1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision floating
10 // point values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/Error.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <cstring>
27 #include <limits.h>
28 
29 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
30   do {                                                                         \
31     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
32       return U.IEEE.METHOD_CALL;                                               \
33     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
34       return U.Double.METHOD_CALL;                                             \
35     llvm_unreachable("Unexpected semantics");                                  \
36   } while (false)
37 
38 using namespace llvm;
39 
40 /// A macro used to combine two fcCategory enums into one key which can be used
41 /// in a switch statement to classify how the interaction of two APFloat's
42 /// categories affects an operation.
43 ///
44 /// TODO: If clang source code is ever allowed to use constexpr in its own
45 /// codebase, change this into a static inline function.
46 #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
47 
48 /* Assumed in hexadecimal significand parsing, and conversion to
49    hexadecimal strings.  */
50 static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!");
51 
52 namespace llvm {
53   /* Represents floating point arithmetic semantics.  */
54   struct fltSemantics {
55     /* The largest E such that 2^E is representable; this matches the
56        definition of IEEE 754.  */
57     APFloatBase::ExponentType maxExponent;
58 
59     /* The smallest E such that 2^E is a normalized number; this
60        matches the definition of IEEE 754.  */
61     APFloatBase::ExponentType minExponent;
62 
63     /* Number of bits in the significand.  This includes the integer
64        bit.  */
65     unsigned int precision;
66 
67     /* Number of bits actually used in the semantics. */
68     unsigned int sizeInBits;
69 
70     // Returns true if any number described by this semantics can be precisely
71     // represented by the specified semantics.
72     bool isRepresentableBy(const fltSemantics &S) const {
73       return maxExponent <= S.maxExponent && minExponent >= S.minExponent &&
74              precision <= S.precision;
75     }
76   };
77 
78   static const fltSemantics semIEEEhalf = {15, -14, 11, 16};
79   static const fltSemantics semBFloat = {127, -126, 8, 16};
80   static const fltSemantics semIEEEsingle = {127, -126, 24, 32};
81   static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64};
82   static const fltSemantics semIEEEquad = {16383, -16382, 113, 128};
83   static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80};
84   static const fltSemantics semBogus = {0, 0, 0, 0};
85 
86   /* The IBM double-double semantics. Such a number consists of a pair of IEEE
87      64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal,
88      (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo.
89      Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent
90      to each other, and two 11-bit exponents.
91 
92      Note: we need to make the value different from semBogus as otherwise
93      an unsafe optimization may collapse both values to a single address,
94      and we heavily rely on them having distinct addresses.             */
95   static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 0};
96 
97   /* These are legacy semantics for the fallback, inaccrurate implementation of
98      IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the
99      operation. It's equivalent to having an IEEE number with consecutive 106
100      bits of mantissa and 11 bits of exponent.
101 
102      It's not equivalent to IBM double-double. For example, a legit IBM
103      double-double, 1 + epsilon:
104 
105        1 + epsilon = 1 + (1 >> 1076)
106 
107      is not representable by a consecutive 106 bits of mantissa.
108 
109      Currently, these semantics are used in the following way:
110 
111        semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) ->
112        (64-bit APInt, 64-bit APInt) -> (128-bit APInt) ->
113        semPPCDoubleDoubleLegacy -> IEEE operations
114 
115      We use bitcastToAPInt() to get the bit representation (in APInt) of the
116      underlying IEEEdouble, then use the APInt constructor to construct the
117      legacy IEEE float.
118 
119      TODO: Implement all operations in semPPCDoubleDouble, and delete these
120      semantics.  */
121   static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53,
122                                                         53 + 53, 128};
123 
124   const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) {
125     switch (S) {
126     case S_IEEEhalf:
127       return IEEEhalf();
128     case S_BFloat:
129       return BFloat();
130     case S_IEEEsingle:
131       return IEEEsingle();
132     case S_IEEEdouble:
133       return IEEEdouble();
134     case S_x87DoubleExtended:
135       return x87DoubleExtended();
136     case S_IEEEquad:
137       return IEEEquad();
138     case S_PPCDoubleDouble:
139       return PPCDoubleDouble();
140     }
141     llvm_unreachable("Unrecognised floating semantics");
142   }
143 
144   APFloatBase::Semantics
145   APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) {
146     if (&Sem == &llvm::APFloat::IEEEhalf())
147       return S_IEEEhalf;
148     else if (&Sem == &llvm::APFloat::BFloat())
149       return S_BFloat;
150     else if (&Sem == &llvm::APFloat::IEEEsingle())
151       return S_IEEEsingle;
152     else if (&Sem == &llvm::APFloat::IEEEdouble())
153       return S_IEEEdouble;
154     else if (&Sem == &llvm::APFloat::x87DoubleExtended())
155       return S_x87DoubleExtended;
156     else if (&Sem == &llvm::APFloat::IEEEquad())
157       return S_IEEEquad;
158     else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
159       return S_PPCDoubleDouble;
160     else
161       llvm_unreachable("Unknown floating semantics");
162   }
163 
164   const fltSemantics &APFloatBase::IEEEhalf() {
165     return semIEEEhalf;
166   }
167   const fltSemantics &APFloatBase::BFloat() {
168     return semBFloat;
169   }
170   const fltSemantics &APFloatBase::IEEEsingle() {
171     return semIEEEsingle;
172   }
173   const fltSemantics &APFloatBase::IEEEdouble() {
174     return semIEEEdouble;
175   }
176   const fltSemantics &APFloatBase::IEEEquad() {
177     return semIEEEquad;
178   }
179   const fltSemantics &APFloatBase::x87DoubleExtended() {
180     return semX87DoubleExtended;
181   }
182   const fltSemantics &APFloatBase::Bogus() {
183     return semBogus;
184   }
185   const fltSemantics &APFloatBase::PPCDoubleDouble() {
186     return semPPCDoubleDouble;
187   }
188 
189   constexpr RoundingMode APFloatBase::rmNearestTiesToEven;
190   constexpr RoundingMode APFloatBase::rmTowardPositive;
191   constexpr RoundingMode APFloatBase::rmTowardNegative;
192   constexpr RoundingMode APFloatBase::rmTowardZero;
193   constexpr RoundingMode APFloatBase::rmNearestTiesToAway;
194 
195   /* A tight upper bound on number of parts required to hold the value
196      pow(5, power) is
197 
198        power * 815 / (351 * integerPartWidth) + 1
199 
200      However, whilst the result may require only this many parts,
201      because we are multiplying two values to get it, the
202      multiplication may require an extra part with the excess part
203      being zero (consider the trivial case of 1 * 1, tcFullMultiply
204      requires two parts to hold the single-part result).  So we add an
205      extra one to guarantee enough space whilst multiplying.  */
206   const unsigned int maxExponent = 16383;
207   const unsigned int maxPrecision = 113;
208   const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
209   const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth));
210 
211   unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) {
212     return semantics.precision;
213   }
214   APFloatBase::ExponentType
215   APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) {
216     return semantics.maxExponent;
217   }
218   APFloatBase::ExponentType
219   APFloatBase::semanticsMinExponent(const fltSemantics &semantics) {
220     return semantics.minExponent;
221   }
222   unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) {
223     return semantics.sizeInBits;
224   }
225 
226   unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) {
227     return Sem.sizeInBits;
228 }
229 
230 /* A bunch of private, handy routines.  */
231 
232 static inline Error createError(const Twine &Err) {
233   return make_error<StringError>(Err, inconvertibleErrorCode());
234 }
235 
236 static inline unsigned int
237 partCountForBits(unsigned int bits)
238 {
239   return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth;
240 }
241 
242 /* Returns 0U-9U.  Return values >= 10U are not digits.  */
243 static inline unsigned int
244 decDigitValue(unsigned int c)
245 {
246   return c - '0';
247 }
248 
249 /* Return the value of a decimal exponent of the form
250    [+-]ddddddd.
251 
252    If the exponent overflows, returns a large exponent with the
253    appropriate sign.  */
254 static Expected<int> readExponent(StringRef::iterator begin,
255                                   StringRef::iterator end) {
256   bool isNegative;
257   unsigned int absExponent;
258   const unsigned int overlargeExponent = 24000;  /* FIXME.  */
259   StringRef::iterator p = begin;
260 
261   // Treat no exponent as 0 to match binutils
262   if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) {
263     return 0;
264   }
265 
266   isNegative = (*p == '-');
267   if (*p == '-' || *p == '+') {
268     p++;
269     if (p == end)
270       return createError("Exponent has no digits");
271   }
272 
273   absExponent = decDigitValue(*p++);
274   if (absExponent >= 10U)
275     return createError("Invalid character in exponent");
276 
277   for (; p != end; ++p) {
278     unsigned int value;
279 
280     value = decDigitValue(*p);
281     if (value >= 10U)
282       return createError("Invalid character in exponent");
283 
284     absExponent = absExponent * 10U + value;
285     if (absExponent >= overlargeExponent) {
286       absExponent = overlargeExponent;
287       break;
288     }
289   }
290 
291   if (isNegative)
292     return -(int) absExponent;
293   else
294     return (int) absExponent;
295 }
296 
297 /* This is ugly and needs cleaning up, but I don't immediately see
298    how whilst remaining safe.  */
299 static Expected<int> totalExponent(StringRef::iterator p,
300                                    StringRef::iterator end,
301                                    int exponentAdjustment) {
302   int unsignedExponent;
303   bool negative, overflow;
304   int exponent = 0;
305 
306   if (p == end)
307     return createError("Exponent has no digits");
308 
309   negative = *p == '-';
310   if (*p == '-' || *p == '+') {
311     p++;
312     if (p == end)
313       return createError("Exponent has no digits");
314   }
315 
316   unsignedExponent = 0;
317   overflow = false;
318   for (; p != end; ++p) {
319     unsigned int value;
320 
321     value = decDigitValue(*p);
322     if (value >= 10U)
323       return createError("Invalid character in exponent");
324 
325     unsignedExponent = unsignedExponent * 10 + value;
326     if (unsignedExponent > 32767) {
327       overflow = true;
328       break;
329     }
330   }
331 
332   if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
333     overflow = true;
334 
335   if (!overflow) {
336     exponent = unsignedExponent;
337     if (negative)
338       exponent = -exponent;
339     exponent += exponentAdjustment;
340     if (exponent > 32767 || exponent < -32768)
341       overflow = true;
342   }
343 
344   if (overflow)
345     exponent = negative ? -32768: 32767;
346 
347   return exponent;
348 }
349 
350 static Expected<StringRef::iterator>
351 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
352                            StringRef::iterator *dot) {
353   StringRef::iterator p = begin;
354   *dot = end;
355   while (p != end && *p == '0')
356     p++;
357 
358   if (p != end && *p == '.') {
359     *dot = p++;
360 
361     if (end - begin == 1)
362       return createError("Significand has no digits");
363 
364     while (p != end && *p == '0')
365       p++;
366   }
367 
368   return p;
369 }
370 
371 /* Given a normal decimal floating point number of the form
372 
373      dddd.dddd[eE][+-]ddd
374 
375    where the decimal point and exponent are optional, fill out the
376    structure D.  Exponent is appropriate if the significand is
377    treated as an integer, and normalizedExponent if the significand
378    is taken to have the decimal point after a single leading
379    non-zero digit.
380 
381    If the value is zero, V->firstSigDigit points to a non-digit, and
382    the return exponent is zero.
383 */
384 struct decimalInfo {
385   const char *firstSigDigit;
386   const char *lastSigDigit;
387   int exponent;
388   int normalizedExponent;
389 };
390 
391 static Error interpretDecimal(StringRef::iterator begin,
392                               StringRef::iterator end, decimalInfo *D) {
393   StringRef::iterator dot = end;
394 
395   auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot);
396   if (!PtrOrErr)
397     return PtrOrErr.takeError();
398   StringRef::iterator p = *PtrOrErr;
399 
400   D->firstSigDigit = p;
401   D->exponent = 0;
402   D->normalizedExponent = 0;
403 
404   for (; p != end; ++p) {
405     if (*p == '.') {
406       if (dot != end)
407         return createError("String contains multiple dots");
408       dot = p++;
409       if (p == end)
410         break;
411     }
412     if (decDigitValue(*p) >= 10U)
413       break;
414   }
415 
416   if (p != end) {
417     if (*p != 'e' && *p != 'E')
418       return createError("Invalid character in significand");
419     if (p == begin)
420       return createError("Significand has no digits");
421     if (dot != end && p - begin == 1)
422       return createError("Significand has no digits");
423 
424     /* p points to the first non-digit in the string */
425     auto ExpOrErr = readExponent(p + 1, end);
426     if (!ExpOrErr)
427       return ExpOrErr.takeError();
428     D->exponent = *ExpOrErr;
429 
430     /* Implied decimal point?  */
431     if (dot == end)
432       dot = p;
433   }
434 
435   /* If number is all zeroes accept any exponent.  */
436   if (p != D->firstSigDigit) {
437     /* Drop insignificant trailing zeroes.  */
438     if (p != begin) {
439       do
440         do
441           p--;
442         while (p != begin && *p == '0');
443       while (p != begin && *p == '.');
444     }
445 
446     /* Adjust the exponents for any decimal point.  */
447     D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
448     D->normalizedExponent = (D->exponent +
449               static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
450                                       - (dot > D->firstSigDigit && dot < p)));
451   }
452 
453   D->lastSigDigit = p;
454   return Error::success();
455 }
456 
457 /* Return the trailing fraction of a hexadecimal number.
458    DIGITVALUE is the first hex digit of the fraction, P points to
459    the next digit.  */
460 static Expected<lostFraction>
461 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
462                             unsigned int digitValue) {
463   unsigned int hexDigit;
464 
465   /* If the first trailing digit isn't 0 or 8 we can work out the
466      fraction immediately.  */
467   if (digitValue > 8)
468     return lfMoreThanHalf;
469   else if (digitValue < 8 && digitValue > 0)
470     return lfLessThanHalf;
471 
472   // Otherwise we need to find the first non-zero digit.
473   while (p != end && (*p == '0' || *p == '.'))
474     p++;
475 
476   if (p == end)
477     return createError("Invalid trailing hexadecimal fraction!");
478 
479   hexDigit = hexDigitValue(*p);
480 
481   /* If we ran off the end it is exactly zero or one-half, otherwise
482      a little more.  */
483   if (hexDigit == -1U)
484     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
485   else
486     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
487 }
488 
489 /* Return the fraction lost were a bignum truncated losing the least
490    significant BITS bits.  */
491 static lostFraction
492 lostFractionThroughTruncation(const APFloatBase::integerPart *parts,
493                               unsigned int partCount,
494                               unsigned int bits)
495 {
496   unsigned int lsb;
497 
498   lsb = APInt::tcLSB(parts, partCount);
499 
500   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
501   if (bits <= lsb)
502     return lfExactlyZero;
503   if (bits == lsb + 1)
504     return lfExactlyHalf;
505   if (bits <= partCount * APFloatBase::integerPartWidth &&
506       APInt::tcExtractBit(parts, bits - 1))
507     return lfMoreThanHalf;
508 
509   return lfLessThanHalf;
510 }
511 
512 /* Shift DST right BITS bits noting lost fraction.  */
513 static lostFraction
514 shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits)
515 {
516   lostFraction lost_fraction;
517 
518   lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
519 
520   APInt::tcShiftRight(dst, parts, bits);
521 
522   return lost_fraction;
523 }
524 
525 /* Combine the effect of two lost fractions.  */
526 static lostFraction
527 combineLostFractions(lostFraction moreSignificant,
528                      lostFraction lessSignificant)
529 {
530   if (lessSignificant != lfExactlyZero) {
531     if (moreSignificant == lfExactlyZero)
532       moreSignificant = lfLessThanHalf;
533     else if (moreSignificant == lfExactlyHalf)
534       moreSignificant = lfMoreThanHalf;
535   }
536 
537   return moreSignificant;
538 }
539 
540 /* The error from the true value, in half-ulps, on multiplying two
541    floating point numbers, which differ from the value they
542    approximate by at most HUE1 and HUE2 half-ulps, is strictly less
543    than the returned value.
544 
545    See "How to Read Floating Point Numbers Accurately" by William D
546    Clinger.  */
547 static unsigned int
548 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
549 {
550   assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
551 
552   if (HUerr1 + HUerr2 == 0)
553     return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
554   else
555     return inexactMultiply + 2 * (HUerr1 + HUerr2);
556 }
557 
558 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
559    when the least significant BITS are truncated.  BITS cannot be
560    zero.  */
561 static APFloatBase::integerPart
562 ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits,
563                  bool isNearest) {
564   unsigned int count, partBits;
565   APFloatBase::integerPart part, boundary;
566 
567   assert(bits != 0);
568 
569   bits--;
570   count = bits / APFloatBase::integerPartWidth;
571   partBits = bits % APFloatBase::integerPartWidth + 1;
572 
573   part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits));
574 
575   if (isNearest)
576     boundary = (APFloatBase::integerPart) 1 << (partBits - 1);
577   else
578     boundary = 0;
579 
580   if (count == 0) {
581     if (part - boundary <= boundary - part)
582       return part - boundary;
583     else
584       return boundary - part;
585   }
586 
587   if (part == boundary) {
588     while (--count)
589       if (parts[count])
590         return ~(APFloatBase::integerPart) 0; /* A lot.  */
591 
592     return parts[0];
593   } else if (part == boundary - 1) {
594     while (--count)
595       if (~parts[count])
596         return ~(APFloatBase::integerPart) 0; /* A lot.  */
597 
598     return -parts[0];
599   }
600 
601   return ~(APFloatBase::integerPart) 0; /* A lot.  */
602 }
603 
604 /* Place pow(5, power) in DST, and return the number of parts used.
605    DST must be at least one part larger than size of the answer.  */
606 static unsigned int
607 powerOf5(APFloatBase::integerPart *dst, unsigned int power) {
608   static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 };
609   APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
610   pow5s[0] = 78125 * 5;
611 
612   unsigned int partsCount[16] = { 1 };
613   APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
614   unsigned int result;
615   assert(power <= maxExponent);
616 
617   p1 = dst;
618   p2 = scratch;
619 
620   *p1 = firstEightPowers[power & 7];
621   power >>= 3;
622 
623   result = 1;
624   pow5 = pow5s;
625 
626   for (unsigned int n = 0; power; power >>= 1, n++) {
627     unsigned int pc;
628 
629     pc = partsCount[n];
630 
631     /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
632     if (pc == 0) {
633       pc = partsCount[n - 1];
634       APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
635       pc *= 2;
636       if (pow5[pc - 1] == 0)
637         pc--;
638       partsCount[n] = pc;
639     }
640 
641     if (power & 1) {
642       APFloatBase::integerPart *tmp;
643 
644       APInt::tcFullMultiply(p2, p1, pow5, result, pc);
645       result += pc;
646       if (p2[result - 1] == 0)
647         result--;
648 
649       /* Now result is in p1 with partsCount parts and p2 is scratch
650          space.  */
651       tmp = p1;
652       p1 = p2;
653       p2 = tmp;
654     }
655 
656     pow5 += pc;
657   }
658 
659   if (p1 != dst)
660     APInt::tcAssign(dst, p1, result);
661 
662   return result;
663 }
664 
665 /* Zero at the end to avoid modular arithmetic when adding one; used
666    when rounding up during hexadecimal output.  */
667 static const char hexDigitsLower[] = "0123456789abcdef0";
668 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
669 static const char infinityL[] = "infinity";
670 static const char infinityU[] = "INFINITY";
671 static const char NaNL[] = "nan";
672 static const char NaNU[] = "NAN";
673 
674 /* Write out an integerPart in hexadecimal, starting with the most
675    significant nibble.  Write out exactly COUNT hexdigits, return
676    COUNT.  */
677 static unsigned int
678 partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count,
679            const char *hexDigitChars)
680 {
681   unsigned int result = count;
682 
683   assert(count != 0 && count <= APFloatBase::integerPartWidth / 4);
684 
685   part >>= (APFloatBase::integerPartWidth - 4 * count);
686   while (count--) {
687     dst[count] = hexDigitChars[part & 0xf];
688     part >>= 4;
689   }
690 
691   return result;
692 }
693 
694 /* Write out an unsigned decimal integer.  */
695 static char *
696 writeUnsignedDecimal (char *dst, unsigned int n)
697 {
698   char buff[40], *p;
699 
700   p = buff;
701   do
702     *p++ = '0' + n % 10;
703   while (n /= 10);
704 
705   do
706     *dst++ = *--p;
707   while (p != buff);
708 
709   return dst;
710 }
711 
712 /* Write out a signed decimal integer.  */
713 static char *
714 writeSignedDecimal (char *dst, int value)
715 {
716   if (value < 0) {
717     *dst++ = '-';
718     dst = writeUnsignedDecimal(dst, -(unsigned) value);
719   } else
720     dst = writeUnsignedDecimal(dst, value);
721 
722   return dst;
723 }
724 
725 namespace detail {
726 /* Constructors.  */
727 void IEEEFloat::initialize(const fltSemantics *ourSemantics) {
728   unsigned int count;
729 
730   semantics = ourSemantics;
731   count = partCount();
732   if (count > 1)
733     significand.parts = new integerPart[count];
734 }
735 
736 void IEEEFloat::freeSignificand() {
737   if (needsCleanup())
738     delete [] significand.parts;
739 }
740 
741 void IEEEFloat::assign(const IEEEFloat &rhs) {
742   assert(semantics == rhs.semantics);
743 
744   sign = rhs.sign;
745   category = rhs.category;
746   exponent = rhs.exponent;
747   if (isFiniteNonZero() || category == fcNaN)
748     copySignificand(rhs);
749 }
750 
751 void IEEEFloat::copySignificand(const IEEEFloat &rhs) {
752   assert(isFiniteNonZero() || category == fcNaN);
753   assert(rhs.partCount() >= partCount());
754 
755   APInt::tcAssign(significandParts(), rhs.significandParts(),
756                   partCount());
757 }
758 
759 /* Make this number a NaN, with an arbitrary but deterministic value
760    for the significand.  If double or longer, this is a signalling NaN,
761    which may not be ideal.  If float, this is QNaN(0).  */
762 void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) {
763   category = fcNaN;
764   sign = Negative;
765   exponent = exponentNaN();
766 
767   integerPart *significand = significandParts();
768   unsigned numParts = partCount();
769 
770   // Set the significand bits to the fill.
771   if (!fill || fill->getNumWords() < numParts)
772     APInt::tcSet(significand, 0, numParts);
773   if (fill) {
774     APInt::tcAssign(significand, fill->getRawData(),
775                     std::min(fill->getNumWords(), numParts));
776 
777     // Zero out the excess bits of the significand.
778     unsigned bitsToPreserve = semantics->precision - 1;
779     unsigned part = bitsToPreserve / 64;
780     bitsToPreserve %= 64;
781     significand[part] &= ((1ULL << bitsToPreserve) - 1);
782     for (part++; part != numParts; ++part)
783       significand[part] = 0;
784   }
785 
786   unsigned QNaNBit = semantics->precision - 2;
787 
788   if (SNaN) {
789     // We always have to clear the QNaN bit to make it an SNaN.
790     APInt::tcClearBit(significand, QNaNBit);
791 
792     // If there are no bits set in the payload, we have to set
793     // *something* to make it a NaN instead of an infinity;
794     // conventionally, this is the next bit down from the QNaN bit.
795     if (APInt::tcIsZero(significand, numParts))
796       APInt::tcSetBit(significand, QNaNBit - 1);
797   } else {
798     // We always have to set the QNaN bit to make it a QNaN.
799     APInt::tcSetBit(significand, QNaNBit);
800   }
801 
802   // For x87 extended precision, we want to make a NaN, not a
803   // pseudo-NaN.  Maybe we should expose the ability to make
804   // pseudo-NaNs?
805   if (semantics == &semX87DoubleExtended)
806     APInt::tcSetBit(significand, QNaNBit + 1);
807 }
808 
809 IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) {
810   if (this != &rhs) {
811     if (semantics != rhs.semantics) {
812       freeSignificand();
813       initialize(rhs.semantics);
814     }
815     assign(rhs);
816   }
817 
818   return *this;
819 }
820 
821 IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) {
822   freeSignificand();
823 
824   semantics = rhs.semantics;
825   significand = rhs.significand;
826   exponent = rhs.exponent;
827   category = rhs.category;
828   sign = rhs.sign;
829 
830   rhs.semantics = &semBogus;
831   return *this;
832 }
833 
834 bool IEEEFloat::isDenormal() const {
835   return isFiniteNonZero() && (exponent == semantics->minExponent) &&
836          (APInt::tcExtractBit(significandParts(),
837                               semantics->precision - 1) == 0);
838 }
839 
840 bool IEEEFloat::isSmallest() const {
841   // The smallest number by magnitude in our format will be the smallest
842   // denormal, i.e. the floating point number with exponent being minimum
843   // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
844   return isFiniteNonZero() && exponent == semantics->minExponent &&
845     significandMSB() == 0;
846 }
847 
848 bool IEEEFloat::isSignificandAllOnes() const {
849   // Test if the significand excluding the integral bit is all ones. This allows
850   // us to test for binade boundaries.
851   const integerPart *Parts = significandParts();
852   const unsigned PartCount = partCountForBits(semantics->precision);
853   for (unsigned i = 0; i < PartCount - 1; i++)
854     if (~Parts[i])
855       return false;
856 
857   // Set the unused high bits to all ones when we compare.
858   const unsigned NumHighBits =
859     PartCount*integerPartWidth - semantics->precision + 1;
860   assert(NumHighBits <= integerPartWidth && NumHighBits > 0 &&
861          "Can not have more high bits to fill than integerPartWidth");
862   const integerPart HighBitFill =
863     ~integerPart(0) << (integerPartWidth - NumHighBits);
864   if (~(Parts[PartCount - 1] | HighBitFill))
865     return false;
866 
867   return true;
868 }
869 
870 bool IEEEFloat::isSignificandAllZeros() const {
871   // Test if the significand excluding the integral bit is all zeros. This
872   // allows us to test for binade boundaries.
873   const integerPart *Parts = significandParts();
874   const unsigned PartCount = partCountForBits(semantics->precision);
875 
876   for (unsigned i = 0; i < PartCount - 1; i++)
877     if (Parts[i])
878       return false;
879 
880   // Compute how many bits are used in the final word.
881   const unsigned NumHighBits =
882     PartCount*integerPartWidth - semantics->precision + 1;
883   assert(NumHighBits < integerPartWidth && "Can not have more high bits to "
884          "clear than integerPartWidth");
885   const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
886 
887   if (Parts[PartCount - 1] & HighBitMask)
888     return false;
889 
890   return true;
891 }
892 
893 bool IEEEFloat::isLargest() const {
894   // The largest number by magnitude in our format will be the floating point
895   // number with maximum exponent and with significand that is all ones.
896   return isFiniteNonZero() && exponent == semantics->maxExponent
897     && isSignificandAllOnes();
898 }
899 
900 bool IEEEFloat::isInteger() const {
901   // This could be made more efficient; I'm going for obviously correct.
902   if (!isFinite()) return false;
903   IEEEFloat truncated = *this;
904   truncated.roundToIntegral(rmTowardZero);
905   return compare(truncated) == cmpEqual;
906 }
907 
908 bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const {
909   if (this == &rhs)
910     return true;
911   if (semantics != rhs.semantics ||
912       category != rhs.category ||
913       sign != rhs.sign)
914     return false;
915   if (category==fcZero || category==fcInfinity)
916     return true;
917 
918   if (isFiniteNonZero() && exponent != rhs.exponent)
919     return false;
920 
921   return std::equal(significandParts(), significandParts() + partCount(),
922                     rhs.significandParts());
923 }
924 
925 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) {
926   initialize(&ourSemantics);
927   sign = 0;
928   category = fcNormal;
929   zeroSignificand();
930   exponent = ourSemantics.precision - 1;
931   significandParts()[0] = value;
932   normalize(rmNearestTiesToEven, lfExactlyZero);
933 }
934 
935 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) {
936   initialize(&ourSemantics);
937   makeZero(false);
938 }
939 
940 // Delegate to the previous constructor, because later copy constructor may
941 // actually inspects category, which can't be garbage.
942 IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag)
943     : IEEEFloat(ourSemantics) {}
944 
945 IEEEFloat::IEEEFloat(const IEEEFloat &rhs) {
946   initialize(rhs.semantics);
947   assign(rhs);
948 }
949 
950 IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) {
951   *this = std::move(rhs);
952 }
953 
954 IEEEFloat::~IEEEFloat() { freeSignificand(); }
955 
956 unsigned int IEEEFloat::partCount() const {
957   return partCountForBits(semantics->precision + 1);
958 }
959 
960 const IEEEFloat::integerPart *IEEEFloat::significandParts() const {
961   return const_cast<IEEEFloat *>(this)->significandParts();
962 }
963 
964 IEEEFloat::integerPart *IEEEFloat::significandParts() {
965   if (partCount() > 1)
966     return significand.parts;
967   else
968     return &significand.part;
969 }
970 
971 void IEEEFloat::zeroSignificand() {
972   APInt::tcSet(significandParts(), 0, partCount());
973 }
974 
975 /* Increment an fcNormal floating point number's significand.  */
976 void IEEEFloat::incrementSignificand() {
977   integerPart carry;
978 
979   carry = APInt::tcIncrement(significandParts(), partCount());
980 
981   /* Our callers should never cause us to overflow.  */
982   assert(carry == 0);
983   (void)carry;
984 }
985 
986 /* Add the significand of the RHS.  Returns the carry flag.  */
987 IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) {
988   integerPart *parts;
989 
990   parts = significandParts();
991 
992   assert(semantics == rhs.semantics);
993   assert(exponent == rhs.exponent);
994 
995   return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
996 }
997 
998 /* Subtract the significand of the RHS with a borrow flag.  Returns
999    the borrow flag.  */
1000 IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs,
1001                                                       integerPart borrow) {
1002   integerPart *parts;
1003 
1004   parts = significandParts();
1005 
1006   assert(semantics == rhs.semantics);
1007   assert(exponent == rhs.exponent);
1008 
1009   return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
1010                            partCount());
1011 }
1012 
1013 /* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
1014    on to the full-precision result of the multiplication.  Returns the
1015    lost fraction.  */
1016 lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,
1017                                             IEEEFloat addend) {
1018   unsigned int omsb;        // One, not zero, based MSB.
1019   unsigned int partsCount, newPartsCount, precision;
1020   integerPart *lhsSignificand;
1021   integerPart scratch[4];
1022   integerPart *fullSignificand;
1023   lostFraction lost_fraction;
1024   bool ignored;
1025 
1026   assert(semantics == rhs.semantics);
1027 
1028   precision = semantics->precision;
1029 
1030   // Allocate space for twice as many bits as the original significand, plus one
1031   // extra bit for the addition to overflow into.
1032   newPartsCount = partCountForBits(precision * 2 + 1);
1033 
1034   if (newPartsCount > 4)
1035     fullSignificand = new integerPart[newPartsCount];
1036   else
1037     fullSignificand = scratch;
1038 
1039   lhsSignificand = significandParts();
1040   partsCount = partCount();
1041 
1042   APInt::tcFullMultiply(fullSignificand, lhsSignificand,
1043                         rhs.significandParts(), partsCount, partsCount);
1044 
1045   lost_fraction = lfExactlyZero;
1046   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
1047   exponent += rhs.exponent;
1048 
1049   // Assume the operands involved in the multiplication are single-precision
1050   // FP, and the two multiplicants are:
1051   //   *this = a23 . a22 ... a0 * 2^e1
1052   //     rhs = b23 . b22 ... b0 * 2^e2
1053   // the result of multiplication is:
1054   //   *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
1055   // Note that there are three significant bits at the left-hand side of the
1056   // radix point: two for the multiplication, and an overflow bit for the
1057   // addition (that will always be zero at this point). Move the radix point
1058   // toward left by two bits, and adjust exponent accordingly.
1059   exponent += 2;
1060 
1061   if (addend.isNonZero()) {
1062     // The intermediate result of the multiplication has "2 * precision"
1063     // signicant bit; adjust the addend to be consistent with mul result.
1064     //
1065     Significand savedSignificand = significand;
1066     const fltSemantics *savedSemantics = semantics;
1067     fltSemantics extendedSemantics;
1068     opStatus status;
1069     unsigned int extendedPrecision;
1070 
1071     // Normalize our MSB to one below the top bit to allow for overflow.
1072     extendedPrecision = 2 * precision + 1;
1073     if (omsb != extendedPrecision - 1) {
1074       assert(extendedPrecision > omsb);
1075       APInt::tcShiftLeft(fullSignificand, newPartsCount,
1076                          (extendedPrecision - 1) - omsb);
1077       exponent -= (extendedPrecision - 1) - omsb;
1078     }
1079 
1080     /* Create new semantics.  */
1081     extendedSemantics = *semantics;
1082     extendedSemantics.precision = extendedPrecision;
1083 
1084     if (newPartsCount == 1)
1085       significand.part = fullSignificand[0];
1086     else
1087       significand.parts = fullSignificand;
1088     semantics = &extendedSemantics;
1089 
1090     // Make a copy so we can convert it to the extended semantics.
1091     // Note that we cannot convert the addend directly, as the extendedSemantics
1092     // is a local variable (which we take a reference to).
1093     IEEEFloat extendedAddend(addend);
1094     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
1095     assert(status == opOK);
1096     (void)status;
1097 
1098     // Shift the significand of the addend right by one bit. This guarantees
1099     // that the high bit of the significand is zero (same as fullSignificand),
1100     // so the addition will overflow (if it does overflow at all) into the top bit.
1101     lost_fraction = extendedAddend.shiftSignificandRight(1);
1102     assert(lost_fraction == lfExactlyZero &&
1103            "Lost precision while shifting addend for fused-multiply-add.");
1104 
1105     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
1106 
1107     /* Restore our state.  */
1108     if (newPartsCount == 1)
1109       fullSignificand[0] = significand.part;
1110     significand = savedSignificand;
1111     semantics = savedSemantics;
1112 
1113     omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
1114   }
1115 
1116   // Convert the result having "2 * precision" significant-bits back to the one
1117   // having "precision" significant-bits. First, move the radix point from
1118   // poision "2*precision - 1" to "precision - 1". The exponent need to be
1119   // adjusted by "2*precision - 1" - "precision - 1" = "precision".
1120   exponent -= precision + 1;
1121 
1122   // In case MSB resides at the left-hand side of radix point, shift the
1123   // mantissa right by some amount to make sure the MSB reside right before
1124   // the radix point (i.e. "MSB . rest-significant-bits").
1125   //
1126   // Note that the result is not normalized when "omsb < precision". So, the
1127   // caller needs to call IEEEFloat::normalize() if normalized value is
1128   // expected.
1129   if (omsb > precision) {
1130     unsigned int bits, significantParts;
1131     lostFraction lf;
1132 
1133     bits = omsb - precision;
1134     significantParts = partCountForBits(omsb);
1135     lf = shiftRight(fullSignificand, significantParts, bits);
1136     lost_fraction = combineLostFractions(lf, lost_fraction);
1137     exponent += bits;
1138   }
1139 
1140   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
1141 
1142   if (newPartsCount > 4)
1143     delete [] fullSignificand;
1144 
1145   return lost_fraction;
1146 }
1147 
1148 lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) {
1149   return multiplySignificand(rhs, IEEEFloat(*semantics));
1150 }
1151 
1152 /* Multiply the significands of LHS and RHS to DST.  */
1153 lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) {
1154   unsigned int bit, i, partsCount;
1155   const integerPart *rhsSignificand;
1156   integerPart *lhsSignificand, *dividend, *divisor;
1157   integerPart scratch[4];
1158   lostFraction lost_fraction;
1159 
1160   assert(semantics == rhs.semantics);
1161 
1162   lhsSignificand = significandParts();
1163   rhsSignificand = rhs.significandParts();
1164   partsCount = partCount();
1165 
1166   if (partsCount > 2)
1167     dividend = new integerPart[partsCount * 2];
1168   else
1169     dividend = scratch;
1170 
1171   divisor = dividend + partsCount;
1172 
1173   /* Copy the dividend and divisor as they will be modified in-place.  */
1174   for (i = 0; i < partsCount; i++) {
1175     dividend[i] = lhsSignificand[i];
1176     divisor[i] = rhsSignificand[i];
1177     lhsSignificand[i] = 0;
1178   }
1179 
1180   exponent -= rhs.exponent;
1181 
1182   unsigned int precision = semantics->precision;
1183 
1184   /* Normalize the divisor.  */
1185   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
1186   if (bit) {
1187     exponent += bit;
1188     APInt::tcShiftLeft(divisor, partsCount, bit);
1189   }
1190 
1191   /* Normalize the dividend.  */
1192   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
1193   if (bit) {
1194     exponent -= bit;
1195     APInt::tcShiftLeft(dividend, partsCount, bit);
1196   }
1197 
1198   /* Ensure the dividend >= divisor initially for the loop below.
1199      Incidentally, this means that the division loop below is
1200      guaranteed to set the integer bit to one.  */
1201   if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
1202     exponent--;
1203     APInt::tcShiftLeft(dividend, partsCount, 1);
1204     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1205   }
1206 
1207   /* Long division.  */
1208   for (bit = precision; bit; bit -= 1) {
1209     if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
1210       APInt::tcSubtract(dividend, divisor, 0, partsCount);
1211       APInt::tcSetBit(lhsSignificand, bit - 1);
1212     }
1213 
1214     APInt::tcShiftLeft(dividend, partsCount, 1);
1215   }
1216 
1217   /* Figure out the lost fraction.  */
1218   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1219 
1220   if (cmp > 0)
1221     lost_fraction = lfMoreThanHalf;
1222   else if (cmp == 0)
1223     lost_fraction = lfExactlyHalf;
1224   else if (APInt::tcIsZero(dividend, partsCount))
1225     lost_fraction = lfExactlyZero;
1226   else
1227     lost_fraction = lfLessThanHalf;
1228 
1229   if (partsCount > 2)
1230     delete [] dividend;
1231 
1232   return lost_fraction;
1233 }
1234 
1235 unsigned int IEEEFloat::significandMSB() const {
1236   return APInt::tcMSB(significandParts(), partCount());
1237 }
1238 
1239 unsigned int IEEEFloat::significandLSB() const {
1240   return APInt::tcLSB(significandParts(), partCount());
1241 }
1242 
1243 /* Note that a zero result is NOT normalized to fcZero.  */
1244 lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) {
1245   /* Our exponent should not overflow.  */
1246   assert((ExponentType) (exponent + bits) >= exponent);
1247 
1248   exponent += bits;
1249 
1250   return shiftRight(significandParts(), partCount(), bits);
1251 }
1252 
1253 /* Shift the significand left BITS bits, subtract BITS from its exponent.  */
1254 void IEEEFloat::shiftSignificandLeft(unsigned int bits) {
1255   assert(bits < semantics->precision);
1256 
1257   if (bits) {
1258     unsigned int partsCount = partCount();
1259 
1260     APInt::tcShiftLeft(significandParts(), partsCount, bits);
1261     exponent -= bits;
1262 
1263     assert(!APInt::tcIsZero(significandParts(), partsCount));
1264   }
1265 }
1266 
1267 IEEEFloat::cmpResult
1268 IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const {
1269   int compare;
1270 
1271   assert(semantics == rhs.semantics);
1272   assert(isFiniteNonZero());
1273   assert(rhs.isFiniteNonZero());
1274 
1275   compare = exponent - rhs.exponent;
1276 
1277   /* If exponents are equal, do an unsigned bignum comparison of the
1278      significands.  */
1279   if (compare == 0)
1280     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
1281                                partCount());
1282 
1283   if (compare > 0)
1284     return cmpGreaterThan;
1285   else if (compare < 0)
1286     return cmpLessThan;
1287   else
1288     return cmpEqual;
1289 }
1290 
1291 /* Set the least significant BITS bits of a bignum, clear the
1292    rest.  */
1293 static void tcSetLeastSignificantBits(APInt::WordType *dst, unsigned parts,
1294                                       unsigned bits) {
1295   unsigned i = 0;
1296   while (bits > APInt::APINT_BITS_PER_WORD) {
1297     dst[i++] = ~(APInt::WordType)0;
1298     bits -= APInt::APINT_BITS_PER_WORD;
1299   }
1300 
1301   if (bits)
1302     dst[i++] = ~(APInt::WordType)0 >> (APInt::APINT_BITS_PER_WORD - bits);
1303 
1304   while (i < parts)
1305     dst[i++] = 0;
1306 }
1307 
1308 /* Handle overflow.  Sign is preserved.  We either become infinity or
1309    the largest finite number.  */
1310 IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) {
1311   /* Infinity?  */
1312   if (rounding_mode == rmNearestTiesToEven ||
1313       rounding_mode == rmNearestTiesToAway ||
1314       (rounding_mode == rmTowardPositive && !sign) ||
1315       (rounding_mode == rmTowardNegative && sign)) {
1316     category = fcInfinity;
1317     return (opStatus) (opOverflow | opInexact);
1318   }
1319 
1320   /* Otherwise we become the largest finite number.  */
1321   category = fcNormal;
1322   exponent = semantics->maxExponent;
1323   tcSetLeastSignificantBits(significandParts(), partCount(),
1324                             semantics->precision);
1325 
1326   return opInexact;
1327 }
1328 
1329 /* Returns TRUE if, when truncating the current number, with BIT the
1330    new LSB, with the given lost fraction and rounding mode, the result
1331    would need to be rounded away from zero (i.e., by increasing the
1332    signficand).  This routine must work for fcZero of both signs, and
1333    fcNormal numbers.  */
1334 bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode,
1335                                   lostFraction lost_fraction,
1336                                   unsigned int bit) const {
1337   /* NaNs and infinities should not have lost fractions.  */
1338   assert(isFiniteNonZero() || category == fcZero);
1339 
1340   /* Current callers never pass this so we don't handle it.  */
1341   assert(lost_fraction != lfExactlyZero);
1342 
1343   switch (rounding_mode) {
1344   case rmNearestTiesToAway:
1345     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1346 
1347   case rmNearestTiesToEven:
1348     if (lost_fraction == lfMoreThanHalf)
1349       return true;
1350 
1351     /* Our zeroes don't have a significand to test.  */
1352     if (lost_fraction == lfExactlyHalf && category != fcZero)
1353       return APInt::tcExtractBit(significandParts(), bit);
1354 
1355     return false;
1356 
1357   case rmTowardZero:
1358     return false;
1359 
1360   case rmTowardPositive:
1361     return !sign;
1362 
1363   case rmTowardNegative:
1364     return sign;
1365 
1366   default:
1367     break;
1368   }
1369   llvm_unreachable("Invalid rounding mode found");
1370 }
1371 
1372 IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode,
1373                                          lostFraction lost_fraction) {
1374   unsigned int omsb;                /* One, not zero, based MSB.  */
1375   int exponentChange;
1376 
1377   if (!isFiniteNonZero())
1378     return opOK;
1379 
1380   /* Before rounding normalize the exponent of fcNormal numbers.  */
1381   omsb = significandMSB() + 1;
1382 
1383   if (omsb) {
1384     /* OMSB is numbered from 1.  We want to place it in the integer
1385        bit numbered PRECISION if possible, with a compensating change in
1386        the exponent.  */
1387     exponentChange = omsb - semantics->precision;
1388 
1389     /* If the resulting exponent is too high, overflow according to
1390        the rounding mode.  */
1391     if (exponent + exponentChange > semantics->maxExponent)
1392       return handleOverflow(rounding_mode);
1393 
1394     /* Subnormal numbers have exponent minExponent, and their MSB
1395        is forced based on that.  */
1396     if (exponent + exponentChange < semantics->minExponent)
1397       exponentChange = semantics->minExponent - exponent;
1398 
1399     /* Shifting left is easy as we don't lose precision.  */
1400     if (exponentChange < 0) {
1401       assert(lost_fraction == lfExactlyZero);
1402 
1403       shiftSignificandLeft(-exponentChange);
1404 
1405       return opOK;
1406     }
1407 
1408     if (exponentChange > 0) {
1409       lostFraction lf;
1410 
1411       /* Shift right and capture any new lost fraction.  */
1412       lf = shiftSignificandRight(exponentChange);
1413 
1414       lost_fraction = combineLostFractions(lf, lost_fraction);
1415 
1416       /* Keep OMSB up-to-date.  */
1417       if (omsb > (unsigned) exponentChange)
1418         omsb -= exponentChange;
1419       else
1420         omsb = 0;
1421     }
1422   }
1423 
1424   /* Now round the number according to rounding_mode given the lost
1425      fraction.  */
1426 
1427   /* As specified in IEEE 754, since we do not trap we do not report
1428      underflow for exact results.  */
1429   if (lost_fraction == lfExactlyZero) {
1430     /* Canonicalize zeroes.  */
1431     if (omsb == 0)
1432       category = fcZero;
1433 
1434     return opOK;
1435   }
1436 
1437   /* Increment the significand if we're rounding away from zero.  */
1438   if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1439     if (omsb == 0)
1440       exponent = semantics->minExponent;
1441 
1442     incrementSignificand();
1443     omsb = significandMSB() + 1;
1444 
1445     /* Did the significand increment overflow?  */
1446     if (omsb == (unsigned) semantics->precision + 1) {
1447       /* Renormalize by incrementing the exponent and shifting our
1448          significand right one.  However if we already have the
1449          maximum exponent we overflow to infinity.  */
1450       if (exponent == semantics->maxExponent) {
1451         category = fcInfinity;
1452 
1453         return (opStatus) (opOverflow | opInexact);
1454       }
1455 
1456       shiftSignificandRight(1);
1457 
1458       return opInexact;
1459     }
1460   }
1461 
1462   /* The normal case - we were and are not denormal, and any
1463      significand increment above didn't overflow.  */
1464   if (omsb == semantics->precision)
1465     return opInexact;
1466 
1467   /* We have a non-zero denormal.  */
1468   assert(omsb < semantics->precision);
1469 
1470   /* Canonicalize zeroes.  */
1471   if (omsb == 0)
1472     category = fcZero;
1473 
1474   /* The fcZero case is a denormal that underflowed to zero.  */
1475   return (opStatus) (opUnderflow | opInexact);
1476 }
1477 
1478 IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs,
1479                                                      bool subtract) {
1480   switch (PackCategoriesIntoKey(category, rhs.category)) {
1481   default:
1482     llvm_unreachable(nullptr);
1483 
1484   case PackCategoriesIntoKey(fcZero, fcNaN):
1485   case PackCategoriesIntoKey(fcNormal, fcNaN):
1486   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1487     assign(rhs);
1488     LLVM_FALLTHROUGH;
1489   case PackCategoriesIntoKey(fcNaN, fcZero):
1490   case PackCategoriesIntoKey(fcNaN, fcNormal):
1491   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1492   case PackCategoriesIntoKey(fcNaN, fcNaN):
1493     if (isSignaling()) {
1494       makeQuiet();
1495       return opInvalidOp;
1496     }
1497     return rhs.isSignaling() ? opInvalidOp : opOK;
1498 
1499   case PackCategoriesIntoKey(fcNormal, fcZero):
1500   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1501   case PackCategoriesIntoKey(fcInfinity, fcZero):
1502     return opOK;
1503 
1504   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1505   case PackCategoriesIntoKey(fcZero, fcInfinity):
1506     category = fcInfinity;
1507     sign = rhs.sign ^ subtract;
1508     return opOK;
1509 
1510   case PackCategoriesIntoKey(fcZero, fcNormal):
1511     assign(rhs);
1512     sign = rhs.sign ^ subtract;
1513     return opOK;
1514 
1515   case PackCategoriesIntoKey(fcZero, fcZero):
1516     /* Sign depends on rounding mode; handled by caller.  */
1517     return opOK;
1518 
1519   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1520     /* Differently signed infinities can only be validly
1521        subtracted.  */
1522     if (((sign ^ rhs.sign)!=0) != subtract) {
1523       makeNaN();
1524       return opInvalidOp;
1525     }
1526 
1527     return opOK;
1528 
1529   case PackCategoriesIntoKey(fcNormal, fcNormal):
1530     return opDivByZero;
1531   }
1532 }
1533 
1534 /* Add or subtract two normal numbers.  */
1535 lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs,
1536                                                  bool subtract) {
1537   integerPart carry;
1538   lostFraction lost_fraction;
1539   int bits;
1540 
1541   /* Determine if the operation on the absolute values is effectively
1542      an addition or subtraction.  */
1543   subtract ^= static_cast<bool>(sign ^ rhs.sign);
1544 
1545   /* Are we bigger exponent-wise than the RHS?  */
1546   bits = exponent - rhs.exponent;
1547 
1548   /* Subtraction is more subtle than one might naively expect.  */
1549   if (subtract) {
1550     IEEEFloat temp_rhs(rhs);
1551 
1552     if (bits == 0)
1553       lost_fraction = lfExactlyZero;
1554     else if (bits > 0) {
1555       lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1556       shiftSignificandLeft(1);
1557     } else {
1558       lost_fraction = shiftSignificandRight(-bits - 1);
1559       temp_rhs.shiftSignificandLeft(1);
1560     }
1561 
1562     // Should we reverse the subtraction.
1563     if (compareAbsoluteValue(temp_rhs) == cmpLessThan) {
1564       carry = temp_rhs.subtractSignificand
1565         (*this, lost_fraction != lfExactlyZero);
1566       copySignificand(temp_rhs);
1567       sign = !sign;
1568     } else {
1569       carry = subtractSignificand
1570         (temp_rhs, lost_fraction != lfExactlyZero);
1571     }
1572 
1573     /* Invert the lost fraction - it was on the RHS and
1574        subtracted.  */
1575     if (lost_fraction == lfLessThanHalf)
1576       lost_fraction = lfMoreThanHalf;
1577     else if (lost_fraction == lfMoreThanHalf)
1578       lost_fraction = lfLessThanHalf;
1579 
1580     /* The code above is intended to ensure that no borrow is
1581        necessary.  */
1582     assert(!carry);
1583     (void)carry;
1584   } else {
1585     if (bits > 0) {
1586       IEEEFloat temp_rhs(rhs);
1587 
1588       lost_fraction = temp_rhs.shiftSignificandRight(bits);
1589       carry = addSignificand(temp_rhs);
1590     } else {
1591       lost_fraction = shiftSignificandRight(-bits);
1592       carry = addSignificand(rhs);
1593     }
1594 
1595     /* We have a guard bit; generating a carry cannot happen.  */
1596     assert(!carry);
1597     (void)carry;
1598   }
1599 
1600   return lost_fraction;
1601 }
1602 
1603 IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) {
1604   switch (PackCategoriesIntoKey(category, rhs.category)) {
1605   default:
1606     llvm_unreachable(nullptr);
1607 
1608   case PackCategoriesIntoKey(fcZero, fcNaN):
1609   case PackCategoriesIntoKey(fcNormal, fcNaN):
1610   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1611     assign(rhs);
1612     sign = false;
1613     LLVM_FALLTHROUGH;
1614   case PackCategoriesIntoKey(fcNaN, fcZero):
1615   case PackCategoriesIntoKey(fcNaN, fcNormal):
1616   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1617   case PackCategoriesIntoKey(fcNaN, fcNaN):
1618     sign ^= rhs.sign; // restore the original sign
1619     if (isSignaling()) {
1620       makeQuiet();
1621       return opInvalidOp;
1622     }
1623     return rhs.isSignaling() ? opInvalidOp : opOK;
1624 
1625   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1626   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1627   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1628     category = fcInfinity;
1629     return opOK;
1630 
1631   case PackCategoriesIntoKey(fcZero, fcNormal):
1632   case PackCategoriesIntoKey(fcNormal, fcZero):
1633   case PackCategoriesIntoKey(fcZero, fcZero):
1634     category = fcZero;
1635     return opOK;
1636 
1637   case PackCategoriesIntoKey(fcZero, fcInfinity):
1638   case PackCategoriesIntoKey(fcInfinity, fcZero):
1639     makeNaN();
1640     return opInvalidOp;
1641 
1642   case PackCategoriesIntoKey(fcNormal, fcNormal):
1643     return opOK;
1644   }
1645 }
1646 
1647 IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) {
1648   switch (PackCategoriesIntoKey(category, rhs.category)) {
1649   default:
1650     llvm_unreachable(nullptr);
1651 
1652   case PackCategoriesIntoKey(fcZero, fcNaN):
1653   case PackCategoriesIntoKey(fcNormal, fcNaN):
1654   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1655     assign(rhs);
1656     sign = false;
1657     LLVM_FALLTHROUGH;
1658   case PackCategoriesIntoKey(fcNaN, fcZero):
1659   case PackCategoriesIntoKey(fcNaN, fcNormal):
1660   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1661   case PackCategoriesIntoKey(fcNaN, fcNaN):
1662     sign ^= rhs.sign; // restore the original sign
1663     if (isSignaling()) {
1664       makeQuiet();
1665       return opInvalidOp;
1666     }
1667     return rhs.isSignaling() ? opInvalidOp : opOK;
1668 
1669   case PackCategoriesIntoKey(fcInfinity, fcZero):
1670   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1671   case PackCategoriesIntoKey(fcZero, fcInfinity):
1672   case PackCategoriesIntoKey(fcZero, fcNormal):
1673     return opOK;
1674 
1675   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1676     category = fcZero;
1677     return opOK;
1678 
1679   case PackCategoriesIntoKey(fcNormal, fcZero):
1680     category = fcInfinity;
1681     return opDivByZero;
1682 
1683   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1684   case PackCategoriesIntoKey(fcZero, fcZero):
1685     makeNaN();
1686     return opInvalidOp;
1687 
1688   case PackCategoriesIntoKey(fcNormal, fcNormal):
1689     return opOK;
1690   }
1691 }
1692 
1693 IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) {
1694   switch (PackCategoriesIntoKey(category, rhs.category)) {
1695   default:
1696     llvm_unreachable(nullptr);
1697 
1698   case PackCategoriesIntoKey(fcZero, fcNaN):
1699   case PackCategoriesIntoKey(fcNormal, fcNaN):
1700   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1701     assign(rhs);
1702     LLVM_FALLTHROUGH;
1703   case PackCategoriesIntoKey(fcNaN, fcZero):
1704   case PackCategoriesIntoKey(fcNaN, fcNormal):
1705   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1706   case PackCategoriesIntoKey(fcNaN, fcNaN):
1707     if (isSignaling()) {
1708       makeQuiet();
1709       return opInvalidOp;
1710     }
1711     return rhs.isSignaling() ? opInvalidOp : opOK;
1712 
1713   case PackCategoriesIntoKey(fcZero, fcInfinity):
1714   case PackCategoriesIntoKey(fcZero, fcNormal):
1715   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1716     return opOK;
1717 
1718   case PackCategoriesIntoKey(fcNormal, fcZero):
1719   case PackCategoriesIntoKey(fcInfinity, fcZero):
1720   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1721   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1722   case PackCategoriesIntoKey(fcZero, fcZero):
1723     makeNaN();
1724     return opInvalidOp;
1725 
1726   case PackCategoriesIntoKey(fcNormal, fcNormal):
1727     return opOK;
1728   }
1729 }
1730 
1731 IEEEFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) {
1732   switch (PackCategoriesIntoKey(category, rhs.category)) {
1733   default:
1734     llvm_unreachable(nullptr);
1735 
1736   case PackCategoriesIntoKey(fcZero, fcNaN):
1737   case PackCategoriesIntoKey(fcNormal, fcNaN):
1738   case PackCategoriesIntoKey(fcInfinity, fcNaN):
1739     assign(rhs);
1740     LLVM_FALLTHROUGH;
1741   case PackCategoriesIntoKey(fcNaN, fcZero):
1742   case PackCategoriesIntoKey(fcNaN, fcNormal):
1743   case PackCategoriesIntoKey(fcNaN, fcInfinity):
1744   case PackCategoriesIntoKey(fcNaN, fcNaN):
1745     if (isSignaling()) {
1746       makeQuiet();
1747       return opInvalidOp;
1748     }
1749     return rhs.isSignaling() ? opInvalidOp : opOK;
1750 
1751   case PackCategoriesIntoKey(fcZero, fcInfinity):
1752   case PackCategoriesIntoKey(fcZero, fcNormal):
1753   case PackCategoriesIntoKey(fcNormal, fcInfinity):
1754     return opOK;
1755 
1756   case PackCategoriesIntoKey(fcNormal, fcZero):
1757   case PackCategoriesIntoKey(fcInfinity, fcZero):
1758   case PackCategoriesIntoKey(fcInfinity, fcNormal):
1759   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1760   case PackCategoriesIntoKey(fcZero, fcZero):
1761     makeNaN();
1762     return opInvalidOp;
1763 
1764   case PackCategoriesIntoKey(fcNormal, fcNormal):
1765     return opDivByZero; // fake status, indicating this is not a special case
1766   }
1767 }
1768 
1769 /* Change sign.  */
1770 void IEEEFloat::changeSign() {
1771   /* Look mummy, this one's easy.  */
1772   sign = !sign;
1773 }
1774 
1775 /* Normalized addition or subtraction.  */
1776 IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs,
1777                                              roundingMode rounding_mode,
1778                                              bool subtract) {
1779   opStatus fs;
1780 
1781   fs = addOrSubtractSpecials(rhs, subtract);
1782 
1783   /* This return code means it was not a simple case.  */
1784   if (fs == opDivByZero) {
1785     lostFraction lost_fraction;
1786 
1787     lost_fraction = addOrSubtractSignificand(rhs, subtract);
1788     fs = normalize(rounding_mode, lost_fraction);
1789 
1790     /* Can only be zero if we lost no fraction.  */
1791     assert(category != fcZero || lost_fraction == lfExactlyZero);
1792   }
1793 
1794   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1795      positive zero unless rounding to minus infinity, except that
1796      adding two like-signed zeroes gives that zero.  */
1797   if (category == fcZero) {
1798     if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
1799       sign = (rounding_mode == rmTowardNegative);
1800   }
1801 
1802   return fs;
1803 }
1804 
1805 /* Normalized addition.  */
1806 IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs,
1807                                    roundingMode rounding_mode) {
1808   return addOrSubtract(rhs, rounding_mode, false);
1809 }
1810 
1811 /* Normalized subtraction.  */
1812 IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs,
1813                                         roundingMode rounding_mode) {
1814   return addOrSubtract(rhs, rounding_mode, true);
1815 }
1816 
1817 /* Normalized multiply.  */
1818 IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs,
1819                                         roundingMode rounding_mode) {
1820   opStatus fs;
1821 
1822   sign ^= rhs.sign;
1823   fs = multiplySpecials(rhs);
1824 
1825   if (isFiniteNonZero()) {
1826     lostFraction lost_fraction = multiplySignificand(rhs);
1827     fs = normalize(rounding_mode, lost_fraction);
1828     if (lost_fraction != lfExactlyZero)
1829       fs = (opStatus) (fs | opInexact);
1830   }
1831 
1832   return fs;
1833 }
1834 
1835 /* Normalized divide.  */
1836 IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs,
1837                                       roundingMode rounding_mode) {
1838   opStatus fs;
1839 
1840   sign ^= rhs.sign;
1841   fs = divideSpecials(rhs);
1842 
1843   if (isFiniteNonZero()) {
1844     lostFraction lost_fraction = divideSignificand(rhs);
1845     fs = normalize(rounding_mode, lost_fraction);
1846     if (lost_fraction != lfExactlyZero)
1847       fs = (opStatus) (fs | opInexact);
1848   }
1849 
1850   return fs;
1851 }
1852 
1853 /* Normalized remainder.  */
1854 IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) {
1855   opStatus fs;
1856   unsigned int origSign = sign;
1857 
1858   // First handle the special cases.
1859   fs = remainderSpecials(rhs);
1860   if (fs != opDivByZero)
1861     return fs;
1862 
1863   fs = opOK;
1864 
1865   // Make sure the current value is less than twice the denom. If the addition
1866   // did not succeed (an overflow has happened), which means that the finite
1867   // value we currently posses must be less than twice the denom (as we are
1868   // using the same semantics).
1869   IEEEFloat P2 = rhs;
1870   if (P2.add(rhs, rmNearestTiesToEven) == opOK) {
1871     fs = mod(P2);
1872     assert(fs == opOK);
1873   }
1874 
1875   // Lets work with absolute numbers.
1876   IEEEFloat P = rhs;
1877   P.sign = false;
1878   sign = false;
1879 
1880   //
1881   // To calculate the remainder we use the following scheme.
1882   //
1883   // The remainder is defained as follows:
1884   //
1885   // remainder = numer - rquot * denom = x - r * p
1886   //
1887   // Where r is the result of: x/p, rounded toward the nearest integral value
1888   // (with halfway cases rounded toward the even number).
1889   //
1890   // Currently, (after x mod 2p):
1891   // r is the number of 2p's present inside x, which is inherently, an even
1892   // number of p's.
1893   //
1894   // We may split the remaining calculation into 4 options:
1895   // - if x < 0.5p then we round to the nearest number with is 0, and are done.
1896   // - if x == 0.5p then we round to the nearest even number which is 0, and we
1897   //   are done as well.
1898   // - if 0.5p < x < p then we round to nearest number which is 1, and we have
1899   //   to subtract 1p at least once.
1900   // - if x >= p then we must subtract p at least once, as x must be a
1901   //   remainder.
1902   //
1903   // By now, we were done, or we added 1 to r, which in turn, now an odd number.
1904   //
1905   // We can now split the remaining calculation to the following 3 options:
1906   // - if x < 0.5p then we round to the nearest number with is 0, and are done.
1907   // - if x == 0.5p then we round to the nearest even number. As r is odd, we
1908   //   must round up to the next even number. so we must subtract p once more.
1909   // - if x > 0.5p (and inherently x < p) then we must round r up to the next
1910   //   integral, and subtract p once more.
1911   //
1912 
1913   // Extend the semantics to prevent an overflow/underflow or inexact result.
1914   bool losesInfo;
1915   fltSemantics extendedSemantics = *semantics;
1916   extendedSemantics.maxExponent++;
1917   extendedSemantics.minExponent--;
1918   extendedSemantics.precision += 2;
1919 
1920   IEEEFloat VEx = *this;
1921   fs = VEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
1922   assert(fs == opOK && !losesInfo);
1923   IEEEFloat PEx = P;
1924   fs = PEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
1925   assert(fs == opOK && !losesInfo);
1926 
1927   // It is simpler to work with 2x instead of 0.5p, and we do not need to lose
1928   // any fraction.
1929   fs = VEx.add(VEx, rmNearestTiesToEven);
1930   assert(fs == opOK);
1931 
1932   if (VEx.compare(PEx) == cmpGreaterThan) {
1933     fs = subtract(P, rmNearestTiesToEven);
1934     assert(fs == opOK);
1935 
1936     // Make VEx = this.add(this), but because we have different semantics, we do
1937     // not want to `convert` again, so we just subtract PEx twice (which equals
1938     // to the desired value).
1939     fs = VEx.subtract(PEx, rmNearestTiesToEven);
1940     assert(fs == opOK);
1941     fs = VEx.subtract(PEx, rmNearestTiesToEven);
1942     assert(fs == opOK);
1943 
1944     cmpResult result = VEx.compare(PEx);
1945     if (result == cmpGreaterThan || result == cmpEqual) {
1946       fs = subtract(P, rmNearestTiesToEven);
1947       assert(fs == opOK);
1948     }
1949   }
1950 
1951   if (isZero())
1952     sign = origSign;    // IEEE754 requires this
1953   else
1954     sign ^= origSign;
1955   return fs;
1956 }
1957 
1958 /* Normalized llvm frem (C fmod). */
1959 IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) {
1960   opStatus fs;
1961   fs = modSpecials(rhs);
1962   unsigned int origSign = sign;
1963 
1964   while (isFiniteNonZero() && rhs.isFiniteNonZero() &&
1965          compareAbsoluteValue(rhs) != cmpLessThan) {
1966     IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven);
1967     if (compareAbsoluteValue(V) == cmpLessThan)
1968       V = scalbn(V, -1, rmNearestTiesToEven);
1969     V.sign = sign;
1970 
1971     fs = subtract(V, rmNearestTiesToEven);
1972     assert(fs==opOK);
1973   }
1974   if (isZero())
1975     sign = origSign; // fmod requires this
1976   return fs;
1977 }
1978 
1979 /* Normalized fused-multiply-add.  */
1980 IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand,
1981                                                 const IEEEFloat &addend,
1982                                                 roundingMode rounding_mode) {
1983   opStatus fs;
1984 
1985   /* Post-multiplication sign, before addition.  */
1986   sign ^= multiplicand.sign;
1987 
1988   /* If and only if all arguments are normal do we need to do an
1989      extended-precision calculation.  */
1990   if (isFiniteNonZero() &&
1991       multiplicand.isFiniteNonZero() &&
1992       addend.isFinite()) {
1993     lostFraction lost_fraction;
1994 
1995     lost_fraction = multiplySignificand(multiplicand, addend);
1996     fs = normalize(rounding_mode, lost_fraction);
1997     if (lost_fraction != lfExactlyZero)
1998       fs = (opStatus) (fs | opInexact);
1999 
2000     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
2001        positive zero unless rounding to minus infinity, except that
2002        adding two like-signed zeroes gives that zero.  */
2003     if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign)
2004       sign = (rounding_mode == rmTowardNegative);
2005   } else {
2006     fs = multiplySpecials(multiplicand);
2007 
2008     /* FS can only be opOK or opInvalidOp.  There is no more work
2009        to do in the latter case.  The IEEE-754R standard says it is
2010        implementation-defined in this case whether, if ADDEND is a
2011        quiet NaN, we raise invalid op; this implementation does so.
2012 
2013        If we need to do the addition we can do so with normal
2014        precision.  */
2015     if (fs == opOK)
2016       fs = addOrSubtract(addend, rounding_mode, false);
2017   }
2018 
2019   return fs;
2020 }
2021 
2022 /* Rounding-mode correct round to integral value.  */
2023 IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) {
2024   opStatus fs;
2025 
2026   if (isInfinity())
2027     // [IEEE Std 754-2008 6.1]:
2028     // The behavior of infinity in floating-point arithmetic is derived from the
2029     // limiting cases of real arithmetic with operands of arbitrarily
2030     // large magnitude, when such a limit exists.
2031     // ...
2032     // Operations on infinite operands are usually exact and therefore signal no
2033     // exceptions ...
2034     return opOK;
2035 
2036   if (isNaN()) {
2037     if (isSignaling()) {
2038       // [IEEE Std 754-2008 6.2]:
2039       // Under default exception handling, any operation signaling an invalid
2040       // operation exception and for which a floating-point result is to be
2041       // delivered shall deliver a quiet NaN.
2042       makeQuiet();
2043       // [IEEE Std 754-2008 6.2]:
2044       // Signaling NaNs shall be reserved operands that, under default exception
2045       // handling, signal the invalid operation exception(see 7.2) for every
2046       // general-computational and signaling-computational operation except for
2047       // the conversions described in 5.12.
2048       return opInvalidOp;
2049     } else {
2050       // [IEEE Std 754-2008 6.2]:
2051       // For an operation with quiet NaN inputs, other than maximum and minimum
2052       // operations, if a floating-point result is to be delivered the result
2053       // shall be a quiet NaN which should be one of the input NaNs.
2054       // ...
2055       // Every general-computational and quiet-computational operation involving
2056       // one or more input NaNs, none of them signaling, shall signal no
2057       // exception, except fusedMultiplyAdd might signal the invalid operation
2058       // exception(see 7.2).
2059       return opOK;
2060     }
2061   }
2062 
2063   if (isZero()) {
2064     // [IEEE Std 754-2008 6.3]:
2065     // ... the sign of the result of conversions, the quantize operation, the
2066     // roundToIntegral operations, and the roundToIntegralExact(see 5.3.1) is
2067     // the sign of the first or only operand.
2068     return opOK;
2069   }
2070 
2071   // If the exponent is large enough, we know that this value is already
2072   // integral, and the arithmetic below would potentially cause it to saturate
2073   // to +/-Inf.  Bail out early instead.
2074   if (exponent+1 >= (int)semanticsPrecision(*semantics))
2075     return opOK;
2076 
2077   // The algorithm here is quite simple: we add 2^(p-1), where p is the
2078   // precision of our format, and then subtract it back off again.  The choice
2079   // of rounding modes for the addition/subtraction determines the rounding mode
2080   // for our integral rounding as well.
2081   // NOTE: When the input value is negative, we do subtraction followed by
2082   // addition instead.
2083   APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
2084   IntegerConstant <<= semanticsPrecision(*semantics)-1;
2085   IEEEFloat MagicConstant(*semantics);
2086   fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
2087                                       rmNearestTiesToEven);
2088   assert(fs == opOK);
2089   MagicConstant.sign = sign;
2090 
2091   // Preserve the input sign so that we can handle the case of zero result
2092   // correctly.
2093   bool inputSign = isNegative();
2094 
2095   fs = add(MagicConstant, rounding_mode);
2096 
2097   // Current value and 'MagicConstant' are both integers, so the result of the
2098   // subtraction is always exact according to Sterbenz' lemma.
2099   subtract(MagicConstant, rounding_mode);
2100 
2101   // Restore the input sign.
2102   if (inputSign != isNegative())
2103     changeSign();
2104 
2105   return fs;
2106 }
2107 
2108 
2109 /* Comparison requires normalized numbers.  */
2110 IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const {
2111   cmpResult result;
2112 
2113   assert(semantics == rhs.semantics);
2114 
2115   switch (PackCategoriesIntoKey(category, rhs.category)) {
2116   default:
2117     llvm_unreachable(nullptr);
2118 
2119   case PackCategoriesIntoKey(fcNaN, fcZero):
2120   case PackCategoriesIntoKey(fcNaN, fcNormal):
2121   case PackCategoriesIntoKey(fcNaN, fcInfinity):
2122   case PackCategoriesIntoKey(fcNaN, fcNaN):
2123   case PackCategoriesIntoKey(fcZero, fcNaN):
2124   case PackCategoriesIntoKey(fcNormal, fcNaN):
2125   case PackCategoriesIntoKey(fcInfinity, fcNaN):
2126     return cmpUnordered;
2127 
2128   case PackCategoriesIntoKey(fcInfinity, fcNormal):
2129   case PackCategoriesIntoKey(fcInfinity, fcZero):
2130   case PackCategoriesIntoKey(fcNormal, fcZero):
2131     if (sign)
2132       return cmpLessThan;
2133     else
2134       return cmpGreaterThan;
2135 
2136   case PackCategoriesIntoKey(fcNormal, fcInfinity):
2137   case PackCategoriesIntoKey(fcZero, fcInfinity):
2138   case PackCategoriesIntoKey(fcZero, fcNormal):
2139     if (rhs.sign)
2140       return cmpGreaterThan;
2141     else
2142       return cmpLessThan;
2143 
2144   case PackCategoriesIntoKey(fcInfinity, fcInfinity):
2145     if (sign == rhs.sign)
2146       return cmpEqual;
2147     else if (sign)
2148       return cmpLessThan;
2149     else
2150       return cmpGreaterThan;
2151 
2152   case PackCategoriesIntoKey(fcZero, fcZero):
2153     return cmpEqual;
2154 
2155   case PackCategoriesIntoKey(fcNormal, fcNormal):
2156     break;
2157   }
2158 
2159   /* Two normal numbers.  Do they have the same sign?  */
2160   if (sign != rhs.sign) {
2161     if (sign)
2162       result = cmpLessThan;
2163     else
2164       result = cmpGreaterThan;
2165   } else {
2166     /* Compare absolute values; invert result if negative.  */
2167     result = compareAbsoluteValue(rhs);
2168 
2169     if (sign) {
2170       if (result == cmpLessThan)
2171         result = cmpGreaterThan;
2172       else if (result == cmpGreaterThan)
2173         result = cmpLessThan;
2174     }
2175   }
2176 
2177   return result;
2178 }
2179 
2180 /// IEEEFloat::convert - convert a value of one floating point type to another.
2181 /// The return value corresponds to the IEEE754 exceptions.  *losesInfo
2182 /// records whether the transformation lost information, i.e. whether
2183 /// converting the result back to the original type will produce the
2184 /// original value (this is almost the same as return value==fsOK, but there
2185 /// are edge cases where this is not so).
2186 
2187 IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics,
2188                                        roundingMode rounding_mode,
2189                                        bool *losesInfo) {
2190   lostFraction lostFraction;
2191   unsigned int newPartCount, oldPartCount;
2192   opStatus fs;
2193   int shift;
2194   const fltSemantics &fromSemantics = *semantics;
2195 
2196   lostFraction = lfExactlyZero;
2197   newPartCount = partCountForBits(toSemantics.precision + 1);
2198   oldPartCount = partCount();
2199   shift = toSemantics.precision - fromSemantics.precision;
2200 
2201   bool X86SpecialNan = false;
2202   if (&fromSemantics == &semX87DoubleExtended &&
2203       &toSemantics != &semX87DoubleExtended && category == fcNaN &&
2204       (!(*significandParts() & 0x8000000000000000ULL) ||
2205        !(*significandParts() & 0x4000000000000000ULL))) {
2206     // x86 has some unusual NaNs which cannot be represented in any other
2207     // format; note them here.
2208     X86SpecialNan = true;
2209   }
2210 
2211   // If this is a truncation of a denormal number, and the target semantics
2212   // has larger exponent range than the source semantics (this can happen
2213   // when truncating from PowerPC double-double to double format), the
2214   // right shift could lose result mantissa bits.  Adjust exponent instead
2215   // of performing excessive shift.
2216   if (shift < 0 && isFiniteNonZero()) {
2217     int exponentChange = significandMSB() + 1 - fromSemantics.precision;
2218     if (exponent + exponentChange < toSemantics.minExponent)
2219       exponentChange = toSemantics.minExponent - exponent;
2220     if (exponentChange < shift)
2221       exponentChange = shift;
2222     if (exponentChange < 0) {
2223       shift -= exponentChange;
2224       exponent += exponentChange;
2225     }
2226   }
2227 
2228   // If this is a truncation, perform the shift before we narrow the storage.
2229   if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
2230     lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
2231 
2232   // Fix the storage so it can hold to new value.
2233   if (newPartCount > oldPartCount) {
2234     // The new type requires more storage; make it available.
2235     integerPart *newParts;
2236     newParts = new integerPart[newPartCount];
2237     APInt::tcSet(newParts, 0, newPartCount);
2238     if (isFiniteNonZero() || category==fcNaN)
2239       APInt::tcAssign(newParts, significandParts(), oldPartCount);
2240     freeSignificand();
2241     significand.parts = newParts;
2242   } else if (newPartCount == 1 && oldPartCount != 1) {
2243     // Switch to built-in storage for a single part.
2244     integerPart newPart = 0;
2245     if (isFiniteNonZero() || category==fcNaN)
2246       newPart = significandParts()[0];
2247     freeSignificand();
2248     significand.part = newPart;
2249   }
2250 
2251   // Now that we have the right storage, switch the semantics.
2252   semantics = &toSemantics;
2253 
2254   // If this is an extension, perform the shift now that the storage is
2255   // available.
2256   if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
2257     APInt::tcShiftLeft(significandParts(), newPartCount, shift);
2258 
2259   if (isFiniteNonZero()) {
2260     fs = normalize(rounding_mode, lostFraction);
2261     *losesInfo = (fs != opOK);
2262   } else if (category == fcNaN) {
2263     *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
2264 
2265     // For x87 extended precision, we want to make a NaN, not a special NaN if
2266     // the input wasn't special either.
2267     if (!X86SpecialNan && semantics == &semX87DoubleExtended)
2268       APInt::tcSetBit(significandParts(), semantics->precision - 1);
2269 
2270     // Convert of sNaN creates qNaN and raises an exception (invalid op).
2271     // This also guarantees that a sNaN does not become Inf on a truncation
2272     // that loses all payload bits.
2273     if (isSignaling()) {
2274       makeQuiet();
2275       fs = opInvalidOp;
2276     } else {
2277       fs = opOK;
2278     }
2279   } else {
2280     *losesInfo = false;
2281     fs = opOK;
2282   }
2283 
2284   return fs;
2285 }
2286 
2287 /* Convert a floating point number to an integer according to the
2288    rounding mode.  If the rounded integer value is out of range this
2289    returns an invalid operation exception and the contents of the
2290    destination parts are unspecified.  If the rounded value is in
2291    range but the floating point number is not the exact integer, the C
2292    standard doesn't require an inexact exception to be raised.  IEEE
2293    854 does require it so we do that.
2294 
2295    Note that for conversions to integer type the C standard requires
2296    round-to-zero to always be used.  */
2297 IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger(
2298     MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned,
2299     roundingMode rounding_mode, bool *isExact) const {
2300   lostFraction lost_fraction;
2301   const integerPart *src;
2302   unsigned int dstPartsCount, truncatedBits;
2303 
2304   *isExact = false;
2305 
2306   /* Handle the three special cases first.  */
2307   if (category == fcInfinity || category == fcNaN)
2308     return opInvalidOp;
2309 
2310   dstPartsCount = partCountForBits(width);
2311   assert(dstPartsCount <= parts.size() && "Integer too big");
2312 
2313   if (category == fcZero) {
2314     APInt::tcSet(parts.data(), 0, dstPartsCount);
2315     // Negative zero can't be represented as an int.
2316     *isExact = !sign;
2317     return opOK;
2318   }
2319 
2320   src = significandParts();
2321 
2322   /* Step 1: place our absolute value, with any fraction truncated, in
2323      the destination.  */
2324   if (exponent < 0) {
2325     /* Our absolute value is less than one; truncate everything.  */
2326     APInt::tcSet(parts.data(), 0, dstPartsCount);
2327     /* For exponent -1 the integer bit represents .5, look at that.
2328        For smaller exponents leftmost truncated bit is 0. */
2329     truncatedBits = semantics->precision -1U - exponent;
2330   } else {
2331     /* We want the most significant (exponent + 1) bits; the rest are
2332        truncated.  */
2333     unsigned int bits = exponent + 1U;
2334 
2335     /* Hopelessly large in magnitude?  */
2336     if (bits > width)
2337       return opInvalidOp;
2338 
2339     if (bits < semantics->precision) {
2340       /* We truncate (semantics->precision - bits) bits.  */
2341       truncatedBits = semantics->precision - bits;
2342       APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits);
2343     } else {
2344       /* We want at least as many bits as are available.  */
2345       APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision,
2346                        0);
2347       APInt::tcShiftLeft(parts.data(), dstPartsCount,
2348                          bits - semantics->precision);
2349       truncatedBits = 0;
2350     }
2351   }
2352 
2353   /* Step 2: work out any lost fraction, and increment the absolute
2354      value if we would round away from zero.  */
2355   if (truncatedBits) {
2356     lost_fraction = lostFractionThroughTruncation(src, partCount(),
2357                                                   truncatedBits);
2358     if (lost_fraction != lfExactlyZero &&
2359         roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
2360       if (APInt::tcIncrement(parts.data(), dstPartsCount))
2361         return opInvalidOp;     /* Overflow.  */
2362     }
2363   } else {
2364     lost_fraction = lfExactlyZero;
2365   }
2366 
2367   /* Step 3: check if we fit in the destination.  */
2368   unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1;
2369 
2370   if (sign) {
2371     if (!isSigned) {
2372       /* Negative numbers cannot be represented as unsigned.  */
2373       if (omsb != 0)
2374         return opInvalidOp;
2375     } else {
2376       /* It takes omsb bits to represent the unsigned integer value.
2377          We lose a bit for the sign, but care is needed as the
2378          maximally negative integer is a special case.  */
2379       if (omsb == width &&
2380           APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb)
2381         return opInvalidOp;
2382 
2383       /* This case can happen because of rounding.  */
2384       if (omsb > width)
2385         return opInvalidOp;
2386     }
2387 
2388     APInt::tcNegate (parts.data(), dstPartsCount);
2389   } else {
2390     if (omsb >= width + !isSigned)
2391       return opInvalidOp;
2392   }
2393 
2394   if (lost_fraction == lfExactlyZero) {
2395     *isExact = true;
2396     return opOK;
2397   } else
2398     return opInexact;
2399 }
2400 
2401 /* Same as convertToSignExtendedInteger, except we provide
2402    deterministic values in case of an invalid operation exception,
2403    namely zero for NaNs and the minimal or maximal value respectively
2404    for underflow or overflow.
2405    The *isExact output tells whether the result is exact, in the sense
2406    that converting it back to the original floating point type produces
2407    the original value.  This is almost equivalent to result==opOK,
2408    except for negative zeroes.
2409 */
2410 IEEEFloat::opStatus
2411 IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts,
2412                             unsigned int width, bool isSigned,
2413                             roundingMode rounding_mode, bool *isExact) const {
2414   opStatus fs;
2415 
2416   fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2417                                     isExact);
2418 
2419   if (fs == opInvalidOp) {
2420     unsigned int bits, dstPartsCount;
2421 
2422     dstPartsCount = partCountForBits(width);
2423     assert(dstPartsCount <= parts.size() && "Integer too big");
2424 
2425     if (category == fcNaN)
2426       bits = 0;
2427     else if (sign)
2428       bits = isSigned;
2429     else
2430       bits = width - isSigned;
2431 
2432     tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits);
2433     if (sign && isSigned)
2434       APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1);
2435   }
2436 
2437   return fs;
2438 }
2439 
2440 /* Convert an unsigned integer SRC to a floating point number,
2441    rounding according to ROUNDING_MODE.  The sign of the floating
2442    point number is not modified.  */
2443 IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts(
2444     const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) {
2445   unsigned int omsb, precision, dstCount;
2446   integerPart *dst;
2447   lostFraction lost_fraction;
2448 
2449   category = fcNormal;
2450   omsb = APInt::tcMSB(src, srcCount) + 1;
2451   dst = significandParts();
2452   dstCount = partCount();
2453   precision = semantics->precision;
2454 
2455   /* We want the most significant PRECISION bits of SRC.  There may not
2456      be that many; extract what we can.  */
2457   if (precision <= omsb) {
2458     exponent = omsb - 1;
2459     lost_fraction = lostFractionThroughTruncation(src, srcCount,
2460                                                   omsb - precision);
2461     APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2462   } else {
2463     exponent = precision - 1;
2464     lost_fraction = lfExactlyZero;
2465     APInt::tcExtract(dst, dstCount, src, omsb, 0);
2466   }
2467 
2468   return normalize(rounding_mode, lost_fraction);
2469 }
2470 
2471 IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned,
2472                                                 roundingMode rounding_mode) {
2473   unsigned int partCount = Val.getNumWords();
2474   APInt api = Val;
2475 
2476   sign = false;
2477   if (isSigned && api.isNegative()) {
2478     sign = true;
2479     api = -api;
2480   }
2481 
2482   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2483 }
2484 
2485 /* Convert a two's complement integer SRC to a floating point number,
2486    rounding according to ROUNDING_MODE.  ISSIGNED is true if the
2487    integer is signed, in which case it must be sign-extended.  */
2488 IEEEFloat::opStatus
2489 IEEEFloat::convertFromSignExtendedInteger(const integerPart *src,
2490                                           unsigned int srcCount, bool isSigned,
2491                                           roundingMode rounding_mode) {
2492   opStatus status;
2493 
2494   if (isSigned &&
2495       APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2496     integerPart *copy;
2497 
2498     /* If we're signed and negative negate a copy.  */
2499     sign = true;
2500     copy = new integerPart[srcCount];
2501     APInt::tcAssign(copy, src, srcCount);
2502     APInt::tcNegate(copy, srcCount);
2503     status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2504     delete [] copy;
2505   } else {
2506     sign = false;
2507     status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2508   }
2509 
2510   return status;
2511 }
2512 
2513 /* FIXME: should this just take a const APInt reference?  */
2514 IEEEFloat::opStatus
2515 IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2516                                           unsigned int width, bool isSigned,
2517                                           roundingMode rounding_mode) {
2518   unsigned int partCount = partCountForBits(width);
2519   APInt api = APInt(width, makeArrayRef(parts, partCount));
2520 
2521   sign = false;
2522   if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
2523     sign = true;
2524     api = -api;
2525   }
2526 
2527   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2528 }
2529 
2530 Expected<IEEEFloat::opStatus>
2531 IEEEFloat::convertFromHexadecimalString(StringRef s,
2532                                         roundingMode rounding_mode) {
2533   lostFraction lost_fraction = lfExactlyZero;
2534 
2535   category = fcNormal;
2536   zeroSignificand();
2537   exponent = 0;
2538 
2539   integerPart *significand = significandParts();
2540   unsigned partsCount = partCount();
2541   unsigned bitPos = partsCount * integerPartWidth;
2542   bool computedTrailingFraction = false;
2543 
2544   // Skip leading zeroes and any (hexa)decimal point.
2545   StringRef::iterator begin = s.begin();
2546   StringRef::iterator end = s.end();
2547   StringRef::iterator dot;
2548   auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot);
2549   if (!PtrOrErr)
2550     return PtrOrErr.takeError();
2551   StringRef::iterator p = *PtrOrErr;
2552   StringRef::iterator firstSignificantDigit = p;
2553 
2554   while (p != end) {
2555     integerPart hex_value;
2556 
2557     if (*p == '.') {
2558       if (dot != end)
2559         return createError("String contains multiple dots");
2560       dot = p++;
2561       continue;
2562     }
2563 
2564     hex_value = hexDigitValue(*p);
2565     if (hex_value == -1U)
2566       break;
2567 
2568     p++;
2569 
2570     // Store the number while we have space.
2571     if (bitPos) {
2572       bitPos -= 4;
2573       hex_value <<= bitPos % integerPartWidth;
2574       significand[bitPos / integerPartWidth] |= hex_value;
2575     } else if (!computedTrailingFraction) {
2576       auto FractOrErr = trailingHexadecimalFraction(p, end, hex_value);
2577       if (!FractOrErr)
2578         return FractOrErr.takeError();
2579       lost_fraction = *FractOrErr;
2580       computedTrailingFraction = true;
2581     }
2582   }
2583 
2584   /* Hex floats require an exponent but not a hexadecimal point.  */
2585   if (p == end)
2586     return createError("Hex strings require an exponent");
2587   if (*p != 'p' && *p != 'P')
2588     return createError("Invalid character in significand");
2589   if (p == begin)
2590     return createError("Significand has no digits");
2591   if (dot != end && p - begin == 1)
2592     return createError("Significand has no digits");
2593 
2594   /* Ignore the exponent if we are zero.  */
2595   if (p != firstSignificantDigit) {
2596     int expAdjustment;
2597 
2598     /* Implicit hexadecimal point?  */
2599     if (dot == end)
2600       dot = p;
2601 
2602     /* Calculate the exponent adjustment implicit in the number of
2603        significant digits.  */
2604     expAdjustment = static_cast<int>(dot - firstSignificantDigit);
2605     if (expAdjustment < 0)
2606       expAdjustment++;
2607     expAdjustment = expAdjustment * 4 - 1;
2608 
2609     /* Adjust for writing the significand starting at the most
2610        significant nibble.  */
2611     expAdjustment += semantics->precision;
2612     expAdjustment -= partsCount * integerPartWidth;
2613 
2614     /* Adjust for the given exponent.  */
2615     auto ExpOrErr = totalExponent(p + 1, end, expAdjustment);
2616     if (!ExpOrErr)
2617       return ExpOrErr.takeError();
2618     exponent = *ExpOrErr;
2619   }
2620 
2621   return normalize(rounding_mode, lost_fraction);
2622 }
2623 
2624 IEEEFloat::opStatus
2625 IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2626                                         unsigned sigPartCount, int exp,
2627                                         roundingMode rounding_mode) {
2628   unsigned int parts, pow5PartCount;
2629   fltSemantics calcSemantics = { 32767, -32767, 0, 0 };
2630   integerPart pow5Parts[maxPowerOfFiveParts];
2631   bool isNearest;
2632 
2633   isNearest = (rounding_mode == rmNearestTiesToEven ||
2634                rounding_mode == rmNearestTiesToAway);
2635 
2636   parts = partCountForBits(semantics->precision + 11);
2637 
2638   /* Calculate pow(5, abs(exp)).  */
2639   pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2640 
2641   for (;; parts *= 2) {
2642     opStatus sigStatus, powStatus;
2643     unsigned int excessPrecision, truncatedBits;
2644 
2645     calcSemantics.precision = parts * integerPartWidth - 1;
2646     excessPrecision = calcSemantics.precision - semantics->precision;
2647     truncatedBits = excessPrecision;
2648 
2649     IEEEFloat decSig(calcSemantics, uninitialized);
2650     decSig.makeZero(sign);
2651     IEEEFloat pow5(calcSemantics);
2652 
2653     sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2654                                                 rmNearestTiesToEven);
2655     powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2656                                               rmNearestTiesToEven);
2657     /* Add exp, as 10^n = 5^n * 2^n.  */
2658     decSig.exponent += exp;
2659 
2660     lostFraction calcLostFraction;
2661     integerPart HUerr, HUdistance;
2662     unsigned int powHUerr;
2663 
2664     if (exp >= 0) {
2665       /* multiplySignificand leaves the precision-th bit set to 1.  */
2666       calcLostFraction = decSig.multiplySignificand(pow5);
2667       powHUerr = powStatus != opOK;
2668     } else {
2669       calcLostFraction = decSig.divideSignificand(pow5);
2670       /* Denormal numbers have less precision.  */
2671       if (decSig.exponent < semantics->minExponent) {
2672         excessPrecision += (semantics->minExponent - decSig.exponent);
2673         truncatedBits = excessPrecision;
2674         if (excessPrecision > calcSemantics.precision)
2675           excessPrecision = calcSemantics.precision;
2676       }
2677       /* Extra half-ulp lost in reciprocal of exponent.  */
2678       powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
2679     }
2680 
2681     /* Both multiplySignificand and divideSignificand return the
2682        result with the integer bit set.  */
2683     assert(APInt::tcExtractBit
2684            (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2685 
2686     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2687                        powHUerr);
2688     HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2689                                       excessPrecision, isNearest);
2690 
2691     /* Are we guaranteed to round correctly if we truncate?  */
2692     if (HUdistance >= HUerr) {
2693       APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2694                        calcSemantics.precision - excessPrecision,
2695                        excessPrecision);
2696       /* Take the exponent of decSig.  If we tcExtract-ed less bits
2697          above we must adjust our exponent to compensate for the
2698          implicit right shift.  */
2699       exponent = (decSig.exponent + semantics->precision
2700                   - (calcSemantics.precision - excessPrecision));
2701       calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2702                                                        decSig.partCount(),
2703                                                        truncatedBits);
2704       return normalize(rounding_mode, calcLostFraction);
2705     }
2706   }
2707 }
2708 
2709 Expected<IEEEFloat::opStatus>
2710 IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) {
2711   decimalInfo D;
2712   opStatus fs;
2713 
2714   /* Scan the text.  */
2715   StringRef::iterator p = str.begin();
2716   if (Error Err = interpretDecimal(p, str.end(), &D))
2717     return std::move(Err);
2718 
2719   /* Handle the quick cases.  First the case of no significant digits,
2720      i.e. zero, and then exponents that are obviously too large or too
2721      small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
2722      definitely overflows if
2723 
2724            (exp - 1) * L >= maxExponent
2725 
2726      and definitely underflows to zero where
2727 
2728            (exp + 1) * L <= minExponent - precision
2729 
2730      With integer arithmetic the tightest bounds for L are
2731 
2732            93/28 < L < 196/59            [ numerator <= 256 ]
2733            42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
2734   */
2735 
2736   // Test if we have a zero number allowing for strings with no null terminators
2737   // and zero decimals with non-zero exponents.
2738   //
2739   // We computed firstSigDigit by ignoring all zeros and dots. Thus if
2740   // D->firstSigDigit equals str.end(), every digit must be a zero and there can
2741   // be at most one dot. On the other hand, if we have a zero with a non-zero
2742   // exponent, then we know that D.firstSigDigit will be non-numeric.
2743   if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
2744     category = fcZero;
2745     fs = opOK;
2746 
2747   /* Check whether the normalized exponent is high enough to overflow
2748      max during the log-rebasing in the max-exponent check below. */
2749   } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2750     fs = handleOverflow(rounding_mode);
2751 
2752   /* If it wasn't, then it also wasn't high enough to overflow max
2753      during the log-rebasing in the min-exponent check.  Check that it
2754      won't overflow min in either check, then perform the min-exponent
2755      check. */
2756   } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2757              (D.normalizedExponent + 1) * 28738 <=
2758                8651 * (semantics->minExponent - (int) semantics->precision)) {
2759     /* Underflow to zero and round.  */
2760     category = fcNormal;
2761     zeroSignificand();
2762     fs = normalize(rounding_mode, lfLessThanHalf);
2763 
2764   /* We can finally safely perform the max-exponent check. */
2765   } else if ((D.normalizedExponent - 1) * 42039
2766              >= 12655 * semantics->maxExponent) {
2767     /* Overflow and round.  */
2768     fs = handleOverflow(rounding_mode);
2769   } else {
2770     integerPart *decSignificand;
2771     unsigned int partCount;
2772 
2773     /* A tight upper bound on number of bits required to hold an
2774        N-digit decimal integer is N * 196 / 59.  Allocate enough space
2775        to hold the full significand, and an extra part required by
2776        tcMultiplyPart.  */
2777     partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
2778     partCount = partCountForBits(1 + 196 * partCount / 59);
2779     decSignificand = new integerPart[partCount + 1];
2780     partCount = 0;
2781 
2782     /* Convert to binary efficiently - we do almost all multiplication
2783        in an integerPart.  When this would overflow do we do a single
2784        bignum multiplication, and then revert again to multiplication
2785        in an integerPart.  */
2786     do {
2787       integerPart decValue, val, multiplier;
2788 
2789       val = 0;
2790       multiplier = 1;
2791 
2792       do {
2793         if (*p == '.') {
2794           p++;
2795           if (p == str.end()) {
2796             break;
2797           }
2798         }
2799         decValue = decDigitValue(*p++);
2800         if (decValue >= 10U) {
2801           delete[] decSignificand;
2802           return createError("Invalid character in significand");
2803         }
2804         multiplier *= 10;
2805         val = val * 10 + decValue;
2806         /* The maximum number that can be multiplied by ten with any
2807            digit added without overflowing an integerPart.  */
2808       } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2809 
2810       /* Multiply out the current part.  */
2811       APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2812                             partCount, partCount + 1, false);
2813 
2814       /* If we used another part (likely but not guaranteed), increase
2815          the count.  */
2816       if (decSignificand[partCount])
2817         partCount++;
2818     } while (p <= D.lastSigDigit);
2819 
2820     category = fcNormal;
2821     fs = roundSignificandWithExponent(decSignificand, partCount,
2822                                       D.exponent, rounding_mode);
2823 
2824     delete [] decSignificand;
2825   }
2826 
2827   return fs;
2828 }
2829 
2830 bool IEEEFloat::convertFromStringSpecials(StringRef str) {
2831   const size_t MIN_NAME_SIZE = 3;
2832 
2833   if (str.size() < MIN_NAME_SIZE)
2834     return false;
2835 
2836   if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) {
2837     makeInf(false);
2838     return true;
2839   }
2840 
2841   bool IsNegative = str.front() == '-';
2842   if (IsNegative) {
2843     str = str.drop_front();
2844     if (str.size() < MIN_NAME_SIZE)
2845       return false;
2846 
2847     if (str.equals("inf") || str.equals("INFINITY") || str.equals("Inf")) {
2848       makeInf(true);
2849       return true;
2850     }
2851   }
2852 
2853   // If we have a 's' (or 'S') prefix, then this is a Signaling NaN.
2854   bool IsSignaling = str.front() == 's' || str.front() == 'S';
2855   if (IsSignaling) {
2856     str = str.drop_front();
2857     if (str.size() < MIN_NAME_SIZE)
2858       return false;
2859   }
2860 
2861   if (str.startswith("nan") || str.startswith("NaN")) {
2862     str = str.drop_front(3);
2863 
2864     // A NaN without payload.
2865     if (str.empty()) {
2866       makeNaN(IsSignaling, IsNegative);
2867       return true;
2868     }
2869 
2870     // Allow the payload to be inside parentheses.
2871     if (str.front() == '(') {
2872       // Parentheses should be balanced (and not empty).
2873       if (str.size() <= 2 || str.back() != ')')
2874         return false;
2875 
2876       str = str.slice(1, str.size() - 1);
2877     }
2878 
2879     // Determine the payload number's radix.
2880     unsigned Radix = 10;
2881     if (str[0] == '0') {
2882       if (str.size() > 1 && tolower(str[1]) == 'x') {
2883         str = str.drop_front(2);
2884         Radix = 16;
2885       } else
2886         Radix = 8;
2887     }
2888 
2889     // Parse the payload and make the NaN.
2890     APInt Payload;
2891     if (!str.getAsInteger(Radix, Payload)) {
2892       makeNaN(IsSignaling, IsNegative, &Payload);
2893       return true;
2894     }
2895   }
2896 
2897   return false;
2898 }
2899 
2900 Expected<IEEEFloat::opStatus>
2901 IEEEFloat::convertFromString(StringRef str, roundingMode rounding_mode) {
2902   if (str.empty())
2903     return createError("Invalid string length");
2904 
2905   // Handle special cases.
2906   if (convertFromStringSpecials(str))
2907     return opOK;
2908 
2909   /* Handle a leading minus sign.  */
2910   StringRef::iterator p = str.begin();
2911   size_t slen = str.size();
2912   sign = *p == '-' ? 1 : 0;
2913   if (*p == '-' || *p == '+') {
2914     p++;
2915     slen--;
2916     if (!slen)
2917       return createError("String has no digits");
2918   }
2919 
2920   if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2921     if (slen == 2)
2922       return createError("Invalid string");
2923     return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
2924                                         rounding_mode);
2925   }
2926 
2927   return convertFromDecimalString(StringRef(p, slen), rounding_mode);
2928 }
2929 
2930 /* Write out a hexadecimal representation of the floating point value
2931    to DST, which must be of sufficient size, in the C99 form
2932    [-]0xh.hhhhp[+-]d.  Return the number of characters written,
2933    excluding the terminating NUL.
2934 
2935    If UPPERCASE, the output is in upper case, otherwise in lower case.
2936 
2937    HEXDIGITS digits appear altogether, rounding the value if
2938    necessary.  If HEXDIGITS is 0, the minimal precision to display the
2939    number precisely is used instead.  If nothing would appear after
2940    the decimal point it is suppressed.
2941 
2942    The decimal exponent is always printed and has at least one digit.
2943    Zero values display an exponent of zero.  Infinities and NaNs
2944    appear as "infinity" or "nan" respectively.
2945 
2946    The above rules are as specified by C99.  There is ambiguity about
2947    what the leading hexadecimal digit should be.  This implementation
2948    uses whatever is necessary so that the exponent is displayed as
2949    stored.  This implies the exponent will fall within the IEEE format
2950    range, and the leading hexadecimal digit will be 0 (for denormals),
2951    1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2952    any other digits zero).
2953 */
2954 unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits,
2955                                            bool upperCase,
2956                                            roundingMode rounding_mode) const {
2957   char *p;
2958 
2959   p = dst;
2960   if (sign)
2961     *dst++ = '-';
2962 
2963   switch (category) {
2964   case fcInfinity:
2965     memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2966     dst += sizeof infinityL - 1;
2967     break;
2968 
2969   case fcNaN:
2970     memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2971     dst += sizeof NaNU - 1;
2972     break;
2973 
2974   case fcZero:
2975     *dst++ = '0';
2976     *dst++ = upperCase ? 'X': 'x';
2977     *dst++ = '0';
2978     if (hexDigits > 1) {
2979       *dst++ = '.';
2980       memset (dst, '0', hexDigits - 1);
2981       dst += hexDigits - 1;
2982     }
2983     *dst++ = upperCase ? 'P': 'p';
2984     *dst++ = '0';
2985     break;
2986 
2987   case fcNormal:
2988     dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2989     break;
2990   }
2991 
2992   *dst = 0;
2993 
2994   return static_cast<unsigned int>(dst - p);
2995 }
2996 
2997 /* Does the hard work of outputting the correctly rounded hexadecimal
2998    form of a normal floating point number with the specified number of
2999    hexadecimal digits.  If HEXDIGITS is zero the minimum number of
3000    digits necessary to print the value precisely is output.  */
3001 char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
3002                                           bool upperCase,
3003                                           roundingMode rounding_mode) const {
3004   unsigned int count, valueBits, shift, partsCount, outputDigits;
3005   const char *hexDigitChars;
3006   const integerPart *significand;
3007   char *p;
3008   bool roundUp;
3009 
3010   *dst++ = '0';
3011   *dst++ = upperCase ? 'X': 'x';
3012 
3013   roundUp = false;
3014   hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
3015 
3016   significand = significandParts();
3017   partsCount = partCount();
3018 
3019   /* +3 because the first digit only uses the single integer bit, so
3020      we have 3 virtual zero most-significant-bits.  */
3021   valueBits = semantics->precision + 3;
3022   shift = integerPartWidth - valueBits % integerPartWidth;
3023 
3024   /* The natural number of digits required ignoring trailing
3025      insignificant zeroes.  */
3026   outputDigits = (valueBits - significandLSB () + 3) / 4;
3027 
3028   /* hexDigits of zero means use the required number for the
3029      precision.  Otherwise, see if we are truncating.  If we are,
3030      find out if we need to round away from zero.  */
3031   if (hexDigits) {
3032     if (hexDigits < outputDigits) {
3033       /* We are dropping non-zero bits, so need to check how to round.
3034          "bits" is the number of dropped bits.  */
3035       unsigned int bits;
3036       lostFraction fraction;
3037 
3038       bits = valueBits - hexDigits * 4;
3039       fraction = lostFractionThroughTruncation (significand, partsCount, bits);
3040       roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
3041     }
3042     outputDigits = hexDigits;
3043   }
3044 
3045   /* Write the digits consecutively, and start writing in the location
3046      of the hexadecimal point.  We move the most significant digit
3047      left and add the hexadecimal point later.  */
3048   p = ++dst;
3049 
3050   count = (valueBits + integerPartWidth - 1) / integerPartWidth;
3051 
3052   while (outputDigits && count) {
3053     integerPart part;
3054 
3055     /* Put the most significant integerPartWidth bits in "part".  */
3056     if (--count == partsCount)
3057       part = 0;  /* An imaginary higher zero part.  */
3058     else
3059       part = significand[count] << shift;
3060 
3061     if (count && shift)
3062       part |= significand[count - 1] >> (integerPartWidth - shift);
3063 
3064     /* Convert as much of "part" to hexdigits as we can.  */
3065     unsigned int curDigits = integerPartWidth / 4;
3066 
3067     if (curDigits > outputDigits)
3068       curDigits = outputDigits;
3069     dst += partAsHex (dst, part, curDigits, hexDigitChars);
3070     outputDigits -= curDigits;
3071   }
3072 
3073   if (roundUp) {
3074     char *q = dst;
3075 
3076     /* Note that hexDigitChars has a trailing '0'.  */
3077     do {
3078       q--;
3079       *q = hexDigitChars[hexDigitValue (*q) + 1];
3080     } while (*q == '0');
3081     assert(q >= p);
3082   } else {
3083     /* Add trailing zeroes.  */
3084     memset (dst, '0', outputDigits);
3085     dst += outputDigits;
3086   }
3087 
3088   /* Move the most significant digit to before the point, and if there
3089      is something after the decimal point add it.  This must come
3090      after rounding above.  */
3091   p[-1] = p[0];
3092   if (dst -1 == p)
3093     dst--;
3094   else
3095     p[0] = '.';
3096 
3097   /* Finally output the exponent.  */
3098   *dst++ = upperCase ? 'P': 'p';
3099 
3100   return writeSignedDecimal (dst, exponent);
3101 }
3102 
3103 hash_code hash_value(const IEEEFloat &Arg) {
3104   if (!Arg.isFiniteNonZero())
3105     return hash_combine((uint8_t)Arg.category,
3106                         // NaN has no sign, fix it at zero.
3107                         Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
3108                         Arg.semantics->precision);
3109 
3110   // Normal floats need their exponent and significand hashed.
3111   return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
3112                       Arg.semantics->precision, Arg.exponent,
3113                       hash_combine_range(
3114                         Arg.significandParts(),
3115                         Arg.significandParts() + Arg.partCount()));
3116 }
3117 
3118 // Conversion from APFloat to/from host float/double.  It may eventually be
3119 // possible to eliminate these and have everybody deal with APFloats, but that
3120 // will take a while.  This approach will not easily extend to long double.
3121 // Current implementation requires integerPartWidth==64, which is correct at
3122 // the moment but could be made more general.
3123 
3124 // Denormals have exponent minExponent in APFloat, but minExponent-1 in
3125 // the actual IEEE respresentations.  We compensate for that here.
3126 
3127 APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const {
3128   assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended);
3129   assert(partCount()==2);
3130 
3131   uint64_t myexponent, mysignificand;
3132 
3133   if (isFiniteNonZero()) {
3134     myexponent = exponent+16383; //bias
3135     mysignificand = significandParts()[0];
3136     if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
3137       myexponent = 0;   // denormal
3138   } else if (category==fcZero) {
3139     myexponent = 0;
3140     mysignificand = 0;
3141   } else if (category==fcInfinity) {
3142     myexponent = 0x7fff;
3143     mysignificand = 0x8000000000000000ULL;
3144   } else {
3145     assert(category == fcNaN && "Unknown category");
3146     myexponent = 0x7fff;
3147     mysignificand = significandParts()[0];
3148   }
3149 
3150   uint64_t words[2];
3151   words[0] = mysignificand;
3152   words[1] =  ((uint64_t)(sign & 1) << 15) |
3153               (myexponent & 0x7fffLL);
3154   return APInt(80, words);
3155 }
3156 
3157 APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const {
3158   assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy);
3159   assert(partCount()==2);
3160 
3161   uint64_t words[2];
3162   opStatus fs;
3163   bool losesInfo;
3164 
3165   // Convert number to double.  To avoid spurious underflows, we re-
3166   // normalize against the "double" minExponent first, and only *then*
3167   // truncate the mantissa.  The result of that second conversion
3168   // may be inexact, but should never underflow.
3169   // Declare fltSemantics before APFloat that uses it (and
3170   // saves pointer to it) to ensure correct destruction order.
3171   fltSemantics extendedSemantics = *semantics;
3172   extendedSemantics.minExponent = semIEEEdouble.minExponent;
3173   IEEEFloat extended(*this);
3174   fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
3175   assert(fs == opOK && !losesInfo);
3176   (void)fs;
3177 
3178   IEEEFloat u(extended);
3179   fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
3180   assert(fs == opOK || fs == opInexact);
3181   (void)fs;
3182   words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
3183 
3184   // If conversion was exact or resulted in a special case, we're done;
3185   // just set the second double to zero.  Otherwise, re-convert back to
3186   // the extended format and compute the difference.  This now should
3187   // convert exactly to double.
3188   if (u.isFiniteNonZero() && losesInfo) {
3189     fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
3190     assert(fs == opOK && !losesInfo);
3191     (void)fs;
3192 
3193     IEEEFloat v(extended);
3194     v.subtract(u, rmNearestTiesToEven);
3195     fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
3196     assert(fs == opOK && !losesInfo);
3197     (void)fs;
3198     words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
3199   } else {
3200     words[1] = 0;
3201   }
3202 
3203   return APInt(128, words);
3204 }
3205 
3206 APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const {
3207   assert(semantics == (const llvm::fltSemantics*)&semIEEEquad);
3208   assert(partCount()==2);
3209 
3210   uint64_t myexponent, mysignificand, mysignificand2;
3211 
3212   if (isFiniteNonZero()) {
3213     myexponent = exponent+16383; //bias
3214     mysignificand = significandParts()[0];
3215     mysignificand2 = significandParts()[1];
3216     if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
3217       myexponent = 0;   // denormal
3218   } else if (category==fcZero) {
3219     myexponent = 0;
3220     mysignificand = mysignificand2 = 0;
3221   } else if (category==fcInfinity) {
3222     myexponent = 0x7fff;
3223     mysignificand = mysignificand2 = 0;
3224   } else {
3225     assert(category == fcNaN && "Unknown category!");
3226     myexponent = 0x7fff;
3227     mysignificand = significandParts()[0];
3228     mysignificand2 = significandParts()[1];
3229   }
3230 
3231   uint64_t words[2];
3232   words[0] = mysignificand;
3233   words[1] = ((uint64_t)(sign & 1) << 63) |
3234              ((myexponent & 0x7fff) << 48) |
3235              (mysignificand2 & 0xffffffffffffLL);
3236 
3237   return APInt(128, words);
3238 }
3239 
3240 APInt IEEEFloat::convertDoubleAPFloatToAPInt() const {
3241   assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble);
3242   assert(partCount()==1);
3243 
3244   uint64_t myexponent, mysignificand;
3245 
3246   if (isFiniteNonZero()) {
3247     myexponent = exponent+1023; //bias
3248     mysignificand = *significandParts();
3249     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
3250       myexponent = 0;   // denormal
3251   } else if (category==fcZero) {
3252     myexponent = 0;
3253     mysignificand = 0;
3254   } else if (category==fcInfinity) {
3255     myexponent = 0x7ff;
3256     mysignificand = 0;
3257   } else {
3258     assert(category == fcNaN && "Unknown category!");
3259     myexponent = 0x7ff;
3260     mysignificand = *significandParts();
3261   }
3262 
3263   return APInt(64, ((((uint64_t)(sign & 1) << 63) |
3264                      ((myexponent & 0x7ff) <<  52) |
3265                      (mysignificand & 0xfffffffffffffLL))));
3266 }
3267 
3268 APInt IEEEFloat::convertFloatAPFloatToAPInt() const {
3269   assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle);
3270   assert(partCount()==1);
3271 
3272   uint32_t myexponent, mysignificand;
3273 
3274   if (isFiniteNonZero()) {
3275     myexponent = exponent+127; //bias
3276     mysignificand = (uint32_t)*significandParts();
3277     if (myexponent == 1 && !(mysignificand & 0x800000))
3278       myexponent = 0;   // denormal
3279   } else if (category==fcZero) {
3280     myexponent = 0;
3281     mysignificand = 0;
3282   } else if (category==fcInfinity) {
3283     myexponent = 0xff;
3284     mysignificand = 0;
3285   } else {
3286     assert(category == fcNaN && "Unknown category!");
3287     myexponent = 0xff;
3288     mysignificand = (uint32_t)*significandParts();
3289   }
3290 
3291   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
3292                     (mysignificand & 0x7fffff)));
3293 }
3294 
3295 APInt IEEEFloat::convertBFloatAPFloatToAPInt() const {
3296   assert(semantics == (const llvm::fltSemantics *)&semBFloat);
3297   assert(partCount() == 1);
3298 
3299   uint32_t myexponent, mysignificand;
3300 
3301   if (isFiniteNonZero()) {
3302     myexponent = exponent + 127; // bias
3303     mysignificand = (uint32_t)*significandParts();
3304     if (myexponent == 1 && !(mysignificand & 0x80))
3305       myexponent = 0; // denormal
3306   } else if (category == fcZero) {
3307     myexponent = 0;
3308     mysignificand = 0;
3309   } else if (category == fcInfinity) {
3310     myexponent = 0xff;
3311     mysignificand = 0;
3312   } else {
3313     assert(category == fcNaN && "Unknown category!");
3314     myexponent = 0xff;
3315     mysignificand = (uint32_t)*significandParts();
3316   }
3317 
3318   return APInt(16, (((sign & 1) << 15) | ((myexponent & 0xff) << 7) |
3319                     (mysignificand & 0x7f)));
3320 }
3321 
3322 APInt IEEEFloat::convertHalfAPFloatToAPInt() const {
3323   assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf);
3324   assert(partCount()==1);
3325 
3326   uint32_t myexponent, mysignificand;
3327 
3328   if (isFiniteNonZero()) {
3329     myexponent = exponent+15; //bias
3330     mysignificand = (uint32_t)*significandParts();
3331     if (myexponent == 1 && !(mysignificand & 0x400))
3332       myexponent = 0;   // denormal
3333   } else if (category==fcZero) {
3334     myexponent = 0;
3335     mysignificand = 0;
3336   } else if (category==fcInfinity) {
3337     myexponent = 0x1f;
3338     mysignificand = 0;
3339   } else {
3340     assert(category == fcNaN && "Unknown category!");
3341     myexponent = 0x1f;
3342     mysignificand = (uint32_t)*significandParts();
3343   }
3344 
3345   return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
3346                     (mysignificand & 0x3ff)));
3347 }
3348 
3349 // This function creates an APInt that is just a bit map of the floating
3350 // point constant as it would appear in memory.  It is not a conversion,
3351 // and treating the result as a normal integer is unlikely to be useful.
3352 
3353 APInt IEEEFloat::bitcastToAPInt() const {
3354   if (semantics == (const llvm::fltSemantics*)&semIEEEhalf)
3355     return convertHalfAPFloatToAPInt();
3356 
3357   if (semantics == (const llvm::fltSemantics *)&semBFloat)
3358     return convertBFloatAPFloatToAPInt();
3359 
3360   if (semantics == (const llvm::fltSemantics*)&semIEEEsingle)
3361     return convertFloatAPFloatToAPInt();
3362 
3363   if (semantics == (const llvm::fltSemantics*)&semIEEEdouble)
3364     return convertDoubleAPFloatToAPInt();
3365 
3366   if (semantics == (const llvm::fltSemantics*)&semIEEEquad)
3367     return convertQuadrupleAPFloatToAPInt();
3368 
3369   if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy)
3370     return convertPPCDoubleDoubleAPFloatToAPInt();
3371 
3372   assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended &&
3373          "unknown format!");
3374   return convertF80LongDoubleAPFloatToAPInt();
3375 }
3376 
3377 float IEEEFloat::convertToFloat() const {
3378   assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle &&
3379          "Float semantics are not IEEEsingle");
3380   APInt api = bitcastToAPInt();
3381   return api.bitsToFloat();
3382 }
3383 
3384 double IEEEFloat::convertToDouble() const {
3385   assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble &&
3386          "Float semantics are not IEEEdouble");
3387   APInt api = bitcastToAPInt();
3388   return api.bitsToDouble();
3389 }
3390 
3391 /// Integer bit is explicit in this format.  Intel hardware (387 and later)
3392 /// does not support these bit patterns:
3393 ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
3394 ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
3395 ///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
3396 ///  exponent = 0, integer bit 1 ("pseudodenormal")
3397 /// At the moment, the first three are treated as NaNs, the last one as Normal.
3398 void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) {
3399   assert(api.getBitWidth()==80);
3400   uint64_t i1 = api.getRawData()[0];
3401   uint64_t i2 = api.getRawData()[1];
3402   uint64_t myexponent = (i2 & 0x7fff);
3403   uint64_t mysignificand = i1;
3404   uint8_t myintegerbit = mysignificand >> 63;
3405 
3406   initialize(&semX87DoubleExtended);
3407   assert(partCount()==2);
3408 
3409   sign = static_cast<unsigned int>(i2>>15);
3410   if (myexponent == 0 && mysignificand == 0) {
3411     makeZero(sign);
3412   } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
3413     makeInf(sign);
3414   } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) ||
3415              (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) {
3416     category = fcNaN;
3417     exponent = exponentNaN();
3418     significandParts()[0] = mysignificand;
3419     significandParts()[1] = 0;
3420   } else {
3421     category = fcNormal;
3422     exponent = myexponent - 16383;
3423     significandParts()[0] = mysignificand;
3424     significandParts()[1] = 0;
3425     if (myexponent==0)          // denormal
3426       exponent = -16382;
3427   }
3428 }
3429 
3430 void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) {
3431   assert(api.getBitWidth()==128);
3432   uint64_t i1 = api.getRawData()[0];
3433   uint64_t i2 = api.getRawData()[1];
3434   opStatus fs;
3435   bool losesInfo;
3436 
3437   // Get the first double and convert to our format.
3438   initFromDoubleAPInt(APInt(64, i1));
3439   fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
3440   assert(fs == opOK && !losesInfo);
3441   (void)fs;
3442 
3443   // Unless we have a special case, add in second double.
3444   if (isFiniteNonZero()) {
3445     IEEEFloat v(semIEEEdouble, APInt(64, i2));
3446     fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
3447     assert(fs == opOK && !losesInfo);
3448     (void)fs;
3449 
3450     add(v, rmNearestTiesToEven);
3451   }
3452 }
3453 
3454 void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) {
3455   assert(api.getBitWidth()==128);
3456   uint64_t i1 = api.getRawData()[0];
3457   uint64_t i2 = api.getRawData()[1];
3458   uint64_t myexponent = (i2 >> 48) & 0x7fff;
3459   uint64_t mysignificand  = i1;
3460   uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3461 
3462   initialize(&semIEEEquad);
3463   assert(partCount()==2);
3464 
3465   sign = static_cast<unsigned int>(i2>>63);
3466   if (myexponent==0 &&
3467       (mysignificand==0 && mysignificand2==0)) {
3468     makeZero(sign);
3469   } else if (myexponent==0x7fff &&
3470              (mysignificand==0 && mysignificand2==0)) {
3471     makeInf(sign);
3472   } else if (myexponent==0x7fff &&
3473              (mysignificand!=0 || mysignificand2 !=0)) {
3474     category = fcNaN;
3475     exponent = exponentNaN();
3476     significandParts()[0] = mysignificand;
3477     significandParts()[1] = mysignificand2;
3478   } else {
3479     category = fcNormal;
3480     exponent = myexponent - 16383;
3481     significandParts()[0] = mysignificand;
3482     significandParts()[1] = mysignificand2;
3483     if (myexponent==0)          // denormal
3484       exponent = -16382;
3485     else
3486       significandParts()[1] |= 0x1000000000000LL;  // integer bit
3487   }
3488 }
3489 
3490 void IEEEFloat::initFromDoubleAPInt(const APInt &api) {
3491   assert(api.getBitWidth()==64);
3492   uint64_t i = *api.getRawData();
3493   uint64_t myexponent = (i >> 52) & 0x7ff;
3494   uint64_t mysignificand = i & 0xfffffffffffffLL;
3495 
3496   initialize(&semIEEEdouble);
3497   assert(partCount()==1);
3498 
3499   sign = static_cast<unsigned int>(i>>63);
3500   if (myexponent==0 && mysignificand==0) {
3501     makeZero(sign);
3502   } else if (myexponent==0x7ff && mysignificand==0) {
3503     makeInf(sign);
3504   } else if (myexponent==0x7ff && mysignificand!=0) {
3505     category = fcNaN;
3506     exponent = exponentNaN();
3507     *significandParts() = mysignificand;
3508   } else {
3509     category = fcNormal;
3510     exponent = myexponent - 1023;
3511     *significandParts() = mysignificand;
3512     if (myexponent==0)          // denormal
3513       exponent = -1022;
3514     else
3515       *significandParts() |= 0x10000000000000LL;  // integer bit
3516   }
3517 }
3518 
3519 void IEEEFloat::initFromFloatAPInt(const APInt &api) {
3520   assert(api.getBitWidth()==32);
3521   uint32_t i = (uint32_t)*api.getRawData();
3522   uint32_t myexponent = (i >> 23) & 0xff;
3523   uint32_t mysignificand = i & 0x7fffff;
3524 
3525   initialize(&semIEEEsingle);
3526   assert(partCount()==1);
3527 
3528   sign = i >> 31;
3529   if (myexponent==0 && mysignificand==0) {
3530     makeZero(sign);
3531   } else if (myexponent==0xff && mysignificand==0) {
3532     makeInf(sign);
3533   } else if (myexponent==0xff && mysignificand!=0) {
3534     category = fcNaN;
3535     exponent = exponentNaN();
3536     *significandParts() = mysignificand;
3537   } else {
3538     category = fcNormal;
3539     exponent = myexponent - 127;  //bias
3540     *significandParts() = mysignificand;
3541     if (myexponent==0)    // denormal
3542       exponent = -126;
3543     else
3544       *significandParts() |= 0x800000; // integer bit
3545   }
3546 }
3547 
3548 void IEEEFloat::initFromBFloatAPInt(const APInt &api) {
3549   assert(api.getBitWidth() == 16);
3550   uint32_t i = (uint32_t)*api.getRawData();
3551   uint32_t myexponent = (i >> 7) & 0xff;
3552   uint32_t mysignificand = i & 0x7f;
3553 
3554   initialize(&semBFloat);
3555   assert(partCount() == 1);
3556 
3557   sign = i >> 15;
3558   if (myexponent == 0 && mysignificand == 0) {
3559     makeZero(sign);
3560   } else if (myexponent == 0xff && mysignificand == 0) {
3561     makeInf(sign);
3562   } else if (myexponent == 0xff && mysignificand != 0) {
3563     category = fcNaN;
3564     exponent = exponentNaN();
3565     *significandParts() = mysignificand;
3566   } else {
3567     category = fcNormal;
3568     exponent = myexponent - 127; // bias
3569     *significandParts() = mysignificand;
3570     if (myexponent == 0) // denormal
3571       exponent = -126;
3572     else
3573       *significandParts() |= 0x80; // integer bit
3574   }
3575 }
3576 
3577 void IEEEFloat::initFromHalfAPInt(const APInt &api) {
3578   assert(api.getBitWidth()==16);
3579   uint32_t i = (uint32_t)*api.getRawData();
3580   uint32_t myexponent = (i >> 10) & 0x1f;
3581   uint32_t mysignificand = i & 0x3ff;
3582 
3583   initialize(&semIEEEhalf);
3584   assert(partCount()==1);
3585 
3586   sign = i >> 15;
3587   if (myexponent==0 && mysignificand==0) {
3588     makeZero(sign);
3589   } else if (myexponent==0x1f && mysignificand==0) {
3590     makeInf(sign);
3591   } else if (myexponent==0x1f && mysignificand!=0) {
3592     category = fcNaN;
3593     exponent = exponentNaN();
3594     *significandParts() = mysignificand;
3595   } else {
3596     category = fcNormal;
3597     exponent = myexponent - 15;  //bias
3598     *significandParts() = mysignificand;
3599     if (myexponent==0)    // denormal
3600       exponent = -14;
3601     else
3602       *significandParts() |= 0x400; // integer bit
3603   }
3604 }
3605 
3606 /// Treat api as containing the bits of a floating point number.  Currently
3607 /// we infer the floating point type from the size of the APInt.  The
3608 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3609 /// when the size is anything else).
3610 void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) {
3611   if (Sem == &semIEEEhalf)
3612     return initFromHalfAPInt(api);
3613   if (Sem == &semBFloat)
3614     return initFromBFloatAPInt(api);
3615   if (Sem == &semIEEEsingle)
3616     return initFromFloatAPInt(api);
3617   if (Sem == &semIEEEdouble)
3618     return initFromDoubleAPInt(api);
3619   if (Sem == &semX87DoubleExtended)
3620     return initFromF80LongDoubleAPInt(api);
3621   if (Sem == &semIEEEquad)
3622     return initFromQuadrupleAPInt(api);
3623   if (Sem == &semPPCDoubleDoubleLegacy)
3624     return initFromPPCDoubleDoubleAPInt(api);
3625 
3626   llvm_unreachable(nullptr);
3627 }
3628 
3629 /// Make this number the largest magnitude normal number in the given
3630 /// semantics.
3631 void IEEEFloat::makeLargest(bool Negative) {
3632   // We want (in interchange format):
3633   //   sign = {Negative}
3634   //   exponent = 1..10
3635   //   significand = 1..1
3636   category = fcNormal;
3637   sign = Negative;
3638   exponent = semantics->maxExponent;
3639 
3640   // Use memset to set all but the highest integerPart to all ones.
3641   integerPart *significand = significandParts();
3642   unsigned PartCount = partCount();
3643   memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
3644 
3645   // Set the high integerPart especially setting all unused top bits for
3646   // internal consistency.
3647   const unsigned NumUnusedHighBits =
3648     PartCount*integerPartWidth - semantics->precision;
3649   significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)
3650                                    ? (~integerPart(0) >> NumUnusedHighBits)
3651                                    : 0;
3652 }
3653 
3654 /// Make this number the smallest magnitude denormal number in the given
3655 /// semantics.
3656 void IEEEFloat::makeSmallest(bool Negative) {
3657   // We want (in interchange format):
3658   //   sign = {Negative}
3659   //   exponent = 0..0
3660   //   significand = 0..01
3661   category = fcNormal;
3662   sign = Negative;
3663   exponent = semantics->minExponent;
3664   APInt::tcSet(significandParts(), 1, partCount());
3665 }
3666 
3667 void IEEEFloat::makeSmallestNormalized(bool Negative) {
3668   // We want (in interchange format):
3669   //   sign = {Negative}
3670   //   exponent = 0..0
3671   //   significand = 10..0
3672 
3673   category = fcNormal;
3674   zeroSignificand();
3675   sign = Negative;
3676   exponent = semantics->minExponent;
3677   significandParts()[partCountForBits(semantics->precision) - 1] |=
3678       (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth));
3679 }
3680 
3681 IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) {
3682   initFromAPInt(&Sem, API);
3683 }
3684 
3685 IEEEFloat::IEEEFloat(float f) {
3686   initFromAPInt(&semIEEEsingle, APInt::floatToBits(f));
3687 }
3688 
3689 IEEEFloat::IEEEFloat(double d) {
3690   initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d));
3691 }
3692 
3693 namespace {
3694   void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
3695     Buffer.append(Str.begin(), Str.end());
3696   }
3697 
3698   /// Removes data from the given significand until it is no more
3699   /// precise than is required for the desired precision.
3700   void AdjustToPrecision(APInt &significand,
3701                          int &exp, unsigned FormatPrecision) {
3702     unsigned bits = significand.getActiveBits();
3703 
3704     // 196/59 is a very slight overestimate of lg_2(10).
3705     unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3706 
3707     if (bits <= bitsRequired) return;
3708 
3709     unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3710     if (!tensRemovable) return;
3711 
3712     exp += tensRemovable;
3713 
3714     APInt divisor(significand.getBitWidth(), 1);
3715     APInt powten(significand.getBitWidth(), 10);
3716     while (true) {
3717       if (tensRemovable & 1)
3718         divisor *= powten;
3719       tensRemovable >>= 1;
3720       if (!tensRemovable) break;
3721       powten *= powten;
3722     }
3723 
3724     significand = significand.udiv(divisor);
3725 
3726     // Truncate the significand down to its active bit count.
3727     significand = significand.trunc(significand.getActiveBits());
3728   }
3729 
3730 
3731   void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3732                          int &exp, unsigned FormatPrecision) {
3733     unsigned N = buffer.size();
3734     if (N <= FormatPrecision) return;
3735 
3736     // The most significant figures are the last ones in the buffer.
3737     unsigned FirstSignificant = N - FormatPrecision;
3738 
3739     // Round.
3740     // FIXME: this probably shouldn't use 'round half up'.
3741 
3742     // Rounding down is just a truncation, except we also want to drop
3743     // trailing zeros from the new result.
3744     if (buffer[FirstSignificant - 1] < '5') {
3745       while (FirstSignificant < N && buffer[FirstSignificant] == '0')
3746         FirstSignificant++;
3747 
3748       exp += FirstSignificant;
3749       buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3750       return;
3751     }
3752 
3753     // Rounding up requires a decimal add-with-carry.  If we continue
3754     // the carry, the newly-introduced zeros will just be truncated.
3755     for (unsigned I = FirstSignificant; I != N; ++I) {
3756       if (buffer[I] == '9') {
3757         FirstSignificant++;
3758       } else {
3759         buffer[I]++;
3760         break;
3761       }
3762     }
3763 
3764     // If we carried through, we have exactly one digit of precision.
3765     if (FirstSignificant == N) {
3766       exp += FirstSignificant;
3767       buffer.clear();
3768       buffer.push_back('1');
3769       return;
3770     }
3771 
3772     exp += FirstSignificant;
3773     buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3774   }
3775 } // namespace
3776 
3777 void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
3778                          unsigned FormatMaxPadding, bool TruncateZero) const {
3779   switch (category) {
3780   case fcInfinity:
3781     if (isNegative())
3782       return append(Str, "-Inf");
3783     else
3784       return append(Str, "+Inf");
3785 
3786   case fcNaN: return append(Str, "NaN");
3787 
3788   case fcZero:
3789     if (isNegative())
3790       Str.push_back('-');
3791 
3792     if (!FormatMaxPadding) {
3793       if (TruncateZero)
3794         append(Str, "0.0E+0");
3795       else {
3796         append(Str, "0.0");
3797         if (FormatPrecision > 1)
3798           Str.append(FormatPrecision - 1, '0');
3799         append(Str, "e+00");
3800       }
3801     } else
3802       Str.push_back('0');
3803     return;
3804 
3805   case fcNormal:
3806     break;
3807   }
3808 
3809   if (isNegative())
3810     Str.push_back('-');
3811 
3812   // Decompose the number into an APInt and an exponent.
3813   int exp = exponent - ((int) semantics->precision - 1);
3814   APInt significand(semantics->precision,
3815                     makeArrayRef(significandParts(),
3816                                  partCountForBits(semantics->precision)));
3817 
3818   // Set FormatPrecision if zero.  We want to do this before we
3819   // truncate trailing zeros, as those are part of the precision.
3820   if (!FormatPrecision) {
3821     // We use enough digits so the number can be round-tripped back to an
3822     // APFloat. The formula comes from "How to Print Floating-Point Numbers
3823     // Accurately" by Steele and White.
3824     // FIXME: Using a formula based purely on the precision is conservative;
3825     // we can print fewer digits depending on the actual value being printed.
3826 
3827     // FormatPrecision = 2 + floor(significandBits / lg_2(10))
3828     FormatPrecision = 2 + semantics->precision * 59 / 196;
3829   }
3830 
3831   // Ignore trailing binary zeros.
3832   int trailingZeros = significand.countTrailingZeros();
3833   exp += trailingZeros;
3834   significand.lshrInPlace(trailingZeros);
3835 
3836   // Change the exponent from 2^e to 10^e.
3837   if (exp == 0) {
3838     // Nothing to do.
3839   } else if (exp > 0) {
3840     // Just shift left.
3841     significand = significand.zext(semantics->precision + exp);
3842     significand <<= exp;
3843     exp = 0;
3844   } else { /* exp < 0 */
3845     int texp = -exp;
3846 
3847     // We transform this using the identity:
3848     //   (N)(2^-e) == (N)(5^e)(10^-e)
3849     // This means we have to multiply N (the significand) by 5^e.
3850     // To avoid overflow, we have to operate on numbers large
3851     // enough to store N * 5^e:
3852     //   log2(N * 5^e) == log2(N) + e * log2(5)
3853     //                 <= semantics->precision + e * 137 / 59
3854     //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
3855 
3856     unsigned precision = semantics->precision + (137 * texp + 136) / 59;
3857 
3858     // Multiply significand by 5^e.
3859     //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
3860     significand = significand.zext(precision);
3861     APInt five_to_the_i(precision, 5);
3862     while (true) {
3863       if (texp & 1) significand *= five_to_the_i;
3864 
3865       texp >>= 1;
3866       if (!texp) break;
3867       five_to_the_i *= five_to_the_i;
3868     }
3869   }
3870 
3871   AdjustToPrecision(significand, exp, FormatPrecision);
3872 
3873   SmallVector<char, 256> buffer;
3874 
3875   // Fill the buffer.
3876   unsigned precision = significand.getBitWidth();
3877   APInt ten(precision, 10);
3878   APInt digit(precision, 0);
3879 
3880   bool inTrail = true;
3881   while (significand != 0) {
3882     // digit <- significand % 10
3883     // significand <- significand / 10
3884     APInt::udivrem(significand, ten, significand, digit);
3885 
3886     unsigned d = digit.getZExtValue();
3887 
3888     // Drop trailing zeros.
3889     if (inTrail && !d) exp++;
3890     else {
3891       buffer.push_back((char) ('0' + d));
3892       inTrail = false;
3893     }
3894   }
3895 
3896   assert(!buffer.empty() && "no characters in buffer!");
3897 
3898   // Drop down to FormatPrecision.
3899   // TODO: don't do more precise calculations above than are required.
3900   AdjustToPrecision(buffer, exp, FormatPrecision);
3901 
3902   unsigned NDigits = buffer.size();
3903 
3904   // Check whether we should use scientific notation.
3905   bool FormatScientific;
3906   if (!FormatMaxPadding)
3907     FormatScientific = true;
3908   else {
3909     if (exp >= 0) {
3910       // 765e3 --> 765000
3911       //              ^^^
3912       // But we shouldn't make the number look more precise than it is.
3913       FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3914                           NDigits + (unsigned) exp > FormatPrecision);
3915     } else {
3916       // Power of the most significant digit.
3917       int MSD = exp + (int) (NDigits - 1);
3918       if (MSD >= 0) {
3919         // 765e-2 == 7.65
3920         FormatScientific = false;
3921       } else {
3922         // 765e-5 == 0.00765
3923         //           ^ ^^
3924         FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
3925       }
3926     }
3927   }
3928 
3929   // Scientific formatting is pretty straightforward.
3930   if (FormatScientific) {
3931     exp += (NDigits - 1);
3932 
3933     Str.push_back(buffer[NDigits-1]);
3934     Str.push_back('.');
3935     if (NDigits == 1 && TruncateZero)
3936       Str.push_back('0');
3937     else
3938       for (unsigned I = 1; I != NDigits; ++I)
3939         Str.push_back(buffer[NDigits-1-I]);
3940     // Fill with zeros up to FormatPrecision.
3941     if (!TruncateZero && FormatPrecision > NDigits - 1)
3942       Str.append(FormatPrecision - NDigits + 1, '0');
3943     // For !TruncateZero we use lower 'e'.
3944     Str.push_back(TruncateZero ? 'E' : 'e');
3945 
3946     Str.push_back(exp >= 0 ? '+' : '-');
3947     if (exp < 0) exp = -exp;
3948     SmallVector<char, 6> expbuf;
3949     do {
3950       expbuf.push_back((char) ('0' + (exp % 10)));
3951       exp /= 10;
3952     } while (exp);
3953     // Exponent always at least two digits if we do not truncate zeros.
3954     if (!TruncateZero && expbuf.size() < 2)
3955       expbuf.push_back('0');
3956     for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3957       Str.push_back(expbuf[E-1-I]);
3958     return;
3959   }
3960 
3961   // Non-scientific, positive exponents.
3962   if (exp >= 0) {
3963     for (unsigned I = 0; I != NDigits; ++I)
3964       Str.push_back(buffer[NDigits-1-I]);
3965     for (unsigned I = 0; I != (unsigned) exp; ++I)
3966       Str.push_back('0');
3967     return;
3968   }
3969 
3970   // Non-scientific, negative exponents.
3971 
3972   // The number of digits to the left of the decimal point.
3973   int NWholeDigits = exp + (int) NDigits;
3974 
3975   unsigned I = 0;
3976   if (NWholeDigits > 0) {
3977     for (; I != (unsigned) NWholeDigits; ++I)
3978       Str.push_back(buffer[NDigits-I-1]);
3979     Str.push_back('.');
3980   } else {
3981     unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3982 
3983     Str.push_back('0');
3984     Str.push_back('.');
3985     for (unsigned Z = 1; Z != NZeros; ++Z)
3986       Str.push_back('0');
3987   }
3988 
3989   for (; I != NDigits; ++I)
3990     Str.push_back(buffer[NDigits-I-1]);
3991 }
3992 
3993 bool IEEEFloat::getExactInverse(APFloat *inv) const {
3994   // Special floats and denormals have no exact inverse.
3995   if (!isFiniteNonZero())
3996     return false;
3997 
3998   // Check that the number is a power of two by making sure that only the
3999   // integer bit is set in the significand.
4000   if (significandLSB() != semantics->precision - 1)
4001     return false;
4002 
4003   // Get the inverse.
4004   IEEEFloat reciprocal(*semantics, 1ULL);
4005   if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
4006     return false;
4007 
4008   // Avoid multiplication with a denormal, it is not safe on all platforms and
4009   // may be slower than a normal division.
4010   if (reciprocal.isDenormal())
4011     return false;
4012 
4013   assert(reciprocal.isFiniteNonZero() &&
4014          reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
4015 
4016   if (inv)
4017     *inv = APFloat(reciprocal, *semantics);
4018 
4019   return true;
4020 }
4021 
4022 bool IEEEFloat::isSignaling() const {
4023   if (!isNaN())
4024     return false;
4025 
4026   // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
4027   // first bit of the trailing significand being 0.
4028   return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
4029 }
4030 
4031 /// IEEE-754R 2008 5.3.1: nextUp/nextDown.
4032 ///
4033 /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
4034 /// appropriate sign switching before/after the computation.
4035 IEEEFloat::opStatus IEEEFloat::next(bool nextDown) {
4036   // If we are performing nextDown, swap sign so we have -x.
4037   if (nextDown)
4038     changeSign();
4039 
4040   // Compute nextUp(x)
4041   opStatus result = opOK;
4042 
4043   // Handle each float category separately.
4044   switch (category) {
4045   case fcInfinity:
4046     // nextUp(+inf) = +inf
4047     if (!isNegative())
4048       break;
4049     // nextUp(-inf) = -getLargest()
4050     makeLargest(true);
4051     break;
4052   case fcNaN:
4053     // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
4054     // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
4055     //                     change the payload.
4056     if (isSignaling()) {
4057       result = opInvalidOp;
4058       // For consistency, propagate the sign of the sNaN to the qNaN.
4059       makeNaN(false, isNegative(), nullptr);
4060     }
4061     break;
4062   case fcZero:
4063     // nextUp(pm 0) = +getSmallest()
4064     makeSmallest(false);
4065     break;
4066   case fcNormal:
4067     // nextUp(-getSmallest()) = -0
4068     if (isSmallest() && isNegative()) {
4069       APInt::tcSet(significandParts(), 0, partCount());
4070       category = fcZero;
4071       exponent = 0;
4072       break;
4073     }
4074 
4075     // nextUp(getLargest()) == INFINITY
4076     if (isLargest() && !isNegative()) {
4077       APInt::tcSet(significandParts(), 0, partCount());
4078       category = fcInfinity;
4079       exponent = semantics->maxExponent + 1;
4080       break;
4081     }
4082 
4083     // nextUp(normal) == normal + inc.
4084     if (isNegative()) {
4085       // If we are negative, we need to decrement the significand.
4086 
4087       // We only cross a binade boundary that requires adjusting the exponent
4088       // if:
4089       //   1. exponent != semantics->minExponent. This implies we are not in the
4090       //   smallest binade or are dealing with denormals.
4091       //   2. Our significand excluding the integral bit is all zeros.
4092       bool WillCrossBinadeBoundary =
4093         exponent != semantics->minExponent && isSignificandAllZeros();
4094 
4095       // Decrement the significand.
4096       //
4097       // We always do this since:
4098       //   1. If we are dealing with a non-binade decrement, by definition we
4099       //   just decrement the significand.
4100       //   2. If we are dealing with a normal -> normal binade decrement, since
4101       //   we have an explicit integral bit the fact that all bits but the
4102       //   integral bit are zero implies that subtracting one will yield a
4103       //   significand with 0 integral bit and 1 in all other spots. Thus we
4104       //   must just adjust the exponent and set the integral bit to 1.
4105       //   3. If we are dealing with a normal -> denormal binade decrement,
4106       //   since we set the integral bit to 0 when we represent denormals, we
4107       //   just decrement the significand.
4108       integerPart *Parts = significandParts();
4109       APInt::tcDecrement(Parts, partCount());
4110 
4111       if (WillCrossBinadeBoundary) {
4112         // Our result is a normal number. Do the following:
4113         // 1. Set the integral bit to 1.
4114         // 2. Decrement the exponent.
4115         APInt::tcSetBit(Parts, semantics->precision - 1);
4116         exponent--;
4117       }
4118     } else {
4119       // If we are positive, we need to increment the significand.
4120 
4121       // We only cross a binade boundary that requires adjusting the exponent if
4122       // the input is not a denormal and all of said input's significand bits
4123       // are set. If all of said conditions are true: clear the significand, set
4124       // the integral bit to 1, and increment the exponent. If we have a
4125       // denormal always increment since moving denormals and the numbers in the
4126       // smallest normal binade have the same exponent in our representation.
4127       bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
4128 
4129       if (WillCrossBinadeBoundary) {
4130         integerPart *Parts = significandParts();
4131         APInt::tcSet(Parts, 0, partCount());
4132         APInt::tcSetBit(Parts, semantics->precision - 1);
4133         assert(exponent != semantics->maxExponent &&
4134                "We can not increment an exponent beyond the maxExponent allowed"
4135                " by the given floating point semantics.");
4136         exponent++;
4137       } else {
4138         incrementSignificand();
4139       }
4140     }
4141     break;
4142   }
4143 
4144   // If we are performing nextDown, swap sign so we have -nextUp(-x)
4145   if (nextDown)
4146     changeSign();
4147 
4148   return result;
4149 }
4150 
4151 APFloatBase::ExponentType IEEEFloat::exponentNaN() const {
4152   return semantics->maxExponent + 1;
4153 }
4154 
4155 APFloatBase::ExponentType IEEEFloat::exponentInf() const {
4156   return semantics->maxExponent + 1;
4157 }
4158 
4159 APFloatBase::ExponentType IEEEFloat::exponentZero() const {
4160   return semantics->minExponent - 1;
4161 }
4162 
4163 void IEEEFloat::makeInf(bool Negative) {
4164   category = fcInfinity;
4165   sign = Negative;
4166   exponent = exponentInf();
4167   APInt::tcSet(significandParts(), 0, partCount());
4168 }
4169 
4170 void IEEEFloat::makeZero(bool Negative) {
4171   category = fcZero;
4172   sign = Negative;
4173   exponent = exponentZero();
4174   APInt::tcSet(significandParts(), 0, partCount());
4175 }
4176 
4177 void IEEEFloat::makeQuiet() {
4178   assert(isNaN());
4179   APInt::tcSetBit(significandParts(), semantics->precision - 2);
4180 }
4181 
4182 int ilogb(const IEEEFloat &Arg) {
4183   if (Arg.isNaN())
4184     return IEEEFloat::IEK_NaN;
4185   if (Arg.isZero())
4186     return IEEEFloat::IEK_Zero;
4187   if (Arg.isInfinity())
4188     return IEEEFloat::IEK_Inf;
4189   if (!Arg.isDenormal())
4190     return Arg.exponent;
4191 
4192   IEEEFloat Normalized(Arg);
4193   int SignificandBits = Arg.getSemantics().precision - 1;
4194 
4195   Normalized.exponent += SignificandBits;
4196   Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero);
4197   return Normalized.exponent - SignificandBits;
4198 }
4199 
4200 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) {
4201   auto MaxExp = X.getSemantics().maxExponent;
4202   auto MinExp = X.getSemantics().minExponent;
4203 
4204   // If Exp is wildly out-of-scale, simply adding it to X.exponent will
4205   // overflow; clamp it to a safe range before adding, but ensure that the range
4206   // is large enough that the clamp does not change the result. The range we
4207   // need to support is the difference between the largest possible exponent and
4208   // the normalized exponent of half the smallest denormal.
4209 
4210   int SignificandBits = X.getSemantics().precision - 1;
4211   int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1;
4212 
4213   // Clamp to one past the range ends to let normalize handle overlflow.
4214   X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement);
4215   X.normalize(RoundingMode, lfExactlyZero);
4216   if (X.isNaN())
4217     X.makeQuiet();
4218   return X;
4219 }
4220 
4221 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) {
4222   Exp = ilogb(Val);
4223 
4224   // Quiet signalling nans.
4225   if (Exp == IEEEFloat::IEK_NaN) {
4226     IEEEFloat Quiet(Val);
4227     Quiet.makeQuiet();
4228     return Quiet;
4229   }
4230 
4231   if (Exp == IEEEFloat::IEK_Inf)
4232     return Val;
4233 
4234   // 1 is added because frexp is defined to return a normalized fraction in
4235   // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
4236   Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1;
4237   return scalbn(Val, -Exp, RM);
4238 }
4239 
4240 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S)
4241     : Semantics(&S),
4242       Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) {
4243   assert(Semantics == &semPPCDoubleDouble);
4244 }
4245 
4246 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag)
4247     : Semantics(&S),
4248       Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized),
4249                             APFloat(semIEEEdouble, uninitialized)}) {
4250   assert(Semantics == &semPPCDoubleDouble);
4251 }
4252 
4253 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I)
4254     : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I),
4255                                            APFloat(semIEEEdouble)}) {
4256   assert(Semantics == &semPPCDoubleDouble);
4257 }
4258 
4259 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I)
4260     : Semantics(&S),
4261       Floats(new APFloat[2]{
4262           APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])),
4263           APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) {
4264   assert(Semantics == &semPPCDoubleDouble);
4265 }
4266 
4267 DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First,
4268                              APFloat &&Second)
4269     : Semantics(&S),
4270       Floats(new APFloat[2]{std::move(First), std::move(Second)}) {
4271   assert(Semantics == &semPPCDoubleDouble);
4272   assert(&Floats[0].getSemantics() == &semIEEEdouble);
4273   assert(&Floats[1].getSemantics() == &semIEEEdouble);
4274 }
4275 
4276 DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS)
4277     : Semantics(RHS.Semantics),
4278       Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]),
4279                                          APFloat(RHS.Floats[1])}
4280                         : nullptr) {
4281   assert(Semantics == &semPPCDoubleDouble);
4282 }
4283 
4284 DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS)
4285     : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) {
4286   RHS.Semantics = &semBogus;
4287   assert(Semantics == &semPPCDoubleDouble);
4288 }
4289 
4290 DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) {
4291   if (Semantics == RHS.Semantics && RHS.Floats) {
4292     Floats[0] = RHS.Floats[0];
4293     Floats[1] = RHS.Floats[1];
4294   } else if (this != &RHS) {
4295     this->~DoubleAPFloat();
4296     new (this) DoubleAPFloat(RHS);
4297   }
4298   return *this;
4299 }
4300 
4301 // Implement addition, subtraction, multiplication and division based on:
4302 // "Software for Doubled-Precision Floating-Point Computations",
4303 // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283.
4304 APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa,
4305                                          const APFloat &c, const APFloat &cc,
4306                                          roundingMode RM) {
4307   int Status = opOK;
4308   APFloat z = a;
4309   Status |= z.add(c, RM);
4310   if (!z.isFinite()) {
4311     if (!z.isInfinity()) {
4312       Floats[0] = std::move(z);
4313       Floats[1].makeZero(/* Neg = */ false);
4314       return (opStatus)Status;
4315     }
4316     Status = opOK;
4317     auto AComparedToC = a.compareAbsoluteValue(c);
4318     z = cc;
4319     Status |= z.add(aa, RM);
4320     if (AComparedToC == APFloat::cmpGreaterThan) {
4321       // z = cc + aa + c + a;
4322       Status |= z.add(c, RM);
4323       Status |= z.add(a, RM);
4324     } else {
4325       // z = cc + aa + a + c;
4326       Status |= z.add(a, RM);
4327       Status |= z.add(c, RM);
4328     }
4329     if (!z.isFinite()) {
4330       Floats[0] = std::move(z);
4331       Floats[1].makeZero(/* Neg = */ false);
4332       return (opStatus)Status;
4333     }
4334     Floats[0] = z;
4335     APFloat zz = aa;
4336     Status |= zz.add(cc, RM);
4337     if (AComparedToC == APFloat::cmpGreaterThan) {
4338       // Floats[1] = a - z + c + zz;
4339       Floats[1] = a;
4340       Status |= Floats[1].subtract(z, RM);
4341       Status |= Floats[1].add(c, RM);
4342       Status |= Floats[1].add(zz, RM);
4343     } else {
4344       // Floats[1] = c - z + a + zz;
4345       Floats[1] = c;
4346       Status |= Floats[1].subtract(z, RM);
4347       Status |= Floats[1].add(a, RM);
4348       Status |= Floats[1].add(zz, RM);
4349     }
4350   } else {
4351     // q = a - z;
4352     APFloat q = a;
4353     Status |= q.subtract(z, RM);
4354 
4355     // zz = q + c + (a - (q + z)) + aa + cc;
4356     // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies.
4357     auto zz = q;
4358     Status |= zz.add(c, RM);
4359     Status |= q.add(z, RM);
4360     Status |= q.subtract(a, RM);
4361     q.changeSign();
4362     Status |= zz.add(q, RM);
4363     Status |= zz.add(aa, RM);
4364     Status |= zz.add(cc, RM);
4365     if (zz.isZero() && !zz.isNegative()) {
4366       Floats[0] = std::move(z);
4367       Floats[1].makeZero(/* Neg = */ false);
4368       return opOK;
4369     }
4370     Floats[0] = z;
4371     Status |= Floats[0].add(zz, RM);
4372     if (!Floats[0].isFinite()) {
4373       Floats[1].makeZero(/* Neg = */ false);
4374       return (opStatus)Status;
4375     }
4376     Floats[1] = std::move(z);
4377     Status |= Floats[1].subtract(Floats[0], RM);
4378     Status |= Floats[1].add(zz, RM);
4379   }
4380   return (opStatus)Status;
4381 }
4382 
4383 APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS,
4384                                                 const DoubleAPFloat &RHS,
4385                                                 DoubleAPFloat &Out,
4386                                                 roundingMode RM) {
4387   if (LHS.getCategory() == fcNaN) {
4388     Out = LHS;
4389     return opOK;
4390   }
4391   if (RHS.getCategory() == fcNaN) {
4392     Out = RHS;
4393     return opOK;
4394   }
4395   if (LHS.getCategory() == fcZero) {
4396     Out = RHS;
4397     return opOK;
4398   }
4399   if (RHS.getCategory() == fcZero) {
4400     Out = LHS;
4401     return opOK;
4402   }
4403   if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity &&
4404       LHS.isNegative() != RHS.isNegative()) {
4405     Out.makeNaN(false, Out.isNegative(), nullptr);
4406     return opInvalidOp;
4407   }
4408   if (LHS.getCategory() == fcInfinity) {
4409     Out = LHS;
4410     return opOK;
4411   }
4412   if (RHS.getCategory() == fcInfinity) {
4413     Out = RHS;
4414     return opOK;
4415   }
4416   assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal);
4417 
4418   APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]),
4419       CC(RHS.Floats[1]);
4420   assert(&A.getSemantics() == &semIEEEdouble);
4421   assert(&AA.getSemantics() == &semIEEEdouble);
4422   assert(&C.getSemantics() == &semIEEEdouble);
4423   assert(&CC.getSemantics() == &semIEEEdouble);
4424   assert(&Out.Floats[0].getSemantics() == &semIEEEdouble);
4425   assert(&Out.Floats[1].getSemantics() == &semIEEEdouble);
4426   return Out.addImpl(A, AA, C, CC, RM);
4427 }
4428 
4429 APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS,
4430                                      roundingMode RM) {
4431   return addWithSpecial(*this, RHS, *this, RM);
4432 }
4433 
4434 APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS,
4435                                           roundingMode RM) {
4436   changeSign();
4437   auto Ret = add(RHS, RM);
4438   changeSign();
4439   return Ret;
4440 }
4441 
4442 APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS,
4443                                           APFloat::roundingMode RM) {
4444   const auto &LHS = *this;
4445   auto &Out = *this;
4446   /* Interesting observation: For special categories, finding the lowest
4447      common ancestor of the following layered graph gives the correct
4448      return category:
4449 
4450         NaN
4451        /   \
4452      Zero  Inf
4453        \   /
4454        Normal
4455 
4456      e.g. NaN * NaN = NaN
4457           Zero * Inf = NaN
4458           Normal * Zero = Zero
4459           Normal * Inf = Inf
4460   */
4461   if (LHS.getCategory() == fcNaN) {
4462     Out = LHS;
4463     return opOK;
4464   }
4465   if (RHS.getCategory() == fcNaN) {
4466     Out = RHS;
4467     return opOK;
4468   }
4469   if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) ||
4470       (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) {
4471     Out.makeNaN(false, false, nullptr);
4472     return opOK;
4473   }
4474   if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) {
4475     Out = LHS;
4476     return opOK;
4477   }
4478   if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) {
4479     Out = RHS;
4480     return opOK;
4481   }
4482   assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal &&
4483          "Special cases not handled exhaustively");
4484 
4485   int Status = opOK;
4486   APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1];
4487   // t = a * c
4488   APFloat T = A;
4489   Status |= T.multiply(C, RM);
4490   if (!T.isFiniteNonZero()) {
4491     Floats[0] = T;
4492     Floats[1].makeZero(/* Neg = */ false);
4493     return (opStatus)Status;
4494   }
4495 
4496   // tau = fmsub(a, c, t), that is -fmadd(-a, c, t).
4497   APFloat Tau = A;
4498   T.changeSign();
4499   Status |= Tau.fusedMultiplyAdd(C, T, RM);
4500   T.changeSign();
4501   {
4502     // v = a * d
4503     APFloat V = A;
4504     Status |= V.multiply(D, RM);
4505     // w = b * c
4506     APFloat W = B;
4507     Status |= W.multiply(C, RM);
4508     Status |= V.add(W, RM);
4509     // tau += v + w
4510     Status |= Tau.add(V, RM);
4511   }
4512   // u = t + tau
4513   APFloat U = T;
4514   Status |= U.add(Tau, RM);
4515 
4516   Floats[0] = U;
4517   if (!U.isFinite()) {
4518     Floats[1].makeZero(/* Neg = */ false);
4519   } else {
4520     // Floats[1] = (t - u) + tau
4521     Status |= T.subtract(U, RM);
4522     Status |= T.add(Tau, RM);
4523     Floats[1] = T;
4524   }
4525   return (opStatus)Status;
4526 }
4527 
4528 APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS,
4529                                         APFloat::roundingMode RM) {
4530   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4531   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4532   auto Ret =
4533       Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM);
4534   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4535   return Ret;
4536 }
4537 
4538 APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) {
4539   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4540   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4541   auto Ret =
4542       Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
4543   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4544   return Ret;
4545 }
4546 
4547 APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) {
4548   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4549   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4550   auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
4551   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4552   return Ret;
4553 }
4554 
4555 APFloat::opStatus
4556 DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
4557                                 const DoubleAPFloat &Addend,
4558                                 APFloat::roundingMode RM) {
4559   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4560   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4561   auto Ret = Tmp.fusedMultiplyAdd(
4562       APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()),
4563       APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM);
4564   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4565   return Ret;
4566 }
4567 
4568 APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) {
4569   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4570   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4571   auto Ret = Tmp.roundToIntegral(RM);
4572   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4573   return Ret;
4574 }
4575 
4576 void DoubleAPFloat::changeSign() {
4577   Floats[0].changeSign();
4578   Floats[1].changeSign();
4579 }
4580 
4581 APFloat::cmpResult
4582 DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const {
4583   auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]);
4584   if (Result != cmpEqual)
4585     return Result;
4586   Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]);
4587   if (Result == cmpLessThan || Result == cmpGreaterThan) {
4588     auto Against = Floats[0].isNegative() ^ Floats[1].isNegative();
4589     auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative();
4590     if (Against && !RHSAgainst)
4591       return cmpLessThan;
4592     if (!Against && RHSAgainst)
4593       return cmpGreaterThan;
4594     if (!Against && !RHSAgainst)
4595       return Result;
4596     if (Against && RHSAgainst)
4597       return (cmpResult)(cmpLessThan + cmpGreaterThan - Result);
4598   }
4599   return Result;
4600 }
4601 
4602 APFloat::fltCategory DoubleAPFloat::getCategory() const {
4603   return Floats[0].getCategory();
4604 }
4605 
4606 bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); }
4607 
4608 void DoubleAPFloat::makeInf(bool Neg) {
4609   Floats[0].makeInf(Neg);
4610   Floats[1].makeZero(/* Neg = */ false);
4611 }
4612 
4613 void DoubleAPFloat::makeZero(bool Neg) {
4614   Floats[0].makeZero(Neg);
4615   Floats[1].makeZero(/* Neg = */ false);
4616 }
4617 
4618 void DoubleAPFloat::makeLargest(bool Neg) {
4619   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4620   Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull));
4621   Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull));
4622   if (Neg)
4623     changeSign();
4624 }
4625 
4626 void DoubleAPFloat::makeSmallest(bool Neg) {
4627   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4628   Floats[0].makeSmallest(Neg);
4629   Floats[1].makeZero(/* Neg = */ false);
4630 }
4631 
4632 void DoubleAPFloat::makeSmallestNormalized(bool Neg) {
4633   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4634   Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull));
4635   if (Neg)
4636     Floats[0].changeSign();
4637   Floats[1].makeZero(/* Neg = */ false);
4638 }
4639 
4640 void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) {
4641   Floats[0].makeNaN(SNaN, Neg, fill);
4642   Floats[1].makeZero(/* Neg = */ false);
4643 }
4644 
4645 APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const {
4646   auto Result = Floats[0].compare(RHS.Floats[0]);
4647   // |Float[0]| > |Float[1]|
4648   if (Result == APFloat::cmpEqual)
4649     return Floats[1].compare(RHS.Floats[1]);
4650   return Result;
4651 }
4652 
4653 bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const {
4654   return Floats[0].bitwiseIsEqual(RHS.Floats[0]) &&
4655          Floats[1].bitwiseIsEqual(RHS.Floats[1]);
4656 }
4657 
4658 hash_code hash_value(const DoubleAPFloat &Arg) {
4659   if (Arg.Floats)
4660     return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1]));
4661   return hash_combine(Arg.Semantics);
4662 }
4663 
4664 APInt DoubleAPFloat::bitcastToAPInt() const {
4665   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4666   uint64_t Data[] = {
4667       Floats[0].bitcastToAPInt().getRawData()[0],
4668       Floats[1].bitcastToAPInt().getRawData()[0],
4669   };
4670   return APInt(128, 2, Data);
4671 }
4672 
4673 Expected<APFloat::opStatus> DoubleAPFloat::convertFromString(StringRef S,
4674                                                              roundingMode RM) {
4675   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4676   APFloat Tmp(semPPCDoubleDoubleLegacy);
4677   auto Ret = Tmp.convertFromString(S, RM);
4678   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4679   return Ret;
4680 }
4681 
4682 APFloat::opStatus DoubleAPFloat::next(bool nextDown) {
4683   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4684   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4685   auto Ret = Tmp.next(nextDown);
4686   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4687   return Ret;
4688 }
4689 
4690 APFloat::opStatus
4691 DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input,
4692                                 unsigned int Width, bool IsSigned,
4693                                 roundingMode RM, bool *IsExact) const {
4694   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4695   return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
4696       .convertToInteger(Input, Width, IsSigned, RM, IsExact);
4697 }
4698 
4699 APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input,
4700                                                   bool IsSigned,
4701                                                   roundingMode RM) {
4702   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4703   APFloat Tmp(semPPCDoubleDoubleLegacy);
4704   auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM);
4705   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4706   return Ret;
4707 }
4708 
4709 APFloat::opStatus
4710 DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input,
4711                                               unsigned int InputSize,
4712                                               bool IsSigned, roundingMode RM) {
4713   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4714   APFloat Tmp(semPPCDoubleDoubleLegacy);
4715   auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM);
4716   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4717   return Ret;
4718 }
4719 
4720 APFloat::opStatus
4721 DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input,
4722                                               unsigned int InputSize,
4723                                               bool IsSigned, roundingMode RM) {
4724   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4725   APFloat Tmp(semPPCDoubleDoubleLegacy);
4726   auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM);
4727   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
4728   return Ret;
4729 }
4730 
4731 unsigned int DoubleAPFloat::convertToHexString(char *DST,
4732                                                unsigned int HexDigits,
4733                                                bool UpperCase,
4734                                                roundingMode RM) const {
4735   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4736   return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
4737       .convertToHexString(DST, HexDigits, UpperCase, RM);
4738 }
4739 
4740 bool DoubleAPFloat::isDenormal() const {
4741   return getCategory() == fcNormal &&
4742          (Floats[0].isDenormal() || Floats[1].isDenormal() ||
4743           // (double)(Hi + Lo) == Hi defines a normal number.
4744           Floats[0] != Floats[0] + Floats[1]);
4745 }
4746 
4747 bool DoubleAPFloat::isSmallest() const {
4748   if (getCategory() != fcNormal)
4749     return false;
4750   DoubleAPFloat Tmp(*this);
4751   Tmp.makeSmallest(this->isNegative());
4752   return Tmp.compare(*this) == cmpEqual;
4753 }
4754 
4755 bool DoubleAPFloat::isLargest() const {
4756   if (getCategory() != fcNormal)
4757     return false;
4758   DoubleAPFloat Tmp(*this);
4759   Tmp.makeLargest(this->isNegative());
4760   return Tmp.compare(*this) == cmpEqual;
4761 }
4762 
4763 bool DoubleAPFloat::isInteger() const {
4764   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4765   return Floats[0].isInteger() && Floats[1].isInteger();
4766 }
4767 
4768 void DoubleAPFloat::toString(SmallVectorImpl<char> &Str,
4769                              unsigned FormatPrecision,
4770                              unsigned FormatMaxPadding,
4771                              bool TruncateZero) const {
4772   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4773   APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
4774       .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero);
4775 }
4776 
4777 bool DoubleAPFloat::getExactInverse(APFloat *inv) const {
4778   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4779   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
4780   if (!inv)
4781     return Tmp.getExactInverse(nullptr);
4782   APFloat Inv(semPPCDoubleDoubleLegacy);
4783   auto Ret = Tmp.getExactInverse(&Inv);
4784   *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt());
4785   return Ret;
4786 }
4787 
4788 DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp,
4789                      APFloat::roundingMode RM) {
4790   assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4791   return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM),
4792                        scalbn(Arg.Floats[1], Exp, RM));
4793 }
4794 
4795 DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp,
4796                     APFloat::roundingMode RM) {
4797   assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
4798   APFloat First = frexp(Arg.Floats[0], Exp, RM);
4799   APFloat Second = Arg.Floats[1];
4800   if (Arg.getCategory() == APFloat::fcNormal)
4801     Second = scalbn(Second, -Exp, RM);
4802   return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second));
4803 }
4804 
4805 } // namespace detail
4806 
4807 APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) {
4808   if (usesLayout<IEEEFloat>(Semantics)) {
4809     new (&IEEE) IEEEFloat(std::move(F));
4810     return;
4811   }
4812   if (usesLayout<DoubleAPFloat>(Semantics)) {
4813     const fltSemantics& S = F.getSemantics();
4814     new (&Double)
4815         DoubleAPFloat(Semantics, APFloat(std::move(F), S),
4816                       APFloat(semIEEEdouble));
4817     return;
4818   }
4819   llvm_unreachable("Unexpected semantics");
4820 }
4821 
4822 Expected<APFloat::opStatus> APFloat::convertFromString(StringRef Str,
4823                                                        roundingMode RM) {
4824   APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM));
4825 }
4826 
4827 hash_code hash_value(const APFloat &Arg) {
4828   if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics()))
4829     return hash_value(Arg.U.IEEE);
4830   if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics()))
4831     return hash_value(Arg.U.Double);
4832   llvm_unreachable("Unexpected semantics");
4833 }
4834 
4835 APFloat::APFloat(const fltSemantics &Semantics, StringRef S)
4836     : APFloat(Semantics) {
4837   auto StatusOrErr = convertFromString(S, rmNearestTiesToEven);
4838   assert(StatusOrErr && "Invalid floating point representation");
4839   consumeError(StatusOrErr.takeError());
4840 }
4841 
4842 APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics,
4843                                    roundingMode RM, bool *losesInfo) {
4844   if (&getSemantics() == &ToSemantics) {
4845     *losesInfo = false;
4846     return opOK;
4847   }
4848   if (usesLayout<IEEEFloat>(getSemantics()) &&
4849       usesLayout<IEEEFloat>(ToSemantics))
4850     return U.IEEE.convert(ToSemantics, RM, losesInfo);
4851   if (usesLayout<IEEEFloat>(getSemantics()) &&
4852       usesLayout<DoubleAPFloat>(ToSemantics)) {
4853     assert(&ToSemantics == &semPPCDoubleDouble);
4854     auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo);
4855     *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt());
4856     return Ret;
4857   }
4858   if (usesLayout<DoubleAPFloat>(getSemantics()) &&
4859       usesLayout<IEEEFloat>(ToSemantics)) {
4860     auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo);
4861     *this = APFloat(std::move(getIEEE()), ToSemantics);
4862     return Ret;
4863   }
4864   llvm_unreachable("Unexpected semantics");
4865 }
4866 
4867 APFloat APFloat::getAllOnesValue(const fltSemantics &Semantics,
4868                                  unsigned BitWidth) {
4869   return APFloat(Semantics, APInt::getAllOnes(BitWidth));
4870 }
4871 
4872 void APFloat::print(raw_ostream &OS) const {
4873   SmallVector<char, 16> Buffer;
4874   toString(Buffer);
4875   OS << Buffer << "\n";
4876 }
4877 
4878 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4879 LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); }
4880 #endif
4881 
4882 void APFloat::Profile(FoldingSetNodeID &NID) const {
4883   NID.Add(bitcastToAPInt());
4884 }
4885 
4886 /* Same as convertToInteger(integerPart*, ...), except the result is returned in
4887    an APSInt, whose initial bit-width and signed-ness are used to determine the
4888    precision of the conversion.
4889  */
4890 APFloat::opStatus APFloat::convertToInteger(APSInt &result,
4891                                             roundingMode rounding_mode,
4892                                             bool *isExact) const {
4893   unsigned bitWidth = result.getBitWidth();
4894   SmallVector<uint64_t, 4> parts(result.getNumWords());
4895   opStatus status = convertToInteger(parts, bitWidth, result.isSigned(),
4896                                      rounding_mode, isExact);
4897   // Keeps the original signed-ness.
4898   result = APInt(bitWidth, parts);
4899   return status;
4900 }
4901 
4902 double APFloat::convertToDouble() const {
4903   if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEdouble)
4904     return getIEEE().convertToDouble();
4905   assert(getSemantics().isRepresentableBy(semIEEEdouble) &&
4906          "Float semantics is not representable by IEEEdouble");
4907   APFloat Temp = *this;
4908   bool LosesInfo;
4909   opStatus St = Temp.convert(semIEEEdouble, rmNearestTiesToEven, &LosesInfo);
4910   assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision");
4911   (void)St;
4912   return Temp.getIEEE().convertToDouble();
4913 }
4914 
4915 float APFloat::convertToFloat() const {
4916   if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEsingle)
4917     return getIEEE().convertToFloat();
4918   assert(getSemantics().isRepresentableBy(semIEEEsingle) &&
4919          "Float semantics is not representable by IEEEsingle");
4920   APFloat Temp = *this;
4921   bool LosesInfo;
4922   opStatus St = Temp.convert(semIEEEsingle, rmNearestTiesToEven, &LosesInfo);
4923   assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision");
4924   (void)St;
4925   return Temp.getIEEE().convertToFloat();
4926 }
4927 
4928 } // namespace llvm
4929 
4930 #undef APFLOAT_DISPATCH_ON_SEMANTICS
4931