1 //===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a class for representing known zeros and ones used by 10 // computeKnownBits. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Support/KnownBits.h" 15 #include <cassert> 16 17 using namespace llvm; 18 19 static KnownBits computeForAddCarry( 20 const KnownBits &LHS, const KnownBits &RHS, 21 bool CarryZero, bool CarryOne) { 22 assert(!(CarryZero && CarryOne) && 23 "Carry can't be zero and one at the same time"); 24 25 APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero; 26 APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne; 27 28 // Compute known bits of the carry. 29 APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); 30 APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; 31 32 // Compute set of known bits (where all three relevant bits are known). 33 APInt LHSKnownUnion = LHS.Zero | LHS.One; 34 APInt RHSKnownUnion = RHS.Zero | RHS.One; 35 APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne; 36 APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion; 37 38 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 39 "known bits of sum differ"); 40 41 // Compute known bits of the result. 42 KnownBits KnownOut; 43 KnownOut.Zero = ~std::move(PossibleSumZero) & Known; 44 KnownOut.One = std::move(PossibleSumOne) & Known; 45 return KnownOut; 46 } 47 48 KnownBits KnownBits::computeForAddCarry( 49 const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) { 50 assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit"); 51 return ::computeForAddCarry( 52 LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue()); 53 } 54 55 KnownBits KnownBits::computeForAddSub(bool Add, bool NSW, 56 const KnownBits &LHS, KnownBits RHS) { 57 KnownBits KnownOut; 58 if (Add) { 59 // Sum = LHS + RHS + 0 60 KnownOut = ::computeForAddCarry( 61 LHS, RHS, /*CarryZero*/true, /*CarryOne*/false); 62 } else { 63 // Sum = LHS + ~RHS + 1 64 std::swap(RHS.Zero, RHS.One); 65 KnownOut = ::computeForAddCarry( 66 LHS, RHS, /*CarryZero*/false, /*CarryOne*/true); 67 } 68 69 // Are we still trying to solve for the sign bit? 70 if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) { 71 if (NSW) { 72 // Adding two non-negative numbers, or subtracting a negative number from 73 // a non-negative one, can't wrap into negative. 74 if (LHS.isNonNegative() && RHS.isNonNegative()) 75 KnownOut.makeNonNegative(); 76 // Adding two negative numbers, or subtracting a non-negative number from 77 // a negative one, can't wrap into non-negative. 78 else if (LHS.isNegative() && RHS.isNegative()) 79 KnownOut.makeNegative(); 80 } 81 } 82 83 return KnownOut; 84 } 85 86 KnownBits KnownBits::makeGE(const APInt &Val) const { 87 // Count the number of leading bit positions where our underlying value is 88 // known to be less than or equal to Val. 89 unsigned N = (Zero | Val).countLeadingOnes(); 90 91 // For each of those bit positions, if Val has a 1 in that bit then our 92 // underlying value must also have a 1. 93 APInt MaskedVal(Val); 94 MaskedVal.clearLowBits(getBitWidth() - N); 95 return KnownBits(Zero, One | MaskedVal); 96 } 97 98 KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) { 99 // If we can prove that LHS >= RHS then use LHS as the result. Likewise for 100 // RHS. Ideally our caller would already have spotted these cases and 101 // optimized away the umax operation, but we handle them here for 102 // completeness. 103 if (LHS.getMinValue().uge(RHS.getMaxValue())) 104 return LHS; 105 if (RHS.getMinValue().uge(LHS.getMaxValue())) 106 return RHS; 107 108 // If the result of the umax is LHS then it must be greater than or equal to 109 // the minimum possible value of RHS. Likewise for RHS. Any known bits that 110 // are common to these two values are also known in the result. 111 KnownBits L = LHS.makeGE(RHS.getMinValue()); 112 KnownBits R = RHS.makeGE(LHS.getMinValue()); 113 return KnownBits(L.Zero & R.Zero, L.One & R.One); 114 } 115 116 KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) { 117 // Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0] 118 auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); }; 119 return Flip(umax(Flip(LHS), Flip(RHS))); 120 } 121 122 KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) { 123 // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF] 124 auto Flip = [](const KnownBits &Val) { 125 unsigned SignBitPosition = Val.getBitWidth() - 1; 126 APInt Zero = Val.Zero; 127 APInt One = Val.One; 128 Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]); 129 One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); 130 return KnownBits(Zero, One); 131 }; 132 return Flip(umax(Flip(LHS), Flip(RHS))); 133 } 134 135 KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) { 136 // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0] 137 auto Flip = [](const KnownBits &Val) { 138 unsigned SignBitPosition = Val.getBitWidth() - 1; 139 APInt Zero = Val.One; 140 APInt One = Val.Zero; 141 Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); 142 One.setBitVal(SignBitPosition, Val.One[SignBitPosition]); 143 return KnownBits(Zero, One); 144 }; 145 return Flip(umax(Flip(LHS), Flip(RHS))); 146 } 147 148 KnownBits KnownBits::abs() const { 149 // If the source's MSB is zero then we know the rest of the bits already. 150 if (isNonNegative()) 151 return *this; 152 153 // Assume we know nothing. 154 KnownBits KnownAbs(getBitWidth()); 155 156 // We only know that the absolute values's MSB will be zero iff there is 157 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 158 APInt Val = One; 159 Val.clearSignBit(); 160 if (!Val.isNullValue()) 161 KnownAbs.Zero.setSignBit(); 162 163 return KnownAbs; 164 } 165 166 KnownBits KnownBits::computeForMul(const KnownBits &LHS, const KnownBits &RHS) { 167 unsigned BitWidth = LHS.getBitWidth(); 168 169 assert(!LHS.hasConflict() && !RHS.hasConflict()); 170 // Compute a conservative estimate for high known-0 bits. 171 unsigned LeadZ = 172 std::max(LHS.countMinLeadingZeros() + RHS.countMinLeadingZeros(), 173 BitWidth) - 174 BitWidth; 175 LeadZ = std::min(LeadZ, BitWidth); 176 177 // The result of the bottom bits of an integer multiply can be 178 // inferred by looking at the bottom bits of both operands and 179 // multiplying them together. 180 // We can infer at least the minimum number of known trailing bits 181 // of both operands. Depending on number of trailing zeros, we can 182 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 183 // a and b are divisible by m and n respectively. 184 // We then calculate how many of those bits are inferrable and set 185 // the output. For example, the i8 mul: 186 // a = XXXX1100 (12) 187 // b = XXXX1110 (14) 188 // We know the bottom 3 bits are zero since the first can be divided by 189 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 190 // Applying the multiplication to the trimmed arguments gets: 191 // XX11 (3) 192 // X111 (7) 193 // ------- 194 // XX11 195 // XX11 196 // XX11 197 // XX11 198 // ------- 199 // XXXXX01 200 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 201 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 202 // The proof for this can be described as: 203 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 204 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 205 // umin(countTrailingZeros(C2), C6) + 206 // umin(C5 - umin(countTrailingZeros(C1), C5), 207 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 208 // %aa = shl i8 %a, C5 209 // %bb = shl i8 %b, C6 210 // %aaa = or i8 %aa, C1 211 // %bbb = or i8 %bb, C2 212 // %mul = mul i8 %aaa, %bbb 213 // %mask = and i8 %mul, C7 214 // => 215 // %mask = i8 ((C1*C2)&C7) 216 // Where C5, C6 describe the known bits of %a, %b 217 // C1, C2 describe the known bottom bits of %a, %b. 218 // C7 describes the mask of the known bits of the result. 219 APInt Bottom0 = LHS.One; 220 APInt Bottom1 = RHS.One; 221 222 // How many times we'd be able to divide each argument by 2 (shr by 1). 223 // This gives us the number of trailing zeros on the multiplication result. 224 unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countTrailingOnes(); 225 unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countTrailingOnes(); 226 unsigned TrailZero0 = LHS.countMinTrailingZeros(); 227 unsigned TrailZero1 = RHS.countMinTrailingZeros(); 228 unsigned TrailZ = TrailZero0 + TrailZero1; 229 230 // Figure out the fewest known-bits operand. 231 unsigned SmallestOperand = 232 std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1); 233 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 234 235 APInt BottomKnown = 236 Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1); 237 238 KnownBits Res(BitWidth); 239 Res.Zero.setHighBits(LeadZ); 240 Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 241 Res.One = BottomKnown.getLoBits(ResultBitsKnown); 242 return Res; 243 } 244 245 KnownBits &KnownBits::operator&=(const KnownBits &RHS) { 246 // Result bit is 0 if either operand bit is 0. 247 Zero |= RHS.Zero; 248 // Result bit is 1 if both operand bits are 1. 249 One &= RHS.One; 250 return *this; 251 } 252 253 KnownBits &KnownBits::operator|=(const KnownBits &RHS) { 254 // Result bit is 0 if both operand bits are 0. 255 Zero &= RHS.Zero; 256 // Result bit is 1 if either operand bit is 1. 257 One |= RHS.One; 258 return *this; 259 } 260 261 KnownBits &KnownBits::operator^=(const KnownBits &RHS) { 262 // Result bit is 0 if both operand bits are 0 or both are 1. 263 APInt Z = (Zero & RHS.Zero) | (One & RHS.One); 264 // Result bit is 1 if one operand bit is 0 and the other is 1. 265 One = (Zero & RHS.One) | (One & RHS.Zero); 266 Zero = std::move(Z); 267 return *this; 268 } 269