1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the class that reads LLVM sample profiles. It 10 // supports three file formats: text, binary and gcov. 11 // 12 // The textual representation is useful for debugging and testing purposes. The 13 // binary representation is more compact, resulting in smaller file sizes. 14 // 15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation 16 // tool (https://github.com/google/autofdo) 17 // 18 // All three encodings can be used interchangeably as an input sample profile. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ProfileData/SampleProfReader.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/IR/ProfileSummary.h" 27 #include "llvm/ProfileData/ProfileCommon.h" 28 #include "llvm/ProfileData/SampleProf.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Compression.h" 31 #include "llvm/Support/ErrorOr.h" 32 #include "llvm/Support/LEB128.h" 33 #include "llvm/Support/LineIterator.h" 34 #include "llvm/Support/MD5.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cstddef> 39 #include <cstdint> 40 #include <limits> 41 #include <memory> 42 #include <set> 43 #include <system_error> 44 #include <vector> 45 46 using namespace llvm; 47 using namespace sampleprof; 48 49 #define DEBUG_TYPE "samplepgo-reader" 50 51 // This internal option specifies if the profile uses FS discriminators. 52 // It only applies to text, binary and compact binary format profiles. 53 // For ext-binary format profiles, the flag is set in the summary. 54 static cl::opt<bool> ProfileIsFSDisciminator( 55 "profile-isfs", cl::Hidden, cl::init(false), 56 cl::desc("Profile uses flow sensitive discriminators")); 57 58 /// Dump the function profile for \p FName. 59 /// 60 /// \param FName Name of the function to print. 61 /// \param OS Stream to emit the output to. 62 void SampleProfileReader::dumpFunctionProfile(SampleContext FContext, 63 raw_ostream &OS) { 64 OS << "Function: " << FContext.toString() << ": " << Profiles[FContext]; 65 } 66 67 /// Dump all the function profiles found on stream \p OS. 68 void SampleProfileReader::dump(raw_ostream &OS) { 69 std::vector<NameFunctionSamples> V; 70 sortFuncProfiles(Profiles, V); 71 for (const auto &I : V) 72 dumpFunctionProfile(I.first, OS); 73 } 74 75 /// Parse \p Input as function head. 76 /// 77 /// Parse one line of \p Input, and update function name in \p FName, 78 /// function's total sample count in \p NumSamples, function's entry 79 /// count in \p NumHeadSamples. 80 /// 81 /// \returns true if parsing is successful. 82 static bool ParseHead(const StringRef &Input, StringRef &FName, 83 uint64_t &NumSamples, uint64_t &NumHeadSamples) { 84 if (Input[0] == ' ') 85 return false; 86 size_t n2 = Input.rfind(':'); 87 size_t n1 = Input.rfind(':', n2 - 1); 88 FName = Input.substr(0, n1); 89 if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples)) 90 return false; 91 if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples)) 92 return false; 93 return true; 94 } 95 96 /// Returns true if line offset \p L is legal (only has 16 bits). 97 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; } 98 99 /// Parse \p Input that contains metadata. 100 /// Possible metadata: 101 /// - CFG Checksum information: 102 /// !CFGChecksum: 12345 103 /// - CFG Checksum information: 104 /// !Attributes: 1 105 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash. 106 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, 107 uint32_t &Attributes) { 108 if (Input.startswith("!CFGChecksum:")) { 109 StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim(); 110 return !CFGInfo.getAsInteger(10, FunctionHash); 111 } 112 113 if (Input.startswith("!Attributes:")) { 114 StringRef Attrib = Input.substr(strlen("!Attributes:")).trim(); 115 return !Attrib.getAsInteger(10, Attributes); 116 } 117 118 return false; 119 } 120 121 enum class LineType { 122 CallSiteProfile, 123 BodyProfile, 124 Metadata, 125 }; 126 127 /// Parse \p Input as line sample. 128 /// 129 /// \param Input input line. 130 /// \param LineTy Type of this line. 131 /// \param Depth the depth of the inline stack. 132 /// \param NumSamples total samples of the line/inlined callsite. 133 /// \param LineOffset line offset to the start of the function. 134 /// \param Discriminator discriminator of the line. 135 /// \param TargetCountMap map from indirect call target to count. 136 /// \param FunctionHash the function's CFG hash, used by pseudo probe. 137 /// 138 /// returns true if parsing is successful. 139 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth, 140 uint64_t &NumSamples, uint32_t &LineOffset, 141 uint32_t &Discriminator, StringRef &CalleeName, 142 DenseMap<StringRef, uint64_t> &TargetCountMap, 143 uint64_t &FunctionHash, uint32_t &Attributes) { 144 for (Depth = 0; Input[Depth] == ' '; Depth++) 145 ; 146 if (Depth == 0) 147 return false; 148 149 if (Depth == 1 && Input[Depth] == '!') { 150 LineTy = LineType::Metadata; 151 return parseMetadata(Input.substr(Depth), FunctionHash, Attributes); 152 } 153 154 size_t n1 = Input.find(':'); 155 StringRef Loc = Input.substr(Depth, n1 - Depth); 156 size_t n2 = Loc.find('.'); 157 if (n2 == StringRef::npos) { 158 if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset)) 159 return false; 160 Discriminator = 0; 161 } else { 162 if (Loc.substr(0, n2).getAsInteger(10, LineOffset)) 163 return false; 164 if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator)) 165 return false; 166 } 167 168 StringRef Rest = Input.substr(n1 + 2); 169 if (isDigit(Rest[0])) { 170 LineTy = LineType::BodyProfile; 171 size_t n3 = Rest.find(' '); 172 if (n3 == StringRef::npos) { 173 if (Rest.getAsInteger(10, NumSamples)) 174 return false; 175 } else { 176 if (Rest.substr(0, n3).getAsInteger(10, NumSamples)) 177 return false; 178 } 179 // Find call targets and their sample counts. 180 // Note: In some cases, there are symbols in the profile which are not 181 // mangled. To accommodate such cases, use colon + integer pairs as the 182 // anchor points. 183 // An example: 184 // _M_construct<char *>:1000 string_view<std::allocator<char> >:437 185 // ":1000" and ":437" are used as anchor points so the string above will 186 // be interpreted as 187 // target: _M_construct<char *> 188 // count: 1000 189 // target: string_view<std::allocator<char> > 190 // count: 437 191 while (n3 != StringRef::npos) { 192 n3 += Rest.substr(n3).find_first_not_of(' '); 193 Rest = Rest.substr(n3); 194 n3 = Rest.find_first_of(':'); 195 if (n3 == StringRef::npos || n3 == 0) 196 return false; 197 198 StringRef Target; 199 uint64_t count, n4; 200 while (true) { 201 // Get the segment after the current colon. 202 StringRef AfterColon = Rest.substr(n3 + 1); 203 // Get the target symbol before the current colon. 204 Target = Rest.substr(0, n3); 205 // Check if the word after the current colon is an integer. 206 n4 = AfterColon.find_first_of(' '); 207 n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size(); 208 StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1); 209 if (!WordAfterColon.getAsInteger(10, count)) 210 break; 211 212 // Try to find the next colon. 213 uint64_t n5 = AfterColon.find_first_of(':'); 214 if (n5 == StringRef::npos) 215 return false; 216 n3 += n5 + 1; 217 } 218 219 // An anchor point is found. Save the {target, count} pair 220 TargetCountMap[Target] = count; 221 if (n4 == Rest.size()) 222 break; 223 // Change n3 to the next blank space after colon + integer pair. 224 n3 = n4; 225 } 226 } else { 227 LineTy = LineType::CallSiteProfile; 228 size_t n3 = Rest.find_last_of(':'); 229 CalleeName = Rest.substr(0, n3); 230 if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples)) 231 return false; 232 } 233 return true; 234 } 235 236 /// Load samples from a text file. 237 /// 238 /// See the documentation at the top of the file for an explanation of 239 /// the expected format. 240 /// 241 /// \returns true if the file was loaded successfully, false otherwise. 242 std::error_code SampleProfileReaderText::readImpl() { 243 line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); 244 sampleprof_error Result = sampleprof_error::success; 245 246 InlineCallStack InlineStack; 247 uint32_t ProbeProfileCount = 0; 248 249 // SeenMetadata tracks whether we have processed metadata for the current 250 // top-level function profile. 251 bool SeenMetadata = false; 252 253 ProfileIsFS = ProfileIsFSDisciminator; 254 FunctionSamples::ProfileIsFS = ProfileIsFS; 255 for (; !LineIt.is_at_eof(); ++LineIt) { 256 if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#') 257 continue; 258 // Read the header of each function. 259 // 260 // Note that for function identifiers we are actually expecting 261 // mangled names, but we may not always get them. This happens when 262 // the compiler decides not to emit the function (e.g., it was inlined 263 // and removed). In this case, the binary will not have the linkage 264 // name for the function, so the profiler will emit the function's 265 // unmangled name, which may contain characters like ':' and '>' in its 266 // name (member functions, templates, etc). 267 // 268 // The only requirement we place on the identifier, then, is that it 269 // should not begin with a number. 270 if ((*LineIt)[0] != ' ') { 271 uint64_t NumSamples, NumHeadSamples; 272 StringRef FName; 273 if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) { 274 reportError(LineIt.line_number(), 275 "Expected 'mangled_name:NUM:NUM', found " + *LineIt); 276 return sampleprof_error::malformed; 277 } 278 SeenMetadata = false; 279 SampleContext FContext(FName, CSNameTable); 280 if (FContext.hasContext()) 281 ++CSProfileCount; 282 Profiles[FContext] = FunctionSamples(); 283 FunctionSamples &FProfile = Profiles[FContext]; 284 FProfile.setContext(FContext); 285 MergeResult(Result, FProfile.addTotalSamples(NumSamples)); 286 MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples)); 287 InlineStack.clear(); 288 InlineStack.push_back(&FProfile); 289 } else { 290 uint64_t NumSamples; 291 StringRef FName; 292 DenseMap<StringRef, uint64_t> TargetCountMap; 293 uint32_t Depth, LineOffset, Discriminator; 294 LineType LineTy; 295 uint64_t FunctionHash = 0; 296 uint32_t Attributes = 0; 297 if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset, 298 Discriminator, FName, TargetCountMap, FunctionHash, 299 Attributes)) { 300 reportError(LineIt.line_number(), 301 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + 302 *LineIt); 303 return sampleprof_error::malformed; 304 } 305 if (SeenMetadata && LineTy != LineType::Metadata) { 306 // Metadata must be put at the end of a function profile. 307 reportError(LineIt.line_number(), 308 "Found non-metadata after metadata: " + *LineIt); 309 return sampleprof_error::malformed; 310 } 311 312 // Here we handle FS discriminators. 313 Discriminator &= getDiscriminatorMask(); 314 315 while (InlineStack.size() > Depth) { 316 InlineStack.pop_back(); 317 } 318 switch (LineTy) { 319 case LineType::CallSiteProfile: { 320 FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( 321 LineLocation(LineOffset, Discriminator))[std::string(FName)]; 322 FSamples.setName(FName); 323 MergeResult(Result, FSamples.addTotalSamples(NumSamples)); 324 InlineStack.push_back(&FSamples); 325 break; 326 } 327 case LineType::BodyProfile: { 328 while (InlineStack.size() > Depth) { 329 InlineStack.pop_back(); 330 } 331 FunctionSamples &FProfile = *InlineStack.back(); 332 for (const auto &name_count : TargetCountMap) { 333 MergeResult(Result, FProfile.addCalledTargetSamples( 334 LineOffset, Discriminator, name_count.first, 335 name_count.second)); 336 } 337 MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator, 338 NumSamples)); 339 break; 340 } 341 case LineType::Metadata: { 342 FunctionSamples &FProfile = *InlineStack.back(); 343 if (FunctionHash) { 344 FProfile.setFunctionHash(FunctionHash); 345 ++ProbeProfileCount; 346 } 347 if (Attributes) 348 FProfile.getContext().setAllAttributes(Attributes); 349 SeenMetadata = true; 350 break; 351 } 352 } 353 } 354 } 355 356 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 357 "Cannot have both context-sensitive and regular profile"); 358 ProfileIsCS = (CSProfileCount > 0); 359 assert((ProbeProfileCount == 0 || ProbeProfileCount == Profiles.size()) && 360 "Cannot have both probe-based profiles and regular profiles"); 361 ProfileIsProbeBased = (ProbeProfileCount > 0); 362 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 363 FunctionSamples::ProfileIsCS = ProfileIsCS; 364 365 if (Result == sampleprof_error::success) 366 computeSummary(); 367 368 return Result; 369 } 370 371 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) { 372 bool result = false; 373 374 // Check that the first non-comment line is a valid function header. 375 line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#'); 376 if (!LineIt.is_at_eof()) { 377 if ((*LineIt)[0] != ' ') { 378 uint64_t NumSamples, NumHeadSamples; 379 StringRef FName; 380 result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples); 381 } 382 } 383 384 return result; 385 } 386 387 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() { 388 unsigned NumBytesRead = 0; 389 std::error_code EC; 390 uint64_t Val = decodeULEB128(Data, &NumBytesRead); 391 392 if (Val > std::numeric_limits<T>::max()) 393 EC = sampleprof_error::malformed; 394 else if (Data + NumBytesRead > End) 395 EC = sampleprof_error::truncated; 396 else 397 EC = sampleprof_error::success; 398 399 if (EC) { 400 reportError(0, EC.message()); 401 return EC; 402 } 403 404 Data += NumBytesRead; 405 return static_cast<T>(Val); 406 } 407 408 ErrorOr<StringRef> SampleProfileReaderBinary::readString() { 409 std::error_code EC; 410 StringRef Str(reinterpret_cast<const char *>(Data)); 411 if (Data + Str.size() + 1 > End) { 412 EC = sampleprof_error::truncated; 413 reportError(0, EC.message()); 414 return EC; 415 } 416 417 Data += Str.size() + 1; 418 return Str; 419 } 420 421 template <typename T> 422 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() { 423 std::error_code EC; 424 425 if (Data + sizeof(T) > End) { 426 EC = sampleprof_error::truncated; 427 reportError(0, EC.message()); 428 return EC; 429 } 430 431 using namespace support; 432 T Val = endian::readNext<T, little, unaligned>(Data); 433 return Val; 434 } 435 436 template <typename T> 437 inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) { 438 std::error_code EC; 439 auto Idx = readNumber<uint32_t>(); 440 if (std::error_code EC = Idx.getError()) 441 return EC; 442 if (*Idx >= Table.size()) 443 return sampleprof_error::truncated_name_table; 444 return *Idx; 445 } 446 447 ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() { 448 auto Idx = readStringIndex(NameTable); 449 if (std::error_code EC = Idx.getError()) 450 return EC; 451 452 return NameTable[*Idx]; 453 } 454 455 ErrorOr<SampleContext> SampleProfileReaderBinary::readSampleContextFromTable() { 456 auto FName(readStringFromTable()); 457 if (std::error_code EC = FName.getError()) 458 return EC; 459 return SampleContext(*FName); 460 } 461 462 ErrorOr<StringRef> SampleProfileReaderExtBinaryBase::readStringFromTable() { 463 if (!FixedLengthMD5) 464 return SampleProfileReaderBinary::readStringFromTable(); 465 466 // read NameTable index. 467 auto Idx = readStringIndex(NameTable); 468 if (std::error_code EC = Idx.getError()) 469 return EC; 470 471 // Check whether the name to be accessed has been accessed before, 472 // if not, read it from memory directly. 473 StringRef &SR = NameTable[*Idx]; 474 if (SR.empty()) { 475 const uint8_t *SavedData = Data; 476 Data = MD5NameMemStart + ((*Idx) * sizeof(uint64_t)); 477 auto FID = readUnencodedNumber<uint64_t>(); 478 if (std::error_code EC = FID.getError()) 479 return EC; 480 // Save the string converted from uint64_t in MD5StringBuf. All the 481 // references to the name are all StringRefs refering to the string 482 // in MD5StringBuf. 483 MD5StringBuf->push_back(std::to_string(*FID)); 484 SR = MD5StringBuf->back(); 485 Data = SavedData; 486 } 487 return SR; 488 } 489 490 ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() { 491 auto Idx = readStringIndex(NameTable); 492 if (std::error_code EC = Idx.getError()) 493 return EC; 494 495 return StringRef(NameTable[*Idx]); 496 } 497 498 std::error_code 499 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) { 500 auto NumSamples = readNumber<uint64_t>(); 501 if (std::error_code EC = NumSamples.getError()) 502 return EC; 503 FProfile.addTotalSamples(*NumSamples); 504 505 // Read the samples in the body. 506 auto NumRecords = readNumber<uint32_t>(); 507 if (std::error_code EC = NumRecords.getError()) 508 return EC; 509 510 for (uint32_t I = 0; I < *NumRecords; ++I) { 511 auto LineOffset = readNumber<uint64_t>(); 512 if (std::error_code EC = LineOffset.getError()) 513 return EC; 514 515 if (!isOffsetLegal(*LineOffset)) { 516 return std::error_code(); 517 } 518 519 auto Discriminator = readNumber<uint64_t>(); 520 if (std::error_code EC = Discriminator.getError()) 521 return EC; 522 523 auto NumSamples = readNumber<uint64_t>(); 524 if (std::error_code EC = NumSamples.getError()) 525 return EC; 526 527 auto NumCalls = readNumber<uint32_t>(); 528 if (std::error_code EC = NumCalls.getError()) 529 return EC; 530 531 // Here we handle FS discriminators: 532 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 533 534 for (uint32_t J = 0; J < *NumCalls; ++J) { 535 auto CalledFunction(readStringFromTable()); 536 if (std::error_code EC = CalledFunction.getError()) 537 return EC; 538 539 auto CalledFunctionSamples = readNumber<uint64_t>(); 540 if (std::error_code EC = CalledFunctionSamples.getError()) 541 return EC; 542 543 FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal, 544 *CalledFunction, *CalledFunctionSamples); 545 } 546 547 FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples); 548 } 549 550 // Read all the samples for inlined function calls. 551 auto NumCallsites = readNumber<uint32_t>(); 552 if (std::error_code EC = NumCallsites.getError()) 553 return EC; 554 555 for (uint32_t J = 0; J < *NumCallsites; ++J) { 556 auto LineOffset = readNumber<uint64_t>(); 557 if (std::error_code EC = LineOffset.getError()) 558 return EC; 559 560 auto Discriminator = readNumber<uint64_t>(); 561 if (std::error_code EC = Discriminator.getError()) 562 return EC; 563 564 auto FName(readStringFromTable()); 565 if (std::error_code EC = FName.getError()) 566 return EC; 567 568 // Here we handle FS discriminators: 569 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask(); 570 571 FunctionSamples &CalleeProfile = FProfile.functionSamplesAt( 572 LineLocation(*LineOffset, DiscriminatorVal))[std::string(*FName)]; 573 CalleeProfile.setName(*FName); 574 if (std::error_code EC = readProfile(CalleeProfile)) 575 return EC; 576 } 577 578 return sampleprof_error::success; 579 } 580 581 std::error_code 582 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) { 583 Data = Start; 584 auto NumHeadSamples = readNumber<uint64_t>(); 585 if (std::error_code EC = NumHeadSamples.getError()) 586 return EC; 587 588 ErrorOr<SampleContext> FContext(readSampleContextFromTable()); 589 if (std::error_code EC = FContext.getError()) 590 return EC; 591 592 Profiles[*FContext] = FunctionSamples(); 593 FunctionSamples &FProfile = Profiles[*FContext]; 594 FProfile.setContext(*FContext); 595 FProfile.addHeadSamples(*NumHeadSamples); 596 597 if (FContext->hasContext()) 598 CSProfileCount++; 599 600 if (std::error_code EC = readProfile(FProfile)) 601 return EC; 602 return sampleprof_error::success; 603 } 604 605 std::error_code SampleProfileReaderBinary::readImpl() { 606 ProfileIsFS = ProfileIsFSDisciminator; 607 FunctionSamples::ProfileIsFS = ProfileIsFS; 608 while (!at_eof()) { 609 if (std::error_code EC = readFuncProfile(Data)) 610 return EC; 611 } 612 613 return sampleprof_error::success; 614 } 615 616 ErrorOr<SampleContextFrames> 617 SampleProfileReaderExtBinaryBase::readContextFromTable() { 618 auto ContextIdx = readNumber<uint32_t>(); 619 if (std::error_code EC = ContextIdx.getError()) 620 return EC; 621 if (*ContextIdx >= CSNameTable->size()) 622 return sampleprof_error::truncated_name_table; 623 return (*CSNameTable)[*ContextIdx]; 624 } 625 626 ErrorOr<SampleContext> 627 SampleProfileReaderExtBinaryBase::readSampleContextFromTable() { 628 if (ProfileIsCS) { 629 auto FContext(readContextFromTable()); 630 if (std::error_code EC = FContext.getError()) 631 return EC; 632 return SampleContext(*FContext); 633 } else { 634 auto FName(readStringFromTable()); 635 if (std::error_code EC = FName.getError()) 636 return EC; 637 return SampleContext(*FName); 638 } 639 } 640 641 std::error_code SampleProfileReaderExtBinaryBase::readOneSection( 642 const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) { 643 Data = Start; 644 End = Start + Size; 645 switch (Entry.Type) { 646 case SecProfSummary: 647 if (std::error_code EC = readSummary()) 648 return EC; 649 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 650 Summary->setPartialProfile(true); 651 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 652 FunctionSamples::ProfileIsCS = ProfileIsCS = true; 653 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 654 FunctionSamples::ProfileIsFS = ProfileIsFS = true; 655 break; 656 case SecNameTable: { 657 FixedLengthMD5 = 658 hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5); 659 bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name); 660 assert((!FixedLengthMD5 || UseMD5) && 661 "If FixedLengthMD5 is true, UseMD5 has to be true"); 662 FunctionSamples::HasUniqSuffix = 663 hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix); 664 if (std::error_code EC = readNameTableSec(UseMD5)) 665 return EC; 666 break; 667 } 668 case SecCSNameTable: { 669 if (std::error_code EC = readCSNameTableSec()) 670 return EC; 671 break; 672 } 673 case SecLBRProfile: 674 if (std::error_code EC = readFuncProfiles()) 675 return EC; 676 break; 677 case SecFuncOffsetTable: 678 if (std::error_code EC = readFuncOffsetTable()) 679 return EC; 680 break; 681 case SecFuncMetadata: { 682 ProfileIsProbeBased = 683 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased); 684 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased; 685 bool HasAttribute = 686 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute); 687 if (std::error_code EC = readFuncMetadata(HasAttribute)) 688 return EC; 689 break; 690 } 691 case SecProfileSymbolList: 692 if (std::error_code EC = readProfileSymbolList()) 693 return EC; 694 break; 695 default: 696 if (std::error_code EC = readCustomSection(Entry)) 697 return EC; 698 break; 699 } 700 return sampleprof_error::success; 701 } 702 703 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() { 704 if (!M) 705 return false; 706 FuncsToUse.clear(); 707 for (auto &F : *M) 708 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 709 return true; 710 } 711 712 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() { 713 // If there are more than one FuncOffsetTable, the profile read associated 714 // with previous FuncOffsetTable has to be done before next FuncOffsetTable 715 // is read. 716 FuncOffsetTable.clear(); 717 718 auto Size = readNumber<uint64_t>(); 719 if (std::error_code EC = Size.getError()) 720 return EC; 721 722 FuncOffsetTable.reserve(*Size); 723 for (uint32_t I = 0; I < *Size; ++I) { 724 auto FName(readSampleContextFromTable()); 725 if (std::error_code EC = FName.getError()) 726 return EC; 727 728 auto Offset = readNumber<uint64_t>(); 729 if (std::error_code EC = Offset.getError()) 730 return EC; 731 732 FuncOffsetTable[*FName] = *Offset; 733 } 734 return sampleprof_error::success; 735 } 736 737 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() { 738 // Collect functions used by current module if the Reader has been 739 // given a module. 740 // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName 741 // which will query FunctionSamples::HasUniqSuffix, so it has to be 742 // called after FunctionSamples::HasUniqSuffix is set, i.e. after 743 // NameTable section is read. 744 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 745 746 // When LoadFuncsToBeUsed is false, load all the function profiles. 747 const uint8_t *Start = Data; 748 if (!LoadFuncsToBeUsed) { 749 while (Data < End) { 750 if (std::error_code EC = readFuncProfile(Data)) 751 return EC; 752 } 753 assert(Data == End && "More data is read than expected"); 754 } else { 755 // Load function profiles on demand. 756 if (Remapper) { 757 for (auto Name : FuncsToUse) { 758 Remapper->insert(Name); 759 } 760 } 761 762 if (ProfileIsCS) { 763 // Compute the ordered set of names, so we can 764 // get all context profiles under a subtree by 765 // iterating through the ordered names. 766 std::set<SampleContext> OrderedContexts; 767 for (auto Name : FuncOffsetTable) { 768 OrderedContexts.insert(Name.first); 769 } 770 771 DenseSet<uint64_t> FuncGuidsToUse; 772 if (useMD5()) { 773 for (auto Name : FuncsToUse) 774 FuncGuidsToUse.insert(Function::getGUID(Name)); 775 } 776 777 // For each function in current module, load all 778 // context profiles for the function. 779 for (auto NameOffset : FuncOffsetTable) { 780 SampleContext FContext = NameOffset.first; 781 auto FuncName = FContext.getName(); 782 if ((useMD5() && !FuncGuidsToUse.count(std::stoull(FuncName.data()))) || 783 (!useMD5() && !FuncsToUse.count(FuncName) && 784 (!Remapper || !Remapper->exist(FuncName)))) 785 continue; 786 787 // For each context profile we need, try to load 788 // all context profile in the subtree. This can 789 // help profile guided importing for ThinLTO. 790 auto It = OrderedContexts.find(FContext); 791 while (It != OrderedContexts.end() && FContext.IsPrefixOf(*It)) { 792 const uint8_t *FuncProfileAddr = Start + FuncOffsetTable[*It]; 793 assert(FuncProfileAddr < End && "out of LBRProfile section"); 794 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 795 return EC; 796 // Remove loaded context profile so we won't 797 // load it repeatedly. 798 It = OrderedContexts.erase(It); 799 } 800 } 801 } else { 802 if (useMD5()) { 803 for (auto Name : FuncsToUse) { 804 auto GUID = std::to_string(MD5Hash(Name)); 805 auto iter = FuncOffsetTable.find(StringRef(GUID)); 806 if (iter == FuncOffsetTable.end()) 807 continue; 808 const uint8_t *FuncProfileAddr = Start + iter->second; 809 assert(FuncProfileAddr < End && "out of LBRProfile section"); 810 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 811 return EC; 812 } 813 } else { 814 for (auto NameOffset : FuncOffsetTable) { 815 SampleContext FContext(NameOffset.first); 816 auto FuncName = FContext.getName(); 817 if (!FuncsToUse.count(FuncName) && 818 (!Remapper || !Remapper->exist(FuncName))) 819 continue; 820 const uint8_t *FuncProfileAddr = Start + NameOffset.second; 821 assert(FuncProfileAddr < End && "out of LBRProfile section"); 822 if (std::error_code EC = readFuncProfile(FuncProfileAddr)) 823 return EC; 824 } 825 } 826 } 827 Data = End; 828 } 829 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) && 830 "Cannot have both context-sensitive and regular profile"); 831 assert((!CSProfileCount || ProfileIsCS) && 832 "Section flag should be consistent with actual profile"); 833 return sampleprof_error::success; 834 } 835 836 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() { 837 if (!ProfSymList) 838 ProfSymList = std::make_unique<ProfileSymbolList>(); 839 840 if (std::error_code EC = ProfSymList->read(Data, End - Data)) 841 return EC; 842 843 Data = End; 844 return sampleprof_error::success; 845 } 846 847 std::error_code SampleProfileReaderExtBinaryBase::decompressSection( 848 const uint8_t *SecStart, const uint64_t SecSize, 849 const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) { 850 Data = SecStart; 851 End = SecStart + SecSize; 852 auto DecompressSize = readNumber<uint64_t>(); 853 if (std::error_code EC = DecompressSize.getError()) 854 return EC; 855 DecompressBufSize = *DecompressSize; 856 857 auto CompressSize = readNumber<uint64_t>(); 858 if (std::error_code EC = CompressSize.getError()) 859 return EC; 860 861 if (!llvm::zlib::isAvailable()) 862 return sampleprof_error::zlib_unavailable; 863 864 StringRef CompressedStrings(reinterpret_cast<const char *>(Data), 865 *CompressSize); 866 char *Buffer = Allocator.Allocate<char>(DecompressBufSize); 867 size_t UCSize = DecompressBufSize; 868 llvm::Error E = 869 zlib::uncompress(CompressedStrings, Buffer, UCSize); 870 if (E) 871 return sampleprof_error::uncompress_failed; 872 DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer); 873 return sampleprof_error::success; 874 } 875 876 std::error_code SampleProfileReaderExtBinaryBase::readImpl() { 877 const uint8_t *BufStart = 878 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 879 880 for (auto &Entry : SecHdrTable) { 881 // Skip empty section. 882 if (!Entry.Size) 883 continue; 884 885 // Skip sections without context when SkipFlatProf is true. 886 if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 887 continue; 888 889 const uint8_t *SecStart = BufStart + Entry.Offset; 890 uint64_t SecSize = Entry.Size; 891 892 // If the section is compressed, decompress it into a buffer 893 // DecompressBuf before reading the actual data. The pointee of 894 // 'Data' will be changed to buffer hold by DecompressBuf 895 // temporarily when reading the actual data. 896 bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress); 897 if (isCompressed) { 898 const uint8_t *DecompressBuf; 899 uint64_t DecompressBufSize; 900 if (std::error_code EC = decompressSection( 901 SecStart, SecSize, DecompressBuf, DecompressBufSize)) 902 return EC; 903 SecStart = DecompressBuf; 904 SecSize = DecompressBufSize; 905 } 906 907 if (std::error_code EC = readOneSection(SecStart, SecSize, Entry)) 908 return EC; 909 if (Data != SecStart + SecSize) 910 return sampleprof_error::malformed; 911 912 // Change the pointee of 'Data' from DecompressBuf to original Buffer. 913 if (isCompressed) { 914 Data = BufStart + Entry.Offset; 915 End = BufStart + Buffer->getBufferSize(); 916 } 917 } 918 919 return sampleprof_error::success; 920 } 921 922 std::error_code SampleProfileReaderCompactBinary::readImpl() { 923 // Collect functions used by current module if the Reader has been 924 // given a module. 925 bool LoadFuncsToBeUsed = collectFuncsFromModule(); 926 ProfileIsFS = ProfileIsFSDisciminator; 927 FunctionSamples::ProfileIsFS = ProfileIsFS; 928 std::vector<uint64_t> OffsetsToUse; 929 if (!LoadFuncsToBeUsed) { 930 // load all the function profiles. 931 for (auto FuncEntry : FuncOffsetTable) { 932 OffsetsToUse.push_back(FuncEntry.second); 933 } 934 } else { 935 // load function profiles on demand. 936 for (auto Name : FuncsToUse) { 937 auto GUID = std::to_string(MD5Hash(Name)); 938 auto iter = FuncOffsetTable.find(StringRef(GUID)); 939 if (iter == FuncOffsetTable.end()) 940 continue; 941 OffsetsToUse.push_back(iter->second); 942 } 943 } 944 945 for (auto Offset : OffsetsToUse) { 946 const uint8_t *SavedData = Data; 947 if (std::error_code EC = readFuncProfile( 948 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) + 949 Offset)) 950 return EC; 951 Data = SavedData; 952 } 953 return sampleprof_error::success; 954 } 955 956 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) { 957 if (Magic == SPMagic()) 958 return sampleprof_error::success; 959 return sampleprof_error::bad_magic; 960 } 961 962 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) { 963 if (Magic == SPMagic(SPF_Ext_Binary)) 964 return sampleprof_error::success; 965 return sampleprof_error::bad_magic; 966 } 967 968 std::error_code 969 SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) { 970 if (Magic == SPMagic(SPF_Compact_Binary)) 971 return sampleprof_error::success; 972 return sampleprof_error::bad_magic; 973 } 974 975 std::error_code SampleProfileReaderBinary::readNameTable() { 976 auto Size = readNumber<uint32_t>(); 977 if (std::error_code EC = Size.getError()) 978 return EC; 979 NameTable.reserve(*Size + NameTable.size()); 980 for (uint32_t I = 0; I < *Size; ++I) { 981 auto Name(readString()); 982 if (std::error_code EC = Name.getError()) 983 return EC; 984 NameTable.push_back(*Name); 985 } 986 987 return sampleprof_error::success; 988 } 989 990 std::error_code SampleProfileReaderExtBinaryBase::readMD5NameTable() { 991 auto Size = readNumber<uint64_t>(); 992 if (std::error_code EC = Size.getError()) 993 return EC; 994 MD5StringBuf = std::make_unique<std::vector<std::string>>(); 995 MD5StringBuf->reserve(*Size); 996 if (FixedLengthMD5) { 997 // Preallocate and initialize NameTable so we can check whether a name 998 // index has been read before by checking whether the element in the 999 // NameTable is empty, meanwhile readStringIndex can do the boundary 1000 // check using the size of NameTable. 1001 NameTable.resize(*Size + NameTable.size()); 1002 1003 MD5NameMemStart = Data; 1004 Data = Data + (*Size) * sizeof(uint64_t); 1005 return sampleprof_error::success; 1006 } 1007 NameTable.reserve(*Size); 1008 for (uint32_t I = 0; I < *Size; ++I) { 1009 auto FID = readNumber<uint64_t>(); 1010 if (std::error_code EC = FID.getError()) 1011 return EC; 1012 MD5StringBuf->push_back(std::to_string(*FID)); 1013 // NameTable is a vector of StringRef. Here it is pushing back a 1014 // StringRef initialized with the last string in MD5stringBuf. 1015 NameTable.push_back(MD5StringBuf->back()); 1016 } 1017 return sampleprof_error::success; 1018 } 1019 1020 std::error_code SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5) { 1021 if (IsMD5) 1022 return readMD5NameTable(); 1023 return SampleProfileReaderBinary::readNameTable(); 1024 } 1025 1026 // Read in the CS name table section, which basically contains a list of context 1027 // vectors. Each element of a context vector, aka a frame, refers to the 1028 // underlying raw function names that are stored in the name table, as well as 1029 // a callsite identifier that only makes sense for non-leaf frames. 1030 std::error_code SampleProfileReaderExtBinaryBase::readCSNameTableSec() { 1031 auto Size = readNumber<uint32_t>(); 1032 if (std::error_code EC = Size.getError()) 1033 return EC; 1034 1035 std::vector<SampleContextFrameVector> *PNameVec = 1036 new std::vector<SampleContextFrameVector>(); 1037 PNameVec->reserve(*Size); 1038 for (uint32_t I = 0; I < *Size; ++I) { 1039 PNameVec->emplace_back(SampleContextFrameVector()); 1040 auto ContextSize = readNumber<uint32_t>(); 1041 if (std::error_code EC = ContextSize.getError()) 1042 return EC; 1043 for (uint32_t J = 0; J < *ContextSize; ++J) { 1044 auto FName(readStringFromTable()); 1045 if (std::error_code EC = FName.getError()) 1046 return EC; 1047 auto LineOffset = readNumber<uint64_t>(); 1048 if (std::error_code EC = LineOffset.getError()) 1049 return EC; 1050 1051 if (!isOffsetLegal(*LineOffset)) 1052 return std::error_code(); 1053 1054 auto Discriminator = readNumber<uint64_t>(); 1055 if (std::error_code EC = Discriminator.getError()) 1056 return EC; 1057 1058 PNameVec->back().emplace_back( 1059 FName.get(), LineLocation(LineOffset.get(), Discriminator.get())); 1060 } 1061 } 1062 1063 // From this point the underlying object of CSNameTable should be immutable. 1064 CSNameTable.reset(PNameVec); 1065 return sampleprof_error::success; 1066 } 1067 1068 std::error_code 1069 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) { 1070 while (Data < End) { 1071 auto FContext(readSampleContextFromTable()); 1072 if (std::error_code EC = FContext.getError()) 1073 return EC; 1074 1075 bool ProfileInMap = Profiles.count(*FContext); 1076 if (ProfileIsProbeBased) { 1077 auto Checksum = readNumber<uint64_t>(); 1078 if (std::error_code EC = Checksum.getError()) 1079 return EC; 1080 if (ProfileInMap) 1081 Profiles[*FContext].setFunctionHash(*Checksum); 1082 } 1083 1084 if (ProfileHasAttribute) { 1085 auto Attributes = readNumber<uint32_t>(); 1086 if (std::error_code EC = Attributes.getError()) 1087 return EC; 1088 if (ProfileInMap) 1089 Profiles[*FContext].getContext().setAllAttributes(*Attributes); 1090 } 1091 } 1092 1093 assert(Data == End && "More data is read than expected"); 1094 return sampleprof_error::success; 1095 } 1096 1097 std::error_code SampleProfileReaderCompactBinary::readNameTable() { 1098 auto Size = readNumber<uint64_t>(); 1099 if (std::error_code EC = Size.getError()) 1100 return EC; 1101 NameTable.reserve(*Size); 1102 for (uint32_t I = 0; I < *Size; ++I) { 1103 auto FID = readNumber<uint64_t>(); 1104 if (std::error_code EC = FID.getError()) 1105 return EC; 1106 NameTable.push_back(std::to_string(*FID)); 1107 } 1108 return sampleprof_error::success; 1109 } 1110 1111 std::error_code 1112 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint32_t Idx) { 1113 SecHdrTableEntry Entry; 1114 auto Type = readUnencodedNumber<uint64_t>(); 1115 if (std::error_code EC = Type.getError()) 1116 return EC; 1117 Entry.Type = static_cast<SecType>(*Type); 1118 1119 auto Flags = readUnencodedNumber<uint64_t>(); 1120 if (std::error_code EC = Flags.getError()) 1121 return EC; 1122 Entry.Flags = *Flags; 1123 1124 auto Offset = readUnencodedNumber<uint64_t>(); 1125 if (std::error_code EC = Offset.getError()) 1126 return EC; 1127 Entry.Offset = *Offset; 1128 1129 auto Size = readUnencodedNumber<uint64_t>(); 1130 if (std::error_code EC = Size.getError()) 1131 return EC; 1132 Entry.Size = *Size; 1133 1134 Entry.LayoutIndex = Idx; 1135 SecHdrTable.push_back(std::move(Entry)); 1136 return sampleprof_error::success; 1137 } 1138 1139 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() { 1140 auto EntryNum = readUnencodedNumber<uint64_t>(); 1141 if (std::error_code EC = EntryNum.getError()) 1142 return EC; 1143 1144 for (uint32_t i = 0; i < (*EntryNum); i++) 1145 if (std::error_code EC = readSecHdrTableEntry(i)) 1146 return EC; 1147 1148 return sampleprof_error::success; 1149 } 1150 1151 std::error_code SampleProfileReaderExtBinaryBase::readHeader() { 1152 const uint8_t *BufStart = 1153 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1154 Data = BufStart; 1155 End = BufStart + Buffer->getBufferSize(); 1156 1157 if (std::error_code EC = readMagicIdent()) 1158 return EC; 1159 1160 if (std::error_code EC = readSecHdrTable()) 1161 return EC; 1162 1163 return sampleprof_error::success; 1164 } 1165 1166 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) { 1167 uint64_t Size = 0; 1168 for (auto &Entry : SecHdrTable) { 1169 if (Entry.Type == Type) 1170 Size += Entry.Size; 1171 } 1172 return Size; 1173 } 1174 1175 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() { 1176 // Sections in SecHdrTable is not necessarily in the same order as 1177 // sections in the profile because section like FuncOffsetTable needs 1178 // to be written after section LBRProfile but needs to be read before 1179 // section LBRProfile, so we cannot simply use the last entry in 1180 // SecHdrTable to calculate the file size. 1181 uint64_t FileSize = 0; 1182 for (auto &Entry : SecHdrTable) { 1183 FileSize = std::max(Entry.Offset + Entry.Size, FileSize); 1184 } 1185 return FileSize; 1186 } 1187 1188 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) { 1189 std::string Flags; 1190 if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress)) 1191 Flags.append("{compressed,"); 1192 else 1193 Flags.append("{"); 1194 1195 if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat)) 1196 Flags.append("flat,"); 1197 1198 switch (Entry.Type) { 1199 case SecNameTable: 1200 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5)) 1201 Flags.append("fixlenmd5,"); 1202 else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name)) 1203 Flags.append("md5,"); 1204 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix)) 1205 Flags.append("uniq,"); 1206 break; 1207 case SecProfSummary: 1208 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial)) 1209 Flags.append("partial,"); 1210 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext)) 1211 Flags.append("context,"); 1212 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator)) 1213 Flags.append("fs-discriminator,"); 1214 break; 1215 default: 1216 break; 1217 } 1218 char &last = Flags.back(); 1219 if (last == ',') 1220 last = '}'; 1221 else 1222 Flags.append("}"); 1223 return Flags; 1224 } 1225 1226 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) { 1227 uint64_t TotalSecsSize = 0; 1228 for (auto &Entry : SecHdrTable) { 1229 OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset 1230 << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry) 1231 << "\n"; 1232 ; 1233 TotalSecsSize += Entry.Size; 1234 } 1235 uint64_t HeaderSize = SecHdrTable.front().Offset; 1236 assert(HeaderSize + TotalSecsSize == getFileSize() && 1237 "Size of 'header + sections' doesn't match the total size of profile"); 1238 1239 OS << "Header Size: " << HeaderSize << "\n"; 1240 OS << "Total Sections Size: " << TotalSecsSize << "\n"; 1241 OS << "File Size: " << getFileSize() << "\n"; 1242 return true; 1243 } 1244 1245 std::error_code SampleProfileReaderBinary::readMagicIdent() { 1246 // Read and check the magic identifier. 1247 auto Magic = readNumber<uint64_t>(); 1248 if (std::error_code EC = Magic.getError()) 1249 return EC; 1250 else if (std::error_code EC = verifySPMagic(*Magic)) 1251 return EC; 1252 1253 // Read the version number. 1254 auto Version = readNumber<uint64_t>(); 1255 if (std::error_code EC = Version.getError()) 1256 return EC; 1257 else if (*Version != SPVersion()) 1258 return sampleprof_error::unsupported_version; 1259 1260 return sampleprof_error::success; 1261 } 1262 1263 std::error_code SampleProfileReaderBinary::readHeader() { 1264 Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); 1265 End = Data + Buffer->getBufferSize(); 1266 1267 if (std::error_code EC = readMagicIdent()) 1268 return EC; 1269 1270 if (std::error_code EC = readSummary()) 1271 return EC; 1272 1273 if (std::error_code EC = readNameTable()) 1274 return EC; 1275 return sampleprof_error::success; 1276 } 1277 1278 std::error_code SampleProfileReaderCompactBinary::readHeader() { 1279 SampleProfileReaderBinary::readHeader(); 1280 if (std::error_code EC = readFuncOffsetTable()) 1281 return EC; 1282 return sampleprof_error::success; 1283 } 1284 1285 std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() { 1286 auto TableOffset = readUnencodedNumber<uint64_t>(); 1287 if (std::error_code EC = TableOffset.getError()) 1288 return EC; 1289 1290 const uint8_t *SavedData = Data; 1291 const uint8_t *TableStart = 1292 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) + 1293 *TableOffset; 1294 Data = TableStart; 1295 1296 auto Size = readNumber<uint64_t>(); 1297 if (std::error_code EC = Size.getError()) 1298 return EC; 1299 1300 FuncOffsetTable.reserve(*Size); 1301 for (uint32_t I = 0; I < *Size; ++I) { 1302 auto FName(readStringFromTable()); 1303 if (std::error_code EC = FName.getError()) 1304 return EC; 1305 1306 auto Offset = readNumber<uint64_t>(); 1307 if (std::error_code EC = Offset.getError()) 1308 return EC; 1309 1310 FuncOffsetTable[*FName] = *Offset; 1311 } 1312 End = TableStart; 1313 Data = SavedData; 1314 return sampleprof_error::success; 1315 } 1316 1317 bool SampleProfileReaderCompactBinary::collectFuncsFromModule() { 1318 if (!M) 1319 return false; 1320 FuncsToUse.clear(); 1321 for (auto &F : *M) 1322 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F)); 1323 return true; 1324 } 1325 1326 std::error_code SampleProfileReaderBinary::readSummaryEntry( 1327 std::vector<ProfileSummaryEntry> &Entries) { 1328 auto Cutoff = readNumber<uint64_t>(); 1329 if (std::error_code EC = Cutoff.getError()) 1330 return EC; 1331 1332 auto MinBlockCount = readNumber<uint64_t>(); 1333 if (std::error_code EC = MinBlockCount.getError()) 1334 return EC; 1335 1336 auto NumBlocks = readNumber<uint64_t>(); 1337 if (std::error_code EC = NumBlocks.getError()) 1338 return EC; 1339 1340 Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks); 1341 return sampleprof_error::success; 1342 } 1343 1344 std::error_code SampleProfileReaderBinary::readSummary() { 1345 auto TotalCount = readNumber<uint64_t>(); 1346 if (std::error_code EC = TotalCount.getError()) 1347 return EC; 1348 1349 auto MaxBlockCount = readNumber<uint64_t>(); 1350 if (std::error_code EC = MaxBlockCount.getError()) 1351 return EC; 1352 1353 auto MaxFunctionCount = readNumber<uint64_t>(); 1354 if (std::error_code EC = MaxFunctionCount.getError()) 1355 return EC; 1356 1357 auto NumBlocks = readNumber<uint64_t>(); 1358 if (std::error_code EC = NumBlocks.getError()) 1359 return EC; 1360 1361 auto NumFunctions = readNumber<uint64_t>(); 1362 if (std::error_code EC = NumFunctions.getError()) 1363 return EC; 1364 1365 auto NumSummaryEntries = readNumber<uint64_t>(); 1366 if (std::error_code EC = NumSummaryEntries.getError()) 1367 return EC; 1368 1369 std::vector<ProfileSummaryEntry> Entries; 1370 for (unsigned i = 0; i < *NumSummaryEntries; i++) { 1371 std::error_code EC = readSummaryEntry(Entries); 1372 if (EC != sampleprof_error::success) 1373 return EC; 1374 } 1375 Summary = std::make_unique<ProfileSummary>( 1376 ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0, 1377 *MaxFunctionCount, *NumBlocks, *NumFunctions); 1378 1379 return sampleprof_error::success; 1380 } 1381 1382 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) { 1383 const uint8_t *Data = 1384 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1385 uint64_t Magic = decodeULEB128(Data); 1386 return Magic == SPMagic(); 1387 } 1388 1389 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) { 1390 const uint8_t *Data = 1391 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1392 uint64_t Magic = decodeULEB128(Data); 1393 return Magic == SPMagic(SPF_Ext_Binary); 1394 } 1395 1396 bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) { 1397 const uint8_t *Data = 1398 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); 1399 uint64_t Magic = decodeULEB128(Data); 1400 return Magic == SPMagic(SPF_Compact_Binary); 1401 } 1402 1403 std::error_code SampleProfileReaderGCC::skipNextWord() { 1404 uint32_t dummy; 1405 if (!GcovBuffer.readInt(dummy)) 1406 return sampleprof_error::truncated; 1407 return sampleprof_error::success; 1408 } 1409 1410 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() { 1411 if (sizeof(T) <= sizeof(uint32_t)) { 1412 uint32_t Val; 1413 if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max()) 1414 return static_cast<T>(Val); 1415 } else if (sizeof(T) <= sizeof(uint64_t)) { 1416 uint64_t Val; 1417 if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max()) 1418 return static_cast<T>(Val); 1419 } 1420 1421 std::error_code EC = sampleprof_error::malformed; 1422 reportError(0, EC.message()); 1423 return EC; 1424 } 1425 1426 ErrorOr<StringRef> SampleProfileReaderGCC::readString() { 1427 StringRef Str; 1428 if (!GcovBuffer.readString(Str)) 1429 return sampleprof_error::truncated; 1430 return Str; 1431 } 1432 1433 std::error_code SampleProfileReaderGCC::readHeader() { 1434 // Read the magic identifier. 1435 if (!GcovBuffer.readGCDAFormat()) 1436 return sampleprof_error::unrecognized_format; 1437 1438 // Read the version number. Note - the GCC reader does not validate this 1439 // version, but the profile creator generates v704. 1440 GCOV::GCOVVersion version; 1441 if (!GcovBuffer.readGCOVVersion(version)) 1442 return sampleprof_error::unrecognized_format; 1443 1444 if (version != GCOV::V407) 1445 return sampleprof_error::unsupported_version; 1446 1447 // Skip the empty integer. 1448 if (std::error_code EC = skipNextWord()) 1449 return EC; 1450 1451 return sampleprof_error::success; 1452 } 1453 1454 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { 1455 uint32_t Tag; 1456 if (!GcovBuffer.readInt(Tag)) 1457 return sampleprof_error::truncated; 1458 1459 if (Tag != Expected) 1460 return sampleprof_error::malformed; 1461 1462 if (std::error_code EC = skipNextWord()) 1463 return EC; 1464 1465 return sampleprof_error::success; 1466 } 1467 1468 std::error_code SampleProfileReaderGCC::readNameTable() { 1469 if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames)) 1470 return EC; 1471 1472 uint32_t Size; 1473 if (!GcovBuffer.readInt(Size)) 1474 return sampleprof_error::truncated; 1475 1476 for (uint32_t I = 0; I < Size; ++I) { 1477 StringRef Str; 1478 if (!GcovBuffer.readString(Str)) 1479 return sampleprof_error::truncated; 1480 Names.push_back(std::string(Str)); 1481 } 1482 1483 return sampleprof_error::success; 1484 } 1485 1486 std::error_code SampleProfileReaderGCC::readFunctionProfiles() { 1487 if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction)) 1488 return EC; 1489 1490 uint32_t NumFunctions; 1491 if (!GcovBuffer.readInt(NumFunctions)) 1492 return sampleprof_error::truncated; 1493 1494 InlineCallStack Stack; 1495 for (uint32_t I = 0; I < NumFunctions; ++I) 1496 if (std::error_code EC = readOneFunctionProfile(Stack, true, 0)) 1497 return EC; 1498 1499 computeSummary(); 1500 return sampleprof_error::success; 1501 } 1502 1503 std::error_code SampleProfileReaderGCC::readOneFunctionProfile( 1504 const InlineCallStack &InlineStack, bool Update, uint32_t Offset) { 1505 uint64_t HeadCount = 0; 1506 if (InlineStack.size() == 0) 1507 if (!GcovBuffer.readInt64(HeadCount)) 1508 return sampleprof_error::truncated; 1509 1510 uint32_t NameIdx; 1511 if (!GcovBuffer.readInt(NameIdx)) 1512 return sampleprof_error::truncated; 1513 1514 StringRef Name(Names[NameIdx]); 1515 1516 uint32_t NumPosCounts; 1517 if (!GcovBuffer.readInt(NumPosCounts)) 1518 return sampleprof_error::truncated; 1519 1520 uint32_t NumCallsites; 1521 if (!GcovBuffer.readInt(NumCallsites)) 1522 return sampleprof_error::truncated; 1523 1524 FunctionSamples *FProfile = nullptr; 1525 if (InlineStack.size() == 0) { 1526 // If this is a top function that we have already processed, do not 1527 // update its profile again. This happens in the presence of 1528 // function aliases. Since these aliases share the same function 1529 // body, there will be identical replicated profiles for the 1530 // original function. In this case, we simply not bother updating 1531 // the profile of the original function. 1532 FProfile = &Profiles[Name]; 1533 FProfile->addHeadSamples(HeadCount); 1534 if (FProfile->getTotalSamples() > 0) 1535 Update = false; 1536 } else { 1537 // Otherwise, we are reading an inlined instance. The top of the 1538 // inline stack contains the profile of the caller. Insert this 1539 // callee in the caller's CallsiteMap. 1540 FunctionSamples *CallerProfile = InlineStack.front(); 1541 uint32_t LineOffset = Offset >> 16; 1542 uint32_t Discriminator = Offset & 0xffff; 1543 FProfile = &CallerProfile->functionSamplesAt( 1544 LineLocation(LineOffset, Discriminator))[std::string(Name)]; 1545 } 1546 FProfile->setName(Name); 1547 1548 for (uint32_t I = 0; I < NumPosCounts; ++I) { 1549 uint32_t Offset; 1550 if (!GcovBuffer.readInt(Offset)) 1551 return sampleprof_error::truncated; 1552 1553 uint32_t NumTargets; 1554 if (!GcovBuffer.readInt(NumTargets)) 1555 return sampleprof_error::truncated; 1556 1557 uint64_t Count; 1558 if (!GcovBuffer.readInt64(Count)) 1559 return sampleprof_error::truncated; 1560 1561 // The line location is encoded in the offset as: 1562 // high 16 bits: line offset to the start of the function. 1563 // low 16 bits: discriminator. 1564 uint32_t LineOffset = Offset >> 16; 1565 uint32_t Discriminator = Offset & 0xffff; 1566 1567 InlineCallStack NewStack; 1568 NewStack.push_back(FProfile); 1569 llvm::append_range(NewStack, InlineStack); 1570 if (Update) { 1571 // Walk up the inline stack, adding the samples on this line to 1572 // the total sample count of the callers in the chain. 1573 for (auto CallerProfile : NewStack) 1574 CallerProfile->addTotalSamples(Count); 1575 1576 // Update the body samples for the current profile. 1577 FProfile->addBodySamples(LineOffset, Discriminator, Count); 1578 } 1579 1580 // Process the list of functions called at an indirect call site. 1581 // These are all the targets that a function pointer (or virtual 1582 // function) resolved at runtime. 1583 for (uint32_t J = 0; J < NumTargets; J++) { 1584 uint32_t HistVal; 1585 if (!GcovBuffer.readInt(HistVal)) 1586 return sampleprof_error::truncated; 1587 1588 if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) 1589 return sampleprof_error::malformed; 1590 1591 uint64_t TargetIdx; 1592 if (!GcovBuffer.readInt64(TargetIdx)) 1593 return sampleprof_error::truncated; 1594 StringRef TargetName(Names[TargetIdx]); 1595 1596 uint64_t TargetCount; 1597 if (!GcovBuffer.readInt64(TargetCount)) 1598 return sampleprof_error::truncated; 1599 1600 if (Update) 1601 FProfile->addCalledTargetSamples(LineOffset, Discriminator, 1602 TargetName, TargetCount); 1603 } 1604 } 1605 1606 // Process all the inlined callers into the current function. These 1607 // are all the callsites that were inlined into this function. 1608 for (uint32_t I = 0; I < NumCallsites; I++) { 1609 // The offset is encoded as: 1610 // high 16 bits: line offset to the start of the function. 1611 // low 16 bits: discriminator. 1612 uint32_t Offset; 1613 if (!GcovBuffer.readInt(Offset)) 1614 return sampleprof_error::truncated; 1615 InlineCallStack NewStack; 1616 NewStack.push_back(FProfile); 1617 llvm::append_range(NewStack, InlineStack); 1618 if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset)) 1619 return EC; 1620 } 1621 1622 return sampleprof_error::success; 1623 } 1624 1625 /// Read a GCC AutoFDO profile. 1626 /// 1627 /// This format is generated by the Linux Perf conversion tool at 1628 /// https://github.com/google/autofdo. 1629 std::error_code SampleProfileReaderGCC::readImpl() { 1630 assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator"); 1631 // Read the string table. 1632 if (std::error_code EC = readNameTable()) 1633 return EC; 1634 1635 // Read the source profile. 1636 if (std::error_code EC = readFunctionProfiles()) 1637 return EC; 1638 1639 return sampleprof_error::success; 1640 } 1641 1642 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { 1643 StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart())); 1644 return Magic == "adcg*704"; 1645 } 1646 1647 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) { 1648 // If the reader uses MD5 to represent string, we can't remap it because 1649 // we don't know what the original function names were. 1650 if (Reader.useMD5()) { 1651 Ctx.diagnose(DiagnosticInfoSampleProfile( 1652 Reader.getBuffer()->getBufferIdentifier(), 1653 "Profile data remapping cannot be applied to profile data " 1654 "in compact format (original mangled names are not available).", 1655 DS_Warning)); 1656 return; 1657 } 1658 1659 // CSSPGO-TODO: Remapper is not yet supported. 1660 // We will need to remap the entire context string. 1661 assert(Remappings && "should be initialized while creating remapper"); 1662 for (auto &Sample : Reader.getProfiles()) { 1663 DenseSet<StringRef> NamesInSample; 1664 Sample.second.findAllNames(NamesInSample); 1665 for (auto &Name : NamesInSample) 1666 if (auto Key = Remappings->insert(Name)) 1667 NameMap.insert({Key, Name}); 1668 } 1669 1670 RemappingApplied = true; 1671 } 1672 1673 Optional<StringRef> 1674 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) { 1675 if (auto Key = Remappings->lookup(Fname)) 1676 return NameMap.lookup(Key); 1677 return None; 1678 } 1679 1680 /// Prepare a memory buffer for the contents of \p Filename. 1681 /// 1682 /// \returns an error code indicating the status of the buffer. 1683 static ErrorOr<std::unique_ptr<MemoryBuffer>> 1684 setupMemoryBuffer(const Twine &Filename) { 1685 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename, /*IsText=*/true); 1686 if (std::error_code EC = BufferOrErr.getError()) 1687 return EC; 1688 auto Buffer = std::move(BufferOrErr.get()); 1689 1690 // Sanity check the file. 1691 if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint32_t>::max()) 1692 return sampleprof_error::too_large; 1693 1694 return std::move(Buffer); 1695 } 1696 1697 /// Create a sample profile reader based on the format of the input file. 1698 /// 1699 /// \param Filename The file to open. 1700 /// 1701 /// \param C The LLVM context to use to emit diagnostics. 1702 /// 1703 /// \param P The FSDiscriminatorPass. 1704 /// 1705 /// \param RemapFilename The file used for profile remapping. 1706 /// 1707 /// \returns an error code indicating the status of the created reader. 1708 ErrorOr<std::unique_ptr<SampleProfileReader>> 1709 SampleProfileReader::create(const std::string Filename, LLVMContext &C, 1710 FSDiscriminatorPass P, 1711 const std::string RemapFilename) { 1712 auto BufferOrError = setupMemoryBuffer(Filename); 1713 if (std::error_code EC = BufferOrError.getError()) 1714 return EC; 1715 return create(BufferOrError.get(), C, P, RemapFilename); 1716 } 1717 1718 /// Create a sample profile remapper from the given input, to remap the 1719 /// function names in the given profile data. 1720 /// 1721 /// \param Filename The file to open. 1722 /// 1723 /// \param Reader The profile reader the remapper is going to be applied to. 1724 /// 1725 /// \param C The LLVM context to use to emit diagnostics. 1726 /// 1727 /// \returns an error code indicating the status of the created reader. 1728 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1729 SampleProfileReaderItaniumRemapper::create(const std::string Filename, 1730 SampleProfileReader &Reader, 1731 LLVMContext &C) { 1732 auto BufferOrError = setupMemoryBuffer(Filename); 1733 if (std::error_code EC = BufferOrError.getError()) 1734 return EC; 1735 return create(BufferOrError.get(), Reader, C); 1736 } 1737 1738 /// Create a sample profile remapper from the given input, to remap the 1739 /// function names in the given profile data. 1740 /// 1741 /// \param B The memory buffer to create the reader from (assumes ownership). 1742 /// 1743 /// \param C The LLVM context to use to emit diagnostics. 1744 /// 1745 /// \param Reader The profile reader the remapper is going to be applied to. 1746 /// 1747 /// \returns an error code indicating the status of the created reader. 1748 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>> 1749 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B, 1750 SampleProfileReader &Reader, 1751 LLVMContext &C) { 1752 auto Remappings = std::make_unique<SymbolRemappingReader>(); 1753 if (Error E = Remappings->read(*B.get())) { 1754 handleAllErrors( 1755 std::move(E), [&](const SymbolRemappingParseError &ParseError) { 1756 C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(), 1757 ParseError.getLineNum(), 1758 ParseError.getMessage())); 1759 }); 1760 return sampleprof_error::malformed; 1761 } 1762 1763 return std::make_unique<SampleProfileReaderItaniumRemapper>( 1764 std::move(B), std::move(Remappings), Reader); 1765 } 1766 1767 /// Create a sample profile reader based on the format of the input data. 1768 /// 1769 /// \param B The memory buffer to create the reader from (assumes ownership). 1770 /// 1771 /// \param C The LLVM context to use to emit diagnostics. 1772 /// 1773 /// \param P The FSDiscriminatorPass. 1774 /// 1775 /// \param RemapFilename The file used for profile remapping. 1776 /// 1777 /// \returns an error code indicating the status of the created reader. 1778 ErrorOr<std::unique_ptr<SampleProfileReader>> 1779 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C, 1780 FSDiscriminatorPass P, 1781 const std::string RemapFilename) { 1782 std::unique_ptr<SampleProfileReader> Reader; 1783 if (SampleProfileReaderRawBinary::hasFormat(*B)) 1784 Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C)); 1785 else if (SampleProfileReaderExtBinary::hasFormat(*B)) 1786 Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C)); 1787 else if (SampleProfileReaderCompactBinary::hasFormat(*B)) 1788 Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C)); 1789 else if (SampleProfileReaderGCC::hasFormat(*B)) 1790 Reader.reset(new SampleProfileReaderGCC(std::move(B), C)); 1791 else if (SampleProfileReaderText::hasFormat(*B)) 1792 Reader.reset(new SampleProfileReaderText(std::move(B), C)); 1793 else 1794 return sampleprof_error::unrecognized_format; 1795 1796 if (!RemapFilename.empty()) { 1797 auto ReaderOrErr = 1798 SampleProfileReaderItaniumRemapper::create(RemapFilename, *Reader, C); 1799 if (std::error_code EC = ReaderOrErr.getError()) { 1800 std::string Msg = "Could not create remapper: " + EC.message(); 1801 C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg)); 1802 return EC; 1803 } 1804 Reader->Remapper = std::move(ReaderOrErr.get()); 1805 } 1806 1807 FunctionSamples::Format = Reader->getFormat(); 1808 if (std::error_code EC = Reader->readHeader()) { 1809 return EC; 1810 } 1811 1812 Reader->setDiscriminatorMaskedBitFrom(P); 1813 1814 return std::move(Reader); 1815 } 1816 1817 // For text and GCC file formats, we compute the summary after reading the 1818 // profile. Binary format has the profile summary in its header. 1819 void SampleProfileReader::computeSummary() { 1820 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1821 Summary = Builder.computeSummaryForProfiles(Profiles); 1822 } 1823