of two that are vanishingly unlikely to be over 64 and fairly unlikely 225*8423a6f3SJohn McCall // to be over 8. And multiple elements only need to be considered when 226*8423a6f3SJohn McCall // filling a gap between fixed-offset fields, which doesn't happen very 227*8423a6f3SJohn McCall // often. We could use a data structure within bins that optimizes for 228*8423a6f3SJohn McCall // finding the best-sized match, but it would require allocating memory 229*8423a6f3SJohn McCall // and copying data, so it's unlikely to be worthwhile. 230*8423a6f3SJohn McCall 231*8423a6f3SJohn McCall 232*8423a6f3SJohn McCall // Start by organizing the flexible-offset fields into bins according to 233*8423a6f3SJohn McCall // their alignment. We expect a small enough number of bins that we 234*8423a6f3SJohn McCall // don't care about the asymptotic costs of walking this. 235*8423a6f3SJohn McCall struct AlignmentQueue { 236*8423a6f3SJohn McCall /// The minimum size of anything currently in this queue. 237*8423a6f3SJohn McCall uint64_t MinSize; 238*8423a6f3SJohn McCall 239*8423a6f3SJohn McCall /// The head of the queue. A singly-linked list. The order here should 240*8423a6f3SJohn McCall /// be consistent with the earlier sort, i.e. the elements should be 241*8423a6f3SJohn McCall /// monotonically descending in size and otherwise in the original order. 242*8423a6f3SJohn McCall /// 243*8423a6f3SJohn McCall /// We remove the queue from the array as soon as this is empty. 244*8423a6f3SJohn McCall OptimizedStructLayoutField *Head; 245*8423a6f3SJohn McCall 246*8423a6f3SJohn McCall /// The alignment requirement of the queue. 247*8423a6f3SJohn McCall Align Alignment; 248*8423a6f3SJohn McCall 249*8423a6f3SJohn McCall static Field *getNext(Field *Cur) { 250*8423a6f3SJohn McCall return static_cast<Field *>(Cur->Scratch); 251*8423a6f3SJohn McCall } 252*8423a6f3SJohn McCall }; 253*8423a6f3SJohn McCall SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment; 254*8423a6f3SJohn McCall for (auto I = FirstFlexible; I != E; ) { 255*8423a6f3SJohn McCall auto Head = I; 256*8423a6f3SJohn McCall auto Alignment = I->Alignment; 257*8423a6f3SJohn McCall 258*8423a6f3SJohn McCall uint64_t MinSize = I->Size; 259*8423a6f3SJohn McCall auto LastInQueue = I; 260*8423a6f3SJohn McCall for (++I; I != E && I->Alignment == Alignment; ++I) { 261*8423a6f3SJohn McCall LastInQueue->Scratch = I; 262*8423a6f3SJohn McCall LastInQueue = I; 263*8423a6f3SJohn McCall MinSize = std::min(MinSize, I->Size); 264*8423a6f3SJohn McCall } 265*8423a6f3SJohn McCall LastInQueue->Scratch = nullptr; 266*8423a6f3SJohn McCall 267*8423a6f3SJohn McCall FlexibleFieldsByAlignment.push_back({MinSize, Head, Alignment}); 268*8423a6f3SJohn McCall } 269*8423a6f3SJohn McCall 270*8423a6f3SJohn McCall #ifndef NDEBUG 271*8423a6f3SJohn McCall // Verify that we set the queues up correctly. 272*8423a6f3SJohn McCall auto checkQueues = [&]{ 273*8423a6f3SJohn McCall bool FirstQueue = true; 274*8423a6f3SJohn McCall Align LastQueueAlignment; 275*8423a6f3SJohn McCall for (auto &Queue : FlexibleFieldsByAlignment) { 276*8423a6f3SJohn McCall assert((FirstQueue || Queue.Alignment < LastQueueAlignment) && 277*8423a6f3SJohn McCall "bins not in order of descending alignment"); 278*8423a6f3SJohn McCall LastQueueAlignment = Queue.Alignment; 279*8423a6f3SJohn McCall FirstQueue = false; 280*8423a6f3SJohn McCall 281*8423a6f3SJohn McCall assert(Queue.Head && "queue was empty"); 282*8423a6f3SJohn McCall uint64_t LastSize = ~(uint64_t)0; 283*8423a6f3SJohn McCall for (auto I = Queue.Head; I; I = Queue.getNext(I)) { 284*8423a6f3SJohn McCall assert(I->Alignment == Queue.Alignment && "bad field in queue"); 285*8423a6f3SJohn McCall assert(I->Size <= LastSize && "queue not in descending size order"); 286*8423a6f3SJohn McCall LastSize = I->Size; 287*8423a6f3SJohn McCall } 288*8423a6f3SJohn McCall } 289*8423a6f3SJohn McCall }; 290*8423a6f3SJohn McCall checkQueues(); 291*8423a6f3SJohn McCall #endif 292*8423a6f3SJohn McCall 293*8423a6f3SJohn McCall /// Helper function to remove a field from a queue. 294*8423a6f3SJohn McCall auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) { 295*8423a6f3SJohn McCall assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur); 296*8423a6f3SJohn McCall 297*8423a6f3SJohn McCall // If we're removing Cur from a non-initial position, splice it out 298*8423a6f3SJohn McCall // of the linked list. 299*8423a6f3SJohn McCall if (Last) { 300*8423a6f3SJohn McCall Last->Scratch = Cur->Scratch; 301*8423a6f3SJohn McCall 302*8423a6f3SJohn McCall // If Cur was the last field in the list, we need to update MinSize. 303*8423a6f3SJohn McCall // We can just use the last field's size because the list is in 304*8423a6f3SJohn McCall // descending order of size. 305*8423a6f3SJohn McCall if (!Cur->Scratch) 306*8423a6f3SJohn McCall Queue->MinSize = Last->Size; 307*8423a6f3SJohn McCall 308*8423a6f3SJohn McCall // Otherwise, replace the head. 309*8423a6f3SJohn McCall } else { 310*8423a6f3SJohn McCall if (auto NewHead = Queue->getNext(Cur)) 311*8423a6f3SJohn McCall Queue->Head = NewHead; 312*8423a6f3SJohn McCall 313*8423a6f3SJohn McCall // If we just emptied the queue, destroy its bin. 314*8423a6f3SJohn McCall else 315*8423a6f3SJohn McCall FlexibleFieldsByAlignment.erase(Queue); 316*8423a6f3SJohn McCall } 317*8423a6f3SJohn McCall }; 318*8423a6f3SJohn McCall 319*8423a6f3SJohn McCall // Do layout into a local array. Doing this in-place on Fields is 320*8423a6f3SJohn McCall // not really feasible. 321*8423a6f3SJohn McCall SmallVector<Field, 16> Layout; 322*8423a6f3SJohn McCall Layout.reserve(Fields.size()); 323*8423a6f3SJohn McCall 324*8423a6f3SJohn McCall // The offset that we're currently looking to insert at (or after). 325*8423a6f3SJohn McCall uint64_t LastEnd = 0; 326*8423a6f3SJohn McCall 327*8423a6f3SJohn McCall // Helper function to splice Cur out of the given queue and add it 328*8423a6f3SJohn McCall // to the layout at the given offset. 329*8423a6f3SJohn McCall auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur, 330*8423a6f3SJohn McCall uint64_t Offset) -> bool { 331*8423a6f3SJohn McCall assert(Offset == alignTo(LastEnd, Cur->Alignment)); 332*8423a6f3SJohn McCall 333*8423a6f3SJohn McCall // Splice out. This potentially invalidates Queue. 334*8423a6f3SJohn McCall spliceFromQueue(Queue, Last, Cur); 335*8423a6f3SJohn McCall 336*8423a6f3SJohn McCall // Add Cur to the layout. 337*8423a6f3SJohn McCall Layout.push_back(*Cur); 338*8423a6f3SJohn McCall Layout.back().Offset = Offset; 339*8423a6f3SJohn McCall LastEnd = Layout.back().getEndOffset(); 340*8423a6f3SJohn McCall 341*8423a6f3SJohn McCall // Always return true so that we can be tail-called. 342*8423a6f3SJohn McCall return true; 343*8423a6f3SJohn McCall }; 344*8423a6f3SJohn McCall 345*8423a6f3SJohn McCall // Helper function to try to find a field in the given queue that'll 346*8423a6f3SJohn McCall // fit starting at StartOffset but before EndOffset (if present). 347*8423a6f3SJohn McCall // Note that this never fails if EndOffset is not provided. 348*8423a6f3SJohn McCall auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue, 349*8423a6f3SJohn McCall uint64_t StartOffset, 350*8423a6f3SJohn McCall Optional<uint64_t> EndOffset) -> bool { 351*8423a6f3SJohn McCall assert(Queue->Head); 352*8423a6f3SJohn McCall assert(StartOffset == alignTo(LastEnd, Queue->Alignment)); 353*8423a6f3SJohn McCall 354*8423a6f3SJohn McCall // Figure out the maximum size that a field can be, and ignore this 355*8423a6f3SJohn McCall // queue if there's nothing in it that small. 356*8423a6f3SJohn McCall auto MaxViableSize = 357*8423a6f3SJohn McCall (EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0); 358*8423a6f3SJohn McCall if (Queue->MinSize > MaxViableSize) return false; 359*8423a6f3SJohn McCall 360*8423a6f3SJohn McCall // Find the matching field. Note that this should always find 361*8423a6f3SJohn McCall // something because of the MinSize check above. 362*8423a6f3SJohn McCall for (Field *Cur = Queue->Head, *Last = nullptr; true; 363*8423a6f3SJohn McCall Last = Cur, Cur = Queue->getNext(Cur)) { 364*8423a6f3SJohn McCall assert(Cur && "didn't find a match in queue despite its MinSize"); 365*8423a6f3SJohn McCall if (Cur->Size <= MaxViableSize) 366*8423a6f3SJohn McCall return addToLayout(Queue, Last, Cur, StartOffset); 367*8423a6f3SJohn McCall } 368*8423a6f3SJohn McCall 369*8423a6f3SJohn McCall llvm_unreachable("didn't find a match in queue despite its MinSize"); 370*8423a6f3SJohn McCall }; 371*8423a6f3SJohn McCall 372*8423a6f3SJohn McCall // Helper function to find the "best" flexible-offset field according 373*8423a6f3SJohn McCall // to the criteria described above. 374*8423a6f3SJohn McCall auto tryAddBestField = [&](Optional<uint64_t> BeforeOffset) -> bool { 375*8423a6f3SJohn McCall auto QueueB = FlexibleFieldsByAlignment.begin(); 376*8423a6f3SJohn McCall auto QueueE = FlexibleFieldsByAlignment.end(); 377*8423a6f3SJohn McCall 378*8423a6f3SJohn McCall // Start by looking for the most-aligned queue that doesn't need any 379*8423a6f3SJohn McCall // leading padding after LastEnd. 380*8423a6f3SJohn McCall auto FirstQueueToSearch = QueueB; 381*8423a6f3SJohn McCall for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) { 382*8423a6f3SJohn McCall if (isAligned(FirstQueueToSearch->Alignment, LastEnd)) 383*8423a6f3SJohn McCall break; 384*8423a6f3SJohn McCall } 385*8423a6f3SJohn McCall 386*8423a6f3SJohn McCall uint64_t Offset = LastEnd; 387*8423a6f3SJohn McCall while (true) { 388*8423a6f3SJohn McCall // Invariant: all of the queues in [FirstQueueToSearch, QueueE) 389*8423a6f3SJohn McCall // require the same initial padding offset. 390*8423a6f3SJohn McCall 391*8423a6f3SJohn McCall // Search those queues in descending order of alignment for a 392*8423a6f3SJohn McCall // satisfactory field. 393*8423a6f3SJohn McCall for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) { 394*8423a6f3SJohn McCall if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset)) 395*8423a6f3SJohn McCall return true; 396*8423a6f3SJohn McCall } 397*8423a6f3SJohn McCall 398*8423a6f3SJohn McCall // Okay, we don't need to scan those again. 399*8423a6f3SJohn McCall QueueE = FirstQueueToSearch; 400*8423a6f3SJohn McCall 401*8423a6f3SJohn McCall // If we started from the first queue, we're done. 402*8423a6f3SJohn McCall if (FirstQueueToSearch == QueueB) 403*8423a6f3SJohn McCall return false; 404*8423a6f3SJohn McCall 405*8423a6f3SJohn McCall // Otherwise, scan backwards to find the most-aligned queue that 406*8423a6f3SJohn McCall // still has minimal leading padding after LastEnd. 407*8423a6f3SJohn McCall --FirstQueueToSearch; 408*8423a6f3SJohn McCall Offset = alignTo(LastEnd, FirstQueueToSearch->Alignment); 409*8423a6f3SJohn McCall while (FirstQueueToSearch != QueueB && 410*8423a6f3SJohn McCall Offset == alignTo(LastEnd, FirstQueueToSearch[-1].Alignment)) 411*8423a6f3SJohn McCall --FirstQueueToSearch; 412*8423a6f3SJohn McCall } 413*8423a6f3SJohn McCall }; 414*8423a6f3SJohn McCall 415*8423a6f3SJohn McCall // Phase 1: fill the gaps between fixed-offset fields with the best 416*8423a6f3SJohn McCall // flexible-offset field that fits. 417*8423a6f3SJohn McCall for (auto I = Fields.begin(); I != FirstFlexible; ++I) { 418*8423a6f3SJohn McCall while (LastEnd != I->Offset) { 419*8423a6f3SJohn McCall if (!tryAddBestField(I->Offset)) 420*8423a6f3SJohn McCall break; 421*8423a6f3SJohn McCall } 422*8423a6f3SJohn McCall Layout.push_back(*I); 423*8423a6f3SJohn McCall LastEnd = I->getEndOffset(); 424*8423a6f3SJohn McCall } 425*8423a6f3SJohn McCall 426*8423a6f3SJohn McCall #ifndef NDEBUG 427*8423a6f3SJohn McCall checkQueues(); 428*8423a6f3SJohn McCall #endif 429*8423a6f3SJohn McCall 430*8423a6f3SJohn McCall // Phase 2: repeatedly add the best flexible-offset field until 431*8423a6f3SJohn McCall // they're all gone. 432*8423a6f3SJohn McCall while (!FlexibleFieldsByAlignment.empty()) { 433*8423a6f3SJohn McCall bool Success = tryAddBestField(None); 434*8423a6f3SJohn McCall assert(Success && "didn't find a field with no fixed limit?"); 435*8423a6f3SJohn McCall (void) Success; 436*8423a6f3SJohn McCall } 437*8423a6f3SJohn McCall 438*8423a6f3SJohn McCall // Copy the layout back into place. 439*8423a6f3SJohn McCall assert(Layout.size() == Fields.size()); 440*8423a6f3SJohn McCall memcpy(Fields.data(), Layout.data(), 441*8423a6f3SJohn McCall Fields.size() * sizeof(OptimizedStructLayoutField)); 442*8423a6f3SJohn McCall 443*8423a6f3SJohn McCall #ifndef NDEBUG 444*8423a6f3SJohn McCall // Make a final check that the layout is valid. 445*8423a6f3SJohn McCall checkValidLayout(Fields, LastEnd, MaxAlign); 446*8423a6f3SJohn McCall #endif 447*8423a6f3SJohn McCall 448*8423a6f3SJohn McCall return std::make_pair(LastEnd, MaxAlign); 449*8423a6f3SJohn McCall } 450