1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision floating 11 // point values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/Support/ErrorHandling.h" 19 #include "llvm/Support/MathExtras.h" 20 #include <limits.h> 21 #include <cstring> 22 23 using namespace llvm; 24 25 #define convolve(lhs, rhs) ((lhs) * 4 + (rhs)) 26 27 /* Assumed in hexadecimal significand parsing, and conversion to 28 hexadecimal strings. */ 29 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] 30 COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0); 31 32 namespace llvm { 33 34 /* Represents floating point arithmetic semantics. */ 35 struct fltSemantics { 36 /* The largest E such that 2^E is representable; this matches the 37 definition of IEEE 754. */ 38 exponent_t maxExponent; 39 40 /* The smallest E such that 2^E is a normalized number; this 41 matches the definition of IEEE 754. */ 42 exponent_t minExponent; 43 44 /* Number of bits in the significand. This includes the integer 45 bit. */ 46 unsigned int precision; 47 48 /* True if arithmetic is supported. */ 49 unsigned int arithmeticOK; 50 }; 51 52 const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true }; 53 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true }; 54 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true }; 55 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true }; 56 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true }; 57 const fltSemantics APFloat::Bogus = { 0, 0, 0, true }; 58 59 // The PowerPC format consists of two doubles. It does not map cleanly 60 // onto the usual format above. For now only storage of constants of 61 // this type is supported, no arithmetic. 62 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false }; 63 64 /* A tight upper bound on number of parts required to hold the value 65 pow(5, power) is 66 67 power * 815 / (351 * integerPartWidth) + 1 68 69 However, whilst the result may require only this many parts, 70 because we are multiplying two values to get it, the 71 multiplication may require an extra part with the excess part 72 being zero (consider the trivial case of 1 * 1, tcFullMultiply 73 requires two parts to hold the single-part result). So we add an 74 extra one to guarantee enough space whilst multiplying. */ 75 const unsigned int maxExponent = 16383; 76 const unsigned int maxPrecision = 113; 77 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; 78 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) 79 / (351 * integerPartWidth)); 80 } 81 82 /* A bunch of private, handy routines. */ 83 84 static inline unsigned int 85 partCountForBits(unsigned int bits) 86 { 87 return ((bits) + integerPartWidth - 1) / integerPartWidth; 88 } 89 90 /* Returns 0U-9U. Return values >= 10U are not digits. */ 91 static inline unsigned int 92 decDigitValue(unsigned int c) 93 { 94 return c - '0'; 95 } 96 97 static unsigned int 98 hexDigitValue(unsigned int c) 99 { 100 unsigned int r; 101 102 r = c - '0'; 103 if (r <= 9) 104 return r; 105 106 r = c - 'A'; 107 if (r <= 5) 108 return r + 10; 109 110 r = c - 'a'; 111 if (r <= 5) 112 return r + 10; 113 114 return -1U; 115 } 116 117 static inline void 118 assertArithmeticOK(const llvm::fltSemantics &semantics) { 119 assert(semantics.arithmeticOK && 120 "Compile-time arithmetic does not support these semantics"); 121 } 122 123 /* Return the value of a decimal exponent of the form 124 [+-]ddddddd. 125 126 If the exponent overflows, returns a large exponent with the 127 appropriate sign. */ 128 static int 129 readExponent(StringRef::iterator begin, StringRef::iterator end) 130 { 131 bool isNegative; 132 unsigned int absExponent; 133 const unsigned int overlargeExponent = 24000; /* FIXME. */ 134 StringRef::iterator p = begin; 135 136 assert(p != end && "Exponent has no digits"); 137 138 isNegative = (*p == '-'); 139 if (*p == '-' || *p == '+') { 140 p++; 141 assert(p != end && "Exponent has no digits"); 142 } 143 144 absExponent = decDigitValue(*p++); 145 assert(absExponent < 10U && "Invalid character in exponent"); 146 147 for (; p != end; ++p) { 148 unsigned int value; 149 150 value = decDigitValue(*p); 151 assert(value < 10U && "Invalid character in exponent"); 152 153 value += absExponent * 10; 154 if (absExponent >= overlargeExponent) { 155 absExponent = overlargeExponent; 156 p = end; /* outwit assert below */ 157 break; 158 } 159 absExponent = value; 160 } 161 162 assert(p == end && "Invalid exponent in exponent"); 163 164 if (isNegative) 165 return -(int) absExponent; 166 else 167 return (int) absExponent; 168 } 169 170 /* This is ugly and needs cleaning up, but I don't immediately see 171 how whilst remaining safe. */ 172 static int 173 totalExponent(StringRef::iterator p, StringRef::iterator end, 174 int exponentAdjustment) 175 { 176 int unsignedExponent; 177 bool negative, overflow; 178 int exponent = 0; 179 180 assert(p != end && "Exponent has no digits"); 181 182 negative = *p == '-'; 183 if (*p == '-' || *p == '+') { 184 p++; 185 assert(p != end && "Exponent has no digits"); 186 } 187 188 unsignedExponent = 0; 189 overflow = false; 190 for (; p != end; ++p) { 191 unsigned int value; 192 193 value = decDigitValue(*p); 194 assert(value < 10U && "Invalid character in exponent"); 195 196 unsignedExponent = unsignedExponent * 10 + value; 197 if (unsignedExponent > 32767) 198 overflow = true; 199 } 200 201 if (exponentAdjustment > 32767 || exponentAdjustment < -32768) 202 overflow = true; 203 204 if (!overflow) { 205 exponent = unsignedExponent; 206 if (negative) 207 exponent = -exponent; 208 exponent += exponentAdjustment; 209 if (exponent > 32767 || exponent < -32768) 210 overflow = true; 211 } 212 213 if (overflow) 214 exponent = negative ? -32768: 32767; 215 216 return exponent; 217 } 218 219 static StringRef::iterator 220 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, 221 StringRef::iterator *dot) 222 { 223 StringRef::iterator p = begin; 224 *dot = end; 225 while (*p == '0' && p != end) 226 p++; 227 228 if (*p == '.') { 229 *dot = p++; 230 231 assert(end - begin != 1 && "Significand has no digits"); 232 233 while (*p == '0' && p != end) 234 p++; 235 } 236 237 return p; 238 } 239 240 /* Given a normal decimal floating point number of the form 241 242 dddd.dddd[eE][+-]ddd 243 244 where the decimal point and exponent are optional, fill out the 245 structure D. Exponent is appropriate if the significand is 246 treated as an integer, and normalizedExponent if the significand 247 is taken to have the decimal point after a single leading 248 non-zero digit. 249 250 If the value is zero, V->firstSigDigit points to a non-digit, and 251 the return exponent is zero. 252 */ 253 struct decimalInfo { 254 const char *firstSigDigit; 255 const char *lastSigDigit; 256 int exponent; 257 int normalizedExponent; 258 }; 259 260 static void 261 interpretDecimal(StringRef::iterator begin, StringRef::iterator end, 262 decimalInfo *D) 263 { 264 StringRef::iterator dot = end; 265 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot); 266 267 D->firstSigDigit = p; 268 D->exponent = 0; 269 D->normalizedExponent = 0; 270 271 for (; p != end; ++p) { 272 if (*p == '.') { 273 assert(dot == end && "String contains multiple dots"); 274 dot = p++; 275 if (p == end) 276 break; 277 } 278 if (decDigitValue(*p) >= 10U) 279 break; 280 } 281 282 if (p != end) { 283 assert((*p == 'e' || *p == 'E') && "Invalid character in significand"); 284 assert(p != begin && "Significand has no digits"); 285 assert((dot == end || p - begin != 1) && "Significand has no digits"); 286 287 /* p points to the first non-digit in the string */ 288 D->exponent = readExponent(p + 1, end); 289 290 /* Implied decimal point? */ 291 if (dot == end) 292 dot = p; 293 } 294 295 /* If number is all zeroes accept any exponent. */ 296 if (p != D->firstSigDigit) { 297 /* Drop insignificant trailing zeroes. */ 298 if (p != begin) { 299 do 300 do 301 p--; 302 while (p != begin && *p == '0'); 303 while (p != begin && *p == '.'); 304 } 305 306 /* Adjust the exponents for any decimal point. */ 307 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p)); 308 D->normalizedExponent = (D->exponent + 309 static_cast<exponent_t>((p - D->firstSigDigit) 310 - (dot > D->firstSigDigit && dot < p))); 311 } 312 313 D->lastSigDigit = p; 314 } 315 316 /* Return the trailing fraction of a hexadecimal number. 317 DIGITVALUE is the first hex digit of the fraction, P points to 318 the next digit. */ 319 static lostFraction 320 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, 321 unsigned int digitValue) 322 { 323 unsigned int hexDigit; 324 325 /* If the first trailing digit isn't 0 or 8 we can work out the 326 fraction immediately. */ 327 if (digitValue > 8) 328 return lfMoreThanHalf; 329 else if (digitValue < 8 && digitValue > 0) 330 return lfLessThanHalf; 331 332 /* Otherwise we need to find the first non-zero digit. */ 333 while (*p == '0') 334 p++; 335 336 assert(p != end && "Invalid trailing hexadecimal fraction!"); 337 338 hexDigit = hexDigitValue(*p); 339 340 /* If we ran off the end it is exactly zero or one-half, otherwise 341 a little more. */ 342 if (hexDigit == -1U) 343 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; 344 else 345 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; 346 } 347 348 /* Return the fraction lost were a bignum truncated losing the least 349 significant BITS bits. */ 350 static lostFraction 351 lostFractionThroughTruncation(const integerPart *parts, 352 unsigned int partCount, 353 unsigned int bits) 354 { 355 unsigned int lsb; 356 357 lsb = APInt::tcLSB(parts, partCount); 358 359 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ 360 if (bits <= lsb) 361 return lfExactlyZero; 362 if (bits == lsb + 1) 363 return lfExactlyHalf; 364 if (bits <= partCount * integerPartWidth && 365 APInt::tcExtractBit(parts, bits - 1)) 366 return lfMoreThanHalf; 367 368 return lfLessThanHalf; 369 } 370 371 /* Shift DST right BITS bits noting lost fraction. */ 372 static lostFraction 373 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits) 374 { 375 lostFraction lost_fraction; 376 377 lost_fraction = lostFractionThroughTruncation(dst, parts, bits); 378 379 APInt::tcShiftRight(dst, parts, bits); 380 381 return lost_fraction; 382 } 383 384 /* Combine the effect of two lost fractions. */ 385 static lostFraction 386 combineLostFractions(lostFraction moreSignificant, 387 lostFraction lessSignificant) 388 { 389 if (lessSignificant != lfExactlyZero) { 390 if (moreSignificant == lfExactlyZero) 391 moreSignificant = lfLessThanHalf; 392 else if (moreSignificant == lfExactlyHalf) 393 moreSignificant = lfMoreThanHalf; 394 } 395 396 return moreSignificant; 397 } 398 399 /* The error from the true value, in half-ulps, on multiplying two 400 floating point numbers, which differ from the value they 401 approximate by at most HUE1 and HUE2 half-ulps, is strictly less 402 than the returned value. 403 404 See "How to Read Floating Point Numbers Accurately" by William D 405 Clinger. */ 406 static unsigned int 407 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) 408 { 409 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); 410 411 if (HUerr1 + HUerr2 == 0) 412 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ 413 else 414 return inexactMultiply + 2 * (HUerr1 + HUerr2); 415 } 416 417 /* The number of ulps from the boundary (zero, or half if ISNEAREST) 418 when the least significant BITS are truncated. BITS cannot be 419 zero. */ 420 static integerPart 421 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest) 422 { 423 unsigned int count, partBits; 424 integerPart part, boundary; 425 426 assert(bits != 0); 427 428 bits--; 429 count = bits / integerPartWidth; 430 partBits = bits % integerPartWidth + 1; 431 432 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits)); 433 434 if (isNearest) 435 boundary = (integerPart) 1 << (partBits - 1); 436 else 437 boundary = 0; 438 439 if (count == 0) { 440 if (part - boundary <= boundary - part) 441 return part - boundary; 442 else 443 return boundary - part; 444 } 445 446 if (part == boundary) { 447 while (--count) 448 if (parts[count]) 449 return ~(integerPart) 0; /* A lot. */ 450 451 return parts[0]; 452 } else if (part == boundary - 1) { 453 while (--count) 454 if (~parts[count]) 455 return ~(integerPart) 0; /* A lot. */ 456 457 return -parts[0]; 458 } 459 460 return ~(integerPart) 0; /* A lot. */ 461 } 462 463 /* Place pow(5, power) in DST, and return the number of parts used. 464 DST must be at least one part larger than size of the answer. */ 465 static unsigned int 466 powerOf5(integerPart *dst, unsigned int power) 467 { 468 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 469 15625, 78125 }; 470 integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; 471 pow5s[0] = 78125 * 5; 472 473 unsigned int partsCount[16] = { 1 }; 474 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; 475 unsigned int result; 476 assert(power <= maxExponent); 477 478 p1 = dst; 479 p2 = scratch; 480 481 *p1 = firstEightPowers[power & 7]; 482 power >>= 3; 483 484 result = 1; 485 pow5 = pow5s; 486 487 for (unsigned int n = 0; power; power >>= 1, n++) { 488 unsigned int pc; 489 490 pc = partsCount[n]; 491 492 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ 493 if (pc == 0) { 494 pc = partsCount[n - 1]; 495 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); 496 pc *= 2; 497 if (pow5[pc - 1] == 0) 498 pc--; 499 partsCount[n] = pc; 500 } 501 502 if (power & 1) { 503 integerPart *tmp; 504 505 APInt::tcFullMultiply(p2, p1, pow5, result, pc); 506 result += pc; 507 if (p2[result - 1] == 0) 508 result--; 509 510 /* Now result is in p1 with partsCount parts and p2 is scratch 511 space. */ 512 tmp = p1, p1 = p2, p2 = tmp; 513 } 514 515 pow5 += pc; 516 } 517 518 if (p1 != dst) 519 APInt::tcAssign(dst, p1, result); 520 521 return result; 522 } 523 524 /* Zero at the end to avoid modular arithmetic when adding one; used 525 when rounding up during hexadecimal output. */ 526 static const char hexDigitsLower[] = "0123456789abcdef0"; 527 static const char hexDigitsUpper[] = "0123456789ABCDEF0"; 528 static const char infinityL[] = "infinity"; 529 static const char infinityU[] = "INFINITY"; 530 static const char NaNL[] = "nan"; 531 static const char NaNU[] = "NAN"; 532 533 /* Write out an integerPart in hexadecimal, starting with the most 534 significant nibble. Write out exactly COUNT hexdigits, return 535 COUNT. */ 536 static unsigned int 537 partAsHex (char *dst, integerPart part, unsigned int count, 538 const char *hexDigitChars) 539 { 540 unsigned int result = count; 541 542 assert(count != 0 && count <= integerPartWidth / 4); 543 544 part >>= (integerPartWidth - 4 * count); 545 while (count--) { 546 dst[count] = hexDigitChars[part & 0xf]; 547 part >>= 4; 548 } 549 550 return result; 551 } 552 553 /* Write out an unsigned decimal integer. */ 554 static char * 555 writeUnsignedDecimal (char *dst, unsigned int n) 556 { 557 char buff[40], *p; 558 559 p = buff; 560 do 561 *p++ = '0' + n % 10; 562 while (n /= 10); 563 564 do 565 *dst++ = *--p; 566 while (p != buff); 567 568 return dst; 569 } 570 571 /* Write out a signed decimal integer. */ 572 static char * 573 writeSignedDecimal (char *dst, int value) 574 { 575 if (value < 0) { 576 *dst++ = '-'; 577 dst = writeUnsignedDecimal(dst, -(unsigned) value); 578 } else 579 dst = writeUnsignedDecimal(dst, value); 580 581 return dst; 582 } 583 584 /* Constructors. */ 585 void 586 APFloat::initialize(const fltSemantics *ourSemantics) 587 { 588 unsigned int count; 589 590 semantics = ourSemantics; 591 count = partCount(); 592 if (count > 1) 593 significand.parts = new integerPart[count]; 594 } 595 596 void 597 APFloat::freeSignificand() 598 { 599 if (partCount() > 1) 600 delete [] significand.parts; 601 } 602 603 void 604 APFloat::assign(const APFloat &rhs) 605 { 606 assert(semantics == rhs.semantics); 607 608 sign = rhs.sign; 609 category = rhs.category; 610 exponent = rhs.exponent; 611 sign2 = rhs.sign2; 612 exponent2 = rhs.exponent2; 613 if (category == fcNormal || category == fcNaN) 614 copySignificand(rhs); 615 } 616 617 void 618 APFloat::copySignificand(const APFloat &rhs) 619 { 620 assert(category == fcNormal || category == fcNaN); 621 assert(rhs.partCount() >= partCount()); 622 623 APInt::tcAssign(significandParts(), rhs.significandParts(), 624 partCount()); 625 } 626 627 /* Make this number a NaN, with an arbitrary but deterministic value 628 for the significand. If double or longer, this is a signalling NaN, 629 which may not be ideal. If float, this is QNaN(0). */ 630 void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) 631 { 632 category = fcNaN; 633 sign = Negative; 634 635 integerPart *significand = significandParts(); 636 unsigned numParts = partCount(); 637 638 // Set the significand bits to the fill. 639 if (!fill || fill->getNumWords() < numParts) 640 APInt::tcSet(significand, 0, numParts); 641 if (fill) { 642 APInt::tcAssign(significand, fill->getRawData(), 643 std::min(fill->getNumWords(), numParts)); 644 645 // Zero out the excess bits of the significand. 646 unsigned bitsToPreserve = semantics->precision - 1; 647 unsigned part = bitsToPreserve / 64; 648 bitsToPreserve %= 64; 649 significand[part] &= ((1ULL << bitsToPreserve) - 1); 650 for (part++; part != numParts; ++part) 651 significand[part] = 0; 652 } 653 654 unsigned QNaNBit = semantics->precision - 2; 655 656 if (SNaN) { 657 // We always have to clear the QNaN bit to make it an SNaN. 658 APInt::tcClearBit(significand, QNaNBit); 659 660 // If there are no bits set in the payload, we have to set 661 // *something* to make it a NaN instead of an infinity; 662 // conventionally, this is the next bit down from the QNaN bit. 663 if (APInt::tcIsZero(significand, numParts)) 664 APInt::tcSetBit(significand, QNaNBit - 1); 665 } else { 666 // We always have to set the QNaN bit to make it a QNaN. 667 APInt::tcSetBit(significand, QNaNBit); 668 } 669 670 // For x87 extended precision, we want to make a NaN, not a 671 // pseudo-NaN. Maybe we should expose the ability to make 672 // pseudo-NaNs? 673 if (semantics == &APFloat::x87DoubleExtended) 674 APInt::tcSetBit(significand, QNaNBit + 1); 675 } 676 677 APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative, 678 const APInt *fill) { 679 APFloat value(Sem, uninitialized); 680 value.makeNaN(SNaN, Negative, fill); 681 return value; 682 } 683 684 APFloat & 685 APFloat::operator=(const APFloat &rhs) 686 { 687 if (this != &rhs) { 688 if (semantics != rhs.semantics) { 689 freeSignificand(); 690 initialize(rhs.semantics); 691 } 692 assign(rhs); 693 } 694 695 return *this; 696 } 697 698 bool 699 APFloat::bitwiseIsEqual(const APFloat &rhs) const { 700 if (this == &rhs) 701 return true; 702 if (semantics != rhs.semantics || 703 category != rhs.category || 704 sign != rhs.sign) 705 return false; 706 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble && 707 sign2 != rhs.sign2) 708 return false; 709 if (category==fcZero || category==fcInfinity) 710 return true; 711 else if (category==fcNormal && exponent!=rhs.exponent) 712 return false; 713 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble && 714 exponent2!=rhs.exponent2) 715 return false; 716 else { 717 int i= partCount(); 718 const integerPart* p=significandParts(); 719 const integerPart* q=rhs.significandParts(); 720 for (; i>0; i--, p++, q++) { 721 if (*p != *q) 722 return false; 723 } 724 return true; 725 } 726 } 727 728 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) 729 { 730 assertArithmeticOK(ourSemantics); 731 initialize(&ourSemantics); 732 sign = 0; 733 zeroSignificand(); 734 exponent = ourSemantics.precision - 1; 735 significandParts()[0] = value; 736 normalize(rmNearestTiesToEven, lfExactlyZero); 737 } 738 739 APFloat::APFloat(const fltSemantics &ourSemantics) { 740 assertArithmeticOK(ourSemantics); 741 initialize(&ourSemantics); 742 category = fcZero; 743 sign = false; 744 } 745 746 APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) { 747 assertArithmeticOK(ourSemantics); 748 // Allocates storage if necessary but does not initialize it. 749 initialize(&ourSemantics); 750 } 751 752 APFloat::APFloat(const fltSemantics &ourSemantics, 753 fltCategory ourCategory, bool negative) 754 { 755 assertArithmeticOK(ourSemantics); 756 initialize(&ourSemantics); 757 category = ourCategory; 758 sign = negative; 759 if (category == fcNormal) 760 category = fcZero; 761 else if (ourCategory == fcNaN) 762 makeNaN(); 763 } 764 765 APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) 766 { 767 assertArithmeticOK(ourSemantics); 768 initialize(&ourSemantics); 769 convertFromString(text, rmNearestTiesToEven); 770 } 771 772 APFloat::APFloat(const APFloat &rhs) 773 { 774 initialize(rhs.semantics); 775 assign(rhs); 776 } 777 778 APFloat::~APFloat() 779 { 780 freeSignificand(); 781 } 782 783 // Profile - This method 'profiles' an APFloat for use with FoldingSet. 784 void APFloat::Profile(FoldingSetNodeID& ID) const { 785 ID.Add(bitcastToAPInt()); 786 } 787 788 unsigned int 789 APFloat::partCount() const 790 { 791 return partCountForBits(semantics->precision + 1); 792 } 793 794 unsigned int 795 APFloat::semanticsPrecision(const fltSemantics &semantics) 796 { 797 return semantics.precision; 798 } 799 800 const integerPart * 801 APFloat::significandParts() const 802 { 803 return const_cast<APFloat *>(this)->significandParts(); 804 } 805 806 integerPart * 807 APFloat::significandParts() 808 { 809 assert(category == fcNormal || category == fcNaN); 810 811 if (partCount() > 1) 812 return significand.parts; 813 else 814 return &significand.part; 815 } 816 817 void 818 APFloat::zeroSignificand() 819 { 820 category = fcNormal; 821 APInt::tcSet(significandParts(), 0, partCount()); 822 } 823 824 /* Increment an fcNormal floating point number's significand. */ 825 void 826 APFloat::incrementSignificand() 827 { 828 integerPart carry; 829 830 carry = APInt::tcIncrement(significandParts(), partCount()); 831 832 /* Our callers should never cause us to overflow. */ 833 assert(carry == 0); 834 } 835 836 /* Add the significand of the RHS. Returns the carry flag. */ 837 integerPart 838 APFloat::addSignificand(const APFloat &rhs) 839 { 840 integerPart *parts; 841 842 parts = significandParts(); 843 844 assert(semantics == rhs.semantics); 845 assert(exponent == rhs.exponent); 846 847 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); 848 } 849 850 /* Subtract the significand of the RHS with a borrow flag. Returns 851 the borrow flag. */ 852 integerPart 853 APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow) 854 { 855 integerPart *parts; 856 857 parts = significandParts(); 858 859 assert(semantics == rhs.semantics); 860 assert(exponent == rhs.exponent); 861 862 return APInt::tcSubtract(parts, rhs.significandParts(), borrow, 863 partCount()); 864 } 865 866 /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it 867 on to the full-precision result of the multiplication. Returns the 868 lost fraction. */ 869 lostFraction 870 APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) 871 { 872 unsigned int omsb; // One, not zero, based MSB. 873 unsigned int partsCount, newPartsCount, precision; 874 integerPart *lhsSignificand; 875 integerPart scratch[4]; 876 integerPart *fullSignificand; 877 lostFraction lost_fraction; 878 bool ignored; 879 880 assert(semantics == rhs.semantics); 881 882 precision = semantics->precision; 883 newPartsCount = partCountForBits(precision * 2); 884 885 if (newPartsCount > 4) 886 fullSignificand = new integerPart[newPartsCount]; 887 else 888 fullSignificand = scratch; 889 890 lhsSignificand = significandParts(); 891 partsCount = partCount(); 892 893 APInt::tcFullMultiply(fullSignificand, lhsSignificand, 894 rhs.significandParts(), partsCount, partsCount); 895 896 lost_fraction = lfExactlyZero; 897 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 898 exponent += rhs.exponent; 899 900 if (addend) { 901 Significand savedSignificand = significand; 902 const fltSemantics *savedSemantics = semantics; 903 fltSemantics extendedSemantics; 904 opStatus status; 905 unsigned int extendedPrecision; 906 907 /* Normalize our MSB. */ 908 extendedPrecision = precision + precision - 1; 909 if (omsb != extendedPrecision) { 910 APInt::tcShiftLeft(fullSignificand, newPartsCount, 911 extendedPrecision - omsb); 912 exponent -= extendedPrecision - omsb; 913 } 914 915 /* Create new semantics. */ 916 extendedSemantics = *semantics; 917 extendedSemantics.precision = extendedPrecision; 918 919 if (newPartsCount == 1) 920 significand.part = fullSignificand[0]; 921 else 922 significand.parts = fullSignificand; 923 semantics = &extendedSemantics; 924 925 APFloat extendedAddend(*addend); 926 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); 927 assert(status == opOK); 928 lost_fraction = addOrSubtractSignificand(extendedAddend, false); 929 930 /* Restore our state. */ 931 if (newPartsCount == 1) 932 fullSignificand[0] = significand.part; 933 significand = savedSignificand; 934 semantics = savedSemantics; 935 936 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; 937 } 938 939 exponent -= (precision - 1); 940 941 if (omsb > precision) { 942 unsigned int bits, significantParts; 943 lostFraction lf; 944 945 bits = omsb - precision; 946 significantParts = partCountForBits(omsb); 947 lf = shiftRight(fullSignificand, significantParts, bits); 948 lost_fraction = combineLostFractions(lf, lost_fraction); 949 exponent += bits; 950 } 951 952 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); 953 954 if (newPartsCount > 4) 955 delete [] fullSignificand; 956 957 return lost_fraction; 958 } 959 960 /* Multiply the significands of LHS and RHS to DST. */ 961 lostFraction 962 APFloat::divideSignificand(const APFloat &rhs) 963 { 964 unsigned int bit, i, partsCount; 965 const integerPart *rhsSignificand; 966 integerPart *lhsSignificand, *dividend, *divisor; 967 integerPart scratch[4]; 968 lostFraction lost_fraction; 969 970 assert(semantics == rhs.semantics); 971 972 lhsSignificand = significandParts(); 973 rhsSignificand = rhs.significandParts(); 974 partsCount = partCount(); 975 976 if (partsCount > 2) 977 dividend = new integerPart[partsCount * 2]; 978 else 979 dividend = scratch; 980 981 divisor = dividend + partsCount; 982 983 /* Copy the dividend and divisor as they will be modified in-place. */ 984 for (i = 0; i < partsCount; i++) { 985 dividend[i] = lhsSignificand[i]; 986 divisor[i] = rhsSignificand[i]; 987 lhsSignificand[i] = 0; 988 } 989 990 exponent -= rhs.exponent; 991 992 unsigned int precision = semantics->precision; 993 994 /* Normalize the divisor. */ 995 bit = precision - APInt::tcMSB(divisor, partsCount) - 1; 996 if (bit) { 997 exponent += bit; 998 APInt::tcShiftLeft(divisor, partsCount, bit); 999 } 1000 1001 /* Normalize the dividend. */ 1002 bit = precision - APInt::tcMSB(dividend, partsCount) - 1; 1003 if (bit) { 1004 exponent -= bit; 1005 APInt::tcShiftLeft(dividend, partsCount, bit); 1006 } 1007 1008 /* Ensure the dividend >= divisor initially for the loop below. 1009 Incidentally, this means that the division loop below is 1010 guaranteed to set the integer bit to one. */ 1011 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { 1012 exponent--; 1013 APInt::tcShiftLeft(dividend, partsCount, 1); 1014 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); 1015 } 1016 1017 /* Long division. */ 1018 for (bit = precision; bit; bit -= 1) { 1019 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { 1020 APInt::tcSubtract(dividend, divisor, 0, partsCount); 1021 APInt::tcSetBit(lhsSignificand, bit - 1); 1022 } 1023 1024 APInt::tcShiftLeft(dividend, partsCount, 1); 1025 } 1026 1027 /* Figure out the lost fraction. */ 1028 int cmp = APInt::tcCompare(dividend, divisor, partsCount); 1029 1030 if (cmp > 0) 1031 lost_fraction = lfMoreThanHalf; 1032 else if (cmp == 0) 1033 lost_fraction = lfExactlyHalf; 1034 else if (APInt::tcIsZero(dividend, partsCount)) 1035 lost_fraction = lfExactlyZero; 1036 else 1037 lost_fraction = lfLessThanHalf; 1038 1039 if (partsCount > 2) 1040 delete [] dividend; 1041 1042 return lost_fraction; 1043 } 1044 1045 unsigned int 1046 APFloat::significandMSB() const 1047 { 1048 return APInt::tcMSB(significandParts(), partCount()); 1049 } 1050 1051 unsigned int 1052 APFloat::significandLSB() const 1053 { 1054 return APInt::tcLSB(significandParts(), partCount()); 1055 } 1056 1057 /* Note that a zero result is NOT normalized to fcZero. */ 1058 lostFraction 1059 APFloat::shiftSignificandRight(unsigned int bits) 1060 { 1061 /* Our exponent should not overflow. */ 1062 assert((exponent_t) (exponent + bits) >= exponent); 1063 1064 exponent += bits; 1065 1066 return shiftRight(significandParts(), partCount(), bits); 1067 } 1068 1069 /* Shift the significand left BITS bits, subtract BITS from its exponent. */ 1070 void 1071 APFloat::shiftSignificandLeft(unsigned int bits) 1072 { 1073 assert(bits < semantics->precision); 1074 1075 if (bits) { 1076 unsigned int partsCount = partCount(); 1077 1078 APInt::tcShiftLeft(significandParts(), partsCount, bits); 1079 exponent -= bits; 1080 1081 assert(!APInt::tcIsZero(significandParts(), partsCount)); 1082 } 1083 } 1084 1085 APFloat::cmpResult 1086 APFloat::compareAbsoluteValue(const APFloat &rhs) const 1087 { 1088 int compare; 1089 1090 assert(semantics == rhs.semantics); 1091 assert(category == fcNormal); 1092 assert(rhs.category == fcNormal); 1093 1094 compare = exponent - rhs.exponent; 1095 1096 /* If exponents are equal, do an unsigned bignum comparison of the 1097 significands. */ 1098 if (compare == 0) 1099 compare = APInt::tcCompare(significandParts(), rhs.significandParts(), 1100 partCount()); 1101 1102 if (compare > 0) 1103 return cmpGreaterThan; 1104 else if (compare < 0) 1105 return cmpLessThan; 1106 else 1107 return cmpEqual; 1108 } 1109 1110 /* Handle overflow. Sign is preserved. We either become infinity or 1111 the largest finite number. */ 1112 APFloat::opStatus 1113 APFloat::handleOverflow(roundingMode rounding_mode) 1114 { 1115 /* Infinity? */ 1116 if (rounding_mode == rmNearestTiesToEven || 1117 rounding_mode == rmNearestTiesToAway || 1118 (rounding_mode == rmTowardPositive && !sign) || 1119 (rounding_mode == rmTowardNegative && sign)) { 1120 category = fcInfinity; 1121 return (opStatus) (opOverflow | opInexact); 1122 } 1123 1124 /* Otherwise we become the largest finite number. */ 1125 category = fcNormal; 1126 exponent = semantics->maxExponent; 1127 APInt::tcSetLeastSignificantBits(significandParts(), partCount(), 1128 semantics->precision); 1129 1130 return opInexact; 1131 } 1132 1133 /* Returns TRUE if, when truncating the current number, with BIT the 1134 new LSB, with the given lost fraction and rounding mode, the result 1135 would need to be rounded away from zero (i.e., by increasing the 1136 signficand). This routine must work for fcZero of both signs, and 1137 fcNormal numbers. */ 1138 bool 1139 APFloat::roundAwayFromZero(roundingMode rounding_mode, 1140 lostFraction lost_fraction, 1141 unsigned int bit) const 1142 { 1143 /* NaNs and infinities should not have lost fractions. */ 1144 assert(category == fcNormal || category == fcZero); 1145 1146 /* Current callers never pass this so we don't handle it. */ 1147 assert(lost_fraction != lfExactlyZero); 1148 1149 switch (rounding_mode) { 1150 default: 1151 llvm_unreachable(0); 1152 1153 case rmNearestTiesToAway: 1154 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; 1155 1156 case rmNearestTiesToEven: 1157 if (lost_fraction == lfMoreThanHalf) 1158 return true; 1159 1160 /* Our zeroes don't have a significand to test. */ 1161 if (lost_fraction == lfExactlyHalf && category != fcZero) 1162 return APInt::tcExtractBit(significandParts(), bit); 1163 1164 return false; 1165 1166 case rmTowardZero: 1167 return false; 1168 1169 case rmTowardPositive: 1170 return sign == false; 1171 1172 case rmTowardNegative: 1173 return sign == true; 1174 } 1175 } 1176 1177 APFloat::opStatus 1178 APFloat::normalize(roundingMode rounding_mode, 1179 lostFraction lost_fraction) 1180 { 1181 unsigned int omsb; /* One, not zero, based MSB. */ 1182 int exponentChange; 1183 1184 if (category != fcNormal) 1185 return opOK; 1186 1187 /* Before rounding normalize the exponent of fcNormal numbers. */ 1188 omsb = significandMSB() + 1; 1189 1190 if (omsb) { 1191 /* OMSB is numbered from 1. We want to place it in the integer 1192 bit numbered PRECISON if possible, with a compensating change in 1193 the exponent. */ 1194 exponentChange = omsb - semantics->precision; 1195 1196 /* If the resulting exponent is too high, overflow according to 1197 the rounding mode. */ 1198 if (exponent + exponentChange > semantics->maxExponent) 1199 return handleOverflow(rounding_mode); 1200 1201 /* Subnormal numbers have exponent minExponent, and their MSB 1202 is forced based on that. */ 1203 if (exponent + exponentChange < semantics->minExponent) 1204 exponentChange = semantics->minExponent - exponent; 1205 1206 /* Shifting left is easy as we don't lose precision. */ 1207 if (exponentChange < 0) { 1208 assert(lost_fraction == lfExactlyZero); 1209 1210 shiftSignificandLeft(-exponentChange); 1211 1212 return opOK; 1213 } 1214 1215 if (exponentChange > 0) { 1216 lostFraction lf; 1217 1218 /* Shift right and capture any new lost fraction. */ 1219 lf = shiftSignificandRight(exponentChange); 1220 1221 lost_fraction = combineLostFractions(lf, lost_fraction); 1222 1223 /* Keep OMSB up-to-date. */ 1224 if (omsb > (unsigned) exponentChange) 1225 omsb -= exponentChange; 1226 else 1227 omsb = 0; 1228 } 1229 } 1230 1231 /* Now round the number according to rounding_mode given the lost 1232 fraction. */ 1233 1234 /* As specified in IEEE 754, since we do not trap we do not report 1235 underflow for exact results. */ 1236 if (lost_fraction == lfExactlyZero) { 1237 /* Canonicalize zeroes. */ 1238 if (omsb == 0) 1239 category = fcZero; 1240 1241 return opOK; 1242 } 1243 1244 /* Increment the significand if we're rounding away from zero. */ 1245 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { 1246 if (omsb == 0) 1247 exponent = semantics->minExponent; 1248 1249 incrementSignificand(); 1250 omsb = significandMSB() + 1; 1251 1252 /* Did the significand increment overflow? */ 1253 if (omsb == (unsigned) semantics->precision + 1) { 1254 /* Renormalize by incrementing the exponent and shifting our 1255 significand right one. However if we already have the 1256 maximum exponent we overflow to infinity. */ 1257 if (exponent == semantics->maxExponent) { 1258 category = fcInfinity; 1259 1260 return (opStatus) (opOverflow | opInexact); 1261 } 1262 1263 shiftSignificandRight(1); 1264 1265 return opInexact; 1266 } 1267 } 1268 1269 /* The normal case - we were and are not denormal, and any 1270 significand increment above didn't overflow. */ 1271 if (omsb == semantics->precision) 1272 return opInexact; 1273 1274 /* We have a non-zero denormal. */ 1275 assert(omsb < semantics->precision); 1276 1277 /* Canonicalize zeroes. */ 1278 if (omsb == 0) 1279 category = fcZero; 1280 1281 /* The fcZero case is a denormal that underflowed to zero. */ 1282 return (opStatus) (opUnderflow | opInexact); 1283 } 1284 1285 APFloat::opStatus 1286 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract) 1287 { 1288 switch (convolve(category, rhs.category)) { 1289 default: 1290 llvm_unreachable(0); 1291 1292 case convolve(fcNaN, fcZero): 1293 case convolve(fcNaN, fcNormal): 1294 case convolve(fcNaN, fcInfinity): 1295 case convolve(fcNaN, fcNaN): 1296 case convolve(fcNormal, fcZero): 1297 case convolve(fcInfinity, fcNormal): 1298 case convolve(fcInfinity, fcZero): 1299 return opOK; 1300 1301 case convolve(fcZero, fcNaN): 1302 case convolve(fcNormal, fcNaN): 1303 case convolve(fcInfinity, fcNaN): 1304 category = fcNaN; 1305 copySignificand(rhs); 1306 return opOK; 1307 1308 case convolve(fcNormal, fcInfinity): 1309 case convolve(fcZero, fcInfinity): 1310 category = fcInfinity; 1311 sign = rhs.sign ^ subtract; 1312 return opOK; 1313 1314 case convolve(fcZero, fcNormal): 1315 assign(rhs); 1316 sign = rhs.sign ^ subtract; 1317 return opOK; 1318 1319 case convolve(fcZero, fcZero): 1320 /* Sign depends on rounding mode; handled by caller. */ 1321 return opOK; 1322 1323 case convolve(fcInfinity, fcInfinity): 1324 /* Differently signed infinities can only be validly 1325 subtracted. */ 1326 if (((sign ^ rhs.sign)!=0) != subtract) { 1327 makeNaN(); 1328 return opInvalidOp; 1329 } 1330 1331 return opOK; 1332 1333 case convolve(fcNormal, fcNormal): 1334 return opDivByZero; 1335 } 1336 } 1337 1338 /* Add or subtract two normal numbers. */ 1339 lostFraction 1340 APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) 1341 { 1342 integerPart carry; 1343 lostFraction lost_fraction; 1344 int bits; 1345 1346 /* Determine if the operation on the absolute values is effectively 1347 an addition or subtraction. */ 1348 subtract ^= (sign ^ rhs.sign) ? true : false; 1349 1350 /* Are we bigger exponent-wise than the RHS? */ 1351 bits = exponent - rhs.exponent; 1352 1353 /* Subtraction is more subtle than one might naively expect. */ 1354 if (subtract) { 1355 APFloat temp_rhs(rhs); 1356 bool reverse; 1357 1358 if (bits == 0) { 1359 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; 1360 lost_fraction = lfExactlyZero; 1361 } else if (bits > 0) { 1362 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); 1363 shiftSignificandLeft(1); 1364 reverse = false; 1365 } else { 1366 lost_fraction = shiftSignificandRight(-bits - 1); 1367 temp_rhs.shiftSignificandLeft(1); 1368 reverse = true; 1369 } 1370 1371 if (reverse) { 1372 carry = temp_rhs.subtractSignificand 1373 (*this, lost_fraction != lfExactlyZero); 1374 copySignificand(temp_rhs); 1375 sign = !sign; 1376 } else { 1377 carry = subtractSignificand 1378 (temp_rhs, lost_fraction != lfExactlyZero); 1379 } 1380 1381 /* Invert the lost fraction - it was on the RHS and 1382 subtracted. */ 1383 if (lost_fraction == lfLessThanHalf) 1384 lost_fraction = lfMoreThanHalf; 1385 else if (lost_fraction == lfMoreThanHalf) 1386 lost_fraction = lfLessThanHalf; 1387 1388 /* The code above is intended to ensure that no borrow is 1389 necessary. */ 1390 assert(!carry); 1391 } else { 1392 if (bits > 0) { 1393 APFloat temp_rhs(rhs); 1394 1395 lost_fraction = temp_rhs.shiftSignificandRight(bits); 1396 carry = addSignificand(temp_rhs); 1397 } else { 1398 lost_fraction = shiftSignificandRight(-bits); 1399 carry = addSignificand(rhs); 1400 } 1401 1402 /* We have a guard bit; generating a carry cannot happen. */ 1403 assert(!carry); 1404 } 1405 1406 return lost_fraction; 1407 } 1408 1409 APFloat::opStatus 1410 APFloat::multiplySpecials(const APFloat &rhs) 1411 { 1412 switch (convolve(category, rhs.category)) { 1413 default: 1414 llvm_unreachable(0); 1415 1416 case convolve(fcNaN, fcZero): 1417 case convolve(fcNaN, fcNormal): 1418 case convolve(fcNaN, fcInfinity): 1419 case convolve(fcNaN, fcNaN): 1420 return opOK; 1421 1422 case convolve(fcZero, fcNaN): 1423 case convolve(fcNormal, fcNaN): 1424 case convolve(fcInfinity, fcNaN): 1425 category = fcNaN; 1426 copySignificand(rhs); 1427 return opOK; 1428 1429 case convolve(fcNormal, fcInfinity): 1430 case convolve(fcInfinity, fcNormal): 1431 case convolve(fcInfinity, fcInfinity): 1432 category = fcInfinity; 1433 return opOK; 1434 1435 case convolve(fcZero, fcNormal): 1436 case convolve(fcNormal, fcZero): 1437 case convolve(fcZero, fcZero): 1438 category = fcZero; 1439 return opOK; 1440 1441 case convolve(fcZero, fcInfinity): 1442 case convolve(fcInfinity, fcZero): 1443 makeNaN(); 1444 return opInvalidOp; 1445 1446 case convolve(fcNormal, fcNormal): 1447 return opOK; 1448 } 1449 } 1450 1451 APFloat::opStatus 1452 APFloat::divideSpecials(const APFloat &rhs) 1453 { 1454 switch (convolve(category, rhs.category)) { 1455 default: 1456 llvm_unreachable(0); 1457 1458 case convolve(fcNaN, fcZero): 1459 case convolve(fcNaN, fcNormal): 1460 case convolve(fcNaN, fcInfinity): 1461 case convolve(fcNaN, fcNaN): 1462 case convolve(fcInfinity, fcZero): 1463 case convolve(fcInfinity, fcNormal): 1464 case convolve(fcZero, fcInfinity): 1465 case convolve(fcZero, fcNormal): 1466 return opOK; 1467 1468 case convolve(fcZero, fcNaN): 1469 case convolve(fcNormal, fcNaN): 1470 case convolve(fcInfinity, fcNaN): 1471 category = fcNaN; 1472 copySignificand(rhs); 1473 return opOK; 1474 1475 case convolve(fcNormal, fcInfinity): 1476 category = fcZero; 1477 return opOK; 1478 1479 case convolve(fcNormal, fcZero): 1480 category = fcInfinity; 1481 return opDivByZero; 1482 1483 case convolve(fcInfinity, fcInfinity): 1484 case convolve(fcZero, fcZero): 1485 makeNaN(); 1486 return opInvalidOp; 1487 1488 case convolve(fcNormal, fcNormal): 1489 return opOK; 1490 } 1491 } 1492 1493 APFloat::opStatus 1494 APFloat::modSpecials(const APFloat &rhs) 1495 { 1496 switch (convolve(category, rhs.category)) { 1497 default: 1498 llvm_unreachable(0); 1499 1500 case convolve(fcNaN, fcZero): 1501 case convolve(fcNaN, fcNormal): 1502 case convolve(fcNaN, fcInfinity): 1503 case convolve(fcNaN, fcNaN): 1504 case convolve(fcZero, fcInfinity): 1505 case convolve(fcZero, fcNormal): 1506 case convolve(fcNormal, fcInfinity): 1507 return opOK; 1508 1509 case convolve(fcZero, fcNaN): 1510 case convolve(fcNormal, fcNaN): 1511 case convolve(fcInfinity, fcNaN): 1512 category = fcNaN; 1513 copySignificand(rhs); 1514 return opOK; 1515 1516 case convolve(fcNormal, fcZero): 1517 case convolve(fcInfinity, fcZero): 1518 case convolve(fcInfinity, fcNormal): 1519 case convolve(fcInfinity, fcInfinity): 1520 case convolve(fcZero, fcZero): 1521 makeNaN(); 1522 return opInvalidOp; 1523 1524 case convolve(fcNormal, fcNormal): 1525 return opOK; 1526 } 1527 } 1528 1529 /* Change sign. */ 1530 void 1531 APFloat::changeSign() 1532 { 1533 /* Look mummy, this one's easy. */ 1534 sign = !sign; 1535 } 1536 1537 void 1538 APFloat::clearSign() 1539 { 1540 /* So is this one. */ 1541 sign = 0; 1542 } 1543 1544 void 1545 APFloat::copySign(const APFloat &rhs) 1546 { 1547 /* And this one. */ 1548 sign = rhs.sign; 1549 } 1550 1551 /* Normalized addition or subtraction. */ 1552 APFloat::opStatus 1553 APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, 1554 bool subtract) 1555 { 1556 opStatus fs; 1557 1558 assertArithmeticOK(*semantics); 1559 1560 fs = addOrSubtractSpecials(rhs, subtract); 1561 1562 /* This return code means it was not a simple case. */ 1563 if (fs == opDivByZero) { 1564 lostFraction lost_fraction; 1565 1566 lost_fraction = addOrSubtractSignificand(rhs, subtract); 1567 fs = normalize(rounding_mode, lost_fraction); 1568 1569 /* Can only be zero if we lost no fraction. */ 1570 assert(category != fcZero || lost_fraction == lfExactlyZero); 1571 } 1572 1573 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1574 positive zero unless rounding to minus infinity, except that 1575 adding two like-signed zeroes gives that zero. */ 1576 if (category == fcZero) { 1577 if (rhs.category != fcZero || (sign == rhs.sign) == subtract) 1578 sign = (rounding_mode == rmTowardNegative); 1579 } 1580 1581 return fs; 1582 } 1583 1584 /* Normalized addition. */ 1585 APFloat::opStatus 1586 APFloat::add(const APFloat &rhs, roundingMode rounding_mode) 1587 { 1588 return addOrSubtract(rhs, rounding_mode, false); 1589 } 1590 1591 /* Normalized subtraction. */ 1592 APFloat::opStatus 1593 APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode) 1594 { 1595 return addOrSubtract(rhs, rounding_mode, true); 1596 } 1597 1598 /* Normalized multiply. */ 1599 APFloat::opStatus 1600 APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode) 1601 { 1602 opStatus fs; 1603 1604 assertArithmeticOK(*semantics); 1605 sign ^= rhs.sign; 1606 fs = multiplySpecials(rhs); 1607 1608 if (category == fcNormal) { 1609 lostFraction lost_fraction = multiplySignificand(rhs, 0); 1610 fs = normalize(rounding_mode, lost_fraction); 1611 if (lost_fraction != lfExactlyZero) 1612 fs = (opStatus) (fs | opInexact); 1613 } 1614 1615 return fs; 1616 } 1617 1618 /* Normalized divide. */ 1619 APFloat::opStatus 1620 APFloat::divide(const APFloat &rhs, roundingMode rounding_mode) 1621 { 1622 opStatus fs; 1623 1624 assertArithmeticOK(*semantics); 1625 sign ^= rhs.sign; 1626 fs = divideSpecials(rhs); 1627 1628 if (category == fcNormal) { 1629 lostFraction lost_fraction = divideSignificand(rhs); 1630 fs = normalize(rounding_mode, lost_fraction); 1631 if (lost_fraction != lfExactlyZero) 1632 fs = (opStatus) (fs | opInexact); 1633 } 1634 1635 return fs; 1636 } 1637 1638 /* Normalized remainder. This is not currently correct in all cases. */ 1639 APFloat::opStatus 1640 APFloat::remainder(const APFloat &rhs) 1641 { 1642 opStatus fs; 1643 APFloat V = *this; 1644 unsigned int origSign = sign; 1645 1646 assertArithmeticOK(*semantics); 1647 fs = V.divide(rhs, rmNearestTiesToEven); 1648 if (fs == opDivByZero) 1649 return fs; 1650 1651 int parts = partCount(); 1652 integerPart *x = new integerPart[parts]; 1653 bool ignored; 1654 fs = V.convertToInteger(x, parts * integerPartWidth, true, 1655 rmNearestTiesToEven, &ignored); 1656 if (fs==opInvalidOp) 1657 return fs; 1658 1659 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, 1660 rmNearestTiesToEven); 1661 assert(fs==opOK); // should always work 1662 1663 fs = V.multiply(rhs, rmNearestTiesToEven); 1664 assert(fs==opOK || fs==opInexact); // should not overflow or underflow 1665 1666 fs = subtract(V, rmNearestTiesToEven); 1667 assert(fs==opOK || fs==opInexact); // likewise 1668 1669 if (isZero()) 1670 sign = origSign; // IEEE754 requires this 1671 delete[] x; 1672 return fs; 1673 } 1674 1675 /* Normalized llvm frem (C fmod). 1676 This is not currently correct in all cases. */ 1677 APFloat::opStatus 1678 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode) 1679 { 1680 opStatus fs; 1681 assertArithmeticOK(*semantics); 1682 fs = modSpecials(rhs); 1683 1684 if (category == fcNormal && rhs.category == fcNormal) { 1685 APFloat V = *this; 1686 unsigned int origSign = sign; 1687 1688 fs = V.divide(rhs, rmNearestTiesToEven); 1689 if (fs == opDivByZero) 1690 return fs; 1691 1692 int parts = partCount(); 1693 integerPart *x = new integerPart[parts]; 1694 bool ignored; 1695 fs = V.convertToInteger(x, parts * integerPartWidth, true, 1696 rmTowardZero, &ignored); 1697 if (fs==opInvalidOp) 1698 return fs; 1699 1700 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, 1701 rmNearestTiesToEven); 1702 assert(fs==opOK); // should always work 1703 1704 fs = V.multiply(rhs, rounding_mode); 1705 assert(fs==opOK || fs==opInexact); // should not overflow or underflow 1706 1707 fs = subtract(V, rounding_mode); 1708 assert(fs==opOK || fs==opInexact); // likewise 1709 1710 if (isZero()) 1711 sign = origSign; // IEEE754 requires this 1712 delete[] x; 1713 } 1714 return fs; 1715 } 1716 1717 /* Normalized fused-multiply-add. */ 1718 APFloat::opStatus 1719 APFloat::fusedMultiplyAdd(const APFloat &multiplicand, 1720 const APFloat &addend, 1721 roundingMode rounding_mode) 1722 { 1723 opStatus fs; 1724 1725 assertArithmeticOK(*semantics); 1726 1727 /* Post-multiplication sign, before addition. */ 1728 sign ^= multiplicand.sign; 1729 1730 /* If and only if all arguments are normal do we need to do an 1731 extended-precision calculation. */ 1732 if (category == fcNormal && 1733 multiplicand.category == fcNormal && 1734 addend.category == fcNormal) { 1735 lostFraction lost_fraction; 1736 1737 lost_fraction = multiplySignificand(multiplicand, &addend); 1738 fs = normalize(rounding_mode, lost_fraction); 1739 if (lost_fraction != lfExactlyZero) 1740 fs = (opStatus) (fs | opInexact); 1741 1742 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a 1743 positive zero unless rounding to minus infinity, except that 1744 adding two like-signed zeroes gives that zero. */ 1745 if (category == fcZero && sign != addend.sign) 1746 sign = (rounding_mode == rmTowardNegative); 1747 } else { 1748 fs = multiplySpecials(multiplicand); 1749 1750 /* FS can only be opOK or opInvalidOp. There is no more work 1751 to do in the latter case. The IEEE-754R standard says it is 1752 implementation-defined in this case whether, if ADDEND is a 1753 quiet NaN, we raise invalid op; this implementation does so. 1754 1755 If we need to do the addition we can do so with normal 1756 precision. */ 1757 if (fs == opOK) 1758 fs = addOrSubtract(addend, rounding_mode, false); 1759 } 1760 1761 return fs; 1762 } 1763 1764 /* Comparison requires normalized numbers. */ 1765 APFloat::cmpResult 1766 APFloat::compare(const APFloat &rhs) const 1767 { 1768 cmpResult result; 1769 1770 assertArithmeticOK(*semantics); 1771 assert(semantics == rhs.semantics); 1772 1773 switch (convolve(category, rhs.category)) { 1774 default: 1775 llvm_unreachable(0); 1776 1777 case convolve(fcNaN, fcZero): 1778 case convolve(fcNaN, fcNormal): 1779 case convolve(fcNaN, fcInfinity): 1780 case convolve(fcNaN, fcNaN): 1781 case convolve(fcZero, fcNaN): 1782 case convolve(fcNormal, fcNaN): 1783 case convolve(fcInfinity, fcNaN): 1784 return cmpUnordered; 1785 1786 case convolve(fcInfinity, fcNormal): 1787 case convolve(fcInfinity, fcZero): 1788 case convolve(fcNormal, fcZero): 1789 if (sign) 1790 return cmpLessThan; 1791 else 1792 return cmpGreaterThan; 1793 1794 case convolve(fcNormal, fcInfinity): 1795 case convolve(fcZero, fcInfinity): 1796 case convolve(fcZero, fcNormal): 1797 if (rhs.sign) 1798 return cmpGreaterThan; 1799 else 1800 return cmpLessThan; 1801 1802 case convolve(fcInfinity, fcInfinity): 1803 if (sign == rhs.sign) 1804 return cmpEqual; 1805 else if (sign) 1806 return cmpLessThan; 1807 else 1808 return cmpGreaterThan; 1809 1810 case convolve(fcZero, fcZero): 1811 return cmpEqual; 1812 1813 case convolve(fcNormal, fcNormal): 1814 break; 1815 } 1816 1817 /* Two normal numbers. Do they have the same sign? */ 1818 if (sign != rhs.sign) { 1819 if (sign) 1820 result = cmpLessThan; 1821 else 1822 result = cmpGreaterThan; 1823 } else { 1824 /* Compare absolute values; invert result if negative. */ 1825 result = compareAbsoluteValue(rhs); 1826 1827 if (sign) { 1828 if (result == cmpLessThan) 1829 result = cmpGreaterThan; 1830 else if (result == cmpGreaterThan) 1831 result = cmpLessThan; 1832 } 1833 } 1834 1835 return result; 1836 } 1837 1838 /// APFloat::convert - convert a value of one floating point type to another. 1839 /// The return value corresponds to the IEEE754 exceptions. *losesInfo 1840 /// records whether the transformation lost information, i.e. whether 1841 /// converting the result back to the original type will produce the 1842 /// original value (this is almost the same as return value==fsOK, but there 1843 /// are edge cases where this is not so). 1844 1845 APFloat::opStatus 1846 APFloat::convert(const fltSemantics &toSemantics, 1847 roundingMode rounding_mode, bool *losesInfo) 1848 { 1849 lostFraction lostFraction; 1850 unsigned int newPartCount, oldPartCount; 1851 opStatus fs; 1852 1853 assertArithmeticOK(*semantics); 1854 assertArithmeticOK(toSemantics); 1855 lostFraction = lfExactlyZero; 1856 newPartCount = partCountForBits(toSemantics.precision + 1); 1857 oldPartCount = partCount(); 1858 1859 /* Handle storage complications. If our new form is wider, 1860 re-allocate our bit pattern into wider storage. If it is 1861 narrower, we ignore the excess parts, but if narrowing to a 1862 single part we need to free the old storage. 1863 Be careful not to reference significandParts for zeroes 1864 and infinities, since it aborts. */ 1865 if (newPartCount > oldPartCount) { 1866 integerPart *newParts; 1867 newParts = new integerPart[newPartCount]; 1868 APInt::tcSet(newParts, 0, newPartCount); 1869 if (category==fcNormal || category==fcNaN) 1870 APInt::tcAssign(newParts, significandParts(), oldPartCount); 1871 freeSignificand(); 1872 significand.parts = newParts; 1873 } else if (newPartCount < oldPartCount) { 1874 /* Capture any lost fraction through truncation of parts so we get 1875 correct rounding whilst normalizing. */ 1876 if (category==fcNormal) 1877 lostFraction = lostFractionThroughTruncation 1878 (significandParts(), oldPartCount, toSemantics.precision); 1879 if (newPartCount == 1) { 1880 integerPart newPart = 0; 1881 if (category==fcNormal || category==fcNaN) 1882 newPart = significandParts()[0]; 1883 freeSignificand(); 1884 significand.part = newPart; 1885 } 1886 } 1887 1888 if (category == fcNormal) { 1889 /* Re-interpret our bit-pattern. */ 1890 exponent += toSemantics.precision - semantics->precision; 1891 semantics = &toSemantics; 1892 fs = normalize(rounding_mode, lostFraction); 1893 *losesInfo = (fs != opOK); 1894 } else if (category == fcNaN) { 1895 int shift = toSemantics.precision - semantics->precision; 1896 // Do this now so significandParts gets the right answer 1897 const fltSemantics *oldSemantics = semantics; 1898 semantics = &toSemantics; 1899 *losesInfo = false; 1900 // No normalization here, just truncate 1901 if (shift>0) 1902 APInt::tcShiftLeft(significandParts(), newPartCount, shift); 1903 else if (shift < 0) { 1904 unsigned ushift = -shift; 1905 // Figure out if we are losing information. This happens 1906 // if are shifting out something other than 0s, or if the x87 long 1907 // double input did not have its integer bit set (pseudo-NaN), or if the 1908 // x87 long double input did not have its QNan bit set (because the x87 1909 // hardware sets this bit when converting a lower-precision NaN to 1910 // x87 long double). 1911 if (APInt::tcLSB(significandParts(), newPartCount) < ushift) 1912 *losesInfo = true; 1913 if (oldSemantics == &APFloat::x87DoubleExtended && 1914 (!(*significandParts() & 0x8000000000000000ULL) || 1915 !(*significandParts() & 0x4000000000000000ULL))) 1916 *losesInfo = true; 1917 APInt::tcShiftRight(significandParts(), newPartCount, ushift); 1918 } 1919 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan) 1920 // does not give you back the same bits. This is dubious, and we 1921 // don't currently do it. You're really supposed to get 1922 // an invalid operation signal at runtime, but nobody does that. 1923 fs = opOK; 1924 } else { 1925 semantics = &toSemantics; 1926 fs = opOK; 1927 *losesInfo = false; 1928 } 1929 1930 return fs; 1931 } 1932 1933 /* Convert a floating point number to an integer according to the 1934 rounding mode. If the rounded integer value is out of range this 1935 returns an invalid operation exception and the contents of the 1936 destination parts are unspecified. If the rounded value is in 1937 range but the floating point number is not the exact integer, the C 1938 standard doesn't require an inexact exception to be raised. IEEE 1939 854 does require it so we do that. 1940 1941 Note that for conversions to integer type the C standard requires 1942 round-to-zero to always be used. */ 1943 APFloat::opStatus 1944 APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width, 1945 bool isSigned, 1946 roundingMode rounding_mode, 1947 bool *isExact) const 1948 { 1949 lostFraction lost_fraction; 1950 const integerPart *src; 1951 unsigned int dstPartsCount, truncatedBits; 1952 1953 assertArithmeticOK(*semantics); 1954 1955 *isExact = false; 1956 1957 /* Handle the three special cases first. */ 1958 if (category == fcInfinity || category == fcNaN) 1959 return opInvalidOp; 1960 1961 dstPartsCount = partCountForBits(width); 1962 1963 if (category == fcZero) { 1964 APInt::tcSet(parts, 0, dstPartsCount); 1965 // Negative zero can't be represented as an int. 1966 *isExact = !sign; 1967 return opOK; 1968 } 1969 1970 src = significandParts(); 1971 1972 /* Step 1: place our absolute value, with any fraction truncated, in 1973 the destination. */ 1974 if (exponent < 0) { 1975 /* Our absolute value is less than one; truncate everything. */ 1976 APInt::tcSet(parts, 0, dstPartsCount); 1977 /* For exponent -1 the integer bit represents .5, look at that. 1978 For smaller exponents leftmost truncated bit is 0. */ 1979 truncatedBits = semantics->precision -1U - exponent; 1980 } else { 1981 /* We want the most significant (exponent + 1) bits; the rest are 1982 truncated. */ 1983 unsigned int bits = exponent + 1U; 1984 1985 /* Hopelessly large in magnitude? */ 1986 if (bits > width) 1987 return opInvalidOp; 1988 1989 if (bits < semantics->precision) { 1990 /* We truncate (semantics->precision - bits) bits. */ 1991 truncatedBits = semantics->precision - bits; 1992 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits); 1993 } else { 1994 /* We want at least as many bits as are available. */ 1995 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0); 1996 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision); 1997 truncatedBits = 0; 1998 } 1999 } 2000 2001 /* Step 2: work out any lost fraction, and increment the absolute 2002 value if we would round away from zero. */ 2003 if (truncatedBits) { 2004 lost_fraction = lostFractionThroughTruncation(src, partCount(), 2005 truncatedBits); 2006 if (lost_fraction != lfExactlyZero && 2007 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { 2008 if (APInt::tcIncrement(parts, dstPartsCount)) 2009 return opInvalidOp; /* Overflow. */ 2010 } 2011 } else { 2012 lost_fraction = lfExactlyZero; 2013 } 2014 2015 /* Step 3: check if we fit in the destination. */ 2016 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1; 2017 2018 if (sign) { 2019 if (!isSigned) { 2020 /* Negative numbers cannot be represented as unsigned. */ 2021 if (omsb != 0) 2022 return opInvalidOp; 2023 } else { 2024 /* It takes omsb bits to represent the unsigned integer value. 2025 We lose a bit for the sign, but care is needed as the 2026 maximally negative integer is a special case. */ 2027 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb) 2028 return opInvalidOp; 2029 2030 /* This case can happen because of rounding. */ 2031 if (omsb > width) 2032 return opInvalidOp; 2033 } 2034 2035 APInt::tcNegate (parts, dstPartsCount); 2036 } else { 2037 if (omsb >= width + !isSigned) 2038 return opInvalidOp; 2039 } 2040 2041 if (lost_fraction == lfExactlyZero) { 2042 *isExact = true; 2043 return opOK; 2044 } else 2045 return opInexact; 2046 } 2047 2048 /* Same as convertToSignExtendedInteger, except we provide 2049 deterministic values in case of an invalid operation exception, 2050 namely zero for NaNs and the minimal or maximal value respectively 2051 for underflow or overflow. 2052 The *isExact output tells whether the result is exact, in the sense 2053 that converting it back to the original floating point type produces 2054 the original value. This is almost equivalent to result==opOK, 2055 except for negative zeroes. 2056 */ 2057 APFloat::opStatus 2058 APFloat::convertToInteger(integerPart *parts, unsigned int width, 2059 bool isSigned, 2060 roundingMode rounding_mode, bool *isExact) const 2061 { 2062 opStatus fs; 2063 2064 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, 2065 isExact); 2066 2067 if (fs == opInvalidOp) { 2068 unsigned int bits, dstPartsCount; 2069 2070 dstPartsCount = partCountForBits(width); 2071 2072 if (category == fcNaN) 2073 bits = 0; 2074 else if (sign) 2075 bits = isSigned; 2076 else 2077 bits = width - isSigned; 2078 2079 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits); 2080 if (sign && isSigned) 2081 APInt::tcShiftLeft(parts, dstPartsCount, width - 1); 2082 } 2083 2084 return fs; 2085 } 2086 2087 /* Convert an unsigned integer SRC to a floating point number, 2088 rounding according to ROUNDING_MODE. The sign of the floating 2089 point number is not modified. */ 2090 APFloat::opStatus 2091 APFloat::convertFromUnsignedParts(const integerPart *src, 2092 unsigned int srcCount, 2093 roundingMode rounding_mode) 2094 { 2095 unsigned int omsb, precision, dstCount; 2096 integerPart *dst; 2097 lostFraction lost_fraction; 2098 2099 assertArithmeticOK(*semantics); 2100 category = fcNormal; 2101 omsb = APInt::tcMSB(src, srcCount) + 1; 2102 dst = significandParts(); 2103 dstCount = partCount(); 2104 precision = semantics->precision; 2105 2106 /* We want the most significant PRECISON bits of SRC. There may not 2107 be that many; extract what we can. */ 2108 if (precision <= omsb) { 2109 exponent = omsb - 1; 2110 lost_fraction = lostFractionThroughTruncation(src, srcCount, 2111 omsb - precision); 2112 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); 2113 } else { 2114 exponent = precision - 1; 2115 lost_fraction = lfExactlyZero; 2116 APInt::tcExtract(dst, dstCount, src, omsb, 0); 2117 } 2118 2119 return normalize(rounding_mode, lost_fraction); 2120 } 2121 2122 APFloat::opStatus 2123 APFloat::convertFromAPInt(const APInt &Val, 2124 bool isSigned, 2125 roundingMode rounding_mode) 2126 { 2127 unsigned int partCount = Val.getNumWords(); 2128 APInt api = Val; 2129 2130 sign = false; 2131 if (isSigned && api.isNegative()) { 2132 sign = true; 2133 api = -api; 2134 } 2135 2136 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2137 } 2138 2139 /* Convert a two's complement integer SRC to a floating point number, 2140 rounding according to ROUNDING_MODE. ISSIGNED is true if the 2141 integer is signed, in which case it must be sign-extended. */ 2142 APFloat::opStatus 2143 APFloat::convertFromSignExtendedInteger(const integerPart *src, 2144 unsigned int srcCount, 2145 bool isSigned, 2146 roundingMode rounding_mode) 2147 { 2148 opStatus status; 2149 2150 assertArithmeticOK(*semantics); 2151 if (isSigned && 2152 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { 2153 integerPart *copy; 2154 2155 /* If we're signed and negative negate a copy. */ 2156 sign = true; 2157 copy = new integerPart[srcCount]; 2158 APInt::tcAssign(copy, src, srcCount); 2159 APInt::tcNegate(copy, srcCount); 2160 status = convertFromUnsignedParts(copy, srcCount, rounding_mode); 2161 delete [] copy; 2162 } else { 2163 sign = false; 2164 status = convertFromUnsignedParts(src, srcCount, rounding_mode); 2165 } 2166 2167 return status; 2168 } 2169 2170 /* FIXME: should this just take a const APInt reference? */ 2171 APFloat::opStatus 2172 APFloat::convertFromZeroExtendedInteger(const integerPart *parts, 2173 unsigned int width, bool isSigned, 2174 roundingMode rounding_mode) 2175 { 2176 unsigned int partCount = partCountForBits(width); 2177 APInt api = APInt(width, partCount, parts); 2178 2179 sign = false; 2180 if (isSigned && APInt::tcExtractBit(parts, width - 1)) { 2181 sign = true; 2182 api = -api; 2183 } 2184 2185 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); 2186 } 2187 2188 APFloat::opStatus 2189 APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode) 2190 { 2191 lostFraction lost_fraction = lfExactlyZero; 2192 integerPart *significand; 2193 unsigned int bitPos, partsCount; 2194 StringRef::iterator dot, firstSignificantDigit; 2195 2196 zeroSignificand(); 2197 exponent = 0; 2198 category = fcNormal; 2199 2200 significand = significandParts(); 2201 partsCount = partCount(); 2202 bitPos = partsCount * integerPartWidth; 2203 2204 /* Skip leading zeroes and any (hexa)decimal point. */ 2205 StringRef::iterator begin = s.begin(); 2206 StringRef::iterator end = s.end(); 2207 StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot); 2208 firstSignificantDigit = p; 2209 2210 for (; p != end;) { 2211 integerPart hex_value; 2212 2213 if (*p == '.') { 2214 assert(dot == end && "String contains multiple dots"); 2215 dot = p++; 2216 if (p == end) { 2217 break; 2218 } 2219 } 2220 2221 hex_value = hexDigitValue(*p); 2222 if (hex_value == -1U) { 2223 break; 2224 } 2225 2226 p++; 2227 2228 if (p == end) { 2229 break; 2230 } else { 2231 /* Store the number whilst 4-bit nibbles remain. */ 2232 if (bitPos) { 2233 bitPos -= 4; 2234 hex_value <<= bitPos % integerPartWidth; 2235 significand[bitPos / integerPartWidth] |= hex_value; 2236 } else { 2237 lost_fraction = trailingHexadecimalFraction(p, end, hex_value); 2238 while (p != end && hexDigitValue(*p) != -1U) 2239 p++; 2240 break; 2241 } 2242 } 2243 } 2244 2245 /* Hex floats require an exponent but not a hexadecimal point. */ 2246 assert(p != end && "Hex strings require an exponent"); 2247 assert((*p == 'p' || *p == 'P') && "Invalid character in significand"); 2248 assert(p != begin && "Significand has no digits"); 2249 assert((dot == end || p - begin != 1) && "Significand has no digits"); 2250 2251 /* Ignore the exponent if we are zero. */ 2252 if (p != firstSignificantDigit) { 2253 int expAdjustment; 2254 2255 /* Implicit hexadecimal point? */ 2256 if (dot == end) 2257 dot = p; 2258 2259 /* Calculate the exponent adjustment implicit in the number of 2260 significant digits. */ 2261 expAdjustment = static_cast<int>(dot - firstSignificantDigit); 2262 if (expAdjustment < 0) 2263 expAdjustment++; 2264 expAdjustment = expAdjustment * 4 - 1; 2265 2266 /* Adjust for writing the significand starting at the most 2267 significant nibble. */ 2268 expAdjustment += semantics->precision; 2269 expAdjustment -= partsCount * integerPartWidth; 2270 2271 /* Adjust for the given exponent. */ 2272 exponent = totalExponent(p + 1, end, expAdjustment); 2273 } 2274 2275 return normalize(rounding_mode, lost_fraction); 2276 } 2277 2278 APFloat::opStatus 2279 APFloat::roundSignificandWithExponent(const integerPart *decSigParts, 2280 unsigned sigPartCount, int exp, 2281 roundingMode rounding_mode) 2282 { 2283 unsigned int parts, pow5PartCount; 2284 fltSemantics calcSemantics = { 32767, -32767, 0, true }; 2285 integerPart pow5Parts[maxPowerOfFiveParts]; 2286 bool isNearest; 2287 2288 isNearest = (rounding_mode == rmNearestTiesToEven || 2289 rounding_mode == rmNearestTiesToAway); 2290 2291 parts = partCountForBits(semantics->precision + 11); 2292 2293 /* Calculate pow(5, abs(exp)). */ 2294 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); 2295 2296 for (;; parts *= 2) { 2297 opStatus sigStatus, powStatus; 2298 unsigned int excessPrecision, truncatedBits; 2299 2300 calcSemantics.precision = parts * integerPartWidth - 1; 2301 excessPrecision = calcSemantics.precision - semantics->precision; 2302 truncatedBits = excessPrecision; 2303 2304 APFloat decSig(calcSemantics, fcZero, sign); 2305 APFloat pow5(calcSemantics, fcZero, false); 2306 2307 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, 2308 rmNearestTiesToEven); 2309 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, 2310 rmNearestTiesToEven); 2311 /* Add exp, as 10^n = 5^n * 2^n. */ 2312 decSig.exponent += exp; 2313 2314 lostFraction calcLostFraction; 2315 integerPart HUerr, HUdistance; 2316 unsigned int powHUerr; 2317 2318 if (exp >= 0) { 2319 /* multiplySignificand leaves the precision-th bit set to 1. */ 2320 calcLostFraction = decSig.multiplySignificand(pow5, NULL); 2321 powHUerr = powStatus != opOK; 2322 } else { 2323 calcLostFraction = decSig.divideSignificand(pow5); 2324 /* Denormal numbers have less precision. */ 2325 if (decSig.exponent < semantics->minExponent) { 2326 excessPrecision += (semantics->minExponent - decSig.exponent); 2327 truncatedBits = excessPrecision; 2328 if (excessPrecision > calcSemantics.precision) 2329 excessPrecision = calcSemantics.precision; 2330 } 2331 /* Extra half-ulp lost in reciprocal of exponent. */ 2332 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; 2333 } 2334 2335 /* Both multiplySignificand and divideSignificand return the 2336 result with the integer bit set. */ 2337 assert(APInt::tcExtractBit 2338 (decSig.significandParts(), calcSemantics.precision - 1) == 1); 2339 2340 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, 2341 powHUerr); 2342 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), 2343 excessPrecision, isNearest); 2344 2345 /* Are we guaranteed to round correctly if we truncate? */ 2346 if (HUdistance >= HUerr) { 2347 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), 2348 calcSemantics.precision - excessPrecision, 2349 excessPrecision); 2350 /* Take the exponent of decSig. If we tcExtract-ed less bits 2351 above we must adjust our exponent to compensate for the 2352 implicit right shift. */ 2353 exponent = (decSig.exponent + semantics->precision 2354 - (calcSemantics.precision - excessPrecision)); 2355 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), 2356 decSig.partCount(), 2357 truncatedBits); 2358 return normalize(rounding_mode, calcLostFraction); 2359 } 2360 } 2361 } 2362 2363 APFloat::opStatus 2364 APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) 2365 { 2366 decimalInfo D; 2367 opStatus fs; 2368 2369 /* Scan the text. */ 2370 StringRef::iterator p = str.begin(); 2371 interpretDecimal(p, str.end(), &D); 2372 2373 /* Handle the quick cases. First the case of no significant digits, 2374 i.e. zero, and then exponents that are obviously too large or too 2375 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp 2376 definitely overflows if 2377 2378 (exp - 1) * L >= maxExponent 2379 2380 and definitely underflows to zero where 2381 2382 (exp + 1) * L <= minExponent - precision 2383 2384 With integer arithmetic the tightest bounds for L are 2385 2386 93/28 < L < 196/59 [ numerator <= 256 ] 2387 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] 2388 */ 2389 2390 if (decDigitValue(*D.firstSigDigit) >= 10U) { 2391 category = fcZero; 2392 fs = opOK; 2393 2394 /* Check whether the normalized exponent is high enough to overflow 2395 max during the log-rebasing in the max-exponent check below. */ 2396 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { 2397 fs = handleOverflow(rounding_mode); 2398 2399 /* If it wasn't, then it also wasn't high enough to overflow max 2400 during the log-rebasing in the min-exponent check. Check that it 2401 won't overflow min in either check, then perform the min-exponent 2402 check. */ 2403 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || 2404 (D.normalizedExponent + 1) * 28738 <= 2405 8651 * (semantics->minExponent - (int) semantics->precision)) { 2406 /* Underflow to zero and round. */ 2407 zeroSignificand(); 2408 fs = normalize(rounding_mode, lfLessThanHalf); 2409 2410 /* We can finally safely perform the max-exponent check. */ 2411 } else if ((D.normalizedExponent - 1) * 42039 2412 >= 12655 * semantics->maxExponent) { 2413 /* Overflow and round. */ 2414 fs = handleOverflow(rounding_mode); 2415 } else { 2416 integerPart *decSignificand; 2417 unsigned int partCount; 2418 2419 /* A tight upper bound on number of bits required to hold an 2420 N-digit decimal integer is N * 196 / 59. Allocate enough space 2421 to hold the full significand, and an extra part required by 2422 tcMultiplyPart. */ 2423 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; 2424 partCount = partCountForBits(1 + 196 * partCount / 59); 2425 decSignificand = new integerPart[partCount + 1]; 2426 partCount = 0; 2427 2428 /* Convert to binary efficiently - we do almost all multiplication 2429 in an integerPart. When this would overflow do we do a single 2430 bignum multiplication, and then revert again to multiplication 2431 in an integerPart. */ 2432 do { 2433 integerPart decValue, val, multiplier; 2434 2435 val = 0; 2436 multiplier = 1; 2437 2438 do { 2439 if (*p == '.') { 2440 p++; 2441 if (p == str.end()) { 2442 break; 2443 } 2444 } 2445 decValue = decDigitValue(*p++); 2446 assert(decValue < 10U && "Invalid character in significand"); 2447 multiplier *= 10; 2448 val = val * 10 + decValue; 2449 /* The maximum number that can be multiplied by ten with any 2450 digit added without overflowing an integerPart. */ 2451 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); 2452 2453 /* Multiply out the current part. */ 2454 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, 2455 partCount, partCount + 1, false); 2456 2457 /* If we used another part (likely but not guaranteed), increase 2458 the count. */ 2459 if (decSignificand[partCount]) 2460 partCount++; 2461 } while (p <= D.lastSigDigit); 2462 2463 category = fcNormal; 2464 fs = roundSignificandWithExponent(decSignificand, partCount, 2465 D.exponent, rounding_mode); 2466 2467 delete [] decSignificand; 2468 } 2469 2470 return fs; 2471 } 2472 2473 APFloat::opStatus 2474 APFloat::convertFromString(StringRef str, roundingMode rounding_mode) 2475 { 2476 assertArithmeticOK(*semantics); 2477 assert(!str.empty() && "Invalid string length"); 2478 2479 /* Handle a leading minus sign. */ 2480 StringRef::iterator p = str.begin(); 2481 size_t slen = str.size(); 2482 sign = *p == '-' ? 1 : 0; 2483 if (*p == '-' || *p == '+') { 2484 p++; 2485 slen--; 2486 assert(slen && "String has no digits"); 2487 } 2488 2489 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { 2490 assert(slen - 2 && "Invalid string"); 2491 return convertFromHexadecimalString(StringRef(p + 2, slen - 2), 2492 rounding_mode); 2493 } 2494 2495 return convertFromDecimalString(StringRef(p, slen), rounding_mode); 2496 } 2497 2498 /* Write out a hexadecimal representation of the floating point value 2499 to DST, which must be of sufficient size, in the C99 form 2500 [-]0xh.hhhhp[+-]d. Return the number of characters written, 2501 excluding the terminating NUL. 2502 2503 If UPPERCASE, the output is in upper case, otherwise in lower case. 2504 2505 HEXDIGITS digits appear altogether, rounding the value if 2506 necessary. If HEXDIGITS is 0, the minimal precision to display the 2507 number precisely is used instead. If nothing would appear after 2508 the decimal point it is suppressed. 2509 2510 The decimal exponent is always printed and has at least one digit. 2511 Zero values display an exponent of zero. Infinities and NaNs 2512 appear as "infinity" or "nan" respectively. 2513 2514 The above rules are as specified by C99. There is ambiguity about 2515 what the leading hexadecimal digit should be. This implementation 2516 uses whatever is necessary so that the exponent is displayed as 2517 stored. This implies the exponent will fall within the IEEE format 2518 range, and the leading hexadecimal digit will be 0 (for denormals), 2519 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with 2520 any other digits zero). 2521 */ 2522 unsigned int 2523 APFloat::convertToHexString(char *dst, unsigned int hexDigits, 2524 bool upperCase, roundingMode rounding_mode) const 2525 { 2526 char *p; 2527 2528 assertArithmeticOK(*semantics); 2529 2530 p = dst; 2531 if (sign) 2532 *dst++ = '-'; 2533 2534 switch (category) { 2535 case fcInfinity: 2536 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); 2537 dst += sizeof infinityL - 1; 2538 break; 2539 2540 case fcNaN: 2541 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); 2542 dst += sizeof NaNU - 1; 2543 break; 2544 2545 case fcZero: 2546 *dst++ = '0'; 2547 *dst++ = upperCase ? 'X': 'x'; 2548 *dst++ = '0'; 2549 if (hexDigits > 1) { 2550 *dst++ = '.'; 2551 memset (dst, '0', hexDigits - 1); 2552 dst += hexDigits - 1; 2553 } 2554 *dst++ = upperCase ? 'P': 'p'; 2555 *dst++ = '0'; 2556 break; 2557 2558 case fcNormal: 2559 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); 2560 break; 2561 } 2562 2563 *dst = 0; 2564 2565 return static_cast<unsigned int>(dst - p); 2566 } 2567 2568 /* Does the hard work of outputting the correctly rounded hexadecimal 2569 form of a normal floating point number with the specified number of 2570 hexadecimal digits. If HEXDIGITS is zero the minimum number of 2571 digits necessary to print the value precisely is output. */ 2572 char * 2573 APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, 2574 bool upperCase, 2575 roundingMode rounding_mode) const 2576 { 2577 unsigned int count, valueBits, shift, partsCount, outputDigits; 2578 const char *hexDigitChars; 2579 const integerPart *significand; 2580 char *p; 2581 bool roundUp; 2582 2583 *dst++ = '0'; 2584 *dst++ = upperCase ? 'X': 'x'; 2585 2586 roundUp = false; 2587 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; 2588 2589 significand = significandParts(); 2590 partsCount = partCount(); 2591 2592 /* +3 because the first digit only uses the single integer bit, so 2593 we have 3 virtual zero most-significant-bits. */ 2594 valueBits = semantics->precision + 3; 2595 shift = integerPartWidth - valueBits % integerPartWidth; 2596 2597 /* The natural number of digits required ignoring trailing 2598 insignificant zeroes. */ 2599 outputDigits = (valueBits - significandLSB () + 3) / 4; 2600 2601 /* hexDigits of zero means use the required number for the 2602 precision. Otherwise, see if we are truncating. If we are, 2603 find out if we need to round away from zero. */ 2604 if (hexDigits) { 2605 if (hexDigits < outputDigits) { 2606 /* We are dropping non-zero bits, so need to check how to round. 2607 "bits" is the number of dropped bits. */ 2608 unsigned int bits; 2609 lostFraction fraction; 2610 2611 bits = valueBits - hexDigits * 4; 2612 fraction = lostFractionThroughTruncation (significand, partsCount, bits); 2613 roundUp = roundAwayFromZero(rounding_mode, fraction, bits); 2614 } 2615 outputDigits = hexDigits; 2616 } 2617 2618 /* Write the digits consecutively, and start writing in the location 2619 of the hexadecimal point. We move the most significant digit 2620 left and add the hexadecimal point later. */ 2621 p = ++dst; 2622 2623 count = (valueBits + integerPartWidth - 1) / integerPartWidth; 2624 2625 while (outputDigits && count) { 2626 integerPart part; 2627 2628 /* Put the most significant integerPartWidth bits in "part". */ 2629 if (--count == partsCount) 2630 part = 0; /* An imaginary higher zero part. */ 2631 else 2632 part = significand[count] << shift; 2633 2634 if (count && shift) 2635 part |= significand[count - 1] >> (integerPartWidth - shift); 2636 2637 /* Convert as much of "part" to hexdigits as we can. */ 2638 unsigned int curDigits = integerPartWidth / 4; 2639 2640 if (curDigits > outputDigits) 2641 curDigits = outputDigits; 2642 dst += partAsHex (dst, part, curDigits, hexDigitChars); 2643 outputDigits -= curDigits; 2644 } 2645 2646 if (roundUp) { 2647 char *q = dst; 2648 2649 /* Note that hexDigitChars has a trailing '0'. */ 2650 do { 2651 q--; 2652 *q = hexDigitChars[hexDigitValue (*q) + 1]; 2653 } while (*q == '0'); 2654 assert(q >= p); 2655 } else { 2656 /* Add trailing zeroes. */ 2657 memset (dst, '0', outputDigits); 2658 dst += outputDigits; 2659 } 2660 2661 /* Move the most significant digit to before the point, and if there 2662 is something after the decimal point add it. This must come 2663 after rounding above. */ 2664 p[-1] = p[0]; 2665 if (dst -1 == p) 2666 dst--; 2667 else 2668 p[0] = '.'; 2669 2670 /* Finally output the exponent. */ 2671 *dst++ = upperCase ? 'P': 'p'; 2672 2673 return writeSignedDecimal (dst, exponent); 2674 } 2675 2676 // For good performance it is desirable for different APFloats 2677 // to produce different integers. 2678 uint32_t 2679 APFloat::getHashValue() const 2680 { 2681 if (category==fcZero) return sign<<8 | semantics->precision ; 2682 else if (category==fcInfinity) return sign<<9 | semantics->precision; 2683 else if (category==fcNaN) return 1<<10 | semantics->precision; 2684 else { 2685 uint32_t hash = sign<<11 | semantics->precision | exponent<<12; 2686 const integerPart* p = significandParts(); 2687 for (int i=partCount(); i>0; i--, p++) 2688 hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32); 2689 return hash; 2690 } 2691 } 2692 2693 // Conversion from APFloat to/from host float/double. It may eventually be 2694 // possible to eliminate these and have everybody deal with APFloats, but that 2695 // will take a while. This approach will not easily extend to long double. 2696 // Current implementation requires integerPartWidth==64, which is correct at 2697 // the moment but could be made more general. 2698 2699 // Denormals have exponent minExponent in APFloat, but minExponent-1 in 2700 // the actual IEEE respresentations. We compensate for that here. 2701 2702 APInt 2703 APFloat::convertF80LongDoubleAPFloatToAPInt() const 2704 { 2705 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended); 2706 assert(partCount()==2); 2707 2708 uint64_t myexponent, mysignificand; 2709 2710 if (category==fcNormal) { 2711 myexponent = exponent+16383; //bias 2712 mysignificand = significandParts()[0]; 2713 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) 2714 myexponent = 0; // denormal 2715 } else if (category==fcZero) { 2716 myexponent = 0; 2717 mysignificand = 0; 2718 } else if (category==fcInfinity) { 2719 myexponent = 0x7fff; 2720 mysignificand = 0x8000000000000000ULL; 2721 } else { 2722 assert(category == fcNaN && "Unknown category"); 2723 myexponent = 0x7fff; 2724 mysignificand = significandParts()[0]; 2725 } 2726 2727 uint64_t words[2]; 2728 words[0] = mysignificand; 2729 words[1] = ((uint64_t)(sign & 1) << 15) | 2730 (myexponent & 0x7fffLL); 2731 return APInt(80, 2, words); 2732 } 2733 2734 APInt 2735 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const 2736 { 2737 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble); 2738 assert(partCount()==2); 2739 2740 uint64_t myexponent, mysignificand, myexponent2, mysignificand2; 2741 2742 if (category==fcNormal) { 2743 myexponent = exponent + 1023; //bias 2744 myexponent2 = exponent2 + 1023; 2745 mysignificand = significandParts()[0]; 2746 mysignificand2 = significandParts()[1]; 2747 if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) 2748 myexponent = 0; // denormal 2749 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL)) 2750 myexponent2 = 0; // denormal 2751 } else if (category==fcZero) { 2752 myexponent = 0; 2753 mysignificand = 0; 2754 myexponent2 = 0; 2755 mysignificand2 = 0; 2756 } else if (category==fcInfinity) { 2757 myexponent = 0x7ff; 2758 myexponent2 = 0; 2759 mysignificand = 0; 2760 mysignificand2 = 0; 2761 } else { 2762 assert(category == fcNaN && "Unknown category"); 2763 myexponent = 0x7ff; 2764 mysignificand = significandParts()[0]; 2765 myexponent2 = exponent2; 2766 mysignificand2 = significandParts()[1]; 2767 } 2768 2769 uint64_t words[2]; 2770 words[0] = ((uint64_t)(sign & 1) << 63) | 2771 ((myexponent & 0x7ff) << 52) | 2772 (mysignificand & 0xfffffffffffffLL); 2773 words[1] = ((uint64_t)(sign2 & 1) << 63) | 2774 ((myexponent2 & 0x7ff) << 52) | 2775 (mysignificand2 & 0xfffffffffffffLL); 2776 return APInt(128, 2, words); 2777 } 2778 2779 APInt 2780 APFloat::convertQuadrupleAPFloatToAPInt() const 2781 { 2782 assert(semantics == (const llvm::fltSemantics*)&IEEEquad); 2783 assert(partCount()==2); 2784 2785 uint64_t myexponent, mysignificand, mysignificand2; 2786 2787 if (category==fcNormal) { 2788 myexponent = exponent+16383; //bias 2789 mysignificand = significandParts()[0]; 2790 mysignificand2 = significandParts()[1]; 2791 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) 2792 myexponent = 0; // denormal 2793 } else if (category==fcZero) { 2794 myexponent = 0; 2795 mysignificand = mysignificand2 = 0; 2796 } else if (category==fcInfinity) { 2797 myexponent = 0x7fff; 2798 mysignificand = mysignificand2 = 0; 2799 } else { 2800 assert(category == fcNaN && "Unknown category!"); 2801 myexponent = 0x7fff; 2802 mysignificand = significandParts()[0]; 2803 mysignificand2 = significandParts()[1]; 2804 } 2805 2806 uint64_t words[2]; 2807 words[0] = mysignificand; 2808 words[1] = ((uint64_t)(sign & 1) << 63) | 2809 ((myexponent & 0x7fff) << 48) | 2810 (mysignificand2 & 0xffffffffffffLL); 2811 2812 return APInt(128, 2, words); 2813 } 2814 2815 APInt 2816 APFloat::convertDoubleAPFloatToAPInt() const 2817 { 2818 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble); 2819 assert(partCount()==1); 2820 2821 uint64_t myexponent, mysignificand; 2822 2823 if (category==fcNormal) { 2824 myexponent = exponent+1023; //bias 2825 mysignificand = *significandParts(); 2826 if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) 2827 myexponent = 0; // denormal 2828 } else if (category==fcZero) { 2829 myexponent = 0; 2830 mysignificand = 0; 2831 } else if (category==fcInfinity) { 2832 myexponent = 0x7ff; 2833 mysignificand = 0; 2834 } else { 2835 assert(category == fcNaN && "Unknown category!"); 2836 myexponent = 0x7ff; 2837 mysignificand = *significandParts(); 2838 } 2839 2840 return APInt(64, ((((uint64_t)(sign & 1) << 63) | 2841 ((myexponent & 0x7ff) << 52) | 2842 (mysignificand & 0xfffffffffffffLL)))); 2843 } 2844 2845 APInt 2846 APFloat::convertFloatAPFloatToAPInt() const 2847 { 2848 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle); 2849 assert(partCount()==1); 2850 2851 uint32_t myexponent, mysignificand; 2852 2853 if (category==fcNormal) { 2854 myexponent = exponent+127; //bias 2855 mysignificand = (uint32_t)*significandParts(); 2856 if (myexponent == 1 && !(mysignificand & 0x800000)) 2857 myexponent = 0; // denormal 2858 } else if (category==fcZero) { 2859 myexponent = 0; 2860 mysignificand = 0; 2861 } else if (category==fcInfinity) { 2862 myexponent = 0xff; 2863 mysignificand = 0; 2864 } else { 2865 assert(category == fcNaN && "Unknown category!"); 2866 myexponent = 0xff; 2867 mysignificand = (uint32_t)*significandParts(); 2868 } 2869 2870 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | 2871 (mysignificand & 0x7fffff))); 2872 } 2873 2874 APInt 2875 APFloat::convertHalfAPFloatToAPInt() const 2876 { 2877 assert(semantics == (const llvm::fltSemantics*)&IEEEhalf); 2878 assert(partCount()==1); 2879 2880 uint32_t myexponent, mysignificand; 2881 2882 if (category==fcNormal) { 2883 myexponent = exponent+15; //bias 2884 mysignificand = (uint32_t)*significandParts(); 2885 if (myexponent == 1 && !(mysignificand & 0x400)) 2886 myexponent = 0; // denormal 2887 } else if (category==fcZero) { 2888 myexponent = 0; 2889 mysignificand = 0; 2890 } else if (category==fcInfinity) { 2891 myexponent = 0x1f; 2892 mysignificand = 0; 2893 } else { 2894 assert(category == fcNaN && "Unknown category!"); 2895 myexponent = 0x1f; 2896 mysignificand = (uint32_t)*significandParts(); 2897 } 2898 2899 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | 2900 (mysignificand & 0x3ff))); 2901 } 2902 2903 // This function creates an APInt that is just a bit map of the floating 2904 // point constant as it would appear in memory. It is not a conversion, 2905 // and treating the result as a normal integer is unlikely to be useful. 2906 2907 APInt 2908 APFloat::bitcastToAPInt() const 2909 { 2910 if (semantics == (const llvm::fltSemantics*)&IEEEhalf) 2911 return convertHalfAPFloatToAPInt(); 2912 2913 if (semantics == (const llvm::fltSemantics*)&IEEEsingle) 2914 return convertFloatAPFloatToAPInt(); 2915 2916 if (semantics == (const llvm::fltSemantics*)&IEEEdouble) 2917 return convertDoubleAPFloatToAPInt(); 2918 2919 if (semantics == (const llvm::fltSemantics*)&IEEEquad) 2920 return convertQuadrupleAPFloatToAPInt(); 2921 2922 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble) 2923 return convertPPCDoubleDoubleAPFloatToAPInt(); 2924 2925 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended && 2926 "unknown format!"); 2927 return convertF80LongDoubleAPFloatToAPInt(); 2928 } 2929 2930 float 2931 APFloat::convertToFloat() const 2932 { 2933 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle && 2934 "Float semantics are not IEEEsingle"); 2935 APInt api = bitcastToAPInt(); 2936 return api.bitsToFloat(); 2937 } 2938 2939 double 2940 APFloat::convertToDouble() const 2941 { 2942 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble && 2943 "Float semantics are not IEEEdouble"); 2944 APInt api = bitcastToAPInt(); 2945 return api.bitsToDouble(); 2946 } 2947 2948 /// Integer bit is explicit in this format. Intel hardware (387 and later) 2949 /// does not support these bit patterns: 2950 /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") 2951 /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") 2952 /// exponent = 0, integer bit 1 ("pseudodenormal") 2953 /// exponent!=0 nor all 1's, integer bit 0 ("unnormal") 2954 /// At the moment, the first two are treated as NaNs, the second two as Normal. 2955 void 2956 APFloat::initFromF80LongDoubleAPInt(const APInt &api) 2957 { 2958 assert(api.getBitWidth()==80); 2959 uint64_t i1 = api.getRawData()[0]; 2960 uint64_t i2 = api.getRawData()[1]; 2961 uint64_t myexponent = (i2 & 0x7fff); 2962 uint64_t mysignificand = i1; 2963 2964 initialize(&APFloat::x87DoubleExtended); 2965 assert(partCount()==2); 2966 2967 sign = static_cast<unsigned int>(i2>>15); 2968 if (myexponent==0 && mysignificand==0) { 2969 // exponent, significand meaningless 2970 category = fcZero; 2971 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { 2972 // exponent, significand meaningless 2973 category = fcInfinity; 2974 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) { 2975 // exponent meaningless 2976 category = fcNaN; 2977 significandParts()[0] = mysignificand; 2978 significandParts()[1] = 0; 2979 } else { 2980 category = fcNormal; 2981 exponent = myexponent - 16383; 2982 significandParts()[0] = mysignificand; 2983 significandParts()[1] = 0; 2984 if (myexponent==0) // denormal 2985 exponent = -16382; 2986 } 2987 } 2988 2989 void 2990 APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) 2991 { 2992 assert(api.getBitWidth()==128); 2993 uint64_t i1 = api.getRawData()[0]; 2994 uint64_t i2 = api.getRawData()[1]; 2995 uint64_t myexponent = (i1 >> 52) & 0x7ff; 2996 uint64_t mysignificand = i1 & 0xfffffffffffffLL; 2997 uint64_t myexponent2 = (i2 >> 52) & 0x7ff; 2998 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL; 2999 3000 initialize(&APFloat::PPCDoubleDouble); 3001 assert(partCount()==2); 3002 3003 sign = static_cast<unsigned int>(i1>>63); 3004 sign2 = static_cast<unsigned int>(i2>>63); 3005 if (myexponent==0 && mysignificand==0) { 3006 // exponent, significand meaningless 3007 // exponent2 and significand2 are required to be 0; we don't check 3008 category = fcZero; 3009 } else if (myexponent==0x7ff && mysignificand==0) { 3010 // exponent, significand meaningless 3011 // exponent2 and significand2 are required to be 0; we don't check 3012 category = fcInfinity; 3013 } else if (myexponent==0x7ff && mysignificand!=0) { 3014 // exponent meaningless. So is the whole second word, but keep it 3015 // for determinism. 3016 category = fcNaN; 3017 exponent2 = myexponent2; 3018 significandParts()[0] = mysignificand; 3019 significandParts()[1] = mysignificand2; 3020 } else { 3021 category = fcNormal; 3022 // Note there is no category2; the second word is treated as if it is 3023 // fcNormal, although it might be something else considered by itself. 3024 exponent = myexponent - 1023; 3025 exponent2 = myexponent2 - 1023; 3026 significandParts()[0] = mysignificand; 3027 significandParts()[1] = mysignificand2; 3028 if (myexponent==0) // denormal 3029 exponent = -1022; 3030 else 3031 significandParts()[0] |= 0x10000000000000LL; // integer bit 3032 if (myexponent2==0) 3033 exponent2 = -1022; 3034 else 3035 significandParts()[1] |= 0x10000000000000LL; // integer bit 3036 } 3037 } 3038 3039 void 3040 APFloat::initFromQuadrupleAPInt(const APInt &api) 3041 { 3042 assert(api.getBitWidth()==128); 3043 uint64_t i1 = api.getRawData()[0]; 3044 uint64_t i2 = api.getRawData()[1]; 3045 uint64_t myexponent = (i2 >> 48) & 0x7fff; 3046 uint64_t mysignificand = i1; 3047 uint64_t mysignificand2 = i2 & 0xffffffffffffLL; 3048 3049 initialize(&APFloat::IEEEquad); 3050 assert(partCount()==2); 3051 3052 sign = static_cast<unsigned int>(i2>>63); 3053 if (myexponent==0 && 3054 (mysignificand==0 && mysignificand2==0)) { 3055 // exponent, significand meaningless 3056 category = fcZero; 3057 } else if (myexponent==0x7fff && 3058 (mysignificand==0 && mysignificand2==0)) { 3059 // exponent, significand meaningless 3060 category = fcInfinity; 3061 } else if (myexponent==0x7fff && 3062 (mysignificand!=0 || mysignificand2 !=0)) { 3063 // exponent meaningless 3064 category = fcNaN; 3065 significandParts()[0] = mysignificand; 3066 significandParts()[1] = mysignificand2; 3067 } else { 3068 category = fcNormal; 3069 exponent = myexponent - 16383; 3070 significandParts()[0] = mysignificand; 3071 significandParts()[1] = mysignificand2; 3072 if (myexponent==0) // denormal 3073 exponent = -16382; 3074 else 3075 significandParts()[1] |= 0x1000000000000LL; // integer bit 3076 } 3077 } 3078 3079 void 3080 APFloat::initFromDoubleAPInt(const APInt &api) 3081 { 3082 assert(api.getBitWidth()==64); 3083 uint64_t i = *api.getRawData(); 3084 uint64_t myexponent = (i >> 52) & 0x7ff; 3085 uint64_t mysignificand = i & 0xfffffffffffffLL; 3086 3087 initialize(&APFloat::IEEEdouble); 3088 assert(partCount()==1); 3089 3090 sign = static_cast<unsigned int>(i>>63); 3091 if (myexponent==0 && mysignificand==0) { 3092 // exponent, significand meaningless 3093 category = fcZero; 3094 } else if (myexponent==0x7ff && mysignificand==0) { 3095 // exponent, significand meaningless 3096 category = fcInfinity; 3097 } else if (myexponent==0x7ff && mysignificand!=0) { 3098 // exponent meaningless 3099 category = fcNaN; 3100 *significandParts() = mysignificand; 3101 } else { 3102 category = fcNormal; 3103 exponent = myexponent - 1023; 3104 *significandParts() = mysignificand; 3105 if (myexponent==0) // denormal 3106 exponent = -1022; 3107 else 3108 *significandParts() |= 0x10000000000000LL; // integer bit 3109 } 3110 } 3111 3112 void 3113 APFloat::initFromFloatAPInt(const APInt & api) 3114 { 3115 assert(api.getBitWidth()==32); 3116 uint32_t i = (uint32_t)*api.getRawData(); 3117 uint32_t myexponent = (i >> 23) & 0xff; 3118 uint32_t mysignificand = i & 0x7fffff; 3119 3120 initialize(&APFloat::IEEEsingle); 3121 assert(partCount()==1); 3122 3123 sign = i >> 31; 3124 if (myexponent==0 && mysignificand==0) { 3125 // exponent, significand meaningless 3126 category = fcZero; 3127 } else if (myexponent==0xff && mysignificand==0) { 3128 // exponent, significand meaningless 3129 category = fcInfinity; 3130 } else if (myexponent==0xff && mysignificand!=0) { 3131 // sign, exponent, significand meaningless 3132 category = fcNaN; 3133 *significandParts() = mysignificand; 3134 } else { 3135 category = fcNormal; 3136 exponent = myexponent - 127; //bias 3137 *significandParts() = mysignificand; 3138 if (myexponent==0) // denormal 3139 exponent = -126; 3140 else 3141 *significandParts() |= 0x800000; // integer bit 3142 } 3143 } 3144 3145 void 3146 APFloat::initFromHalfAPInt(const APInt & api) 3147 { 3148 assert(api.getBitWidth()==16); 3149 uint32_t i = (uint32_t)*api.getRawData(); 3150 uint32_t myexponent = (i >> 10) & 0x1f; 3151 uint32_t mysignificand = i & 0x3ff; 3152 3153 initialize(&APFloat::IEEEhalf); 3154 assert(partCount()==1); 3155 3156 sign = i >> 15; 3157 if (myexponent==0 && mysignificand==0) { 3158 // exponent, significand meaningless 3159 category = fcZero; 3160 } else if (myexponent==0x1f && mysignificand==0) { 3161 // exponent, significand meaningless 3162 category = fcInfinity; 3163 } else if (myexponent==0x1f && mysignificand!=0) { 3164 // sign, exponent, significand meaningless 3165 category = fcNaN; 3166 *significandParts() = mysignificand; 3167 } else { 3168 category = fcNormal; 3169 exponent = myexponent - 15; //bias 3170 *significandParts() = mysignificand; 3171 if (myexponent==0) // denormal 3172 exponent = -14; 3173 else 3174 *significandParts() |= 0x400; // integer bit 3175 } 3176 } 3177 3178 /// Treat api as containing the bits of a floating point number. Currently 3179 /// we infer the floating point type from the size of the APInt. The 3180 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful 3181 /// when the size is anything else). 3182 void 3183 APFloat::initFromAPInt(const APInt& api, bool isIEEE) 3184 { 3185 if (api.getBitWidth() == 16) 3186 return initFromHalfAPInt(api); 3187 else if (api.getBitWidth() == 32) 3188 return initFromFloatAPInt(api); 3189 else if (api.getBitWidth()==64) 3190 return initFromDoubleAPInt(api); 3191 else if (api.getBitWidth()==80) 3192 return initFromF80LongDoubleAPInt(api); 3193 else if (api.getBitWidth()==128) 3194 return (isIEEE ? 3195 initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api)); 3196 else 3197 llvm_unreachable(0); 3198 } 3199 3200 APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) { 3201 APFloat Val(Sem, fcNormal, Negative); 3202 3203 // We want (in interchange format): 3204 // sign = {Negative} 3205 // exponent = 1..10 3206 // significand = 1..1 3207 3208 Val.exponent = Sem.maxExponent; // unbiased 3209 3210 // 1-initialize all bits.... 3211 Val.zeroSignificand(); 3212 integerPart *significand = Val.significandParts(); 3213 unsigned N = partCountForBits(Sem.precision); 3214 for (unsigned i = 0; i != N; ++i) 3215 significand[i] = ~((integerPart) 0); 3216 3217 // ...and then clear the top bits for internal consistency. 3218 significand[N-1] &= 3219 (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)) - 1; 3220 3221 return Val; 3222 } 3223 3224 APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) { 3225 APFloat Val(Sem, fcNormal, Negative); 3226 3227 // We want (in interchange format): 3228 // sign = {Negative} 3229 // exponent = 0..0 3230 // significand = 0..01 3231 3232 Val.exponent = Sem.minExponent; // unbiased 3233 Val.zeroSignificand(); 3234 Val.significandParts()[0] = 1; 3235 return Val; 3236 } 3237 3238 APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) { 3239 APFloat Val(Sem, fcNormal, Negative); 3240 3241 // We want (in interchange format): 3242 // sign = {Negative} 3243 // exponent = 0..0 3244 // significand = 10..0 3245 3246 Val.exponent = Sem.minExponent; 3247 Val.zeroSignificand(); 3248 Val.significandParts()[partCountForBits(Sem.precision)-1] |= 3249 (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)); 3250 3251 return Val; 3252 } 3253 3254 APFloat::APFloat(const APInt& api, bool isIEEE) 3255 { 3256 initFromAPInt(api, isIEEE); 3257 } 3258 3259 APFloat::APFloat(float f) 3260 { 3261 initFromAPInt(APInt::floatToBits(f)); 3262 } 3263 3264 APFloat::APFloat(double d) 3265 { 3266 initFromAPInt(APInt::doubleToBits(d)); 3267 } 3268 3269 namespace { 3270 static void append(SmallVectorImpl<char> &Buffer, 3271 unsigned N, const char *Str) { 3272 unsigned Start = Buffer.size(); 3273 Buffer.set_size(Start + N); 3274 memcpy(&Buffer[Start], Str, N); 3275 } 3276 3277 template <unsigned N> 3278 void append(SmallVectorImpl<char> &Buffer, const char (&Str)[N]) { 3279 append(Buffer, N, Str); 3280 } 3281 3282 /// Removes data from the given significand until it is no more 3283 /// precise than is required for the desired precision. 3284 void AdjustToPrecision(APInt &significand, 3285 int &exp, unsigned FormatPrecision) { 3286 unsigned bits = significand.getActiveBits(); 3287 3288 // 196/59 is a very slight overestimate of lg_2(10). 3289 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; 3290 3291 if (bits <= bitsRequired) return; 3292 3293 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; 3294 if (!tensRemovable) return; 3295 3296 exp += tensRemovable; 3297 3298 APInt divisor(significand.getBitWidth(), 1); 3299 APInt powten(significand.getBitWidth(), 10); 3300 while (true) { 3301 if (tensRemovable & 1) 3302 divisor *= powten; 3303 tensRemovable >>= 1; 3304 if (!tensRemovable) break; 3305 powten *= powten; 3306 } 3307 3308 significand = significand.udiv(divisor); 3309 3310 // Truncate the significand down to its active bit count, but 3311 // don't try to drop below 32. 3312 unsigned newPrecision = std::max(32U, significand.getActiveBits()); 3313 significand = significand.trunc(newPrecision); 3314 } 3315 3316 3317 void AdjustToPrecision(SmallVectorImpl<char> &buffer, 3318 int &exp, unsigned FormatPrecision) { 3319 unsigned N = buffer.size(); 3320 if (N <= FormatPrecision) return; 3321 3322 // The most significant figures are the last ones in the buffer. 3323 unsigned FirstSignificant = N - FormatPrecision; 3324 3325 // Round. 3326 // FIXME: this probably shouldn't use 'round half up'. 3327 3328 // Rounding down is just a truncation, except we also want to drop 3329 // trailing zeros from the new result. 3330 if (buffer[FirstSignificant - 1] < '5') { 3331 while (buffer[FirstSignificant] == '0') 3332 FirstSignificant++; 3333 3334 exp += FirstSignificant; 3335 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3336 return; 3337 } 3338 3339 // Rounding up requires a decimal add-with-carry. If we continue 3340 // the carry, the newly-introduced zeros will just be truncated. 3341 for (unsigned I = FirstSignificant; I != N; ++I) { 3342 if (buffer[I] == '9') { 3343 FirstSignificant++; 3344 } else { 3345 buffer[I]++; 3346 break; 3347 } 3348 } 3349 3350 // If we carried through, we have exactly one digit of precision. 3351 if (FirstSignificant == N) { 3352 exp += FirstSignificant; 3353 buffer.clear(); 3354 buffer.push_back('1'); 3355 return; 3356 } 3357 3358 exp += FirstSignificant; 3359 buffer.erase(&buffer[0], &buffer[FirstSignificant]); 3360 } 3361 } 3362 3363 void APFloat::toString(SmallVectorImpl<char> &Str, 3364 unsigned FormatPrecision, 3365 unsigned FormatMaxPadding) const { 3366 switch (category) { 3367 case fcInfinity: 3368 if (isNegative()) 3369 return append(Str, "-Inf"); 3370 else 3371 return append(Str, "+Inf"); 3372 3373 case fcNaN: return append(Str, "NaN"); 3374 3375 case fcZero: 3376 if (isNegative()) 3377 Str.push_back('-'); 3378 3379 if (!FormatMaxPadding) 3380 append(Str, "0.0E+0"); 3381 else 3382 Str.push_back('0'); 3383 return; 3384 3385 case fcNormal: 3386 break; 3387 } 3388 3389 if (isNegative()) 3390 Str.push_back('-'); 3391 3392 // Decompose the number into an APInt and an exponent. 3393 int exp = exponent - ((int) semantics->precision - 1); 3394 APInt significand(semantics->precision, 3395 partCountForBits(semantics->precision), 3396 significandParts()); 3397 3398 // Set FormatPrecision if zero. We want to do this before we 3399 // truncate trailing zeros, as those are part of the precision. 3400 if (!FormatPrecision) { 3401 // It's an interesting question whether to use the nominal 3402 // precision or the active precision here for denormals. 3403 3404 // FormatPrecision = ceil(significandBits / lg_2(10)) 3405 FormatPrecision = (semantics->precision * 59 + 195) / 196; 3406 } 3407 3408 // Ignore trailing binary zeros. 3409 int trailingZeros = significand.countTrailingZeros(); 3410 exp += trailingZeros; 3411 significand = significand.lshr(trailingZeros); 3412 3413 // Change the exponent from 2^e to 10^e. 3414 if (exp == 0) { 3415 // Nothing to do. 3416 } else if (exp > 0) { 3417 // Just shift left. 3418 significand = significand.zext(semantics->precision + exp); 3419 significand <<= exp; 3420 exp = 0; 3421 } else { /* exp < 0 */ 3422 int texp = -exp; 3423 3424 // We transform this using the identity: 3425 // (N)(2^-e) == (N)(5^e)(10^-e) 3426 // This means we have to multiply N (the significand) by 5^e. 3427 // To avoid overflow, we have to operate on numbers large 3428 // enough to store N * 5^e: 3429 // log2(N * 5^e) == log2(N) + e * log2(5) 3430 // <= semantics->precision + e * 137 / 59 3431 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) 3432 3433 unsigned precision = semantics->precision + 137 * texp / 59; 3434 3435 // Multiply significand by 5^e. 3436 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) 3437 significand = significand.zext(precision); 3438 APInt five_to_the_i(precision, 5); 3439 while (true) { 3440 if (texp & 1) significand *= five_to_the_i; 3441 3442 texp >>= 1; 3443 if (!texp) break; 3444 five_to_the_i *= five_to_the_i; 3445 } 3446 } 3447 3448 AdjustToPrecision(significand, exp, FormatPrecision); 3449 3450 llvm::SmallVector<char, 256> buffer; 3451 3452 // Fill the buffer. 3453 unsigned precision = significand.getBitWidth(); 3454 APInt ten(precision, 10); 3455 APInt digit(precision, 0); 3456 3457 bool inTrail = true; 3458 while (significand != 0) { 3459 // digit <- significand % 10 3460 // significand <- significand / 10 3461 APInt::udivrem(significand, ten, significand, digit); 3462 3463 unsigned d = digit.getZExtValue(); 3464 3465 // Drop trailing zeros. 3466 if (inTrail && !d) exp++; 3467 else { 3468 buffer.push_back((char) ('0' + d)); 3469 inTrail = false; 3470 } 3471 } 3472 3473 assert(!buffer.empty() && "no characters in buffer!"); 3474 3475 // Drop down to FormatPrecision. 3476 // TODO: don't do more precise calculations above than are required. 3477 AdjustToPrecision(buffer, exp, FormatPrecision); 3478 3479 unsigned NDigits = buffer.size(); 3480 3481 // Check whether we should use scientific notation. 3482 bool FormatScientific; 3483 if (!FormatMaxPadding) 3484 FormatScientific = true; 3485 else { 3486 if (exp >= 0) { 3487 // 765e3 --> 765000 3488 // ^^^ 3489 // But we shouldn't make the number look more precise than it is. 3490 FormatScientific = ((unsigned) exp > FormatMaxPadding || 3491 NDigits + (unsigned) exp > FormatPrecision); 3492 } else { 3493 // Power of the most significant digit. 3494 int MSD = exp + (int) (NDigits - 1); 3495 if (MSD >= 0) { 3496 // 765e-2 == 7.65 3497 FormatScientific = false; 3498 } else { 3499 // 765e-5 == 0.00765 3500 // ^ ^^ 3501 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; 3502 } 3503 } 3504 } 3505 3506 // Scientific formatting is pretty straightforward. 3507 if (FormatScientific) { 3508 exp += (NDigits - 1); 3509 3510 Str.push_back(buffer[NDigits-1]); 3511 Str.push_back('.'); 3512 if (NDigits == 1) 3513 Str.push_back('0'); 3514 else 3515 for (unsigned I = 1; I != NDigits; ++I) 3516 Str.push_back(buffer[NDigits-1-I]); 3517 Str.push_back('E'); 3518 3519 Str.push_back(exp >= 0 ? '+' : '-'); 3520 if (exp < 0) exp = -exp; 3521 SmallVector<char, 6> expbuf; 3522 do { 3523 expbuf.push_back((char) ('0' + (exp % 10))); 3524 exp /= 10; 3525 } while (exp); 3526 for (unsigned I = 0, E = expbuf.size(); I != E; ++I) 3527 Str.push_back(expbuf[E-1-I]); 3528 return; 3529 } 3530 3531 // Non-scientific, positive exponents. 3532 if (exp >= 0) { 3533 for (unsigned I = 0; I != NDigits; ++I) 3534 Str.push_back(buffer[NDigits-1-I]); 3535 for (unsigned I = 0; I != (unsigned) exp; ++I) 3536 Str.push_back('0'); 3537 return; 3538 } 3539 3540 // Non-scientific, negative exponents. 3541 3542 // The number of digits to the left of the decimal point. 3543 int NWholeDigits = exp + (int) NDigits; 3544 3545 unsigned I = 0; 3546 if (NWholeDigits > 0) { 3547 for (; I != (unsigned) NWholeDigits; ++I) 3548 Str.push_back(buffer[NDigits-I-1]); 3549 Str.push_back('.'); 3550 } else { 3551 unsigned NZeros = 1 + (unsigned) -NWholeDigits; 3552 3553 Str.push_back('0'); 3554 Str.push_back('.'); 3555 for (unsigned Z = 1; Z != NZeros; ++Z) 3556 Str.push_back('0'); 3557 } 3558 3559 for (; I != NDigits; ++I) 3560 Str.push_back(buffer[NDigits-I-1]); 3561 } 3562