1 //===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a class for representing known zeros and ones used by 10 // computeKnownBits. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Support/KnownBits.h" 15 #include <cassert> 16 17 using namespace llvm; 18 19 static KnownBits computeForAddCarry( 20 const KnownBits &LHS, const KnownBits &RHS, 21 bool CarryZero, bool CarryOne) { 22 assert(!(CarryZero && CarryOne) && 23 "Carry can't be zero and one at the same time"); 24 25 APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero; 26 APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne; 27 28 // Compute known bits of the carry. 29 APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); 30 APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; 31 32 // Compute set of known bits (where all three relevant bits are known). 33 APInt LHSKnownUnion = LHS.Zero | LHS.One; 34 APInt RHSKnownUnion = RHS.Zero | RHS.One; 35 APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne; 36 APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion; 37 38 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 39 "known bits of sum differ"); 40 41 // Compute known bits of the result. 42 KnownBits KnownOut; 43 KnownOut.Zero = ~std::move(PossibleSumZero) & Known; 44 KnownOut.One = std::move(PossibleSumOne) & Known; 45 return KnownOut; 46 } 47 48 KnownBits KnownBits::computeForAddCarry( 49 const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) { 50 assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit"); 51 return ::computeForAddCarry( 52 LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue()); 53 } 54 55 KnownBits KnownBits::computeForAddSub(bool Add, bool NSW, 56 const KnownBits &LHS, KnownBits RHS) { 57 KnownBits KnownOut; 58 if (Add) { 59 // Sum = LHS + RHS + 0 60 KnownOut = ::computeForAddCarry( 61 LHS, RHS, /*CarryZero*/true, /*CarryOne*/false); 62 } else { 63 // Sum = LHS + ~RHS + 1 64 std::swap(RHS.Zero, RHS.One); 65 KnownOut = ::computeForAddCarry( 66 LHS, RHS, /*CarryZero*/false, /*CarryOne*/true); 67 } 68 69 // Are we still trying to solve for the sign bit? 70 if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) { 71 if (NSW) { 72 // Adding two non-negative numbers, or subtracting a negative number from 73 // a non-negative one, can't wrap into negative. 74 if (LHS.isNonNegative() && RHS.isNonNegative()) 75 KnownOut.makeNonNegative(); 76 // Adding two negative numbers, or subtracting a non-negative number from 77 // a negative one, can't wrap into non-negative. 78 else if (LHS.isNegative() && RHS.isNegative()) 79 KnownOut.makeNegative(); 80 } 81 } 82 83 return KnownOut; 84 } 85 86 KnownBits KnownBits::makeGE(const APInt &Val) const { 87 // Count the number of leading bit positions where our underlying value is 88 // known to be less than or equal to Val. 89 unsigned N = (Zero | Val).countLeadingOnes(); 90 91 // For each of those bit positions, if Val has a 1 in that bit then our 92 // underlying value must also have a 1. 93 APInt MaskedVal(Val); 94 MaskedVal.clearLowBits(getBitWidth() - N); 95 return KnownBits(Zero, One | MaskedVal); 96 } 97 98 KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) { 99 // If we can prove that LHS >= RHS then use LHS as the result. Likewise for 100 // RHS. Ideally our caller would already have spotted these cases and 101 // optimized away the umax operation, but we handle them here for 102 // completeness. 103 if (LHS.getMinValue().uge(RHS.getMaxValue())) 104 return LHS; 105 if (RHS.getMinValue().uge(LHS.getMaxValue())) 106 return RHS; 107 108 // If the result of the umax is LHS then it must be greater than or equal to 109 // the minimum possible value of RHS. Likewise for RHS. Any known bits that 110 // are common to these two values are also known in the result. 111 KnownBits L = LHS.makeGE(RHS.getMinValue()); 112 KnownBits R = RHS.makeGE(LHS.getMinValue()); 113 return KnownBits(L.Zero & R.Zero, L.One & R.One); 114 } 115 116 KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) { 117 // Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0] 118 auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); }; 119 return Flip(umax(Flip(LHS), Flip(RHS))); 120 } 121 122 KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) { 123 // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF] 124 auto Flip = [](const KnownBits &Val) { 125 unsigned SignBitPosition = Val.getBitWidth() - 1; 126 APInt Zero = Val.Zero; 127 APInt One = Val.One; 128 Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]); 129 One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); 130 return KnownBits(Zero, One); 131 }; 132 return Flip(umax(Flip(LHS), Flip(RHS))); 133 } 134 135 KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) { 136 // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0] 137 auto Flip = [](const KnownBits &Val) { 138 unsigned SignBitPosition = Val.getBitWidth() - 1; 139 APInt Zero = Val.One; 140 APInt One = Val.Zero; 141 Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); 142 One.setBitVal(SignBitPosition, Val.One[SignBitPosition]); 143 return KnownBits(Zero, One); 144 }; 145 return Flip(umax(Flip(LHS), Flip(RHS))); 146 } 147 148 KnownBits KnownBits::abs() const { 149 // If the source's MSB is zero then we know the rest of the bits already. 150 if (isNonNegative()) 151 return *this; 152 153 // Assume we know nothing. 154 KnownBits KnownAbs(getBitWidth()); 155 156 // We only know that the absolute values's MSB will be zero iff there is 157 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 158 APInt Val = One; 159 Val.clearSignBit(); 160 if (!Val.isNullValue()) 161 KnownAbs.Zero.setSignBit(); 162 163 return KnownAbs; 164 } 165 166 KnownBits &KnownBits::operator&=(const KnownBits &RHS) { 167 // Result bit is 0 if either operand bit is 0. 168 Zero |= RHS.Zero; 169 // Result bit is 1 if both operand bits are 1. 170 One &= RHS.One; 171 return *this; 172 } 173 174 KnownBits &KnownBits::operator|=(const KnownBits &RHS) { 175 // Result bit is 0 if both operand bits are 0. 176 Zero &= RHS.Zero; 177 // Result bit is 1 if either operand bit is 1. 178 One |= RHS.One; 179 return *this; 180 } 181 182 KnownBits &KnownBits::operator^=(const KnownBits &RHS) { 183 // Result bit is 0 if both operand bits are 0 or both are 1. 184 APInt Z = (Zero & RHS.Zero) | (One & RHS.One); 185 // Result bit is 1 if one operand bit is 0 and the other is 1. 186 One = (Zero & RHS.One) | (One & RHS.Zero); 187 Zero = std::move(Z); 188 return *this; 189 } 190