1 //===-------------- lib/Support/BranchProbability.cpp -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Branch Probability class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Support/BranchProbability.h" 14 #include "llvm/Config/llvm-config.h" 15 #include "llvm/Support/Debug.h" 16 #include "llvm/Support/Format.h" 17 #include "llvm/Support/raw_ostream.h" 18 #include <cassert> 19 20 using namespace llvm; 21 22 // These default values are chosen to represent an extremely skewed outcome for 23 // a condition, but they leave some room for interpretation by later passes. 24 // 25 // If the documentation for __builtin_expect() was made explicit that it should 26 // only be used in extreme cases, we could make this ratio higher. As it stands, 27 // programmers may be using __builtin_expect() / llvm.expect to annotate that a 28 // branch is only mildly likely or unlikely to be taken. 29 cl::opt<uint32_t> llvm::LikelyBranchWeight( 30 "likely-branch-weight", cl::Hidden, cl::init(2000), 31 cl::desc("Weight of the branch likely to be taken (default = 2000)")); 32 cl::opt<uint32_t> llvm::UnlikelyBranchWeight( 33 "unlikely-branch-weight", cl::Hidden, cl::init(1), 34 cl::desc("Weight of the branch unlikely to be taken (default = 1)")); 35 36 constexpr uint32_t BranchProbability::D; 37 38 raw_ostream &BranchProbability::print(raw_ostream &OS) const { 39 if (isUnknown()) 40 return OS << "?%"; 41 42 // Get a percentage rounded to two decimal digits. This avoids 43 // implementation-defined rounding inside printf. 44 double Percent = rint(((double)N / D) * 100.0 * 100.0) / 100.0; 45 return OS << format("0x%08" PRIx32 " / 0x%08" PRIx32 " = %.2f%%", N, D, 46 Percent); 47 } 48 49 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 50 LLVM_DUMP_METHOD void BranchProbability::dump() const { print(dbgs()) << '\n'; } 51 #endif 52 53 BranchProbability::BranchProbability(uint32_t Numerator, uint32_t Denominator) { 54 assert(Denominator > 0 && "Denominator cannot be 0!"); 55 assert(Numerator <= Denominator && "Probability cannot be bigger than 1!"); 56 if (Denominator == D) 57 N = Numerator; 58 else { 59 uint64_t Prob64 = 60 (Numerator * static_cast<uint64_t>(D) + Denominator / 2) / Denominator; 61 N = static_cast<uint32_t>(Prob64); 62 } 63 } 64 65 BranchProbability 66 BranchProbability::getBranchProbability(uint64_t Numerator, 67 uint64_t Denominator) { 68 assert(Numerator <= Denominator && "Probability cannot be bigger than 1!"); 69 // Scale down Denominator to fit in a 32-bit integer. 70 int Scale = 0; 71 while (Denominator > UINT32_MAX) { 72 Denominator >>= 1; 73 Scale++; 74 } 75 return BranchProbability(Numerator >> Scale, Denominator); 76 } 77 78 // If ConstD is not zero, then replace D by ConstD so that division and modulo 79 // operations by D can be optimized, in case this function is not inlined by the 80 // compiler. 81 template <uint32_t ConstD> 82 static uint64_t scale(uint64_t Num, uint32_t N, uint32_t D) { 83 if (ConstD > 0) 84 D = ConstD; 85 86 assert(D && "divide by 0"); 87 88 // Fast path for multiplying by 1.0. 89 if (!Num || D == N) 90 return Num; 91 92 // Split Num into upper and lower parts to multiply, then recombine. 93 uint64_t ProductHigh = (Num >> 32) * N; 94 uint64_t ProductLow = (Num & UINT32_MAX) * N; 95 96 // Split into 32-bit digits. 97 uint32_t Upper32 = ProductHigh >> 32; 98 uint32_t Lower32 = ProductLow & UINT32_MAX; 99 uint32_t Mid32Partial = ProductHigh & UINT32_MAX; 100 uint32_t Mid32 = Mid32Partial + (ProductLow >> 32); 101 102 // Carry. 103 Upper32 += Mid32 < Mid32Partial; 104 105 uint64_t Rem = (uint64_t(Upper32) << 32) | Mid32; 106 uint64_t UpperQ = Rem / D; 107 108 // Check for overflow. 109 if (UpperQ > UINT32_MAX) 110 return UINT64_MAX; 111 112 Rem = ((Rem % D) << 32) | Lower32; 113 uint64_t LowerQ = Rem / D; 114 uint64_t Q = (UpperQ << 32) + LowerQ; 115 116 // Check for overflow. 117 return Q < LowerQ ? UINT64_MAX : Q; 118 } 119 120 uint64_t BranchProbability::scale(uint64_t Num) const { 121 return ::scale<D>(Num, N, D); 122 } 123 124 uint64_t BranchProbability::scaleByInverse(uint64_t Num) const { 125 return ::scale<0>(Num, D, N); 126 } 127