1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the class that reads LLVM sample profiles. It 10 // supports three file formats: text, binary and gcov. 11 // 12 // The textual representation is useful for debugging and testing purposes. The 13 // binary representation is more compact, resulting in smaller file sizes. 14 // 15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation 16 // tool (https://github.com/google/autofdo) 17 // 18 // All three encodings can be used interchangeably as an input sample profile. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ProfileData/SampleProfReader.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/IR/ProfileSummary.h" 27 #include "llvm/ProfileData/ProfileCommon.h" 28 #include "llvm/ProfileData/SampleProf.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Compression.h" 31 #include "llvm/Support/ErrorOr.h" 32 #include "llvm/Support/LEB128.h" 33 #include "llvm/Support/LineIterator.h" 34 #include "llvm/Support/MD5.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cstddef> 39 #include <cstdint> 40 #include <limits> 41 #include <memory> 42 #include <set> 43 #include <system_error> 44 #include <vector> 45 46 using namespace llvm; 47 using namespace sampleprof; 48 49 #define DEBUG_TYPE "samplepgo-reader" 50 51 // This internal option specifies if the profile uses FS discriminators. 52 // It only applies to text, binary and compact binary format profiles. 53 // For ext-binary format profiles, the flag is set in the summary. 54 static cl::opt<bool> ProfileIsFSDisciminator( 55 "profile-isfs", cl::Hidden, cl::init(false), 56 cl::desc("Profile uses flow sensitive discriminators")); 57 58 /// Dump the function profile for \p FName. 59 /// 60 /// \param FName Name of the function to print. 61 /// \param OS Stream to emit the output to. 62 void SampleProfileReader::dumpFunctionProfile(StringRef FName, 63 raw_ostream &OS) { 64 OS << "Function: " << FName << ": " << Profiles[FName]; 65 } 66 67 /// Dump all the function profiles found on stream \p OS. 68 void SampleProfileReader::dump(raw_ostream &OS) { 69 std::vector<NameFunctionSamples> V; 70 sortFuncProfiles(Profiles, V); 71 for (const auto &I : V) 72 dumpFunctionProfile(I.first, OS); 73 } 74 75 /// Parse \p Input as function head. 76 /// 77 /// Parse one line of \p Input, and update function name in \p FName, 78 /// function's total sample count in \p NumSamples, function's entry 79 /// count in \p NumHeadSamples. 80 /// 81 /// \returns true if parsing is successful. 82 static bool ParseHead(const StringRef &Input, StringRef &FName, 83 uint64_t &NumSamples, uint64_t &NumHeadSamples) { 84 if (Input[0] == ' ') 85 return false; 86 size_t n2 = Input.rfind(':'); 87 size_t n1 = Input.rfind(':', n2 - 1); 88 FName = Input.substr(0, n1); 89 if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples)) 90 return false; 91 if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples)) 92 return false; 93 return true; 94 } 95 96 /// Returns true if line offset \p L is legal (only has 16 bits). 97 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; } 98 99 /// Parse \p Input that contains metadata. 100 /// Possible metadata: 101 /// - CFG Checksum information: 102 /// !CFGChecksum: 12345 103 /// - CFG Checksum information: 104 /// !Attributes: 1 105 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash. 106 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, 107 uint32_t &Attributes) { 108 if (Input.startswith("!CFGChecksum:")) { 109 StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim(); 110 return !CFGInfo.getAsInteger(10, FunctionHash); 111 } 112 113 if (Input.startswith("!Attributes:")) { 114 StringRef Attrib = Input.substr(strlen("!Attributes:")).trim(); 115 return !Attrib.getAsInteger(10, Attributes); 116 } 117 118 return false; 119 } 120 121 enum class LineType { 122 CallSiteProfile, 123 BodyProfile, 124 Metadata, 125 }; 126 127 /// Parse \p Input as line sample. 128 /// 129 /// \param Input input line. 130 /// \param LineTy Type of this line. 131 /// \param Depth the depth of the inline stack. 132 /// \param NumSamples total samples of the line/inlined callsite. 133 /// \param LineOffset line offset to the start of the function. 134 /// \param Discriminator discriminator of the line. 135 /// \param TargetCountMap map from indirect call target to count. 136 /// \param FunctionHash the function's CFG hash, used by pseudo probe. 137 /// 138 /// returns true if parsing is successful. 139 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth, 140 uint64_t &NumSamples, uint32_t &LineOffset, 141 uint32_t &Discriminator, StringRef &CalleeName, 142 DenseMap<StringRef, uint64_t> &TargetCountMap, 143 uint64_t &FunctionHash, uint32_t &Attributes) { 144 for (Depth = 0; Input[Depth] == ' '; Depth++) 145 ; 146 if (Depth == 0) 147 return false; 148 149 if (Depth == 1 && Input[Depth] == '!') { 150 LineTy = LineType::Metadata; 151 return parseMetadata(Input.substr(Depth), FunctionHash, Attributes); 152 } 153 154 size_t n1 = Input.find(':'); 155 StringRef Loc = Input.substr(Depth, n1 - Depth); 156 size_t n2 = Loc.find('.'); 157 if (n2 == StringRef::npos) { 158 if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset)) 159 return false; 160 Discriminator = 0; 161 } else { 162 if (Loc.substr(0, n2).getAsInteger(10, LineOffset)) 163 return false; 164 if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator)) 165 return false; 166 } 167 168 StringRef Rest = Input.substr(n1 + 2); 169 if (isDigit(Rest[0])) { 170 LineTy = LineType::BodyProfile; 171 size_t n3 = Rest.find(' '); 172 if (n3 == StringRef::npos) { 173 if (Rest.getAsInteger(10, NumSamples)) 174 return false; 175 } else { 176 if (Rest.substr(0, n3).getAsInteger(10, NumSamples)) 177 return false; 178 } 179 // Find call targets and their sample counts. 180 // Note: In some cases, there are symbols in the profile which are not 181 // mangled. To accommodate such cases, use colon + integer pairs as the 182 // anchor points. 183 // An example: 184 // _M_construct<char *>:1000 string_view<std::allocator<char> >:437 185 // ":1000" and ":437" are used as anchor points so the string above will 186 // be interpreted as 187 // target: _M_construct<char *> 188 // count: 1000 189 // target: string_view<std::allocator<char> > 190 // count: 437 191 while (n3 != StringRef::npos) { 192 n3 += Rest.substr(n3).find_first_not_of(' '); 193 Rest = Rest.substr(n3); 194 n3 = Rest.find_first_of(':'); 195 if (n3 == StringRef::npos || n3 == 0) 196 return false; 197 198 StringRef Target; 199 uint64_t count, n4; 200 while (true) { 201 // Get the segment after the current colon. 202 StringRef AfterColon = Rest.substr(n3 + 1); 203 // Get the target symbol before the current colon. 204 Target = Rest.substr(0, n3); 205 // Check if the word after the current colon is an integer. 206 n4 = AfterColon.find_first_of(' '); 207 n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size(); 208 StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1); 209 if (!WordAfterColon.getAsInteger(10, count)) 210 break; 211 212 // Try to find the next colon. 213 uint64_t n5 = AfterColon.find_first_of(':'); 214 if (n5 == StringRef::npos) 215 return false; 216 n3 += n5 + 1; 217 } 218 219 // An anchor point is found. Save the {target, count} pair 220 TargetCountMap[Target] = count; 221 if (n4 == Rest.size()) 222 break; 223 // Change n3 to the next blank space after colon + integer pair. 224 n3 = n4; 225 } 226 } else { 227 LineTy = LineType::CallSiteProfile; 228 size_t n3 = Rest.find_last_of(':'); 229 CalleeName = Rest.substr(0, n3); 230 if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples)) 231 return false; 232 } 233 return true; 234 } 235 236 /// Load samples from a text file. 237 /// 238 /// See the documentation at the top of the file for an explanation of 239 /// the expected format. 240 /// 241 /// \returns true if the file was loaded successfully, false otherwise. 242 std::error_code SampleProfileReaderText::readImpl() { 243 line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); 244 sampleprof_error Result = sampleprof_error::success; 245 246 InlineCallStack InlineStack; 247 uint32_t ProbeProfileCount = 0; 248 249 // SeenMetadata tracks whether we have processed metadata for the current 250 // top-level function profile. 251 bool SeenMetadata = false; 252 253 ProfileIsFS = ProfileIsFSDisciminator; 254 for (; !LineIt.is_at_eof(); ++LineIt) { 255 if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#') 256 continue; 257 // Read the header of each function. 258 // 259 // Note that for function identifiers we are actually expecting 260 // mangled names, but we may not always get them. This happens when 261 // the compiler decides not to emit the function (e.g., it was inlined 262 // and removed). In this case, the binary will not have the linkage 263 // name for the function, so the profiler will emit the function's 264 // unmangled name, which may contain characters like ':' and '>' in its 265 // name (member functions, templates, etc). 266 // 267 // The only requirement we place on the identifier, then, is that it 268 // should not begin with a number. 269 if ((*LineIt)[0] != ' ') { 270 uint64_t NumSamples, NumHeadSamples; 271 StringRef FName; 272 if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) { 273 reportError(LineIt.line_number(), 274 "Expected 'mangled_name:NUM:NUM', found " + *LineIt); 275 return sampleprof_error::malformed; 276 } 277 SeenMetadata = false; 278 SampleContext FContext(FName); 279 if (FContext.hasContext()) 280 ++CSProfileCount; 281 Profiles[FContext] = FunctionSamples(); 282 FunctionSamples &FProfile = Profiles[FContext]; 283 FProfile.setName(FContext.getNameWithoutContext()); 284 FProfile.setContext(FContext); 285 MergeResult(Result, FProfile.addTotalSamples(NumSamples)); 286 MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples)); 287 InlineStack.clear(); 288 InlineStack.push_back(&FProfile); 289 } else { 290 uint64_t NumSamples; 291 StringRef FName; 292 DenseMap<StringRef, uint64_t> TargetCountMap; 293 uint32_t Depth, LineOffset, Discriminator; 294 LineType LineTy; 295 uint64_t FunctionHash = 0; 296 uint32_t Attributes = 0; 297 if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset, 298 Discriminator, FName, TargetCountMap, FunctionHash, 299 Attributes)) { 300 reportError(LineIt.line_number(), 301 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + 302 *LineIt); 303 return sampleprof_error::malformed; 304 } 305 if (SeenMetadata && LineTy != LineType::Metadata) { 306 // Metadata must be put at the end of a function profile. 307 reportError(LineIt.line_number(), 308 "Found non-metadata after metadata: " + *LineIt); 309 return sampleprof_error::malformed; 310 } 311 312 // Here we handle FS discriminators. 313 Discriminator &= getDiscriminatorMask(); 314 315 while (InlineStack.size() > Depth) { 316 InlineStack.pop_back(); 317 } 318 switch (LineTy) { 319 case LineType::CallSiteProfile: { 320 FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( 321 LineLocation(LineOffset, Discriminator))[std::string(FName)]; 322 FSamples.setName(FName); 323 MergeResult(Result, FSamples.addTotalSamples(NumSamples)); 324 InlineStack.push_back(&FSamples); 325 break; 326 } 327 case LineType::BodyProfile: { 328 while (InlineStack.size() > Depth) { 329 InlineStack.pop_back(); 330 } 331 FunctionSamples &FProfile = *InlineStack.back(); 332 for (const auto &name_count : TargetCountMap) { 333 MergeResult(Result, FProfile.addCalledTargetSamples( 334 LineOffset, Discriminator, name_count.first, 335 name_count.second)); 336 } 337 MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator, 338 NumSamples)); 339 break; 340 } 341 case LineType::Metadata: { 342 FunctionSamples &FProfile = *InlineStack.back(); 343 if (FunctionHash) { 344 FProfile.setFunctionHash(FunctionHash); 345 ++ProbeProfileCount; 346 } 347 if (Attributes) 348 FProfile.getContext().setAllAttributes(Attributes); 349 SeenMetadata = true; 350 break; 351 } 352 } 353 } 354 } 355 356 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 357 "Cannot have both context-sensitive and regular profile"); 358 ProfileIsCS = (CSProfileCount > 0); 359 assert((ProbeProfileCount == 0 || ProbeProfileCount == Profiles.size()) && 360 "Cannot have both probe-based profiles and regular profiles"); 361 ProfileIsProbeBased = (ProbeProfileCount > 0); 362 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 363 FunctionSamples::ProfileIsCS = ProfileIsCS; 364 365 if (Result == sampleprof_error::success) 366 computeSummary(); 367 368 return Result; 369 } 370 371 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) { 372 bool result = false; 373 374 // Check that the first non-comment line is a valid function header. 375 line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#'); 376 if (!LineIt.is_at_eof()) { 377 if ((*LineIt)[0] != ' ') { 378 uint64_t NumSamples, NumHeadSamples; 379 StringRef FName; 380 result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples); 381 } 382 } 383 384 return result; 385 } 386 387 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() { 388 unsigned NumBytesRead = 0; 389 std::error_code EC; 390 uint64_t Val = decodeULEB128(Data, &NumBytesRead); 391 392 if (Val > std::numeric_limits<T>::max()) 393 EC = sampleprof_error::malformed; 394 else if (Data + NumBytesRead > End) 395 EC = sampleprof_error::truncated; 396 else 397 EC = sampleprof_error::success; 398 399 if (EC) { 400 reportError(0, EC.message()); 401 return EC; 402 } 403 404 Data += NumBytesRead; 405 return static_cast<T>(Val); 406 } 407 408 ErrorOr<StringRef> SampleProfileReaderBinary::readString() { 409 std::error_code EC; 410 StringRef Str(reinterpret_cast<const char *>(Data)); 411 if (Data + Str.size() + 1 > End) { 412 EC = sampleprof_error::truncated; 413 reportError(0, EC.message()); 414 return EC; 415 } 416 417 Data += Str.size() + 1; 418 return Str; 419 } 420 421 template <typename T> 422 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() { 423 std::error_code EC; 424 425 if (Data + sizeof(T) > End) { 426 EC = sampleprof_error::truncated; 427 reportError(0, EC.message()); 428 return EC; 429 } 430 431 using namespace support; 432 T Val = endian::readNext<T, little, unaligned>(Data); 433 return Val; 434 } 435 436 template <typename T> 437 inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) { 438 std::error_code EC; 439 auto Idx = readNumber<uint32_t>(); 440 if (std::error_code EC = Idx.getError()) 441 return EC; 442 if (*Idx >= Table.size()) 443 return sampleprof_error::truncated_name_table; 444 return *Idx; 445 } 446 447 ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() { 448 auto Idx = readStringIndex(NameTable); 449 if (std::error_code EC = Idx.getError()) 450 return EC; 451 452 return NameTable[*Idx]; 453 } 454 455 ErrorOr<StringRef> SampleProfileReaderExtBinaryBase::readStringFromTable() { 456 if (!FixedLengthMD5) 457 return SampleProfileReaderBinary::readStringFromTable(); 458 459 // read NameTable index. 460 auto Idx = readStringIndex(NameTable); 461 if (std::error_code EC = Idx.getError()) 462 return EC; 463 464 // Check whether the name to be accessed has been accessed before, 465 // if not, read it from memory directly. 466 StringRef &SR = NameTable[*Idx]; 467 if (SR.empty()) { 468 const uint8_t *SavedData = Data; 469 Data = MD5NameMemStart + ((*Idx) * sizeof(uint64_t)); 470 auto FID = readUnencodedNumber<uint64_t>(); 471 if (std::error_code EC = FID.getError()) 472 return EC; 473 // Save the string converted from uint64_t in MD5StringBuf. All the 474 // references to the name are all StringRefs refering to the string 475 // in MD5StringBuf. 476 MD5StringBuf->push_back(std::to_string(*FID)); 477 SR = MD5StringBuf->back(); 478 Data = SavedData; 479 } 480 return SR; 481 } 482 483 ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() { 484 auto Idx = readStringIndex(NameTable); 485 if (std::error_code EC = Idx.getError()) 486 return EC; 487 488 return StringRef(NameTable[*Idx]); 489 } 490 491 std::error_code 492 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) { 493 auto NumSamples = readNumber<uint64_t>(); 494 if (std::error_code EC = NumSamples.getError()) 495 return EC; 496 FProfile.addTotalSamples(*NumSamples); 497 498 // Read the samples in the body. 499 auto NumRecords = readNumber<uint32_t>(); 500 if (std::error_code EC = NumRecords.getError()) 501 return EC; 502 503 for (uint32_t I = 0; I < *NumRecords; ++I) { 504 auto LineOffset = readNumber<uint64_t>(); 505 if (std::error_code EC = LineOffset.getError()) 506 return EC; 507 508 if (!isOffsetLegal(*LineOffset)) { 509 return std::error_code(); 510 } 511 512 auto Discriminator = readNumber<uint64_t>(); 513 if (std::error_code EC = Discriminator.getError()) 514 return EC; 515 516 auto NumSamples = readNumber<uint64_t>(); 517 if (std::error_code EC = NumSamples.getError()) 518 return EC; 519 520 auto NumCalls = readNumber<uint32_t>(); 521 if (std::error_code EC = NumCalls.getError()) 522 return EC; 523 524 // Here we handle FS discriminators: 525 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 526 527 for (uint32_t J = 0; J < *NumCalls; ++J) { 528 auto CalledFunction(readStringFromTable()); 529 if (std::error_code EC = CalledFunction.getError()) 530 return EC; 531 532 auto CalledFunctionSamples = readNumber<uint64_t>(); 533 if (std::error_code EC = CalledFunctionSamples.getError()) 534 return EC; 535 536 FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal, 537 *CalledFunction, *CalledFunctionSamples); 538 } 539 540 FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples); 541 } 542 543 // Read all the samples for inlined function calls. 544 auto NumCallsites = readNumber<uint32_t>(); 545 if (std::error_code EC = NumCallsites.getError()) 546 return EC; 547 548 for (uint32_t J = 0; J < *NumCallsites; ++J) { 549 auto LineOffset = readNumber<uint64_t>(); 550 if (std::error_code EC = LineOffset.getError()) 551 return EC; 552 553 auto Discriminator = readNumber<uint64_t>(); 554 if (std::error_code EC = Discriminator.getError()) 555 return EC; 556 557 auto FName(readStringFromTable()); 558 if (std::error_code EC = FName.getError()) 559 return EC; 560 561 // Here we handle FS discriminators: 562 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 563 564 FunctionSamples &CalleeProfile = FProfile.functionSamplesAt( 565 LineLocation(*LineOffset, DiscriminatorVal))[std::string(*FName)]; 566 CalleeProfile.setName(*FName); 567 if (std::error_code EC = readProfile(CalleeProfile)) 568 return EC; 569 } 570 571 return sampleprof_error::success; 572 } 573 574 std::error_code 575 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) { 576 Data = Start; 577 auto NumHeadSamples = readNumber<uint64_t>(); 578 if (std::error_code EC = NumHeadSamples.getError()) 579 return EC; 580 581 auto FName(readStringFromTable()); 582 if (std::error_code EC = FName.getError()) 583 return EC; 584 585 SampleContext FContext(*FName); 586 Profiles[FContext] = FunctionSamples(); 587 FunctionSamples &FProfile = Profiles[FContext]; 588 FProfile.setName(FContext.getNameWithoutContext()); 589 FProfile.setContext(FContext); 590 FProfile.addHeadSamples(*NumHeadSamples); 591 592 if (FContext.hasContext()) 593 CSProfileCount++; 594 595 if (std::error_code EC = readProfile(FProfile)) 596 return EC; 597 return sampleprof_error::success; 598 } 599 600 std::error_code SampleProfileReaderBinary::readImpl() { 601 ProfileIsFS = ProfileIsFSDisciminator; 602 while (!at_eof()) { 603 if (std::error_code EC = readFuncProfile(Data)) 604 return EC; 605 } 606 607 return sampleprof_error::success; 608 } 609 610 std::error_code SampleProfileReaderExtBinaryBase::readOneSection( 611 const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) { 612 Data = Start; 613 End = Start + Size; 614 switch (Entry.Type) { 615 case SecProfSummary: 616 if (std::error_code EC = readSummary()) 617 return EC; 618 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 619 Summary->setPartialProfile(true); 620 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 621 FunctionSamples::ProfileIsCS = ProfileIsCS = true; 622 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 623 FunctionSamples::ProfileIsFS = ProfileIsFS = true; 624 break; 625 case SecNameTable: { 626 FixedLengthMD5 = 627 hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5); 628 bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name); 629 assert((!FixedLengthMD5 || UseMD5) && 630 "If FixedLengthMD5 is true, UseMD5 has to be true"); 631 FunctionSamples::HasUniqSuffix = 632 hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix); 633 if (std::error_code EC = readNameTableSec(UseMD5)) 634 return EC; 635 break; 636 } 637 case SecLBRProfile: 638 if (std::error_code EC = readFuncProfiles()) 639 return EC; 640 break; 641 case SecFuncOffsetTable: 642 if (std::error_code EC = readFuncOffsetTable()) 643 return EC; 644 break; 645 case SecFuncMetadata: { 646 ProfileIsProbeBased = 647 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased); 648 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 649 bool HasAttribute = 650 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute); 651 if (std::error_code EC = readFuncMetadata(HasAttribute)) 652 return EC; 653 break; 654 } 655 case SecProfileSymbolList: 656 if (std::error_code EC = readProfileSymbolList()) 657 return EC; 658 break; 659 default: 660 if (std::error_code EC = readCustomSection(Entry)) 661 return EC; 662 break; 663 } 664 return sampleprof_error::success; 665 } 666 667 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() { 668 if (!M) 669 return false; 670 FuncsToUse.clear(); 671 for (auto &F : *M) 672 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 673 return true; 674 } 675 676 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() { 677 // If there are more than one FuncOffsetTable, the profile read associated 678 // with previous FuncOffsetTable has to be done before next FuncOffsetTable 679 // is read. 680 FuncOffsetTable.clear(); 681 682 auto Size = readNumber<uint64_t>(); 683 if (std::error_code EC = Size.getError()) 684 return EC; 685 686 FuncOffsetTable.reserve(*Size); 687 for (uint32_t I = 0; I < *Size; ++I) { 688 auto FName(readStringFromTable()); 689 if (std::error_code EC = FName.getError()) 690 return EC; 691 692 auto Offset = readNumber<uint64_t>(); 693 if (std::error_code EC = Offset.getError()) 694 return EC; 695 696 FuncOffsetTable[*FName] = *Offset; 697 } 698 return sampleprof_error::success; 699 } 700 701 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() { 702 // Collect functions used by current module if the Reader has been 703 // given a module. 704 // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName 705 // which will query FunctionSamples::HasUniqSuffix, so it has to be 706 // called after FunctionSamples::HasUniqSuffix is set, i.e. after 707 // NameTable section is read. 708 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 709 710 // When LoadFuncsToBeUsed is false, load all the function profiles. 711 const uint8_t *Start = Data; 712 if (!LoadFuncsToBeUsed) { 713 while (Data < End) { 714 if (std::error_code EC = readFuncProfile(Data)) 715 return EC; 716 } 717 assert(Data == End && "More data is read than expected"); 718 } else { 719 // Load function profiles on demand. 720 if (Remapper) { 721 for (auto Name : FuncsToUse) { 722 Remapper->insert(Name); 723 } 724 } 725 726 if (useMD5()) { 727 for (auto Name : FuncsToUse) { 728 auto GUID = std::to_string(MD5Hash(Name)); 729 auto iter = FuncOffsetTable.find(StringRef(GUID)); 730 if (iter == FuncOffsetTable.end()) 731 continue; 732 const uint8_t *FuncProfileAddr = Start + iter->second; 733 assert(FuncProfileAddr < End && "out of LBRProfile section"); 734 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 735 return EC; 736 } 737 } else if (FunctionSamples::ProfileIsCS) { 738 // Compute the ordered set of names, so we can 739 // get all context profiles under a subtree by 740 // iterating through the ordered names. 741 struct Comparer { 742 // Ignore the closing ']' when ordering context 743 bool operator()(const StringRef &L, const StringRef &R) const { 744 return L.substr(0, L.size() - 1) < R.substr(0, R.size() - 1); 745 } 746 }; 747 std::set<StringRef, Comparer> OrderedNames; 748 for (auto Name : FuncOffsetTable) { 749 OrderedNames.insert(Name.first); 750 } 751 752 // For each function in current module, load all 753 // context profiles for the function. 754 for (auto NameOffset : FuncOffsetTable) { 755 StringRef ContextName = NameOffset.first; 756 SampleContext FContext(ContextName); 757 auto FuncName = FContext.getNameWithoutContext(); 758 if (!FuncsToUse.count(FuncName) && 759 (!Remapper || !Remapper->exist(FuncName))) 760 continue; 761 762 // For each context profile we need, try to load 763 // all context profile in the subtree. This can 764 // help profile guided importing for ThinLTO. 765 auto It = OrderedNames.find(ContextName); 766 while (It != OrderedNames.end() && 767 It->startswith(ContextName.substr(0, ContextName.size() - 1))) { 768 const uint8_t *FuncProfileAddr = Start + FuncOffsetTable[*It]; 769 assert(FuncProfileAddr < End && "out of LBRProfile section"); 770 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 771 return EC; 772 // Remove loaded context profile so we won't 773 // load it repeatedly. 774 It = OrderedNames.erase(It); 775 } 776 } 777 } else { 778 for (auto NameOffset : FuncOffsetTable) { 779 SampleContext FContext(NameOffset.first); 780 auto FuncName = FContext.getNameWithoutContext(); 781 if (!FuncsToUse.count(FuncName) && 782 (!Remapper || !Remapper->exist(FuncName))) 783 continue; 784 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 785 assert(FuncProfileAddr < End && "out of LBRProfile section"); 786 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 787 return EC; 788 } 789 } 790 Data = End; 791 } 792 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 793 "Cannot have both context-sensitive and regular profile"); 794 assert(ProfileIsCS == (CSProfileCount > 0) && 795 "Section flag should be consistent with actual profile"); 796 return sampleprof_error::success; 797 } 798 799 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() { 800 if (!ProfSymList) 801 ProfSymList = std::make_unique<ProfileSymbolList>(); 802 803 if (std::error_code EC = ProfSymList->read(Data, End - Data)) 804 return EC; 805 806 Data = End; 807 return sampleprof_error::success; 808 } 809 810 std::error_code SampleProfileReaderExtBinaryBase::decompressSection( 811 const uint8_t *SecStart, const uint64_t SecSize, 812 const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) { 813 Data = SecStart; 814 End = SecStart + SecSize; 815 auto DecompressSize = readNumber<uint64_t>(); 816 if (std::error_code EC = DecompressSize.getError()) 817 return EC; 818 DecompressBufSize = *DecompressSize; 819 820 auto CompressSize = readNumber<uint64_t>(); 821 if (std::error_code EC = CompressSize.getError()) 822 return EC; 823 824 if (!llvm::zlib::isAvailable()) 825 return sampleprof_error::zlib_unavailable; 826 827 StringRef CompressedStrings(reinterpret_cast<const char *>(Data), 828 *CompressSize); 829 char *Buffer = Allocator.Allocate<char>(DecompressBufSize); 830 size_t UCSize = DecompressBufSize; 831 llvm::Error E = 832 zlib::uncompress(CompressedStrings, Buffer, UCSize); 833 if (E) 834 return sampleprof_error::uncompress_failed; 835 DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer); 836 return sampleprof_error::success; 837 } 838 839 std::error_code SampleProfileReaderExtBinaryBase::readImpl() { 840 const uint8_t *BufStart = 841 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 842 843 for (auto &Entry : SecHdrTable) { 844 // Skip empty section. 845 if (!Entry.Size) 846 continue; 847 848 // Skip sections without context when SkipFlatProf is true. 849 if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 850 continue; 851 852 const uint8_t *SecStart = BufStart + Entry.Offset; 853 uint64_t SecSize = Entry.Size; 854 855 // If the section is compressed, decompress it into a buffer 856 // DecompressBuf before reading the actual data. The pointee of 857 // 'Data' will be changed to buffer hold by DecompressBuf 858 // temporarily when reading the actual data. 859 bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress); 860 if (isCompressed) { 861 const uint8_t *DecompressBuf; 862 uint64_t DecompressBufSize; 863 if (std::error_code EC = decompressSection( 864 SecStart, SecSize, DecompressBuf, DecompressBufSize)) 865 return EC; 866 SecStart = DecompressBuf; 867 SecSize = DecompressBufSize; 868 } 869 870 if (std::error_code EC = readOneSection(SecStart, SecSize, Entry)) 871 return EC; 872 if (Data != SecStart + SecSize) 873 return sampleprof_error::malformed; 874 875 // Change the pointee of 'Data' from DecompressBuf to original Buffer. 876 if (isCompressed) { 877 Data = BufStart + Entry.Offset; 878 End = BufStart + Buffer->getBufferSize(); 879 } 880 } 881 882 return sampleprof_error::success; 883 } 884 885 std::error_code SampleProfileReaderCompactBinary::readImpl() { 886 // Collect functions used by current module if the Reader has been 887 // given a module. 888 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 889 ProfileIsFS = ProfileIsFSDisciminator; 890 std::vector<uint64_t> OffsetsToUse; 891 if (!LoadFuncsToBeUsed) { 892 // load all the function profiles. 893 for (auto FuncEntry : FuncOffsetTable) { 894 OffsetsToUse.push_back(FuncEntry.second); 895 } 896 } else { 897 // load function profiles on demand. 898 for (auto Name : FuncsToUse) { 899 auto GUID = std::to_string(MD5Hash(Name)); 900 auto iter = FuncOffsetTable.find(StringRef(GUID)); 901 if (iter == FuncOffsetTable.end()) 902 continue; 903 OffsetsToUse.push_back(iter->second); 904 } 905 } 906 907 for (auto Offset : OffsetsToUse) { 908 const uint8_t *SavedData = Data; 909 if (std::error_code EC = readFuncProfile( 910 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) + 911 Offset)) 912 return EC; 913 Data = SavedData; 914 } 915 return sampleprof_error::success; 916 } 917 918 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) { 919 if (Magic == SPMagic()) 920 return sampleprof_error::success; 921 return sampleprof_error::bad_magic; 922 } 923 924 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) { 925 if (Magic == SPMagic(SPF_Ext_Binary)) 926 return sampleprof_error::success; 927 return sampleprof_error::bad_magic; 928 } 929 930 std::error_code 931 SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) { 932 if (Magic == SPMagic(SPF_Compact_Binary)) 933 return sampleprof_error::success; 934 return sampleprof_error::bad_magic; 935 } 936 937 std::error_code SampleProfileReaderBinary::readNameTable() { 938 auto Size = readNumber<uint32_t>(); 939 if (std::error_code EC = Size.getError()) 940 return EC; 941 NameTable.reserve(*Size + NameTable.size()); 942 for (uint32_t I = 0; I < *Size; ++I) { 943 auto Name(readString()); 944 if (std::error_code EC = Name.getError()) 945 return EC; 946 NameTable.push_back(*Name); 947 } 948 949 return sampleprof_error::success; 950 } 951 952 std::error_code SampleProfileReaderExtBinaryBase::readMD5NameTable() { 953 auto Size = readNumber<uint64_t>(); 954 if (std::error_code EC = Size.getError()) 955 return EC; 956 MD5StringBuf = std::make_unique<std::vector<std::string>>(); 957 MD5StringBuf->reserve(*Size); 958 if (FixedLengthMD5) { 959 // Preallocate and initialize NameTable so we can check whether a name 960 // index has been read before by checking whether the element in the 961 // NameTable is empty, meanwhile readStringIndex can do the boundary 962 // check using the size of NameTable. 963 NameTable.resize(*Size + NameTable.size()); 964 965 MD5NameMemStart = Data; 966 Data = Data + (*Size) * sizeof(uint64_t); 967 return sampleprof_error::success; 968 } 969 NameTable.reserve(*Size); 970 for (uint32_t I = 0; I < *Size; ++I) { 971 auto FID = readNumber<uint64_t>(); 972 if (std::error_code EC = FID.getError()) 973 return EC; 974 MD5StringBuf->push_back(std::to_string(*FID)); 975 // NameTable is a vector of StringRef. Here it is pushing back a 976 // StringRef initialized with the last string in MD5stringBuf. 977 NameTable.push_back(MD5StringBuf->back()); 978 } 979 return sampleprof_error::success; 980 } 981 982 std::error_code SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5) { 983 if (IsMD5) 984 return readMD5NameTable(); 985 return SampleProfileReaderBinary::readNameTable(); 986 } 987 988 std::error_code 989 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) { 990 while (Data < End) { 991 auto FName(readStringFromTable()); 992 if (std::error_code EC = FName.getError()) 993 return EC; 994 995 SampleContext FContext(*FName); 996 bool ProfileInMap = Profiles.count(FContext); 997 998 if (ProfileIsProbeBased) { 999 auto Checksum = readNumber<uint64_t>(); 1000 if (std::error_code EC = Checksum.getError()) 1001 return EC; 1002 if (ProfileInMap) 1003 Profiles[FContext].setFunctionHash(*Checksum); 1004 } 1005 1006 if (ProfileHasAttribute) { 1007 auto Attributes = readNumber<uint32_t>(); 1008 if (std::error_code EC = Attributes.getError()) 1009 return EC; 1010 if (ProfileInMap) 1011 Profiles[FContext].getContext().setAllAttributes(*Attributes); 1012 } 1013 } 1014 1015 assert(Data == End && "More data is read than expected"); 1016 return sampleprof_error::success; 1017 } 1018 1019 std::error_code SampleProfileReaderCompactBinary::readNameTable() { 1020 auto Size = readNumber<uint64_t>(); 1021 if (std::error_code EC = Size.getError()) 1022 return EC; 1023 NameTable.reserve(*Size); 1024 for (uint32_t I = 0; I < *Size; ++I) { 1025 auto FID = readNumber<uint64_t>(); 1026 if (std::error_code EC = FID.getError()) 1027 return EC; 1028 NameTable.push_back(std::to_string(*FID)); 1029 } 1030 return sampleprof_error::success; 1031 } 1032 1033 std::error_code 1034 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint32_t Idx) { 1035 SecHdrTableEntry Entry; 1036 auto Type = readUnencodedNumber<uint64_t>(); 1037 if (std::error_code EC = Type.getError()) 1038 return EC; 1039 Entry.Type = static_cast<SecType>(*Type); 1040 1041 auto Flags = readUnencodedNumber<uint64_t>(); 1042 if (std::error_code EC = Flags.getError()) 1043 return EC; 1044 Entry.Flags = *Flags; 1045 1046 auto Offset = readUnencodedNumber<uint64_t>(); 1047 if (std::error_code EC = Offset.getError()) 1048 return EC; 1049 Entry.Offset = *Offset; 1050 1051 auto Size = readUnencodedNumber<uint64_t>(); 1052 if (std::error_code EC = Size.getError()) 1053 return EC; 1054 Entry.Size = *Size; 1055 1056 Entry.LayoutIndex = Idx; 1057 SecHdrTable.push_back(std::move(Entry)); 1058 return sampleprof_error::success; 1059 } 1060 1061 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() { 1062 auto EntryNum = readUnencodedNumber<uint64_t>(); 1063 if (std::error_code EC = EntryNum.getError()) 1064 return EC; 1065 1066 for (uint32_t i = 0; i < (*EntryNum); i++) 1067 if (std::error_code EC = readSecHdrTableEntry(i)) 1068 return EC; 1069 1070 return sampleprof_error::success; 1071 } 1072 1073 std::error_code SampleProfileReaderExtBinaryBase::readHeader() { 1074 const uint8_t *BufStart = 1075 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1076 Data = BufStart; 1077 End = BufStart + Buffer->getBufferSize(); 1078 1079 if (std::error_code EC = readMagicIdent()) 1080 return EC; 1081 1082 if (std::error_code EC = readSecHdrTable()) 1083 return EC; 1084 1085 return sampleprof_error::success; 1086 } 1087 1088 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) { 1089 uint64_t Size = 0; 1090 for (auto &Entry : SecHdrTable) { 1091 if (Entry.Type == Type) 1092 Size += Entry.Size; 1093 } 1094 return Size; 1095 } 1096 1097 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() { 1098 // Sections in SecHdrTable is not necessarily in the same order as 1099 // sections in the profile because section like FuncOffsetTable needs 1100 // to be written after section LBRProfile but needs to be read before 1101 // section LBRProfile, so we cannot simply use the last entry in 1102 // SecHdrTable to calculate the file size. 1103 uint64_t FileSize = 0; 1104 for (auto &Entry : SecHdrTable) { 1105 FileSize = std::max(Entry.Offset + Entry.Size, FileSize); 1106 } 1107 return FileSize; 1108 } 1109 1110 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) { 1111 std::string Flags; 1112 if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress)) 1113 Flags.append("{compressed,"); 1114 else 1115 Flags.append("{"); 1116 1117 if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 1118 Flags.append("flat,"); 1119 1120 switch (Entry.Type) { 1121 case SecNameTable: 1122 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5)) 1123 Flags.append("fixlenmd5,"); 1124 else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name)) 1125 Flags.append("md5,"); 1126 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix)) 1127 Flags.append("uniq,"); 1128 break; 1129 case SecProfSummary: 1130 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 1131 Flags.append("partial,"); 1132 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 1133 Flags.append("context,"); 1134 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 1135 Flags.append("fs-discriminator,"); 1136 break; 1137 default: 1138 break; 1139 } 1140 char &last = Flags.back(); 1141 if (last == ',') 1142 last = '}'; 1143 else 1144 Flags.append("}"); 1145 return Flags; 1146 } 1147 1148 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) { 1149 uint64_t TotalSecsSize = 0; 1150 for (auto &Entry : SecHdrTable) { 1151 OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset 1152 << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry) 1153 << "\n"; 1154 ; 1155 TotalSecsSize += Entry.Size; 1156 } 1157 uint64_t HeaderSize = SecHdrTable.front().Offset; 1158 assert(HeaderSize + TotalSecsSize == getFileSize() && 1159 "Size of 'header + sections' doesn't match the total size of profile"); 1160 1161 OS << "Header Size: " << HeaderSize << "\n"; 1162 OS << "Total Sections Size: " << TotalSecsSize << "\n"; 1163 OS << "File Size: " << getFileSize() << "\n"; 1164 return true; 1165 } 1166 1167 std::error_code SampleProfileReaderBinary::readMagicIdent() { 1168 // Read and check the magic identifier. 1169 auto Magic = readNumber<uint64_t>(); 1170 if (std::error_code EC = Magic.getError()) 1171 return EC; 1172 else if (std::error_code EC = verifySPMagic(*Magic)) 1173 return EC; 1174 1175 // Read the version number. 1176 auto Version = readNumber<uint64_t>(); 1177 if (std::error_code EC = Version.getError()) 1178 return EC; 1179 else if (*Version != SPVersion()) 1180 return sampleprof_error::unsupported_version; 1181 1182 return sampleprof_error::success; 1183 } 1184 1185 std::error_code SampleProfileReaderBinary::readHeader() { 1186 Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1187 End = Data + Buffer->getBufferSize(); 1188 1189 if (std::error_code EC = readMagicIdent()) 1190 return EC; 1191 1192 if (std::error_code EC = readSummary()) 1193 return EC; 1194 1195 if (std::error_code EC = readNameTable()) 1196 return EC; 1197 return sampleprof_error::success; 1198 } 1199 1200 std::error_code SampleProfileReaderCompactBinary::readHeader() { 1201 SampleProfileReaderBinary::readHeader(); 1202 if (std::error_code EC = readFuncOffsetTable()) 1203 return EC; 1204 return sampleprof_error::success; 1205 } 1206 1207 std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() { 1208 auto TableOffset = readUnencodedNumber<uint64_t>(); 1209 if (std::error_code EC = TableOffset.getError()) 1210 return EC; 1211 1212 const uint8_t *SavedData = Data; 1213 const uint8_t *TableStart = 1214 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) + 1215 *TableOffset; 1216 Data = TableStart; 1217 1218 auto Size = readNumber<uint64_t>(); 1219 if (std::error_code EC = Size.getError()) 1220 return EC; 1221 1222 FuncOffsetTable.reserve(*Size); 1223 for (uint32_t I = 0; I < *Size; ++I) { 1224 auto FName(readStringFromTable()); 1225 if (std::error_code EC = FName.getError()) 1226 return EC; 1227 1228 auto Offset = readNumber<uint64_t>(); 1229 if (std::error_code EC = Offset.getError()) 1230 return EC; 1231 1232 FuncOffsetTable[*FName] = *Offset; 1233 } 1234 End = TableStart; 1235 Data = SavedData; 1236 return sampleprof_error::success; 1237 } 1238 1239 bool SampleProfileReaderCompactBinary::collectFuncsFromModule() { 1240 if (!M) 1241 return false; 1242 FuncsToUse.clear(); 1243 for (auto &F : *M) 1244 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 1245 return true; 1246 } 1247 1248 std::error_code SampleProfileReaderBinary::readSummaryEntry( 1249 std::vector<ProfileSummaryEntry> &Entries) { 1250 auto Cutoff = readNumber<uint64_t>(); 1251 if (std::error_code EC = Cutoff.getError()) 1252 return EC; 1253 1254 auto MinBlockCount = readNumber<uint64_t>(); 1255 if (std::error_code EC = MinBlockCount.getError()) 1256 return EC; 1257 1258 auto NumBlocks = readNumber<uint64_t>(); 1259 if (std::error_code EC = NumBlocks.getError()) 1260 return EC; 1261 1262 Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks); 1263 return sampleprof_error::success; 1264 } 1265 1266 std::error_code SampleProfileReaderBinary::readSummary() { 1267 auto TotalCount = readNumber<uint64_t>(); 1268 if (std::error_code EC = TotalCount.getError()) 1269 return EC; 1270 1271 auto MaxBlockCount = readNumber<uint64_t>(); 1272 if (std::error_code EC = MaxBlockCount.getError()) 1273 return EC; 1274 1275 auto MaxFunctionCount = readNumber<uint64_t>(); 1276 if (std::error_code EC = MaxFunctionCount.getError()) 1277 return EC; 1278 1279 auto NumBlocks = readNumber<uint64_t>(); 1280 if (std::error_code EC = NumBlocks.getError()) 1281 return EC; 1282 1283 auto NumFunctions = readNumber<uint64_t>(); 1284 if (std::error_code EC = NumFunctions.getError()) 1285 return EC; 1286 1287 auto NumSummaryEntries = readNumber<uint64_t>(); 1288 if (std::error_code EC = NumSummaryEntries.getError()) 1289 return EC; 1290 1291 std::vector<ProfileSummaryEntry> Entries; 1292 for (unsigned i = 0; i < *NumSummaryEntries; i++) { 1293 std::error_code EC = readSummaryEntry(Entries); 1294 if (EC != sampleprof_error::success) 1295 return EC; 1296 } 1297 Summary = std::make_unique<ProfileSummary>( 1298 ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0, 1299 *MaxFunctionCount, *NumBlocks, *NumFunctions); 1300 1301 return sampleprof_error::success; 1302 } 1303 1304 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) { 1305 const uint8_t *Data = 1306 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1307 uint64_t Magic = decodeULEB128(Data); 1308 return Magic == SPMagic(); 1309 } 1310 1311 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) { 1312 const uint8_t *Data = 1313 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1314 uint64_t Magic = decodeULEB128(Data); 1315 return Magic == SPMagic(SPF_Ext_Binary); 1316 } 1317 1318 bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) { 1319 const uint8_t *Data = 1320 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1321 uint64_t Magic = decodeULEB128(Data); 1322 return Magic == SPMagic(SPF_Compact_Binary); 1323 } 1324 1325 std::error_code SampleProfileReaderGCC::skipNextWord() { 1326 uint32_t dummy; 1327 if (!GcovBuffer.readInt(dummy)) 1328 return sampleprof_error::truncated; 1329 return sampleprof_error::success; 1330 } 1331 1332 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() { 1333 if (sizeof(T) <= sizeof(uint32_t)) { 1334 uint32_t Val; 1335 if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max()) 1336 return static_cast<T>(Val); 1337 } else if (sizeof(T) <= sizeof(uint64_t)) { 1338 uint64_t Val; 1339 if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max()) 1340 return static_cast<T>(Val); 1341 } 1342 1343 std::error_code EC = sampleprof_error::malformed; 1344 reportError(0, EC.message()); 1345 return EC; 1346 } 1347 1348 ErrorOr<StringRef> SampleProfileReaderGCC::readString() { 1349 StringRef Str; 1350 if (!GcovBuffer.readString(Str)) 1351 return sampleprof_error::truncated; 1352 return Str; 1353 } 1354 1355 std::error_code SampleProfileReaderGCC::readHeader() { 1356 // Read the magic identifier. 1357 if (!GcovBuffer.readGCDAFormat()) 1358 return sampleprof_error::unrecognized_format; 1359 1360 // Read the version number. Note - the GCC reader does not validate this 1361 // version, but the profile creator generates v704. 1362 GCOV::GCOVVersion version; 1363 if (!GcovBuffer.readGCOVVersion(version)) 1364 return sampleprof_error::unrecognized_format; 1365 1366 if (version != GCOV::V407) 1367 return sampleprof_error::unsupported_version; 1368 1369 // Skip the empty integer. 1370 if (std::error_code EC = skipNextWord()) 1371 return EC; 1372 1373 return sampleprof_error::success; 1374 } 1375 1376 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { 1377 uint32_t Tag; 1378 if (!GcovBuffer.readInt(Tag)) 1379 return sampleprof_error::truncated; 1380 1381 if (Tag != Expected) 1382 return sampleprof_error::malformed; 1383 1384 if (std::error_code EC = skipNextWord()) 1385 return EC; 1386 1387 return sampleprof_error::success; 1388 } 1389 1390 std::error_code SampleProfileReaderGCC::readNameTable() { 1391 if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames)) 1392 return EC; 1393 1394 uint32_t Size; 1395 if (!GcovBuffer.readInt(Size)) 1396 return sampleprof_error::truncated; 1397 1398 for (uint32_t I = 0; I < Size; ++I) { 1399 StringRef Str; 1400 if (!GcovBuffer.readString(Str)) 1401 return sampleprof_error::truncated; 1402 Names.push_back(std::string(Str)); 1403 } 1404 1405 return sampleprof_error::success; 1406 } 1407 1408 std::error_code SampleProfileReaderGCC::readFunctionProfiles() { 1409 if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction)) 1410 return EC; 1411 1412 uint32_t NumFunctions; 1413 if (!GcovBuffer.readInt(NumFunctions)) 1414 return sampleprof_error::truncated; 1415 1416 InlineCallStack Stack; 1417 for (uint32_t I = 0; I < NumFunctions; ++I) 1418 if (std::error_code EC = readOneFunctionProfile(Stack, true, 0)) 1419 return EC; 1420 1421 computeSummary(); 1422 return sampleprof_error::success; 1423 } 1424 1425 std::error_code SampleProfileReaderGCC::readOneFunctionProfile( 1426 const InlineCallStack &InlineStack, bool Update, uint32_t Offset) { 1427 uint64_t HeadCount = 0; 1428 if (InlineStack.size() == 0) 1429 if (!GcovBuffer.readInt64(HeadCount)) 1430 return sampleprof_error::truncated; 1431 1432 uint32_t NameIdx; 1433 if (!GcovBuffer.readInt(NameIdx)) 1434 return sampleprof_error::truncated; 1435 1436 StringRef Name(Names[NameIdx]); 1437 1438 uint32_t NumPosCounts; 1439 if (!GcovBuffer.readInt(NumPosCounts)) 1440 return sampleprof_error::truncated; 1441 1442 uint32_t NumCallsites; 1443 if (!GcovBuffer.readInt(NumCallsites)) 1444 return sampleprof_error::truncated; 1445 1446 FunctionSamples *FProfile = nullptr; 1447 if (InlineStack.size() == 0) { 1448 // If this is a top function that we have already processed, do not 1449 // update its profile again. This happens in the presence of 1450 // function aliases. Since these aliases share the same function 1451 // body, there will be identical replicated profiles for the 1452 // original function. In this case, we simply not bother updating 1453 // the profile of the original function. 1454 FProfile = &Profiles[Name]; 1455 FProfile->addHeadSamples(HeadCount); 1456 if (FProfile->getTotalSamples() > 0) 1457 Update = false; 1458 } else { 1459 // Otherwise, we are reading an inlined instance. The top of the 1460 // inline stack contains the profile of the caller. Insert this 1461 // callee in the caller's CallsiteMap. 1462 FunctionSamples *CallerProfile = InlineStack.front(); 1463 uint32_t LineOffset = Offset >> 16; 1464 uint32_t Discriminator = Offset & 0xffff; 1465 FProfile = &CallerProfile->functionSamplesAt( 1466 LineLocation(LineOffset, Discriminator))[std::string(Name)]; 1467 } 1468 FProfile->setName(Name); 1469 1470 for (uint32_t I = 0; I < NumPosCounts; ++I) { 1471 uint32_t Offset; 1472 if (!GcovBuffer.readInt(Offset)) 1473 return sampleprof_error::truncated; 1474 1475 uint32_t NumTargets; 1476 if (!GcovBuffer.readInt(NumTargets)) 1477 return sampleprof_error::truncated; 1478 1479 uint64_t Count; 1480 if (!GcovBuffer.readInt64(Count)) 1481 return sampleprof_error::truncated; 1482 1483 // The line location is encoded in the offset as: 1484 // high 16 bits: line offset to the start of the function. 1485 // low 16 bits: discriminator. 1486 uint32_t LineOffset = Offset >> 16; 1487 uint32_t Discriminator = Offset & 0xffff; 1488 1489 InlineCallStack NewStack; 1490 NewStack.push_back(FProfile); 1491 llvm::append_range(NewStack, InlineStack); 1492 if (Update) { 1493 // Walk up the inline stack, adding the samples on this line to 1494 // the total sample count of the callers in the chain. 1495 for (auto CallerProfile : NewStack) 1496 CallerProfile->addTotalSamples(Count); 1497 1498 // Update the body samples for the current profile. 1499 FProfile->addBodySamples(LineOffset, Discriminator, Count); 1500 } 1501 1502 // Process the list of functions called at an indirect call site. 1503 // These are all the targets that a function pointer (or virtual 1504 // function) resolved at runtime. 1505 for (uint32_t J = 0; J < NumTargets; J++) { 1506 uint32_t HistVal; 1507 if (!GcovBuffer.readInt(HistVal)) 1508 return sampleprof_error::truncated; 1509 1510 if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) 1511 return sampleprof_error::malformed; 1512 1513 uint64_t TargetIdx; 1514 if (!GcovBuffer.readInt64(TargetIdx)) 1515 return sampleprof_error::truncated; 1516 StringRef TargetName(Names[TargetIdx]); 1517 1518 uint64_t TargetCount; 1519 if (!GcovBuffer.readInt64(TargetCount)) 1520 return sampleprof_error::truncated; 1521 1522 if (Update) 1523 FProfile->addCalledTargetSamples(LineOffset, Discriminator, 1524 TargetName, TargetCount); 1525 } 1526 } 1527 1528 // Process all the inlined callers into the current function. These 1529 // are all the callsites that were inlined into this function. 1530 for (uint32_t I = 0; I < NumCallsites; I++) { 1531 // The offset is encoded as: 1532 // high 16 bits: line offset to the start of the function. 1533 // low 16 bits: discriminator. 1534 uint32_t Offset; 1535 if (!GcovBuffer.readInt(Offset)) 1536 return sampleprof_error::truncated; 1537 InlineCallStack NewStack; 1538 NewStack.push_back(FProfile); 1539 llvm::append_range(NewStack, InlineStack); 1540 if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset)) 1541 return EC; 1542 } 1543 1544 return sampleprof_error::success; 1545 } 1546 1547 /// Read a GCC AutoFDO profile. 1548 /// 1549 /// This format is generated by the Linux Perf conversion tool at 1550 /// https://github.com/google/autofdo. 1551 std::error_code SampleProfileReaderGCC::readImpl() { 1552 assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator"); 1553 // Read the string table. 1554 if (std::error_code EC = readNameTable()) 1555 return EC; 1556 1557 // Read the source profile. 1558 if (std::error_code EC = readFunctionProfiles()) 1559 return EC; 1560 1561 return sampleprof_error::success; 1562 } 1563 1564 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { 1565 StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart())); 1566 return Magic == "adcg*704"; 1567 } 1568 1569 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) { 1570 // If the reader uses MD5 to represent string, we can't remap it because 1571 // we don't know what the original function names were. 1572 if (Reader.useMD5()) { 1573 Ctx.diagnose(DiagnosticInfoSampleProfile( 1574 Reader.getBuffer()->getBufferIdentifier(), 1575 "Profile data remapping cannot be applied to profile data " 1576 "in compact format (original mangled names are not available).", 1577 DS_Warning)); 1578 return; 1579 } 1580 1581 // CSSPGO-TODO: Remapper is not yet supported. 1582 // We will need to remap the entire context string. 1583 assert(Remappings && "should be initialized while creating remapper"); 1584 for (auto &Sample : Reader.getProfiles()) { 1585 DenseSet<StringRef> NamesInSample; 1586 Sample.second.findAllNames(NamesInSample); 1587 for (auto &Name : NamesInSample) 1588 if (auto Key = Remappings->insert(Name)) 1589 NameMap.insert({Key, Name}); 1590 } 1591 1592 RemappingApplied = true; 1593 } 1594 1595 Optional<StringRef> 1596 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) { 1597 if (auto Key = Remappings->lookup(Fname)) 1598 return NameMap.lookup(Key); 1599 return None; 1600 } 1601 1602 /// Prepare a memory buffer for the contents of \p Filename. 1603 /// 1604 /// \returns an error code indicating the status of the buffer. 1605 static ErrorOr<std::unique_ptr<MemoryBuffer>> 1606 setupMemoryBuffer(const Twine &Filename) { 1607 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename, /*IsText=*/true); 1608 if (std::error_code EC = BufferOrErr.getError()) 1609 return EC; 1610 auto Buffer = std::move(BufferOrErr.get()); 1611 1612 // Sanity check the file. 1613 if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint32_t>::max()) 1614 return sampleprof_error::too_large; 1615 1616 return std::move(Buffer); 1617 } 1618 1619 /// Create a sample profile reader based on the format of the input file. 1620 /// 1621 /// \param Filename The file to open. 1622 /// 1623 /// \param C The LLVM context to use to emit diagnostics. 1624 /// 1625 /// \param P The FSDiscriminatorPass. 1626 /// 1627 /// \param RemapFilename The file used for profile remapping. 1628 /// 1629 /// \returns an error code indicating the status of the created reader. 1630 ErrorOr<std::unique_ptr<SampleProfileReader>> 1631 SampleProfileReader::create(const std::string Filename, LLVMContext &C, 1632 FSDiscriminatorPass P, 1633 const std::string RemapFilename) { 1634 auto BufferOrError = setupMemoryBuffer(Filename); 1635 if (std::error_code EC = BufferOrError.getError()) 1636 return EC; 1637 return create(BufferOrError.get(), C, P, RemapFilename); 1638 } 1639 1640 /// Create a sample profile remapper from the given input, to remap the 1641 /// function names in the given profile data. 1642 /// 1643 /// \param Filename The file to open. 1644 /// 1645 /// \param Reader The profile reader the remapper is going to be applied to. 1646 /// 1647 /// \param C The LLVM context to use to emit diagnostics. 1648 /// 1649 /// \returns an error code indicating the status of the created reader. 1650 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1651 SampleProfileReaderItaniumRemapper::create(const std::string Filename, 1652 SampleProfileReader &Reader, 1653 LLVMContext &C) { 1654 auto BufferOrError = setupMemoryBuffer(Filename); 1655 if (std::error_code EC = BufferOrError.getError()) 1656 return EC; 1657 return create(BufferOrError.get(), Reader, C); 1658 } 1659 1660 /// Create a sample profile remapper from the given input, to remap the 1661 /// function names in the given profile data. 1662 /// 1663 /// \param B The memory buffer to create the reader from (assumes ownership). 1664 /// 1665 /// \param C The LLVM context to use to emit diagnostics. 1666 /// 1667 /// \param Reader The profile reader the remapper is going to be applied to. 1668 /// 1669 /// \returns an error code indicating the status of the created reader. 1670 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1671 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B, 1672 SampleProfileReader &Reader, 1673 LLVMContext &C) { 1674 auto Remappings = std::make_unique<SymbolRemappingReader>(); 1675 if (Error E = Remappings->read(*B.get())) { 1676 handleAllErrors( 1677 std::move(E), [&](const SymbolRemappingParseError &ParseError) { 1678 C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(), 1679 ParseError.getLineNum(), 1680 ParseError.getMessage())); 1681 }); 1682 return sampleprof_error::malformed; 1683 } 1684 1685 return std::make_unique<SampleProfileReaderItaniumRemapper>( 1686 std::move(B), std::move(Remappings), Reader); 1687 } 1688 1689 /// Create a sample profile reader based on the format of the input data. 1690 /// 1691 /// \param B The memory buffer to create the reader from (assumes ownership). 1692 /// 1693 /// \param C The LLVM context to use to emit diagnostics. 1694 /// 1695 /// \param P The FSDiscriminatorPass. 1696 /// 1697 /// \param RemapFilename The file used for profile remapping. 1698 /// 1699 /// \returns an error code indicating the status of the created reader. 1700 ErrorOr<std::unique_ptr<SampleProfileReader>> 1701 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C, 1702 FSDiscriminatorPass P, 1703 const std::string RemapFilename) { 1704 std::unique_ptr<SampleProfileReader> Reader; 1705 if (SampleProfileReaderRawBinary::hasFormat(*B)) 1706 Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C)); 1707 else if (SampleProfileReaderExtBinary::hasFormat(*B)) 1708 Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C)); 1709 else if (SampleProfileReaderCompactBinary::hasFormat(*B)) 1710 Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C)); 1711 else if (SampleProfileReaderGCC::hasFormat(*B)) 1712 Reader.reset(new SampleProfileReaderGCC(std::move(B), C)); 1713 else if (SampleProfileReaderText::hasFormat(*B)) 1714 Reader.reset(new SampleProfileReaderText(std::move(B), C)); 1715 else 1716 return sampleprof_error::unrecognized_format; 1717 1718 if (!RemapFilename.empty()) { 1719 auto ReaderOrErr = 1720 SampleProfileReaderItaniumRemapper::create(RemapFilename, *Reader, C); 1721 if (std::error_code EC = ReaderOrErr.getError()) { 1722 std::string Msg = "Could not create remapper: " + EC.message(); 1723 C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg)); 1724 return EC; 1725 } 1726 Reader->Remapper = std::move(ReaderOrErr.get()); 1727 } 1728 1729 FunctionSamples::Format = Reader->getFormat(); 1730 if (std::error_code EC = Reader->readHeader()) { 1731 return EC; 1732 } 1733 1734 Reader->setDiscriminatorMaskedBitFrom(P); 1735 1736 return std::move(Reader); 1737 } 1738 1739 // For text and GCC file formats, we compute the summary after reading the 1740 // profile. Binary format has the profile summary in its header. 1741 void SampleProfileReader::computeSummary() { 1742 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1743 Summary = Builder.computeSummaryForProfiles(Profiles); 1744 } 1745