1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision floating
11 // point values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <limits.h>
21 #include <cstring>
22 
23 using namespace llvm;
24 
25 #define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
26 
27 /* Assumed in hexadecimal significand parsing, and conversion to
28    hexadecimal strings.  */
29 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
30 COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
31 
32 namespace llvm {
33 
34   /* Represents floating point arithmetic semantics.  */
35   struct fltSemantics {
36     /* The largest E such that 2^E is representable; this matches the
37        definition of IEEE 754.  */
38     exponent_t maxExponent;
39 
40     /* The smallest E such that 2^E is a normalized number; this
41        matches the definition of IEEE 754.  */
42     exponent_t minExponent;
43 
44     /* Number of bits in the significand.  This includes the integer
45        bit.  */
46     unsigned int precision;
47 
48     /* True if arithmetic is supported.  */
49     unsigned int arithmeticOK;
50   };
51 
52   const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true };
53   const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
54   const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
55   const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
56   const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
57   const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
58 
59   // The PowerPC format consists of two doubles.  It does not map cleanly
60   // onto the usual format above.  For now only storage of constants of
61   // this type is supported, no arithmetic.
62   const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
63 
64   /* A tight upper bound on number of parts required to hold the value
65      pow(5, power) is
66 
67        power * 815 / (351 * integerPartWidth) + 1
68 
69      However, whilst the result may require only this many parts,
70      because we are multiplying two values to get it, the
71      multiplication may require an extra part with the excess part
72      being zero (consider the trivial case of 1 * 1, tcFullMultiply
73      requires two parts to hold the single-part result).  So we add an
74      extra one to guarantee enough space whilst multiplying.  */
75   const unsigned int maxExponent = 16383;
76   const unsigned int maxPrecision = 113;
77   const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
78   const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
79                                                 / (351 * integerPartWidth));
80 }
81 
82 /* A bunch of private, handy routines.  */
83 
84 static inline unsigned int
85 partCountForBits(unsigned int bits)
86 {
87   return ((bits) + integerPartWidth - 1) / integerPartWidth;
88 }
89 
90 /* Returns 0U-9U.  Return values >= 10U are not digits.  */
91 static inline unsigned int
92 decDigitValue(unsigned int c)
93 {
94   return c - '0';
95 }
96 
97 static unsigned int
98 hexDigitValue(unsigned int c)
99 {
100   unsigned int r;
101 
102   r = c - '0';
103   if (r <= 9)
104     return r;
105 
106   r = c - 'A';
107   if (r <= 5)
108     return r + 10;
109 
110   r = c - 'a';
111   if (r <= 5)
112     return r + 10;
113 
114   return -1U;
115 }
116 
117 static inline void
118 assertArithmeticOK(const llvm::fltSemantics &semantics) {
119   assert(semantics.arithmeticOK &&
120          "Compile-time arithmetic does not support these semantics");
121 }
122 
123 /* Return the value of a decimal exponent of the form
124    [+-]ddddddd.
125 
126    If the exponent overflows, returns a large exponent with the
127    appropriate sign.  */
128 static int
129 readExponent(StringRef::iterator begin, StringRef::iterator end)
130 {
131   bool isNegative;
132   unsigned int absExponent;
133   const unsigned int overlargeExponent = 24000;  /* FIXME.  */
134   StringRef::iterator p = begin;
135 
136   assert(p != end && "Exponent has no digits");
137 
138   isNegative = (*p == '-');
139   if (*p == '-' || *p == '+') {
140     p++;
141     assert(p != end && "Exponent has no digits");
142   }
143 
144   absExponent = decDigitValue(*p++);
145   assert(absExponent < 10U && "Invalid character in exponent");
146 
147   for (; p != end; ++p) {
148     unsigned int value;
149 
150     value = decDigitValue(*p);
151     assert(value < 10U && "Invalid character in exponent");
152 
153     value += absExponent * 10;
154     if (absExponent >= overlargeExponent) {
155       absExponent = overlargeExponent;
156       p = end;  /* outwit assert below */
157       break;
158     }
159     absExponent = value;
160   }
161 
162   assert(p == end && "Invalid exponent in exponent");
163 
164   if (isNegative)
165     return -(int) absExponent;
166   else
167     return (int) absExponent;
168 }
169 
170 /* This is ugly and needs cleaning up, but I don't immediately see
171    how whilst remaining safe.  */
172 static int
173 totalExponent(StringRef::iterator p, StringRef::iterator end,
174               int exponentAdjustment)
175 {
176   int unsignedExponent;
177   bool negative, overflow;
178   int exponent = 0;
179 
180   assert(p != end && "Exponent has no digits");
181 
182   negative = *p == '-';
183   if (*p == '-' || *p == '+') {
184     p++;
185     assert(p != end && "Exponent has no digits");
186   }
187 
188   unsignedExponent = 0;
189   overflow = false;
190   for (; p != end; ++p) {
191     unsigned int value;
192 
193     value = decDigitValue(*p);
194     assert(value < 10U && "Invalid character in exponent");
195 
196     unsignedExponent = unsignedExponent * 10 + value;
197     if (unsignedExponent > 32767)
198       overflow = true;
199   }
200 
201   if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
202     overflow = true;
203 
204   if (!overflow) {
205     exponent = unsignedExponent;
206     if (negative)
207       exponent = -exponent;
208     exponent += exponentAdjustment;
209     if (exponent > 32767 || exponent < -32768)
210       overflow = true;
211   }
212 
213   if (overflow)
214     exponent = negative ? -32768: 32767;
215 
216   return exponent;
217 }
218 
219 static StringRef::iterator
220 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
221                            StringRef::iterator *dot)
222 {
223   StringRef::iterator p = begin;
224   *dot = end;
225   while (*p == '0' && p != end)
226     p++;
227 
228   if (*p == '.') {
229     *dot = p++;
230 
231     assert(end - begin != 1 && "Significand has no digits");
232 
233     while (*p == '0' && p != end)
234       p++;
235   }
236 
237   return p;
238 }
239 
240 /* Given a normal decimal floating point number of the form
241 
242      dddd.dddd[eE][+-]ddd
243 
244    where the decimal point and exponent are optional, fill out the
245    structure D.  Exponent is appropriate if the significand is
246    treated as an integer, and normalizedExponent if the significand
247    is taken to have the decimal point after a single leading
248    non-zero digit.
249 
250    If the value is zero, V->firstSigDigit points to a non-digit, and
251    the return exponent is zero.
252 */
253 struct decimalInfo {
254   const char *firstSigDigit;
255   const char *lastSigDigit;
256   int exponent;
257   int normalizedExponent;
258 };
259 
260 static void
261 interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
262                  decimalInfo *D)
263 {
264   StringRef::iterator dot = end;
265   StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
266 
267   D->firstSigDigit = p;
268   D->exponent = 0;
269   D->normalizedExponent = 0;
270 
271   for (; p != end; ++p) {
272     if (*p == '.') {
273       assert(dot == end && "String contains multiple dots");
274       dot = p++;
275       if (p == end)
276         break;
277     }
278     if (decDigitValue(*p) >= 10U)
279       break;
280   }
281 
282   if (p != end) {
283     assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
284     assert(p != begin && "Significand has no digits");
285     assert((dot == end || p - begin != 1) && "Significand has no digits");
286 
287     /* p points to the first non-digit in the string */
288     D->exponent = readExponent(p + 1, end);
289 
290     /* Implied decimal point?  */
291     if (dot == end)
292       dot = p;
293   }
294 
295   /* If number is all zeroes accept any exponent.  */
296   if (p != D->firstSigDigit) {
297     /* Drop insignificant trailing zeroes.  */
298     if (p != begin) {
299       do
300         do
301           p--;
302         while (p != begin && *p == '0');
303       while (p != begin && *p == '.');
304     }
305 
306     /* Adjust the exponents for any decimal point.  */
307     D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
308     D->normalizedExponent = (D->exponent +
309               static_cast<exponent_t>((p - D->firstSigDigit)
310                                       - (dot > D->firstSigDigit && dot < p)));
311   }
312 
313   D->lastSigDigit = p;
314 }
315 
316 /* Return the trailing fraction of a hexadecimal number.
317    DIGITVALUE is the first hex digit of the fraction, P points to
318    the next digit.  */
319 static lostFraction
320 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
321                             unsigned int digitValue)
322 {
323   unsigned int hexDigit;
324 
325   /* If the first trailing digit isn't 0 or 8 we can work out the
326      fraction immediately.  */
327   if (digitValue > 8)
328     return lfMoreThanHalf;
329   else if (digitValue < 8 && digitValue > 0)
330     return lfLessThanHalf;
331 
332   /* Otherwise we need to find the first non-zero digit.  */
333   while (*p == '0')
334     p++;
335 
336   assert(p != end && "Invalid trailing hexadecimal fraction!");
337 
338   hexDigit = hexDigitValue(*p);
339 
340   /* If we ran off the end it is exactly zero or one-half, otherwise
341      a little more.  */
342   if (hexDigit == -1U)
343     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
344   else
345     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
346 }
347 
348 /* Return the fraction lost were a bignum truncated losing the least
349    significant BITS bits.  */
350 static lostFraction
351 lostFractionThroughTruncation(const integerPart *parts,
352                               unsigned int partCount,
353                               unsigned int bits)
354 {
355   unsigned int lsb;
356 
357   lsb = APInt::tcLSB(parts, partCount);
358 
359   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
360   if (bits <= lsb)
361     return lfExactlyZero;
362   if (bits == lsb + 1)
363     return lfExactlyHalf;
364   if (bits <= partCount * integerPartWidth &&
365       APInt::tcExtractBit(parts, bits - 1))
366     return lfMoreThanHalf;
367 
368   return lfLessThanHalf;
369 }
370 
371 /* Shift DST right BITS bits noting lost fraction.  */
372 static lostFraction
373 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
374 {
375   lostFraction lost_fraction;
376 
377   lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
378 
379   APInt::tcShiftRight(dst, parts, bits);
380 
381   return lost_fraction;
382 }
383 
384 /* Combine the effect of two lost fractions.  */
385 static lostFraction
386 combineLostFractions(lostFraction moreSignificant,
387                      lostFraction lessSignificant)
388 {
389   if (lessSignificant != lfExactlyZero) {
390     if (moreSignificant == lfExactlyZero)
391       moreSignificant = lfLessThanHalf;
392     else if (moreSignificant == lfExactlyHalf)
393       moreSignificant = lfMoreThanHalf;
394   }
395 
396   return moreSignificant;
397 }
398 
399 /* The error from the true value, in half-ulps, on multiplying two
400    floating point numbers, which differ from the value they
401    approximate by at most HUE1 and HUE2 half-ulps, is strictly less
402    than the returned value.
403 
404    See "How to Read Floating Point Numbers Accurately" by William D
405    Clinger.  */
406 static unsigned int
407 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
408 {
409   assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
410 
411   if (HUerr1 + HUerr2 == 0)
412     return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
413   else
414     return inexactMultiply + 2 * (HUerr1 + HUerr2);
415 }
416 
417 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
418    when the least significant BITS are truncated.  BITS cannot be
419    zero.  */
420 static integerPart
421 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
422 {
423   unsigned int count, partBits;
424   integerPart part, boundary;
425 
426   assert(bits != 0);
427 
428   bits--;
429   count = bits / integerPartWidth;
430   partBits = bits % integerPartWidth + 1;
431 
432   part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
433 
434   if (isNearest)
435     boundary = (integerPart) 1 << (partBits - 1);
436   else
437     boundary = 0;
438 
439   if (count == 0) {
440     if (part - boundary <= boundary - part)
441       return part - boundary;
442     else
443       return boundary - part;
444   }
445 
446   if (part == boundary) {
447     while (--count)
448       if (parts[count])
449         return ~(integerPart) 0; /* A lot.  */
450 
451     return parts[0];
452   } else if (part == boundary - 1) {
453     while (--count)
454       if (~parts[count])
455         return ~(integerPart) 0; /* A lot.  */
456 
457     return -parts[0];
458   }
459 
460   return ~(integerPart) 0; /* A lot.  */
461 }
462 
463 /* Place pow(5, power) in DST, and return the number of parts used.
464    DST must be at least one part larger than size of the answer.  */
465 static unsigned int
466 powerOf5(integerPart *dst, unsigned int power)
467 {
468   static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
469                                                   15625, 78125 };
470   integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
471   pow5s[0] = 78125 * 5;
472 
473   unsigned int partsCount[16] = { 1 };
474   integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
475   unsigned int result;
476   assert(power <= maxExponent);
477 
478   p1 = dst;
479   p2 = scratch;
480 
481   *p1 = firstEightPowers[power & 7];
482   power >>= 3;
483 
484   result = 1;
485   pow5 = pow5s;
486 
487   for (unsigned int n = 0; power; power >>= 1, n++) {
488     unsigned int pc;
489 
490     pc = partsCount[n];
491 
492     /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
493     if (pc == 0) {
494       pc = partsCount[n - 1];
495       APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
496       pc *= 2;
497       if (pow5[pc - 1] == 0)
498         pc--;
499       partsCount[n] = pc;
500     }
501 
502     if (power & 1) {
503       integerPart *tmp;
504 
505       APInt::tcFullMultiply(p2, p1, pow5, result, pc);
506       result += pc;
507       if (p2[result - 1] == 0)
508         result--;
509 
510       /* Now result is in p1 with partsCount parts and p2 is scratch
511          space.  */
512       tmp = p1, p1 = p2, p2 = tmp;
513     }
514 
515     pow5 += pc;
516   }
517 
518   if (p1 != dst)
519     APInt::tcAssign(dst, p1, result);
520 
521   return result;
522 }
523 
524 /* Zero at the end to avoid modular arithmetic when adding one; used
525    when rounding up during hexadecimal output.  */
526 static const char hexDigitsLower[] = "0123456789abcdef0";
527 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
528 static const char infinityL[] = "infinity";
529 static const char infinityU[] = "INFINITY";
530 static const char NaNL[] = "nan";
531 static const char NaNU[] = "NAN";
532 
533 /* Write out an integerPart in hexadecimal, starting with the most
534    significant nibble.  Write out exactly COUNT hexdigits, return
535    COUNT.  */
536 static unsigned int
537 partAsHex (char *dst, integerPart part, unsigned int count,
538            const char *hexDigitChars)
539 {
540   unsigned int result = count;
541 
542   assert(count != 0 && count <= integerPartWidth / 4);
543 
544   part >>= (integerPartWidth - 4 * count);
545   while (count--) {
546     dst[count] = hexDigitChars[part & 0xf];
547     part >>= 4;
548   }
549 
550   return result;
551 }
552 
553 /* Write out an unsigned decimal integer.  */
554 static char *
555 writeUnsignedDecimal (char *dst, unsigned int n)
556 {
557   char buff[40], *p;
558 
559   p = buff;
560   do
561     *p++ = '0' + n % 10;
562   while (n /= 10);
563 
564   do
565     *dst++ = *--p;
566   while (p != buff);
567 
568   return dst;
569 }
570 
571 /* Write out a signed decimal integer.  */
572 static char *
573 writeSignedDecimal (char *dst, int value)
574 {
575   if (value < 0) {
576     *dst++ = '-';
577     dst = writeUnsignedDecimal(dst, -(unsigned) value);
578   } else
579     dst = writeUnsignedDecimal(dst, value);
580 
581   return dst;
582 }
583 
584 /* Constructors.  */
585 void
586 APFloat::initialize(const fltSemantics *ourSemantics)
587 {
588   unsigned int count;
589 
590   semantics = ourSemantics;
591   count = partCount();
592   if (count > 1)
593     significand.parts = new integerPart[count];
594 }
595 
596 void
597 APFloat::freeSignificand()
598 {
599   if (partCount() > 1)
600     delete [] significand.parts;
601 }
602 
603 void
604 APFloat::assign(const APFloat &rhs)
605 {
606   assert(semantics == rhs.semantics);
607 
608   sign = rhs.sign;
609   category = rhs.category;
610   exponent = rhs.exponent;
611   sign2 = rhs.sign2;
612   exponent2 = rhs.exponent2;
613   if (category == fcNormal || category == fcNaN)
614     copySignificand(rhs);
615 }
616 
617 void
618 APFloat::copySignificand(const APFloat &rhs)
619 {
620   assert(category == fcNormal || category == fcNaN);
621   assert(rhs.partCount() >= partCount());
622 
623   APInt::tcAssign(significandParts(), rhs.significandParts(),
624                   partCount());
625 }
626 
627 /* Make this number a NaN, with an arbitrary but deterministic value
628    for the significand.  If double or longer, this is a signalling NaN,
629    which may not be ideal.  If float, this is QNaN(0).  */
630 void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
631 {
632   category = fcNaN;
633   sign = Negative;
634 
635   integerPart *significand = significandParts();
636   unsigned numParts = partCount();
637 
638   // Set the significand bits to the fill.
639   if (!fill || fill->getNumWords() < numParts)
640     APInt::tcSet(significand, 0, numParts);
641   if (fill) {
642     APInt::tcAssign(significand, fill->getRawData(),
643                     std::min(fill->getNumWords(), numParts));
644 
645     // Zero out the excess bits of the significand.
646     unsigned bitsToPreserve = semantics->precision - 1;
647     unsigned part = bitsToPreserve / 64;
648     bitsToPreserve %= 64;
649     significand[part] &= ((1ULL << bitsToPreserve) - 1);
650     for (part++; part != numParts; ++part)
651       significand[part] = 0;
652   }
653 
654   unsigned QNaNBit = semantics->precision - 2;
655 
656   if (SNaN) {
657     // We always have to clear the QNaN bit to make it an SNaN.
658     APInt::tcClearBit(significand, QNaNBit);
659 
660     // If there are no bits set in the payload, we have to set
661     // *something* to make it a NaN instead of an infinity;
662     // conventionally, this is the next bit down from the QNaN bit.
663     if (APInt::tcIsZero(significand, numParts))
664       APInt::tcSetBit(significand, QNaNBit - 1);
665   } else {
666     // We always have to set the QNaN bit to make it a QNaN.
667     APInt::tcSetBit(significand, QNaNBit);
668   }
669 
670   // For x87 extended precision, we want to make a NaN, not a
671   // pseudo-NaN.  Maybe we should expose the ability to make
672   // pseudo-NaNs?
673   if (semantics == &APFloat::x87DoubleExtended)
674     APInt::tcSetBit(significand, QNaNBit + 1);
675 }
676 
677 APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
678                          const APInt *fill) {
679   APFloat value(Sem, uninitialized);
680   value.makeNaN(SNaN, Negative, fill);
681   return value;
682 }
683 
684 APFloat &
685 APFloat::operator=(const APFloat &rhs)
686 {
687   if (this != &rhs) {
688     if (semantics != rhs.semantics) {
689       freeSignificand();
690       initialize(rhs.semantics);
691     }
692     assign(rhs);
693   }
694 
695   return *this;
696 }
697 
698 bool
699 APFloat::bitwiseIsEqual(const APFloat &rhs) const {
700   if (this == &rhs)
701     return true;
702   if (semantics != rhs.semantics ||
703       category != rhs.category ||
704       sign != rhs.sign)
705     return false;
706   if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
707       sign2 != rhs.sign2)
708     return false;
709   if (category==fcZero || category==fcInfinity)
710     return true;
711   else if (category==fcNormal && exponent!=rhs.exponent)
712     return false;
713   else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
714            exponent2!=rhs.exponent2)
715     return false;
716   else {
717     int i= partCount();
718     const integerPart* p=significandParts();
719     const integerPart* q=rhs.significandParts();
720     for (; i>0; i--, p++, q++) {
721       if (*p != *q)
722         return false;
723     }
724     return true;
725   }
726 }
727 
728 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
729 {
730   assertArithmeticOK(ourSemantics);
731   initialize(&ourSemantics);
732   sign = 0;
733   zeroSignificand();
734   exponent = ourSemantics.precision - 1;
735   significandParts()[0] = value;
736   normalize(rmNearestTiesToEven, lfExactlyZero);
737 }
738 
739 APFloat::APFloat(const fltSemantics &ourSemantics) {
740   assertArithmeticOK(ourSemantics);
741   initialize(&ourSemantics);
742   category = fcZero;
743   sign = false;
744 }
745 
746 APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
747   assertArithmeticOK(ourSemantics);
748   // Allocates storage if necessary but does not initialize it.
749   initialize(&ourSemantics);
750 }
751 
752 APFloat::APFloat(const fltSemantics &ourSemantics,
753                  fltCategory ourCategory, bool negative)
754 {
755   assertArithmeticOK(ourSemantics);
756   initialize(&ourSemantics);
757   category = ourCategory;
758   sign = negative;
759   if (category == fcNormal)
760     category = fcZero;
761   else if (ourCategory == fcNaN)
762     makeNaN();
763 }
764 
765 APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text)
766 {
767   assertArithmeticOK(ourSemantics);
768   initialize(&ourSemantics);
769   convertFromString(text, rmNearestTiesToEven);
770 }
771 
772 APFloat::APFloat(const APFloat &rhs)
773 {
774   initialize(rhs.semantics);
775   assign(rhs);
776 }
777 
778 APFloat::~APFloat()
779 {
780   freeSignificand();
781 }
782 
783 // Profile - This method 'profiles' an APFloat for use with FoldingSet.
784 void APFloat::Profile(FoldingSetNodeID& ID) const {
785   ID.Add(bitcastToAPInt());
786 }
787 
788 unsigned int
789 APFloat::partCount() const
790 {
791   return partCountForBits(semantics->precision + 1);
792 }
793 
794 unsigned int
795 APFloat::semanticsPrecision(const fltSemantics &semantics)
796 {
797   return semantics.precision;
798 }
799 
800 const integerPart *
801 APFloat::significandParts() const
802 {
803   return const_cast<APFloat *>(this)->significandParts();
804 }
805 
806 integerPart *
807 APFloat::significandParts()
808 {
809   assert(category == fcNormal || category == fcNaN);
810 
811   if (partCount() > 1)
812     return significand.parts;
813   else
814     return &significand.part;
815 }
816 
817 void
818 APFloat::zeroSignificand()
819 {
820   category = fcNormal;
821   APInt::tcSet(significandParts(), 0, partCount());
822 }
823 
824 /* Increment an fcNormal floating point number's significand.  */
825 void
826 APFloat::incrementSignificand()
827 {
828   integerPart carry;
829 
830   carry = APInt::tcIncrement(significandParts(), partCount());
831 
832   /* Our callers should never cause us to overflow.  */
833   assert(carry == 0);
834 }
835 
836 /* Add the significand of the RHS.  Returns the carry flag.  */
837 integerPart
838 APFloat::addSignificand(const APFloat &rhs)
839 {
840   integerPart *parts;
841 
842   parts = significandParts();
843 
844   assert(semantics == rhs.semantics);
845   assert(exponent == rhs.exponent);
846 
847   return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
848 }
849 
850 /* Subtract the significand of the RHS with a borrow flag.  Returns
851    the borrow flag.  */
852 integerPart
853 APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
854 {
855   integerPart *parts;
856 
857   parts = significandParts();
858 
859   assert(semantics == rhs.semantics);
860   assert(exponent == rhs.exponent);
861 
862   return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
863                            partCount());
864 }
865 
866 /* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
867    on to the full-precision result of the multiplication.  Returns the
868    lost fraction.  */
869 lostFraction
870 APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
871 {
872   unsigned int omsb;        // One, not zero, based MSB.
873   unsigned int partsCount, newPartsCount, precision;
874   integerPart *lhsSignificand;
875   integerPart scratch[4];
876   integerPart *fullSignificand;
877   lostFraction lost_fraction;
878   bool ignored;
879 
880   assert(semantics == rhs.semantics);
881 
882   precision = semantics->precision;
883   newPartsCount = partCountForBits(precision * 2);
884 
885   if (newPartsCount > 4)
886     fullSignificand = new integerPart[newPartsCount];
887   else
888     fullSignificand = scratch;
889 
890   lhsSignificand = significandParts();
891   partsCount = partCount();
892 
893   APInt::tcFullMultiply(fullSignificand, lhsSignificand,
894                         rhs.significandParts(), partsCount, partsCount);
895 
896   lost_fraction = lfExactlyZero;
897   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
898   exponent += rhs.exponent;
899 
900   if (addend) {
901     Significand savedSignificand = significand;
902     const fltSemantics *savedSemantics = semantics;
903     fltSemantics extendedSemantics;
904     opStatus status;
905     unsigned int extendedPrecision;
906 
907     /* Normalize our MSB.  */
908     extendedPrecision = precision + precision - 1;
909     if (omsb != extendedPrecision) {
910       APInt::tcShiftLeft(fullSignificand, newPartsCount,
911                          extendedPrecision - omsb);
912       exponent -= extendedPrecision - omsb;
913     }
914 
915     /* Create new semantics.  */
916     extendedSemantics = *semantics;
917     extendedSemantics.precision = extendedPrecision;
918 
919     if (newPartsCount == 1)
920       significand.part = fullSignificand[0];
921     else
922       significand.parts = fullSignificand;
923     semantics = &extendedSemantics;
924 
925     APFloat extendedAddend(*addend);
926     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
927     assert(status == opOK);
928     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
929 
930     /* Restore our state.  */
931     if (newPartsCount == 1)
932       fullSignificand[0] = significand.part;
933     significand = savedSignificand;
934     semantics = savedSemantics;
935 
936     omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
937   }
938 
939   exponent -= (precision - 1);
940 
941   if (omsb > precision) {
942     unsigned int bits, significantParts;
943     lostFraction lf;
944 
945     bits = omsb - precision;
946     significantParts = partCountForBits(omsb);
947     lf = shiftRight(fullSignificand, significantParts, bits);
948     lost_fraction = combineLostFractions(lf, lost_fraction);
949     exponent += bits;
950   }
951 
952   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
953 
954   if (newPartsCount > 4)
955     delete [] fullSignificand;
956 
957   return lost_fraction;
958 }
959 
960 /* Multiply the significands of LHS and RHS to DST.  */
961 lostFraction
962 APFloat::divideSignificand(const APFloat &rhs)
963 {
964   unsigned int bit, i, partsCount;
965   const integerPart *rhsSignificand;
966   integerPart *lhsSignificand, *dividend, *divisor;
967   integerPart scratch[4];
968   lostFraction lost_fraction;
969 
970   assert(semantics == rhs.semantics);
971 
972   lhsSignificand = significandParts();
973   rhsSignificand = rhs.significandParts();
974   partsCount = partCount();
975 
976   if (partsCount > 2)
977     dividend = new integerPart[partsCount * 2];
978   else
979     dividend = scratch;
980 
981   divisor = dividend + partsCount;
982 
983   /* Copy the dividend and divisor as they will be modified in-place.  */
984   for (i = 0; i < partsCount; i++) {
985     dividend[i] = lhsSignificand[i];
986     divisor[i] = rhsSignificand[i];
987     lhsSignificand[i] = 0;
988   }
989 
990   exponent -= rhs.exponent;
991 
992   unsigned int precision = semantics->precision;
993 
994   /* Normalize the divisor.  */
995   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
996   if (bit) {
997     exponent += bit;
998     APInt::tcShiftLeft(divisor, partsCount, bit);
999   }
1000 
1001   /* Normalize the dividend.  */
1002   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
1003   if (bit) {
1004     exponent -= bit;
1005     APInt::tcShiftLeft(dividend, partsCount, bit);
1006   }
1007 
1008   /* Ensure the dividend >= divisor initially for the loop below.
1009      Incidentally, this means that the division loop below is
1010      guaranteed to set the integer bit to one.  */
1011   if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
1012     exponent--;
1013     APInt::tcShiftLeft(dividend, partsCount, 1);
1014     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1015   }
1016 
1017   /* Long division.  */
1018   for (bit = precision; bit; bit -= 1) {
1019     if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
1020       APInt::tcSubtract(dividend, divisor, 0, partsCount);
1021       APInt::tcSetBit(lhsSignificand, bit - 1);
1022     }
1023 
1024     APInt::tcShiftLeft(dividend, partsCount, 1);
1025   }
1026 
1027   /* Figure out the lost fraction.  */
1028   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1029 
1030   if (cmp > 0)
1031     lost_fraction = lfMoreThanHalf;
1032   else if (cmp == 0)
1033     lost_fraction = lfExactlyHalf;
1034   else if (APInt::tcIsZero(dividend, partsCount))
1035     lost_fraction = lfExactlyZero;
1036   else
1037     lost_fraction = lfLessThanHalf;
1038 
1039   if (partsCount > 2)
1040     delete [] dividend;
1041 
1042   return lost_fraction;
1043 }
1044 
1045 unsigned int
1046 APFloat::significandMSB() const
1047 {
1048   return APInt::tcMSB(significandParts(), partCount());
1049 }
1050 
1051 unsigned int
1052 APFloat::significandLSB() const
1053 {
1054   return APInt::tcLSB(significandParts(), partCount());
1055 }
1056 
1057 /* Note that a zero result is NOT normalized to fcZero.  */
1058 lostFraction
1059 APFloat::shiftSignificandRight(unsigned int bits)
1060 {
1061   /* Our exponent should not overflow.  */
1062   assert((exponent_t) (exponent + bits) >= exponent);
1063 
1064   exponent += bits;
1065 
1066   return shiftRight(significandParts(), partCount(), bits);
1067 }
1068 
1069 /* Shift the significand left BITS bits, subtract BITS from its exponent.  */
1070 void
1071 APFloat::shiftSignificandLeft(unsigned int bits)
1072 {
1073   assert(bits < semantics->precision);
1074 
1075   if (bits) {
1076     unsigned int partsCount = partCount();
1077 
1078     APInt::tcShiftLeft(significandParts(), partsCount, bits);
1079     exponent -= bits;
1080 
1081     assert(!APInt::tcIsZero(significandParts(), partsCount));
1082   }
1083 }
1084 
1085 APFloat::cmpResult
1086 APFloat::compareAbsoluteValue(const APFloat &rhs) const
1087 {
1088   int compare;
1089 
1090   assert(semantics == rhs.semantics);
1091   assert(category == fcNormal);
1092   assert(rhs.category == fcNormal);
1093 
1094   compare = exponent - rhs.exponent;
1095 
1096   /* If exponents are equal, do an unsigned bignum comparison of the
1097      significands.  */
1098   if (compare == 0)
1099     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
1100                                partCount());
1101 
1102   if (compare > 0)
1103     return cmpGreaterThan;
1104   else if (compare < 0)
1105     return cmpLessThan;
1106   else
1107     return cmpEqual;
1108 }
1109 
1110 /* Handle overflow.  Sign is preserved.  We either become infinity or
1111    the largest finite number.  */
1112 APFloat::opStatus
1113 APFloat::handleOverflow(roundingMode rounding_mode)
1114 {
1115   /* Infinity?  */
1116   if (rounding_mode == rmNearestTiesToEven ||
1117       rounding_mode == rmNearestTiesToAway ||
1118       (rounding_mode == rmTowardPositive && !sign) ||
1119       (rounding_mode == rmTowardNegative && sign)) {
1120     category = fcInfinity;
1121     return (opStatus) (opOverflow | opInexact);
1122   }
1123 
1124   /* Otherwise we become the largest finite number.  */
1125   category = fcNormal;
1126   exponent = semantics->maxExponent;
1127   APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
1128                                    semantics->precision);
1129 
1130   return opInexact;
1131 }
1132 
1133 /* Returns TRUE if, when truncating the current number, with BIT the
1134    new LSB, with the given lost fraction and rounding mode, the result
1135    would need to be rounded away from zero (i.e., by increasing the
1136    signficand).  This routine must work for fcZero of both signs, and
1137    fcNormal numbers.  */
1138 bool
1139 APFloat::roundAwayFromZero(roundingMode rounding_mode,
1140                            lostFraction lost_fraction,
1141                            unsigned int bit) const
1142 {
1143   /* NaNs and infinities should not have lost fractions.  */
1144   assert(category == fcNormal || category == fcZero);
1145 
1146   /* Current callers never pass this so we don't handle it.  */
1147   assert(lost_fraction != lfExactlyZero);
1148 
1149   switch (rounding_mode) {
1150   default:
1151     llvm_unreachable(0);
1152 
1153   case rmNearestTiesToAway:
1154     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1155 
1156   case rmNearestTiesToEven:
1157     if (lost_fraction == lfMoreThanHalf)
1158       return true;
1159 
1160     /* Our zeroes don't have a significand to test.  */
1161     if (lost_fraction == lfExactlyHalf && category != fcZero)
1162       return APInt::tcExtractBit(significandParts(), bit);
1163 
1164     return false;
1165 
1166   case rmTowardZero:
1167     return false;
1168 
1169   case rmTowardPositive:
1170     return sign == false;
1171 
1172   case rmTowardNegative:
1173     return sign == true;
1174   }
1175 }
1176 
1177 APFloat::opStatus
1178 APFloat::normalize(roundingMode rounding_mode,
1179                    lostFraction lost_fraction)
1180 {
1181   unsigned int omsb;                /* One, not zero, based MSB.  */
1182   int exponentChange;
1183 
1184   if (category != fcNormal)
1185     return opOK;
1186 
1187   /* Before rounding normalize the exponent of fcNormal numbers.  */
1188   omsb = significandMSB() + 1;
1189 
1190   if (omsb) {
1191     /* OMSB is numbered from 1.  We want to place it in the integer
1192        bit numbered PRECISON if possible, with a compensating change in
1193        the exponent.  */
1194     exponentChange = omsb - semantics->precision;
1195 
1196     /* If the resulting exponent is too high, overflow according to
1197        the rounding mode.  */
1198     if (exponent + exponentChange > semantics->maxExponent)
1199       return handleOverflow(rounding_mode);
1200 
1201     /* Subnormal numbers have exponent minExponent, and their MSB
1202        is forced based on that.  */
1203     if (exponent + exponentChange < semantics->minExponent)
1204       exponentChange = semantics->minExponent - exponent;
1205 
1206     /* Shifting left is easy as we don't lose precision.  */
1207     if (exponentChange < 0) {
1208       assert(lost_fraction == lfExactlyZero);
1209 
1210       shiftSignificandLeft(-exponentChange);
1211 
1212       return opOK;
1213     }
1214 
1215     if (exponentChange > 0) {
1216       lostFraction lf;
1217 
1218       /* Shift right and capture any new lost fraction.  */
1219       lf = shiftSignificandRight(exponentChange);
1220 
1221       lost_fraction = combineLostFractions(lf, lost_fraction);
1222 
1223       /* Keep OMSB up-to-date.  */
1224       if (omsb > (unsigned) exponentChange)
1225         omsb -= exponentChange;
1226       else
1227         omsb = 0;
1228     }
1229   }
1230 
1231   /* Now round the number according to rounding_mode given the lost
1232      fraction.  */
1233 
1234   /* As specified in IEEE 754, since we do not trap we do not report
1235      underflow for exact results.  */
1236   if (lost_fraction == lfExactlyZero) {
1237     /* Canonicalize zeroes.  */
1238     if (omsb == 0)
1239       category = fcZero;
1240 
1241     return opOK;
1242   }
1243 
1244   /* Increment the significand if we're rounding away from zero.  */
1245   if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1246     if (omsb == 0)
1247       exponent = semantics->minExponent;
1248 
1249     incrementSignificand();
1250     omsb = significandMSB() + 1;
1251 
1252     /* Did the significand increment overflow?  */
1253     if (omsb == (unsigned) semantics->precision + 1) {
1254       /* Renormalize by incrementing the exponent and shifting our
1255          significand right one.  However if we already have the
1256          maximum exponent we overflow to infinity.  */
1257       if (exponent == semantics->maxExponent) {
1258         category = fcInfinity;
1259 
1260         return (opStatus) (opOverflow | opInexact);
1261       }
1262 
1263       shiftSignificandRight(1);
1264 
1265       return opInexact;
1266     }
1267   }
1268 
1269   /* The normal case - we were and are not denormal, and any
1270      significand increment above didn't overflow.  */
1271   if (omsb == semantics->precision)
1272     return opInexact;
1273 
1274   /* We have a non-zero denormal.  */
1275   assert(omsb < semantics->precision);
1276 
1277   /* Canonicalize zeroes.  */
1278   if (omsb == 0)
1279     category = fcZero;
1280 
1281   /* The fcZero case is a denormal that underflowed to zero.  */
1282   return (opStatus) (opUnderflow | opInexact);
1283 }
1284 
1285 APFloat::opStatus
1286 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1287 {
1288   switch (convolve(category, rhs.category)) {
1289   default:
1290     llvm_unreachable(0);
1291 
1292   case convolve(fcNaN, fcZero):
1293   case convolve(fcNaN, fcNormal):
1294   case convolve(fcNaN, fcInfinity):
1295   case convolve(fcNaN, fcNaN):
1296   case convolve(fcNormal, fcZero):
1297   case convolve(fcInfinity, fcNormal):
1298   case convolve(fcInfinity, fcZero):
1299     return opOK;
1300 
1301   case convolve(fcZero, fcNaN):
1302   case convolve(fcNormal, fcNaN):
1303   case convolve(fcInfinity, fcNaN):
1304     category = fcNaN;
1305     copySignificand(rhs);
1306     return opOK;
1307 
1308   case convolve(fcNormal, fcInfinity):
1309   case convolve(fcZero, fcInfinity):
1310     category = fcInfinity;
1311     sign = rhs.sign ^ subtract;
1312     return opOK;
1313 
1314   case convolve(fcZero, fcNormal):
1315     assign(rhs);
1316     sign = rhs.sign ^ subtract;
1317     return opOK;
1318 
1319   case convolve(fcZero, fcZero):
1320     /* Sign depends on rounding mode; handled by caller.  */
1321     return opOK;
1322 
1323   case convolve(fcInfinity, fcInfinity):
1324     /* Differently signed infinities can only be validly
1325        subtracted.  */
1326     if (((sign ^ rhs.sign)!=0) != subtract) {
1327       makeNaN();
1328       return opInvalidOp;
1329     }
1330 
1331     return opOK;
1332 
1333   case convolve(fcNormal, fcNormal):
1334     return opDivByZero;
1335   }
1336 }
1337 
1338 /* Add or subtract two normal numbers.  */
1339 lostFraction
1340 APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1341 {
1342   integerPart carry;
1343   lostFraction lost_fraction;
1344   int bits;
1345 
1346   /* Determine if the operation on the absolute values is effectively
1347      an addition or subtraction.  */
1348   subtract ^= (sign ^ rhs.sign) ? true : false;
1349 
1350   /* Are we bigger exponent-wise than the RHS?  */
1351   bits = exponent - rhs.exponent;
1352 
1353   /* Subtraction is more subtle than one might naively expect.  */
1354   if (subtract) {
1355     APFloat temp_rhs(rhs);
1356     bool reverse;
1357 
1358     if (bits == 0) {
1359       reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1360       lost_fraction = lfExactlyZero;
1361     } else if (bits > 0) {
1362       lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1363       shiftSignificandLeft(1);
1364       reverse = false;
1365     } else {
1366       lost_fraction = shiftSignificandRight(-bits - 1);
1367       temp_rhs.shiftSignificandLeft(1);
1368       reverse = true;
1369     }
1370 
1371     if (reverse) {
1372       carry = temp_rhs.subtractSignificand
1373         (*this, lost_fraction != lfExactlyZero);
1374       copySignificand(temp_rhs);
1375       sign = !sign;
1376     } else {
1377       carry = subtractSignificand
1378         (temp_rhs, lost_fraction != lfExactlyZero);
1379     }
1380 
1381     /* Invert the lost fraction - it was on the RHS and
1382        subtracted.  */
1383     if (lost_fraction == lfLessThanHalf)
1384       lost_fraction = lfMoreThanHalf;
1385     else if (lost_fraction == lfMoreThanHalf)
1386       lost_fraction = lfLessThanHalf;
1387 
1388     /* The code above is intended to ensure that no borrow is
1389        necessary.  */
1390     assert(!carry);
1391   } else {
1392     if (bits > 0) {
1393       APFloat temp_rhs(rhs);
1394 
1395       lost_fraction = temp_rhs.shiftSignificandRight(bits);
1396       carry = addSignificand(temp_rhs);
1397     } else {
1398       lost_fraction = shiftSignificandRight(-bits);
1399       carry = addSignificand(rhs);
1400     }
1401 
1402     /* We have a guard bit; generating a carry cannot happen.  */
1403     assert(!carry);
1404   }
1405 
1406   return lost_fraction;
1407 }
1408 
1409 APFloat::opStatus
1410 APFloat::multiplySpecials(const APFloat &rhs)
1411 {
1412   switch (convolve(category, rhs.category)) {
1413   default:
1414     llvm_unreachable(0);
1415 
1416   case convolve(fcNaN, fcZero):
1417   case convolve(fcNaN, fcNormal):
1418   case convolve(fcNaN, fcInfinity):
1419   case convolve(fcNaN, fcNaN):
1420     return opOK;
1421 
1422   case convolve(fcZero, fcNaN):
1423   case convolve(fcNormal, fcNaN):
1424   case convolve(fcInfinity, fcNaN):
1425     category = fcNaN;
1426     copySignificand(rhs);
1427     return opOK;
1428 
1429   case convolve(fcNormal, fcInfinity):
1430   case convolve(fcInfinity, fcNormal):
1431   case convolve(fcInfinity, fcInfinity):
1432     category = fcInfinity;
1433     return opOK;
1434 
1435   case convolve(fcZero, fcNormal):
1436   case convolve(fcNormal, fcZero):
1437   case convolve(fcZero, fcZero):
1438     category = fcZero;
1439     return opOK;
1440 
1441   case convolve(fcZero, fcInfinity):
1442   case convolve(fcInfinity, fcZero):
1443     makeNaN();
1444     return opInvalidOp;
1445 
1446   case convolve(fcNormal, fcNormal):
1447     return opOK;
1448   }
1449 }
1450 
1451 APFloat::opStatus
1452 APFloat::divideSpecials(const APFloat &rhs)
1453 {
1454   switch (convolve(category, rhs.category)) {
1455   default:
1456     llvm_unreachable(0);
1457 
1458   case convolve(fcNaN, fcZero):
1459   case convolve(fcNaN, fcNormal):
1460   case convolve(fcNaN, fcInfinity):
1461   case convolve(fcNaN, fcNaN):
1462   case convolve(fcInfinity, fcZero):
1463   case convolve(fcInfinity, fcNormal):
1464   case convolve(fcZero, fcInfinity):
1465   case convolve(fcZero, fcNormal):
1466     return opOK;
1467 
1468   case convolve(fcZero, fcNaN):
1469   case convolve(fcNormal, fcNaN):
1470   case convolve(fcInfinity, fcNaN):
1471     category = fcNaN;
1472     copySignificand(rhs);
1473     return opOK;
1474 
1475   case convolve(fcNormal, fcInfinity):
1476     category = fcZero;
1477     return opOK;
1478 
1479   case convolve(fcNormal, fcZero):
1480     category = fcInfinity;
1481     return opDivByZero;
1482 
1483   case convolve(fcInfinity, fcInfinity):
1484   case convolve(fcZero, fcZero):
1485     makeNaN();
1486     return opInvalidOp;
1487 
1488   case convolve(fcNormal, fcNormal):
1489     return opOK;
1490   }
1491 }
1492 
1493 APFloat::opStatus
1494 APFloat::modSpecials(const APFloat &rhs)
1495 {
1496   switch (convolve(category, rhs.category)) {
1497   default:
1498     llvm_unreachable(0);
1499 
1500   case convolve(fcNaN, fcZero):
1501   case convolve(fcNaN, fcNormal):
1502   case convolve(fcNaN, fcInfinity):
1503   case convolve(fcNaN, fcNaN):
1504   case convolve(fcZero, fcInfinity):
1505   case convolve(fcZero, fcNormal):
1506   case convolve(fcNormal, fcInfinity):
1507     return opOK;
1508 
1509   case convolve(fcZero, fcNaN):
1510   case convolve(fcNormal, fcNaN):
1511   case convolve(fcInfinity, fcNaN):
1512     category = fcNaN;
1513     copySignificand(rhs);
1514     return opOK;
1515 
1516   case convolve(fcNormal, fcZero):
1517   case convolve(fcInfinity, fcZero):
1518   case convolve(fcInfinity, fcNormal):
1519   case convolve(fcInfinity, fcInfinity):
1520   case convolve(fcZero, fcZero):
1521     makeNaN();
1522     return opInvalidOp;
1523 
1524   case convolve(fcNormal, fcNormal):
1525     return opOK;
1526   }
1527 }
1528 
1529 /* Change sign.  */
1530 void
1531 APFloat::changeSign()
1532 {
1533   /* Look mummy, this one's easy.  */
1534   sign = !sign;
1535 }
1536 
1537 void
1538 APFloat::clearSign()
1539 {
1540   /* So is this one. */
1541   sign = 0;
1542 }
1543 
1544 void
1545 APFloat::copySign(const APFloat &rhs)
1546 {
1547   /* And this one. */
1548   sign = rhs.sign;
1549 }
1550 
1551 /* Normalized addition or subtraction.  */
1552 APFloat::opStatus
1553 APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1554                        bool subtract)
1555 {
1556   opStatus fs;
1557 
1558   assertArithmeticOK(*semantics);
1559 
1560   fs = addOrSubtractSpecials(rhs, subtract);
1561 
1562   /* This return code means it was not a simple case.  */
1563   if (fs == opDivByZero) {
1564     lostFraction lost_fraction;
1565 
1566     lost_fraction = addOrSubtractSignificand(rhs, subtract);
1567     fs = normalize(rounding_mode, lost_fraction);
1568 
1569     /* Can only be zero if we lost no fraction.  */
1570     assert(category != fcZero || lost_fraction == lfExactlyZero);
1571   }
1572 
1573   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1574      positive zero unless rounding to minus infinity, except that
1575      adding two like-signed zeroes gives that zero.  */
1576   if (category == fcZero) {
1577     if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
1578       sign = (rounding_mode == rmTowardNegative);
1579   }
1580 
1581   return fs;
1582 }
1583 
1584 /* Normalized addition.  */
1585 APFloat::opStatus
1586 APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1587 {
1588   return addOrSubtract(rhs, rounding_mode, false);
1589 }
1590 
1591 /* Normalized subtraction.  */
1592 APFloat::opStatus
1593 APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1594 {
1595   return addOrSubtract(rhs, rounding_mode, true);
1596 }
1597 
1598 /* Normalized multiply.  */
1599 APFloat::opStatus
1600 APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1601 {
1602   opStatus fs;
1603 
1604   assertArithmeticOK(*semantics);
1605   sign ^= rhs.sign;
1606   fs = multiplySpecials(rhs);
1607 
1608   if (category == fcNormal) {
1609     lostFraction lost_fraction = multiplySignificand(rhs, 0);
1610     fs = normalize(rounding_mode, lost_fraction);
1611     if (lost_fraction != lfExactlyZero)
1612       fs = (opStatus) (fs | opInexact);
1613   }
1614 
1615   return fs;
1616 }
1617 
1618 /* Normalized divide.  */
1619 APFloat::opStatus
1620 APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1621 {
1622   opStatus fs;
1623 
1624   assertArithmeticOK(*semantics);
1625   sign ^= rhs.sign;
1626   fs = divideSpecials(rhs);
1627 
1628   if (category == fcNormal) {
1629     lostFraction lost_fraction = divideSignificand(rhs);
1630     fs = normalize(rounding_mode, lost_fraction);
1631     if (lost_fraction != lfExactlyZero)
1632       fs = (opStatus) (fs | opInexact);
1633   }
1634 
1635   return fs;
1636 }
1637 
1638 /* Normalized remainder.  This is not currently correct in all cases.  */
1639 APFloat::opStatus
1640 APFloat::remainder(const APFloat &rhs)
1641 {
1642   opStatus fs;
1643   APFloat V = *this;
1644   unsigned int origSign = sign;
1645 
1646   assertArithmeticOK(*semantics);
1647   fs = V.divide(rhs, rmNearestTiesToEven);
1648   if (fs == opDivByZero)
1649     return fs;
1650 
1651   int parts = partCount();
1652   integerPart *x = new integerPart[parts];
1653   bool ignored;
1654   fs = V.convertToInteger(x, parts * integerPartWidth, true,
1655                           rmNearestTiesToEven, &ignored);
1656   if (fs==opInvalidOp)
1657     return fs;
1658 
1659   fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1660                                         rmNearestTiesToEven);
1661   assert(fs==opOK);   // should always work
1662 
1663   fs = V.multiply(rhs, rmNearestTiesToEven);
1664   assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
1665 
1666   fs = subtract(V, rmNearestTiesToEven);
1667   assert(fs==opOK || fs==opInexact);   // likewise
1668 
1669   if (isZero())
1670     sign = origSign;    // IEEE754 requires this
1671   delete[] x;
1672   return fs;
1673 }
1674 
1675 /* Normalized llvm frem (C fmod).
1676    This is not currently correct in all cases.  */
1677 APFloat::opStatus
1678 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1679 {
1680   opStatus fs;
1681   assertArithmeticOK(*semantics);
1682   fs = modSpecials(rhs);
1683 
1684   if (category == fcNormal && rhs.category == fcNormal) {
1685     APFloat V = *this;
1686     unsigned int origSign = sign;
1687 
1688     fs = V.divide(rhs, rmNearestTiesToEven);
1689     if (fs == opDivByZero)
1690       return fs;
1691 
1692     int parts = partCount();
1693     integerPart *x = new integerPart[parts];
1694     bool ignored;
1695     fs = V.convertToInteger(x, parts * integerPartWidth, true,
1696                             rmTowardZero, &ignored);
1697     if (fs==opInvalidOp)
1698       return fs;
1699 
1700     fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1701                                           rmNearestTiesToEven);
1702     assert(fs==opOK);   // should always work
1703 
1704     fs = V.multiply(rhs, rounding_mode);
1705     assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
1706 
1707     fs = subtract(V, rounding_mode);
1708     assert(fs==opOK || fs==opInexact);   // likewise
1709 
1710     if (isZero())
1711       sign = origSign;    // IEEE754 requires this
1712     delete[] x;
1713   }
1714   return fs;
1715 }
1716 
1717 /* Normalized fused-multiply-add.  */
1718 APFloat::opStatus
1719 APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1720                           const APFloat &addend,
1721                           roundingMode rounding_mode)
1722 {
1723   opStatus fs;
1724 
1725   assertArithmeticOK(*semantics);
1726 
1727   /* Post-multiplication sign, before addition.  */
1728   sign ^= multiplicand.sign;
1729 
1730   /* If and only if all arguments are normal do we need to do an
1731      extended-precision calculation.  */
1732   if (category == fcNormal &&
1733       multiplicand.category == fcNormal &&
1734       addend.category == fcNormal) {
1735     lostFraction lost_fraction;
1736 
1737     lost_fraction = multiplySignificand(multiplicand, &addend);
1738     fs = normalize(rounding_mode, lost_fraction);
1739     if (lost_fraction != lfExactlyZero)
1740       fs = (opStatus) (fs | opInexact);
1741 
1742     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1743        positive zero unless rounding to minus infinity, except that
1744        adding two like-signed zeroes gives that zero.  */
1745     if (category == fcZero && sign != addend.sign)
1746       sign = (rounding_mode == rmTowardNegative);
1747   } else {
1748     fs = multiplySpecials(multiplicand);
1749 
1750     /* FS can only be opOK or opInvalidOp.  There is no more work
1751        to do in the latter case.  The IEEE-754R standard says it is
1752        implementation-defined in this case whether, if ADDEND is a
1753        quiet NaN, we raise invalid op; this implementation does so.
1754 
1755        If we need to do the addition we can do so with normal
1756        precision.  */
1757     if (fs == opOK)
1758       fs = addOrSubtract(addend, rounding_mode, false);
1759   }
1760 
1761   return fs;
1762 }
1763 
1764 /* Comparison requires normalized numbers.  */
1765 APFloat::cmpResult
1766 APFloat::compare(const APFloat &rhs) const
1767 {
1768   cmpResult result;
1769 
1770   assertArithmeticOK(*semantics);
1771   assert(semantics == rhs.semantics);
1772 
1773   switch (convolve(category, rhs.category)) {
1774   default:
1775     llvm_unreachable(0);
1776 
1777   case convolve(fcNaN, fcZero):
1778   case convolve(fcNaN, fcNormal):
1779   case convolve(fcNaN, fcInfinity):
1780   case convolve(fcNaN, fcNaN):
1781   case convolve(fcZero, fcNaN):
1782   case convolve(fcNormal, fcNaN):
1783   case convolve(fcInfinity, fcNaN):
1784     return cmpUnordered;
1785 
1786   case convolve(fcInfinity, fcNormal):
1787   case convolve(fcInfinity, fcZero):
1788   case convolve(fcNormal, fcZero):
1789     if (sign)
1790       return cmpLessThan;
1791     else
1792       return cmpGreaterThan;
1793 
1794   case convolve(fcNormal, fcInfinity):
1795   case convolve(fcZero, fcInfinity):
1796   case convolve(fcZero, fcNormal):
1797     if (rhs.sign)
1798       return cmpGreaterThan;
1799     else
1800       return cmpLessThan;
1801 
1802   case convolve(fcInfinity, fcInfinity):
1803     if (sign == rhs.sign)
1804       return cmpEqual;
1805     else if (sign)
1806       return cmpLessThan;
1807     else
1808       return cmpGreaterThan;
1809 
1810   case convolve(fcZero, fcZero):
1811     return cmpEqual;
1812 
1813   case convolve(fcNormal, fcNormal):
1814     break;
1815   }
1816 
1817   /* Two normal numbers.  Do they have the same sign?  */
1818   if (sign != rhs.sign) {
1819     if (sign)
1820       result = cmpLessThan;
1821     else
1822       result = cmpGreaterThan;
1823   } else {
1824     /* Compare absolute values; invert result if negative.  */
1825     result = compareAbsoluteValue(rhs);
1826 
1827     if (sign) {
1828       if (result == cmpLessThan)
1829         result = cmpGreaterThan;
1830       else if (result == cmpGreaterThan)
1831         result = cmpLessThan;
1832     }
1833   }
1834 
1835   return result;
1836 }
1837 
1838 /// APFloat::convert - convert a value of one floating point type to another.
1839 /// The return value corresponds to the IEEE754 exceptions.  *losesInfo
1840 /// records whether the transformation lost information, i.e. whether
1841 /// converting the result back to the original type will produce the
1842 /// original value (this is almost the same as return value==fsOK, but there
1843 /// are edge cases where this is not so).
1844 
1845 APFloat::opStatus
1846 APFloat::convert(const fltSemantics &toSemantics,
1847                  roundingMode rounding_mode, bool *losesInfo)
1848 {
1849   lostFraction lostFraction;
1850   unsigned int newPartCount, oldPartCount;
1851   opStatus fs;
1852 
1853   assertArithmeticOK(*semantics);
1854   assertArithmeticOK(toSemantics);
1855   lostFraction = lfExactlyZero;
1856   newPartCount = partCountForBits(toSemantics.precision + 1);
1857   oldPartCount = partCount();
1858 
1859   /* Handle storage complications.  If our new form is wider,
1860      re-allocate our bit pattern into wider storage.  If it is
1861      narrower, we ignore the excess parts, but if narrowing to a
1862      single part we need to free the old storage.
1863      Be careful not to reference significandParts for zeroes
1864      and infinities, since it aborts.  */
1865   if (newPartCount > oldPartCount) {
1866     integerPart *newParts;
1867     newParts = new integerPart[newPartCount];
1868     APInt::tcSet(newParts, 0, newPartCount);
1869     if (category==fcNormal || category==fcNaN)
1870       APInt::tcAssign(newParts, significandParts(), oldPartCount);
1871     freeSignificand();
1872     significand.parts = newParts;
1873   } else if (newPartCount < oldPartCount) {
1874     /* Capture any lost fraction through truncation of parts so we get
1875        correct rounding whilst normalizing.  */
1876     if (category==fcNormal)
1877       lostFraction = lostFractionThroughTruncation
1878         (significandParts(), oldPartCount, toSemantics.precision);
1879     if (newPartCount == 1) {
1880         integerPart newPart = 0;
1881         if (category==fcNormal || category==fcNaN)
1882           newPart = significandParts()[0];
1883         freeSignificand();
1884         significand.part = newPart;
1885     }
1886   }
1887 
1888   if (category == fcNormal) {
1889     /* Re-interpret our bit-pattern.  */
1890     exponent += toSemantics.precision - semantics->precision;
1891     semantics = &toSemantics;
1892     fs = normalize(rounding_mode, lostFraction);
1893     *losesInfo = (fs != opOK);
1894   } else if (category == fcNaN) {
1895     int shift = toSemantics.precision - semantics->precision;
1896     // Do this now so significandParts gets the right answer
1897     const fltSemantics *oldSemantics = semantics;
1898     semantics = &toSemantics;
1899     *losesInfo = false;
1900     // No normalization here, just truncate
1901     if (shift>0)
1902       APInt::tcShiftLeft(significandParts(), newPartCount, shift);
1903     else if (shift < 0) {
1904       unsigned ushift = -shift;
1905       // Figure out if we are losing information.  This happens
1906       // if are shifting out something other than 0s, or if the x87 long
1907       // double input did not have its integer bit set (pseudo-NaN), or if the
1908       // x87 long double input did not have its QNan bit set (because the x87
1909       // hardware sets this bit when converting a lower-precision NaN to
1910       // x87 long double).
1911       if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
1912         *losesInfo = true;
1913       if (oldSemantics == &APFloat::x87DoubleExtended &&
1914           (!(*significandParts() & 0x8000000000000000ULL) ||
1915            !(*significandParts() & 0x4000000000000000ULL)))
1916         *losesInfo = true;
1917       APInt::tcShiftRight(significandParts(), newPartCount, ushift);
1918     }
1919     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1920     // does not give you back the same bits.  This is dubious, and we
1921     // don't currently do it.  You're really supposed to get
1922     // an invalid operation signal at runtime, but nobody does that.
1923     fs = opOK;
1924   } else {
1925     semantics = &toSemantics;
1926     fs = opOK;
1927     *losesInfo = false;
1928   }
1929 
1930   return fs;
1931 }
1932 
1933 /* Convert a floating point number to an integer according to the
1934    rounding mode.  If the rounded integer value is out of range this
1935    returns an invalid operation exception and the contents of the
1936    destination parts are unspecified.  If the rounded value is in
1937    range but the floating point number is not the exact integer, the C
1938    standard doesn't require an inexact exception to be raised.  IEEE
1939    854 does require it so we do that.
1940 
1941    Note that for conversions to integer type the C standard requires
1942    round-to-zero to always be used.  */
1943 APFloat::opStatus
1944 APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1945                                       bool isSigned,
1946                                       roundingMode rounding_mode,
1947                                       bool *isExact) const
1948 {
1949   lostFraction lost_fraction;
1950   const integerPart *src;
1951   unsigned int dstPartsCount, truncatedBits;
1952 
1953   assertArithmeticOK(*semantics);
1954 
1955   *isExact = false;
1956 
1957   /* Handle the three special cases first.  */
1958   if (category == fcInfinity || category == fcNaN)
1959     return opInvalidOp;
1960 
1961   dstPartsCount = partCountForBits(width);
1962 
1963   if (category == fcZero) {
1964     APInt::tcSet(parts, 0, dstPartsCount);
1965     // Negative zero can't be represented as an int.
1966     *isExact = !sign;
1967     return opOK;
1968   }
1969 
1970   src = significandParts();
1971 
1972   /* Step 1: place our absolute value, with any fraction truncated, in
1973      the destination.  */
1974   if (exponent < 0) {
1975     /* Our absolute value is less than one; truncate everything.  */
1976     APInt::tcSet(parts, 0, dstPartsCount);
1977     /* For exponent -1 the integer bit represents .5, look at that.
1978        For smaller exponents leftmost truncated bit is 0. */
1979     truncatedBits = semantics->precision -1U - exponent;
1980   } else {
1981     /* We want the most significant (exponent + 1) bits; the rest are
1982        truncated.  */
1983     unsigned int bits = exponent + 1U;
1984 
1985     /* Hopelessly large in magnitude?  */
1986     if (bits > width)
1987       return opInvalidOp;
1988 
1989     if (bits < semantics->precision) {
1990       /* We truncate (semantics->precision - bits) bits.  */
1991       truncatedBits = semantics->precision - bits;
1992       APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
1993     } else {
1994       /* We want at least as many bits as are available.  */
1995       APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
1996       APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
1997       truncatedBits = 0;
1998     }
1999   }
2000 
2001   /* Step 2: work out any lost fraction, and increment the absolute
2002      value if we would round away from zero.  */
2003   if (truncatedBits) {
2004     lost_fraction = lostFractionThroughTruncation(src, partCount(),
2005                                                   truncatedBits);
2006     if (lost_fraction != lfExactlyZero &&
2007         roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
2008       if (APInt::tcIncrement(parts, dstPartsCount))
2009         return opInvalidOp;     /* Overflow.  */
2010     }
2011   } else {
2012     lost_fraction = lfExactlyZero;
2013   }
2014 
2015   /* Step 3: check if we fit in the destination.  */
2016   unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
2017 
2018   if (sign) {
2019     if (!isSigned) {
2020       /* Negative numbers cannot be represented as unsigned.  */
2021       if (omsb != 0)
2022         return opInvalidOp;
2023     } else {
2024       /* It takes omsb bits to represent the unsigned integer value.
2025          We lose a bit for the sign, but care is needed as the
2026          maximally negative integer is a special case.  */
2027       if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
2028         return opInvalidOp;
2029 
2030       /* This case can happen because of rounding.  */
2031       if (omsb > width)
2032         return opInvalidOp;
2033     }
2034 
2035     APInt::tcNegate (parts, dstPartsCount);
2036   } else {
2037     if (omsb >= width + !isSigned)
2038       return opInvalidOp;
2039   }
2040 
2041   if (lost_fraction == lfExactlyZero) {
2042     *isExact = true;
2043     return opOK;
2044   } else
2045     return opInexact;
2046 }
2047 
2048 /* Same as convertToSignExtendedInteger, except we provide
2049    deterministic values in case of an invalid operation exception,
2050    namely zero for NaNs and the minimal or maximal value respectively
2051    for underflow or overflow.
2052    The *isExact output tells whether the result is exact, in the sense
2053    that converting it back to the original floating point type produces
2054    the original value.  This is almost equivalent to result==opOK,
2055    except for negative zeroes.
2056 */
2057 APFloat::opStatus
2058 APFloat::convertToInteger(integerPart *parts, unsigned int width,
2059                           bool isSigned,
2060                           roundingMode rounding_mode, bool *isExact) const
2061 {
2062   opStatus fs;
2063 
2064   fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2065                                     isExact);
2066 
2067   if (fs == opInvalidOp) {
2068     unsigned int bits, dstPartsCount;
2069 
2070     dstPartsCount = partCountForBits(width);
2071 
2072     if (category == fcNaN)
2073       bits = 0;
2074     else if (sign)
2075       bits = isSigned;
2076     else
2077       bits = width - isSigned;
2078 
2079     APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2080     if (sign && isSigned)
2081       APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
2082   }
2083 
2084   return fs;
2085 }
2086 
2087 /* Convert an unsigned integer SRC to a floating point number,
2088    rounding according to ROUNDING_MODE.  The sign of the floating
2089    point number is not modified.  */
2090 APFloat::opStatus
2091 APFloat::convertFromUnsignedParts(const integerPart *src,
2092                                   unsigned int srcCount,
2093                                   roundingMode rounding_mode)
2094 {
2095   unsigned int omsb, precision, dstCount;
2096   integerPart *dst;
2097   lostFraction lost_fraction;
2098 
2099   assertArithmeticOK(*semantics);
2100   category = fcNormal;
2101   omsb = APInt::tcMSB(src, srcCount) + 1;
2102   dst = significandParts();
2103   dstCount = partCount();
2104   precision = semantics->precision;
2105 
2106   /* We want the most significant PRECISON bits of SRC.  There may not
2107      be that many; extract what we can.  */
2108   if (precision <= omsb) {
2109     exponent = omsb - 1;
2110     lost_fraction = lostFractionThroughTruncation(src, srcCount,
2111                                                   omsb - precision);
2112     APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2113   } else {
2114     exponent = precision - 1;
2115     lost_fraction = lfExactlyZero;
2116     APInt::tcExtract(dst, dstCount, src, omsb, 0);
2117   }
2118 
2119   return normalize(rounding_mode, lost_fraction);
2120 }
2121 
2122 APFloat::opStatus
2123 APFloat::convertFromAPInt(const APInt &Val,
2124                           bool isSigned,
2125                           roundingMode rounding_mode)
2126 {
2127   unsigned int partCount = Val.getNumWords();
2128   APInt api = Val;
2129 
2130   sign = false;
2131   if (isSigned && api.isNegative()) {
2132     sign = true;
2133     api = -api;
2134   }
2135 
2136   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2137 }
2138 
2139 /* Convert a two's complement integer SRC to a floating point number,
2140    rounding according to ROUNDING_MODE.  ISSIGNED is true if the
2141    integer is signed, in which case it must be sign-extended.  */
2142 APFloat::opStatus
2143 APFloat::convertFromSignExtendedInteger(const integerPart *src,
2144                                         unsigned int srcCount,
2145                                         bool isSigned,
2146                                         roundingMode rounding_mode)
2147 {
2148   opStatus status;
2149 
2150   assertArithmeticOK(*semantics);
2151   if (isSigned &&
2152       APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2153     integerPart *copy;
2154 
2155     /* If we're signed and negative negate a copy.  */
2156     sign = true;
2157     copy = new integerPart[srcCount];
2158     APInt::tcAssign(copy, src, srcCount);
2159     APInt::tcNegate(copy, srcCount);
2160     status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2161     delete [] copy;
2162   } else {
2163     sign = false;
2164     status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2165   }
2166 
2167   return status;
2168 }
2169 
2170 /* FIXME: should this just take a const APInt reference?  */
2171 APFloat::opStatus
2172 APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2173                                         unsigned int width, bool isSigned,
2174                                         roundingMode rounding_mode)
2175 {
2176   unsigned int partCount = partCountForBits(width);
2177   APInt api = APInt(width, partCount, parts);
2178 
2179   sign = false;
2180   if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
2181     sign = true;
2182     api = -api;
2183   }
2184 
2185   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2186 }
2187 
2188 APFloat::opStatus
2189 APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
2190 {
2191   lostFraction lost_fraction = lfExactlyZero;
2192   integerPart *significand;
2193   unsigned int bitPos, partsCount;
2194   StringRef::iterator dot, firstSignificantDigit;
2195 
2196   zeroSignificand();
2197   exponent = 0;
2198   category = fcNormal;
2199 
2200   significand = significandParts();
2201   partsCount = partCount();
2202   bitPos = partsCount * integerPartWidth;
2203 
2204   /* Skip leading zeroes and any (hexa)decimal point.  */
2205   StringRef::iterator begin = s.begin();
2206   StringRef::iterator end = s.end();
2207   StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
2208   firstSignificantDigit = p;
2209 
2210   for (; p != end;) {
2211     integerPart hex_value;
2212 
2213     if (*p == '.') {
2214       assert(dot == end && "String contains multiple dots");
2215       dot = p++;
2216       if (p == end) {
2217         break;
2218       }
2219     }
2220 
2221     hex_value = hexDigitValue(*p);
2222     if (hex_value == -1U) {
2223       break;
2224     }
2225 
2226     p++;
2227 
2228     if (p == end) {
2229       break;
2230     } else {
2231       /* Store the number whilst 4-bit nibbles remain.  */
2232       if (bitPos) {
2233         bitPos -= 4;
2234         hex_value <<= bitPos % integerPartWidth;
2235         significand[bitPos / integerPartWidth] |= hex_value;
2236       } else {
2237         lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
2238         while (p != end && hexDigitValue(*p) != -1U)
2239           p++;
2240         break;
2241       }
2242     }
2243   }
2244 
2245   /* Hex floats require an exponent but not a hexadecimal point.  */
2246   assert(p != end && "Hex strings require an exponent");
2247   assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
2248   assert(p != begin && "Significand has no digits");
2249   assert((dot == end || p - begin != 1) && "Significand has no digits");
2250 
2251   /* Ignore the exponent if we are zero.  */
2252   if (p != firstSignificantDigit) {
2253     int expAdjustment;
2254 
2255     /* Implicit hexadecimal point?  */
2256     if (dot == end)
2257       dot = p;
2258 
2259     /* Calculate the exponent adjustment implicit in the number of
2260        significant digits.  */
2261     expAdjustment = static_cast<int>(dot - firstSignificantDigit);
2262     if (expAdjustment < 0)
2263       expAdjustment++;
2264     expAdjustment = expAdjustment * 4 - 1;
2265 
2266     /* Adjust for writing the significand starting at the most
2267        significant nibble.  */
2268     expAdjustment += semantics->precision;
2269     expAdjustment -= partsCount * integerPartWidth;
2270 
2271     /* Adjust for the given exponent.  */
2272     exponent = totalExponent(p + 1, end, expAdjustment);
2273   }
2274 
2275   return normalize(rounding_mode, lost_fraction);
2276 }
2277 
2278 APFloat::opStatus
2279 APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2280                                       unsigned sigPartCount, int exp,
2281                                       roundingMode rounding_mode)
2282 {
2283   unsigned int parts, pow5PartCount;
2284   fltSemantics calcSemantics = { 32767, -32767, 0, true };
2285   integerPart pow5Parts[maxPowerOfFiveParts];
2286   bool isNearest;
2287 
2288   isNearest = (rounding_mode == rmNearestTiesToEven ||
2289                rounding_mode == rmNearestTiesToAway);
2290 
2291   parts = partCountForBits(semantics->precision + 11);
2292 
2293   /* Calculate pow(5, abs(exp)).  */
2294   pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2295 
2296   for (;; parts *= 2) {
2297     opStatus sigStatus, powStatus;
2298     unsigned int excessPrecision, truncatedBits;
2299 
2300     calcSemantics.precision = parts * integerPartWidth - 1;
2301     excessPrecision = calcSemantics.precision - semantics->precision;
2302     truncatedBits = excessPrecision;
2303 
2304     APFloat decSig(calcSemantics, fcZero, sign);
2305     APFloat pow5(calcSemantics, fcZero, false);
2306 
2307     sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2308                                                 rmNearestTiesToEven);
2309     powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2310                                               rmNearestTiesToEven);
2311     /* Add exp, as 10^n = 5^n * 2^n.  */
2312     decSig.exponent += exp;
2313 
2314     lostFraction calcLostFraction;
2315     integerPart HUerr, HUdistance;
2316     unsigned int powHUerr;
2317 
2318     if (exp >= 0) {
2319       /* multiplySignificand leaves the precision-th bit set to 1.  */
2320       calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2321       powHUerr = powStatus != opOK;
2322     } else {
2323       calcLostFraction = decSig.divideSignificand(pow5);
2324       /* Denormal numbers have less precision.  */
2325       if (decSig.exponent < semantics->minExponent) {
2326         excessPrecision += (semantics->minExponent - decSig.exponent);
2327         truncatedBits = excessPrecision;
2328         if (excessPrecision > calcSemantics.precision)
2329           excessPrecision = calcSemantics.precision;
2330       }
2331       /* Extra half-ulp lost in reciprocal of exponent.  */
2332       powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
2333     }
2334 
2335     /* Both multiplySignificand and divideSignificand return the
2336        result with the integer bit set.  */
2337     assert(APInt::tcExtractBit
2338            (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2339 
2340     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2341                        powHUerr);
2342     HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2343                                       excessPrecision, isNearest);
2344 
2345     /* Are we guaranteed to round correctly if we truncate?  */
2346     if (HUdistance >= HUerr) {
2347       APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2348                        calcSemantics.precision - excessPrecision,
2349                        excessPrecision);
2350       /* Take the exponent of decSig.  If we tcExtract-ed less bits
2351          above we must adjust our exponent to compensate for the
2352          implicit right shift.  */
2353       exponent = (decSig.exponent + semantics->precision
2354                   - (calcSemantics.precision - excessPrecision));
2355       calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2356                                                        decSig.partCount(),
2357                                                        truncatedBits);
2358       return normalize(rounding_mode, calcLostFraction);
2359     }
2360   }
2361 }
2362 
2363 APFloat::opStatus
2364 APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
2365 {
2366   decimalInfo D;
2367   opStatus fs;
2368 
2369   /* Scan the text.  */
2370   StringRef::iterator p = str.begin();
2371   interpretDecimal(p, str.end(), &D);
2372 
2373   /* Handle the quick cases.  First the case of no significant digits,
2374      i.e. zero, and then exponents that are obviously too large or too
2375      small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
2376      definitely overflows if
2377 
2378            (exp - 1) * L >= maxExponent
2379 
2380      and definitely underflows to zero where
2381 
2382            (exp + 1) * L <= minExponent - precision
2383 
2384      With integer arithmetic the tightest bounds for L are
2385 
2386            93/28 < L < 196/59            [ numerator <= 256 ]
2387            42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
2388   */
2389 
2390   if (decDigitValue(*D.firstSigDigit) >= 10U) {
2391     category = fcZero;
2392     fs = opOK;
2393 
2394   /* Check whether the normalized exponent is high enough to overflow
2395      max during the log-rebasing in the max-exponent check below. */
2396   } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2397     fs = handleOverflow(rounding_mode);
2398 
2399   /* If it wasn't, then it also wasn't high enough to overflow max
2400      during the log-rebasing in the min-exponent check.  Check that it
2401      won't overflow min in either check, then perform the min-exponent
2402      check. */
2403   } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2404              (D.normalizedExponent + 1) * 28738 <=
2405                8651 * (semantics->minExponent - (int) semantics->precision)) {
2406     /* Underflow to zero and round.  */
2407     zeroSignificand();
2408     fs = normalize(rounding_mode, lfLessThanHalf);
2409 
2410   /* We can finally safely perform the max-exponent check. */
2411   } else if ((D.normalizedExponent - 1) * 42039
2412              >= 12655 * semantics->maxExponent) {
2413     /* Overflow and round.  */
2414     fs = handleOverflow(rounding_mode);
2415   } else {
2416     integerPart *decSignificand;
2417     unsigned int partCount;
2418 
2419     /* A tight upper bound on number of bits required to hold an
2420        N-digit decimal integer is N * 196 / 59.  Allocate enough space
2421        to hold the full significand, and an extra part required by
2422        tcMultiplyPart.  */
2423     partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
2424     partCount = partCountForBits(1 + 196 * partCount / 59);
2425     decSignificand = new integerPart[partCount + 1];
2426     partCount = 0;
2427 
2428     /* Convert to binary efficiently - we do almost all multiplication
2429        in an integerPart.  When this would overflow do we do a single
2430        bignum multiplication, and then revert again to multiplication
2431        in an integerPart.  */
2432     do {
2433       integerPart decValue, val, multiplier;
2434 
2435       val = 0;
2436       multiplier = 1;
2437 
2438       do {
2439         if (*p == '.') {
2440           p++;
2441           if (p == str.end()) {
2442             break;
2443           }
2444         }
2445         decValue = decDigitValue(*p++);
2446         assert(decValue < 10U && "Invalid character in significand");
2447         multiplier *= 10;
2448         val = val * 10 + decValue;
2449         /* The maximum number that can be multiplied by ten with any
2450            digit added without overflowing an integerPart.  */
2451       } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2452 
2453       /* Multiply out the current part.  */
2454       APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2455                             partCount, partCount + 1, false);
2456 
2457       /* If we used another part (likely but not guaranteed), increase
2458          the count.  */
2459       if (decSignificand[partCount])
2460         partCount++;
2461     } while (p <= D.lastSigDigit);
2462 
2463     category = fcNormal;
2464     fs = roundSignificandWithExponent(decSignificand, partCount,
2465                                       D.exponent, rounding_mode);
2466 
2467     delete [] decSignificand;
2468   }
2469 
2470   return fs;
2471 }
2472 
2473 APFloat::opStatus
2474 APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
2475 {
2476   assertArithmeticOK(*semantics);
2477   assert(!str.empty() && "Invalid string length");
2478 
2479   /* Handle a leading minus sign.  */
2480   StringRef::iterator p = str.begin();
2481   size_t slen = str.size();
2482   sign = *p == '-' ? 1 : 0;
2483   if (*p == '-' || *p == '+') {
2484     p++;
2485     slen--;
2486     assert(slen && "String has no digits");
2487   }
2488 
2489   if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2490     assert(slen - 2 && "Invalid string");
2491     return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
2492                                         rounding_mode);
2493   }
2494 
2495   return convertFromDecimalString(StringRef(p, slen), rounding_mode);
2496 }
2497 
2498 /* Write out a hexadecimal representation of the floating point value
2499    to DST, which must be of sufficient size, in the C99 form
2500    [-]0xh.hhhhp[+-]d.  Return the number of characters written,
2501    excluding the terminating NUL.
2502 
2503    If UPPERCASE, the output is in upper case, otherwise in lower case.
2504 
2505    HEXDIGITS digits appear altogether, rounding the value if
2506    necessary.  If HEXDIGITS is 0, the minimal precision to display the
2507    number precisely is used instead.  If nothing would appear after
2508    the decimal point it is suppressed.
2509 
2510    The decimal exponent is always printed and has at least one digit.
2511    Zero values display an exponent of zero.  Infinities and NaNs
2512    appear as "infinity" or "nan" respectively.
2513 
2514    The above rules are as specified by C99.  There is ambiguity about
2515    what the leading hexadecimal digit should be.  This implementation
2516    uses whatever is necessary so that the exponent is displayed as
2517    stored.  This implies the exponent will fall within the IEEE format
2518    range, and the leading hexadecimal digit will be 0 (for denormals),
2519    1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2520    any other digits zero).
2521 */
2522 unsigned int
2523 APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2524                             bool upperCase, roundingMode rounding_mode) const
2525 {
2526   char *p;
2527 
2528   assertArithmeticOK(*semantics);
2529 
2530   p = dst;
2531   if (sign)
2532     *dst++ = '-';
2533 
2534   switch (category) {
2535   case fcInfinity:
2536     memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2537     dst += sizeof infinityL - 1;
2538     break;
2539 
2540   case fcNaN:
2541     memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2542     dst += sizeof NaNU - 1;
2543     break;
2544 
2545   case fcZero:
2546     *dst++ = '0';
2547     *dst++ = upperCase ? 'X': 'x';
2548     *dst++ = '0';
2549     if (hexDigits > 1) {
2550       *dst++ = '.';
2551       memset (dst, '0', hexDigits - 1);
2552       dst += hexDigits - 1;
2553     }
2554     *dst++ = upperCase ? 'P': 'p';
2555     *dst++ = '0';
2556     break;
2557 
2558   case fcNormal:
2559     dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2560     break;
2561   }
2562 
2563   *dst = 0;
2564 
2565   return static_cast<unsigned int>(dst - p);
2566 }
2567 
2568 /* Does the hard work of outputting the correctly rounded hexadecimal
2569    form of a normal floating point number with the specified number of
2570    hexadecimal digits.  If HEXDIGITS is zero the minimum number of
2571    digits necessary to print the value precisely is output.  */
2572 char *
2573 APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2574                                   bool upperCase,
2575                                   roundingMode rounding_mode) const
2576 {
2577   unsigned int count, valueBits, shift, partsCount, outputDigits;
2578   const char *hexDigitChars;
2579   const integerPart *significand;
2580   char *p;
2581   bool roundUp;
2582 
2583   *dst++ = '0';
2584   *dst++ = upperCase ? 'X': 'x';
2585 
2586   roundUp = false;
2587   hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2588 
2589   significand = significandParts();
2590   partsCount = partCount();
2591 
2592   /* +3 because the first digit only uses the single integer bit, so
2593      we have 3 virtual zero most-significant-bits.  */
2594   valueBits = semantics->precision + 3;
2595   shift = integerPartWidth - valueBits % integerPartWidth;
2596 
2597   /* The natural number of digits required ignoring trailing
2598      insignificant zeroes.  */
2599   outputDigits = (valueBits - significandLSB () + 3) / 4;
2600 
2601   /* hexDigits of zero means use the required number for the
2602      precision.  Otherwise, see if we are truncating.  If we are,
2603      find out if we need to round away from zero.  */
2604   if (hexDigits) {
2605     if (hexDigits < outputDigits) {
2606       /* We are dropping non-zero bits, so need to check how to round.
2607          "bits" is the number of dropped bits.  */
2608       unsigned int bits;
2609       lostFraction fraction;
2610 
2611       bits = valueBits - hexDigits * 4;
2612       fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2613       roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2614     }
2615     outputDigits = hexDigits;
2616   }
2617 
2618   /* Write the digits consecutively, and start writing in the location
2619      of the hexadecimal point.  We move the most significant digit
2620      left and add the hexadecimal point later.  */
2621   p = ++dst;
2622 
2623   count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2624 
2625   while (outputDigits && count) {
2626     integerPart part;
2627 
2628     /* Put the most significant integerPartWidth bits in "part".  */
2629     if (--count == partsCount)
2630       part = 0;  /* An imaginary higher zero part.  */
2631     else
2632       part = significand[count] << shift;
2633 
2634     if (count && shift)
2635       part |= significand[count - 1] >> (integerPartWidth - shift);
2636 
2637     /* Convert as much of "part" to hexdigits as we can.  */
2638     unsigned int curDigits = integerPartWidth / 4;
2639 
2640     if (curDigits > outputDigits)
2641       curDigits = outputDigits;
2642     dst += partAsHex (dst, part, curDigits, hexDigitChars);
2643     outputDigits -= curDigits;
2644   }
2645 
2646   if (roundUp) {
2647     char *q = dst;
2648 
2649     /* Note that hexDigitChars has a trailing '0'.  */
2650     do {
2651       q--;
2652       *q = hexDigitChars[hexDigitValue (*q) + 1];
2653     } while (*q == '0');
2654     assert(q >= p);
2655   } else {
2656     /* Add trailing zeroes.  */
2657     memset (dst, '0', outputDigits);
2658     dst += outputDigits;
2659   }
2660 
2661   /* Move the most significant digit to before the point, and if there
2662      is something after the decimal point add it.  This must come
2663      after rounding above.  */
2664   p[-1] = p[0];
2665   if (dst -1 == p)
2666     dst--;
2667   else
2668     p[0] = '.';
2669 
2670   /* Finally output the exponent.  */
2671   *dst++ = upperCase ? 'P': 'p';
2672 
2673   return writeSignedDecimal (dst, exponent);
2674 }
2675 
2676 // For good performance it is desirable for different APFloats
2677 // to produce different integers.
2678 uint32_t
2679 APFloat::getHashValue() const
2680 {
2681   if (category==fcZero) return sign<<8 | semantics->precision ;
2682   else if (category==fcInfinity) return sign<<9 | semantics->precision;
2683   else if (category==fcNaN) return 1<<10 | semantics->precision;
2684   else {
2685     uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
2686     const integerPart* p = significandParts();
2687     for (int i=partCount(); i>0; i--, p++)
2688       hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
2689     return hash;
2690   }
2691 }
2692 
2693 // Conversion from APFloat to/from host float/double.  It may eventually be
2694 // possible to eliminate these and have everybody deal with APFloats, but that
2695 // will take a while.  This approach will not easily extend to long double.
2696 // Current implementation requires integerPartWidth==64, which is correct at
2697 // the moment but could be made more general.
2698 
2699 // Denormals have exponent minExponent in APFloat, but minExponent-1 in
2700 // the actual IEEE respresentations.  We compensate for that here.
2701 
2702 APInt
2703 APFloat::convertF80LongDoubleAPFloatToAPInt() const
2704 {
2705   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
2706   assert(partCount()==2);
2707 
2708   uint64_t myexponent, mysignificand;
2709 
2710   if (category==fcNormal) {
2711     myexponent = exponent+16383; //bias
2712     mysignificand = significandParts()[0];
2713     if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2714       myexponent = 0;   // denormal
2715   } else if (category==fcZero) {
2716     myexponent = 0;
2717     mysignificand = 0;
2718   } else if (category==fcInfinity) {
2719     myexponent = 0x7fff;
2720     mysignificand = 0x8000000000000000ULL;
2721   } else {
2722     assert(category == fcNaN && "Unknown category");
2723     myexponent = 0x7fff;
2724     mysignificand = significandParts()[0];
2725   }
2726 
2727   uint64_t words[2];
2728   words[0] = mysignificand;
2729   words[1] =  ((uint64_t)(sign & 1) << 15) |
2730               (myexponent & 0x7fffLL);
2731   return APInt(80, 2, words);
2732 }
2733 
2734 APInt
2735 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2736 {
2737   assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
2738   assert(partCount()==2);
2739 
2740   uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2741 
2742   if (category==fcNormal) {
2743     myexponent = exponent + 1023; //bias
2744     myexponent2 = exponent2 + 1023;
2745     mysignificand = significandParts()[0];
2746     mysignificand2 = significandParts()[1];
2747     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2748       myexponent = 0;   // denormal
2749     if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2750       myexponent2 = 0;   // denormal
2751   } else if (category==fcZero) {
2752     myexponent = 0;
2753     mysignificand = 0;
2754     myexponent2 = 0;
2755     mysignificand2 = 0;
2756   } else if (category==fcInfinity) {
2757     myexponent = 0x7ff;
2758     myexponent2 = 0;
2759     mysignificand = 0;
2760     mysignificand2 = 0;
2761   } else {
2762     assert(category == fcNaN && "Unknown category");
2763     myexponent = 0x7ff;
2764     mysignificand = significandParts()[0];
2765     myexponent2 = exponent2;
2766     mysignificand2 = significandParts()[1];
2767   }
2768 
2769   uint64_t words[2];
2770   words[0] =  ((uint64_t)(sign & 1) << 63) |
2771               ((myexponent & 0x7ff) <<  52) |
2772               (mysignificand & 0xfffffffffffffLL);
2773   words[1] =  ((uint64_t)(sign2 & 1) << 63) |
2774               ((myexponent2 & 0x7ff) <<  52) |
2775               (mysignificand2 & 0xfffffffffffffLL);
2776   return APInt(128, 2, words);
2777 }
2778 
2779 APInt
2780 APFloat::convertQuadrupleAPFloatToAPInt() const
2781 {
2782   assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
2783   assert(partCount()==2);
2784 
2785   uint64_t myexponent, mysignificand, mysignificand2;
2786 
2787   if (category==fcNormal) {
2788     myexponent = exponent+16383; //bias
2789     mysignificand = significandParts()[0];
2790     mysignificand2 = significandParts()[1];
2791     if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
2792       myexponent = 0;   // denormal
2793   } else if (category==fcZero) {
2794     myexponent = 0;
2795     mysignificand = mysignificand2 = 0;
2796   } else if (category==fcInfinity) {
2797     myexponent = 0x7fff;
2798     mysignificand = mysignificand2 = 0;
2799   } else {
2800     assert(category == fcNaN && "Unknown category!");
2801     myexponent = 0x7fff;
2802     mysignificand = significandParts()[0];
2803     mysignificand2 = significandParts()[1];
2804   }
2805 
2806   uint64_t words[2];
2807   words[0] = mysignificand;
2808   words[1] = ((uint64_t)(sign & 1) << 63) |
2809              ((myexponent & 0x7fff) << 48) |
2810              (mysignificand2 & 0xffffffffffffLL);
2811 
2812   return APInt(128, 2, words);
2813 }
2814 
2815 APInt
2816 APFloat::convertDoubleAPFloatToAPInt() const
2817 {
2818   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
2819   assert(partCount()==1);
2820 
2821   uint64_t myexponent, mysignificand;
2822 
2823   if (category==fcNormal) {
2824     myexponent = exponent+1023; //bias
2825     mysignificand = *significandParts();
2826     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2827       myexponent = 0;   // denormal
2828   } else if (category==fcZero) {
2829     myexponent = 0;
2830     mysignificand = 0;
2831   } else if (category==fcInfinity) {
2832     myexponent = 0x7ff;
2833     mysignificand = 0;
2834   } else {
2835     assert(category == fcNaN && "Unknown category!");
2836     myexponent = 0x7ff;
2837     mysignificand = *significandParts();
2838   }
2839 
2840   return APInt(64, ((((uint64_t)(sign & 1) << 63) |
2841                      ((myexponent & 0x7ff) <<  52) |
2842                      (mysignificand & 0xfffffffffffffLL))));
2843 }
2844 
2845 APInt
2846 APFloat::convertFloatAPFloatToAPInt() const
2847 {
2848   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
2849   assert(partCount()==1);
2850 
2851   uint32_t myexponent, mysignificand;
2852 
2853   if (category==fcNormal) {
2854     myexponent = exponent+127; //bias
2855     mysignificand = (uint32_t)*significandParts();
2856     if (myexponent == 1 && !(mysignificand & 0x800000))
2857       myexponent = 0;   // denormal
2858   } else if (category==fcZero) {
2859     myexponent = 0;
2860     mysignificand = 0;
2861   } else if (category==fcInfinity) {
2862     myexponent = 0xff;
2863     mysignificand = 0;
2864   } else {
2865     assert(category == fcNaN && "Unknown category!");
2866     myexponent = 0xff;
2867     mysignificand = (uint32_t)*significandParts();
2868   }
2869 
2870   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2871                     (mysignificand & 0x7fffff)));
2872 }
2873 
2874 APInt
2875 APFloat::convertHalfAPFloatToAPInt() const
2876 {
2877   assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
2878   assert(partCount()==1);
2879 
2880   uint32_t myexponent, mysignificand;
2881 
2882   if (category==fcNormal) {
2883     myexponent = exponent+15; //bias
2884     mysignificand = (uint32_t)*significandParts();
2885     if (myexponent == 1 && !(mysignificand & 0x400))
2886       myexponent = 0;   // denormal
2887   } else if (category==fcZero) {
2888     myexponent = 0;
2889     mysignificand = 0;
2890   } else if (category==fcInfinity) {
2891     myexponent = 0x1f;
2892     mysignificand = 0;
2893   } else {
2894     assert(category == fcNaN && "Unknown category!");
2895     myexponent = 0x1f;
2896     mysignificand = (uint32_t)*significandParts();
2897   }
2898 
2899   return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
2900                     (mysignificand & 0x3ff)));
2901 }
2902 
2903 // This function creates an APInt that is just a bit map of the floating
2904 // point constant as it would appear in memory.  It is not a conversion,
2905 // and treating the result as a normal integer is unlikely to be useful.
2906 
2907 APInt
2908 APFloat::bitcastToAPInt() const
2909 {
2910   if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
2911     return convertHalfAPFloatToAPInt();
2912 
2913   if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
2914     return convertFloatAPFloatToAPInt();
2915 
2916   if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
2917     return convertDoubleAPFloatToAPInt();
2918 
2919   if (semantics == (const llvm::fltSemantics*)&IEEEquad)
2920     return convertQuadrupleAPFloatToAPInt();
2921 
2922   if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
2923     return convertPPCDoubleDoubleAPFloatToAPInt();
2924 
2925   assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
2926          "unknown format!");
2927   return convertF80LongDoubleAPFloatToAPInt();
2928 }
2929 
2930 float
2931 APFloat::convertToFloat() const
2932 {
2933   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
2934          "Float semantics are not IEEEsingle");
2935   APInt api = bitcastToAPInt();
2936   return api.bitsToFloat();
2937 }
2938 
2939 double
2940 APFloat::convertToDouble() const
2941 {
2942   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
2943          "Float semantics are not IEEEdouble");
2944   APInt api = bitcastToAPInt();
2945   return api.bitsToDouble();
2946 }
2947 
2948 /// Integer bit is explicit in this format.  Intel hardware (387 and later)
2949 /// does not support these bit patterns:
2950 ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
2951 ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
2952 ///  exponent = 0, integer bit 1 ("pseudodenormal")
2953 ///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
2954 /// At the moment, the first two are treated as NaNs, the second two as Normal.
2955 void
2956 APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2957 {
2958   assert(api.getBitWidth()==80);
2959   uint64_t i1 = api.getRawData()[0];
2960   uint64_t i2 = api.getRawData()[1];
2961   uint64_t myexponent = (i2 & 0x7fff);
2962   uint64_t mysignificand = i1;
2963 
2964   initialize(&APFloat::x87DoubleExtended);
2965   assert(partCount()==2);
2966 
2967   sign = static_cast<unsigned int>(i2>>15);
2968   if (myexponent==0 && mysignificand==0) {
2969     // exponent, significand meaningless
2970     category = fcZero;
2971   } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2972     // exponent, significand meaningless
2973     category = fcInfinity;
2974   } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2975     // exponent meaningless
2976     category = fcNaN;
2977     significandParts()[0] = mysignificand;
2978     significandParts()[1] = 0;
2979   } else {
2980     category = fcNormal;
2981     exponent = myexponent - 16383;
2982     significandParts()[0] = mysignificand;
2983     significandParts()[1] = 0;
2984     if (myexponent==0)          // denormal
2985       exponent = -16382;
2986   }
2987 }
2988 
2989 void
2990 APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
2991 {
2992   assert(api.getBitWidth()==128);
2993   uint64_t i1 = api.getRawData()[0];
2994   uint64_t i2 = api.getRawData()[1];
2995   uint64_t myexponent = (i1 >> 52) & 0x7ff;
2996   uint64_t mysignificand = i1 & 0xfffffffffffffLL;
2997   uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
2998   uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
2999 
3000   initialize(&APFloat::PPCDoubleDouble);
3001   assert(partCount()==2);
3002 
3003   sign = static_cast<unsigned int>(i1>>63);
3004   sign2 = static_cast<unsigned int>(i2>>63);
3005   if (myexponent==0 && mysignificand==0) {
3006     // exponent, significand meaningless
3007     // exponent2 and significand2 are required to be 0; we don't check
3008     category = fcZero;
3009   } else if (myexponent==0x7ff && mysignificand==0) {
3010     // exponent, significand meaningless
3011     // exponent2 and significand2 are required to be 0; we don't check
3012     category = fcInfinity;
3013   } else if (myexponent==0x7ff && mysignificand!=0) {
3014     // exponent meaningless.  So is the whole second word, but keep it
3015     // for determinism.
3016     category = fcNaN;
3017     exponent2 = myexponent2;
3018     significandParts()[0] = mysignificand;
3019     significandParts()[1] = mysignificand2;
3020   } else {
3021     category = fcNormal;
3022     // Note there is no category2; the second word is treated as if it is
3023     // fcNormal, although it might be something else considered by itself.
3024     exponent = myexponent - 1023;
3025     exponent2 = myexponent2 - 1023;
3026     significandParts()[0] = mysignificand;
3027     significandParts()[1] = mysignificand2;
3028     if (myexponent==0)          // denormal
3029       exponent = -1022;
3030     else
3031       significandParts()[0] |= 0x10000000000000LL;  // integer bit
3032     if (myexponent2==0)
3033       exponent2 = -1022;
3034     else
3035       significandParts()[1] |= 0x10000000000000LL;  // integer bit
3036   }
3037 }
3038 
3039 void
3040 APFloat::initFromQuadrupleAPInt(const APInt &api)
3041 {
3042   assert(api.getBitWidth()==128);
3043   uint64_t i1 = api.getRawData()[0];
3044   uint64_t i2 = api.getRawData()[1];
3045   uint64_t myexponent = (i2 >> 48) & 0x7fff;
3046   uint64_t mysignificand  = i1;
3047   uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3048 
3049   initialize(&APFloat::IEEEquad);
3050   assert(partCount()==2);
3051 
3052   sign = static_cast<unsigned int>(i2>>63);
3053   if (myexponent==0 &&
3054       (mysignificand==0 && mysignificand2==0)) {
3055     // exponent, significand meaningless
3056     category = fcZero;
3057   } else if (myexponent==0x7fff &&
3058              (mysignificand==0 && mysignificand2==0)) {
3059     // exponent, significand meaningless
3060     category = fcInfinity;
3061   } else if (myexponent==0x7fff &&
3062              (mysignificand!=0 || mysignificand2 !=0)) {
3063     // exponent meaningless
3064     category = fcNaN;
3065     significandParts()[0] = mysignificand;
3066     significandParts()[1] = mysignificand2;
3067   } else {
3068     category = fcNormal;
3069     exponent = myexponent - 16383;
3070     significandParts()[0] = mysignificand;
3071     significandParts()[1] = mysignificand2;
3072     if (myexponent==0)          // denormal
3073       exponent = -16382;
3074     else
3075       significandParts()[1] |= 0x1000000000000LL;  // integer bit
3076   }
3077 }
3078 
3079 void
3080 APFloat::initFromDoubleAPInt(const APInt &api)
3081 {
3082   assert(api.getBitWidth()==64);
3083   uint64_t i = *api.getRawData();
3084   uint64_t myexponent = (i >> 52) & 0x7ff;
3085   uint64_t mysignificand = i & 0xfffffffffffffLL;
3086 
3087   initialize(&APFloat::IEEEdouble);
3088   assert(partCount()==1);
3089 
3090   sign = static_cast<unsigned int>(i>>63);
3091   if (myexponent==0 && mysignificand==0) {
3092     // exponent, significand meaningless
3093     category = fcZero;
3094   } else if (myexponent==0x7ff && mysignificand==0) {
3095     // exponent, significand meaningless
3096     category = fcInfinity;
3097   } else if (myexponent==0x7ff && mysignificand!=0) {
3098     // exponent meaningless
3099     category = fcNaN;
3100     *significandParts() = mysignificand;
3101   } else {
3102     category = fcNormal;
3103     exponent = myexponent - 1023;
3104     *significandParts() = mysignificand;
3105     if (myexponent==0)          // denormal
3106       exponent = -1022;
3107     else
3108       *significandParts() |= 0x10000000000000LL;  // integer bit
3109   }
3110 }
3111 
3112 void
3113 APFloat::initFromFloatAPInt(const APInt & api)
3114 {
3115   assert(api.getBitWidth()==32);
3116   uint32_t i = (uint32_t)*api.getRawData();
3117   uint32_t myexponent = (i >> 23) & 0xff;
3118   uint32_t mysignificand = i & 0x7fffff;
3119 
3120   initialize(&APFloat::IEEEsingle);
3121   assert(partCount()==1);
3122 
3123   sign = i >> 31;
3124   if (myexponent==0 && mysignificand==0) {
3125     // exponent, significand meaningless
3126     category = fcZero;
3127   } else if (myexponent==0xff && mysignificand==0) {
3128     // exponent, significand meaningless
3129     category = fcInfinity;
3130   } else if (myexponent==0xff && mysignificand!=0) {
3131     // sign, exponent, significand meaningless
3132     category = fcNaN;
3133     *significandParts() = mysignificand;
3134   } else {
3135     category = fcNormal;
3136     exponent = myexponent - 127;  //bias
3137     *significandParts() = mysignificand;
3138     if (myexponent==0)    // denormal
3139       exponent = -126;
3140     else
3141       *significandParts() |= 0x800000; // integer bit
3142   }
3143 }
3144 
3145 void
3146 APFloat::initFromHalfAPInt(const APInt & api)
3147 {
3148   assert(api.getBitWidth()==16);
3149   uint32_t i = (uint32_t)*api.getRawData();
3150   uint32_t myexponent = (i >> 10) & 0x1f;
3151   uint32_t mysignificand = i & 0x3ff;
3152 
3153   initialize(&APFloat::IEEEhalf);
3154   assert(partCount()==1);
3155 
3156   sign = i >> 15;
3157   if (myexponent==0 && mysignificand==0) {
3158     // exponent, significand meaningless
3159     category = fcZero;
3160   } else if (myexponent==0x1f && mysignificand==0) {
3161     // exponent, significand meaningless
3162     category = fcInfinity;
3163   } else if (myexponent==0x1f && mysignificand!=0) {
3164     // sign, exponent, significand meaningless
3165     category = fcNaN;
3166     *significandParts() = mysignificand;
3167   } else {
3168     category = fcNormal;
3169     exponent = myexponent - 15;  //bias
3170     *significandParts() = mysignificand;
3171     if (myexponent==0)    // denormal
3172       exponent = -14;
3173     else
3174       *significandParts() |= 0x400; // integer bit
3175   }
3176 }
3177 
3178 /// Treat api as containing the bits of a floating point number.  Currently
3179 /// we infer the floating point type from the size of the APInt.  The
3180 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3181 /// when the size is anything else).
3182 void
3183 APFloat::initFromAPInt(const APInt& api, bool isIEEE)
3184 {
3185   if (api.getBitWidth() == 16)
3186     return initFromHalfAPInt(api);
3187   else if (api.getBitWidth() == 32)
3188     return initFromFloatAPInt(api);
3189   else if (api.getBitWidth()==64)
3190     return initFromDoubleAPInt(api);
3191   else if (api.getBitWidth()==80)
3192     return initFromF80LongDoubleAPInt(api);
3193   else if (api.getBitWidth()==128)
3194     return (isIEEE ?
3195             initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
3196   else
3197     llvm_unreachable(0);
3198 }
3199 
3200 APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
3201   APFloat Val(Sem, fcNormal, Negative);
3202 
3203   // We want (in interchange format):
3204   //   sign = {Negative}
3205   //   exponent = 1..10
3206   //   significand = 1..1
3207 
3208   Val.exponent = Sem.maxExponent; // unbiased
3209 
3210   // 1-initialize all bits....
3211   Val.zeroSignificand();
3212   integerPart *significand = Val.significandParts();
3213   unsigned N = partCountForBits(Sem.precision);
3214   for (unsigned i = 0; i != N; ++i)
3215     significand[i] = ~((integerPart) 0);
3216 
3217   // ...and then clear the top bits for internal consistency.
3218   significand[N-1] &=
3219     (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1)) - 1;
3220 
3221   return Val;
3222 }
3223 
3224 APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
3225   APFloat Val(Sem, fcNormal, Negative);
3226 
3227   // We want (in interchange format):
3228   //   sign = {Negative}
3229   //   exponent = 0..0
3230   //   significand = 0..01
3231 
3232   Val.exponent = Sem.minExponent; // unbiased
3233   Val.zeroSignificand();
3234   Val.significandParts()[0] = 1;
3235   return Val;
3236 }
3237 
3238 APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
3239   APFloat Val(Sem, fcNormal, Negative);
3240 
3241   // We want (in interchange format):
3242   //   sign = {Negative}
3243   //   exponent = 0..0
3244   //   significand = 10..0
3245 
3246   Val.exponent = Sem.minExponent;
3247   Val.zeroSignificand();
3248   Val.significandParts()[partCountForBits(Sem.precision)-1] |=
3249     (((integerPart) 1) << ((Sem.precision % integerPartWidth) - 1));
3250 
3251   return Val;
3252 }
3253 
3254 APFloat::APFloat(const APInt& api, bool isIEEE)
3255 {
3256   initFromAPInt(api, isIEEE);
3257 }
3258 
3259 APFloat::APFloat(float f)
3260 {
3261   initFromAPInt(APInt::floatToBits(f));
3262 }
3263 
3264 APFloat::APFloat(double d)
3265 {
3266   initFromAPInt(APInt::doubleToBits(d));
3267 }
3268 
3269 namespace {
3270   static void append(SmallVectorImpl<char> &Buffer,
3271                      unsigned N, const char *Str) {
3272     unsigned Start = Buffer.size();
3273     Buffer.set_size(Start + N);
3274     memcpy(&Buffer[Start], Str, N);
3275   }
3276 
3277   template <unsigned N>
3278   void append(SmallVectorImpl<char> &Buffer, const char (&Str)[N]) {
3279     append(Buffer, N, Str);
3280   }
3281 
3282   /// Removes data from the given significand until it is no more
3283   /// precise than is required for the desired precision.
3284   void AdjustToPrecision(APInt &significand,
3285                          int &exp, unsigned FormatPrecision) {
3286     unsigned bits = significand.getActiveBits();
3287 
3288     // 196/59 is a very slight overestimate of lg_2(10).
3289     unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3290 
3291     if (bits <= bitsRequired) return;
3292 
3293     unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3294     if (!tensRemovable) return;
3295 
3296     exp += tensRemovable;
3297 
3298     APInt divisor(significand.getBitWidth(), 1);
3299     APInt powten(significand.getBitWidth(), 10);
3300     while (true) {
3301       if (tensRemovable & 1)
3302         divisor *= powten;
3303       tensRemovable >>= 1;
3304       if (!tensRemovable) break;
3305       powten *= powten;
3306     }
3307 
3308     significand = significand.udiv(divisor);
3309 
3310     // Truncate the significand down to its active bit count, but
3311     // don't try to drop below 32.
3312     unsigned newPrecision = std::max(32U, significand.getActiveBits());
3313     significand = significand.trunc(newPrecision);
3314   }
3315 
3316 
3317   void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3318                          int &exp, unsigned FormatPrecision) {
3319     unsigned N = buffer.size();
3320     if (N <= FormatPrecision) return;
3321 
3322     // The most significant figures are the last ones in the buffer.
3323     unsigned FirstSignificant = N - FormatPrecision;
3324 
3325     // Round.
3326     // FIXME: this probably shouldn't use 'round half up'.
3327 
3328     // Rounding down is just a truncation, except we also want to drop
3329     // trailing zeros from the new result.
3330     if (buffer[FirstSignificant - 1] < '5') {
3331       while (buffer[FirstSignificant] == '0')
3332         FirstSignificant++;
3333 
3334       exp += FirstSignificant;
3335       buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3336       return;
3337     }
3338 
3339     // Rounding up requires a decimal add-with-carry.  If we continue
3340     // the carry, the newly-introduced zeros will just be truncated.
3341     for (unsigned I = FirstSignificant; I != N; ++I) {
3342       if (buffer[I] == '9') {
3343         FirstSignificant++;
3344       } else {
3345         buffer[I]++;
3346         break;
3347       }
3348     }
3349 
3350     // If we carried through, we have exactly one digit of precision.
3351     if (FirstSignificant == N) {
3352       exp += FirstSignificant;
3353       buffer.clear();
3354       buffer.push_back('1');
3355       return;
3356     }
3357 
3358     exp += FirstSignificant;
3359     buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3360   }
3361 }
3362 
3363 void APFloat::toString(SmallVectorImpl<char> &Str,
3364                        unsigned FormatPrecision,
3365                        unsigned FormatMaxPadding) const {
3366   switch (category) {
3367   case fcInfinity:
3368     if (isNegative())
3369       return append(Str, "-Inf");
3370     else
3371       return append(Str, "+Inf");
3372 
3373   case fcNaN: return append(Str, "NaN");
3374 
3375   case fcZero:
3376     if (isNegative())
3377       Str.push_back('-');
3378 
3379     if (!FormatMaxPadding)
3380       append(Str, "0.0E+0");
3381     else
3382       Str.push_back('0');
3383     return;
3384 
3385   case fcNormal:
3386     break;
3387   }
3388 
3389   if (isNegative())
3390     Str.push_back('-');
3391 
3392   // Decompose the number into an APInt and an exponent.
3393   int exp = exponent - ((int) semantics->precision - 1);
3394   APInt significand(semantics->precision,
3395                     partCountForBits(semantics->precision),
3396                     significandParts());
3397 
3398   // Set FormatPrecision if zero.  We want to do this before we
3399   // truncate trailing zeros, as those are part of the precision.
3400   if (!FormatPrecision) {
3401     // It's an interesting question whether to use the nominal
3402     // precision or the active precision here for denormals.
3403 
3404     // FormatPrecision = ceil(significandBits / lg_2(10))
3405     FormatPrecision = (semantics->precision * 59 + 195) / 196;
3406   }
3407 
3408   // Ignore trailing binary zeros.
3409   int trailingZeros = significand.countTrailingZeros();
3410   exp += trailingZeros;
3411   significand = significand.lshr(trailingZeros);
3412 
3413   // Change the exponent from 2^e to 10^e.
3414   if (exp == 0) {
3415     // Nothing to do.
3416   } else if (exp > 0) {
3417     // Just shift left.
3418     significand = significand.zext(semantics->precision + exp);
3419     significand <<= exp;
3420     exp = 0;
3421   } else { /* exp < 0 */
3422     int texp = -exp;
3423 
3424     // We transform this using the identity:
3425     //   (N)(2^-e) == (N)(5^e)(10^-e)
3426     // This means we have to multiply N (the significand) by 5^e.
3427     // To avoid overflow, we have to operate on numbers large
3428     // enough to store N * 5^e:
3429     //   log2(N * 5^e) == log2(N) + e * log2(5)
3430     //                 <= semantics->precision + e * 137 / 59
3431     //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
3432 
3433     unsigned precision = semantics->precision + 137 * texp / 59;
3434 
3435     // Multiply significand by 5^e.
3436     //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
3437     significand = significand.zext(precision);
3438     APInt five_to_the_i(precision, 5);
3439     while (true) {
3440       if (texp & 1) significand *= five_to_the_i;
3441 
3442       texp >>= 1;
3443       if (!texp) break;
3444       five_to_the_i *= five_to_the_i;
3445     }
3446   }
3447 
3448   AdjustToPrecision(significand, exp, FormatPrecision);
3449 
3450   llvm::SmallVector<char, 256> buffer;
3451 
3452   // Fill the buffer.
3453   unsigned precision = significand.getBitWidth();
3454   APInt ten(precision, 10);
3455   APInt digit(precision, 0);
3456 
3457   bool inTrail = true;
3458   while (significand != 0) {
3459     // digit <- significand % 10
3460     // significand <- significand / 10
3461     APInt::udivrem(significand, ten, significand, digit);
3462 
3463     unsigned d = digit.getZExtValue();
3464 
3465     // Drop trailing zeros.
3466     if (inTrail && !d) exp++;
3467     else {
3468       buffer.push_back((char) ('0' + d));
3469       inTrail = false;
3470     }
3471   }
3472 
3473   assert(!buffer.empty() && "no characters in buffer!");
3474 
3475   // Drop down to FormatPrecision.
3476   // TODO: don't do more precise calculations above than are required.
3477   AdjustToPrecision(buffer, exp, FormatPrecision);
3478 
3479   unsigned NDigits = buffer.size();
3480 
3481   // Check whether we should use scientific notation.
3482   bool FormatScientific;
3483   if (!FormatMaxPadding)
3484     FormatScientific = true;
3485   else {
3486     if (exp >= 0) {
3487       // 765e3 --> 765000
3488       //              ^^^
3489       // But we shouldn't make the number look more precise than it is.
3490       FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3491                           NDigits + (unsigned) exp > FormatPrecision);
3492     } else {
3493       // Power of the most significant digit.
3494       int MSD = exp + (int) (NDigits - 1);
3495       if (MSD >= 0) {
3496         // 765e-2 == 7.65
3497         FormatScientific = false;
3498       } else {
3499         // 765e-5 == 0.00765
3500         //           ^ ^^
3501         FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
3502       }
3503     }
3504   }
3505 
3506   // Scientific formatting is pretty straightforward.
3507   if (FormatScientific) {
3508     exp += (NDigits - 1);
3509 
3510     Str.push_back(buffer[NDigits-1]);
3511     Str.push_back('.');
3512     if (NDigits == 1)
3513       Str.push_back('0');
3514     else
3515       for (unsigned I = 1; I != NDigits; ++I)
3516         Str.push_back(buffer[NDigits-1-I]);
3517     Str.push_back('E');
3518 
3519     Str.push_back(exp >= 0 ? '+' : '-');
3520     if (exp < 0) exp = -exp;
3521     SmallVector<char, 6> expbuf;
3522     do {
3523       expbuf.push_back((char) ('0' + (exp % 10)));
3524       exp /= 10;
3525     } while (exp);
3526     for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3527       Str.push_back(expbuf[E-1-I]);
3528     return;
3529   }
3530 
3531   // Non-scientific, positive exponents.
3532   if (exp >= 0) {
3533     for (unsigned I = 0; I != NDigits; ++I)
3534       Str.push_back(buffer[NDigits-1-I]);
3535     for (unsigned I = 0; I != (unsigned) exp; ++I)
3536       Str.push_back('0');
3537     return;
3538   }
3539 
3540   // Non-scientific, negative exponents.
3541 
3542   // The number of digits to the left of the decimal point.
3543   int NWholeDigits = exp + (int) NDigits;
3544 
3545   unsigned I = 0;
3546   if (NWholeDigits > 0) {
3547     for (; I != (unsigned) NWholeDigits; ++I)
3548       Str.push_back(buffer[NDigits-I-1]);
3549     Str.push_back('.');
3550   } else {
3551     unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3552 
3553     Str.push_back('0');
3554     Str.push_back('.');
3555     for (unsigned Z = 1; Z != NZeros; ++Z)
3556       Str.push_back('0');
3557   }
3558 
3559   for (; I != NDigits; ++I)
3560     Str.push_back(buffer[NDigits-I-1]);
3561 }
3562