1 //===- RawMemProfReader.cpp - Instrumented memory profiling reader --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for reading MemProf profiling data.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <algorithm>
14 #include <cstdint>
15 #include <type_traits>
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
22 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
23 #include "llvm/DebugInfo/Symbolize/SymbolizableObjectFile.h"
24 #include "llvm/Object/Binary.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Object/ObjectFile.h"
27 #include "llvm/ProfileData/InstrProf.h"
28 #include "llvm/ProfileData/MemProf.h"
29 #include "llvm/ProfileData/MemProfData.inc"
30 #include "llvm/ProfileData/RawMemProfReader.h"
31 #include "llvm/Support/Endian.h"
32 #include "llvm/Support/Path.h"
33 
34 #define DEBUG_TYPE "memprof"
35 
36 namespace llvm {
37 namespace memprof {
38 namespace {
39 
40 struct Summary {
41   uint64_t Version;
42   uint64_t TotalSizeBytes;
43   uint64_t NumSegments;
44   uint64_t NumMIBInfo;
45   uint64_t NumStackOffsets;
46 };
47 
48 template <class T = uint64_t> inline T alignedRead(const char *Ptr) {
49   static_assert(std::is_pod<T>::value, "Not a pod type.");
50   assert(reinterpret_cast<size_t>(Ptr) % sizeof(T) == 0 && "Unaligned Read");
51   return *reinterpret_cast<const T *>(Ptr);
52 }
53 
54 Summary computeSummary(const char *Start) {
55   auto *H = reinterpret_cast<const Header *>(Start);
56 
57   // Check alignment while reading the number of items in each section.
58   return Summary{
59       H->Version,
60       H->TotalSize,
61       alignedRead(Start + H->SegmentOffset),
62       alignedRead(Start + H->MIBOffset),
63       alignedRead(Start + H->StackOffset),
64   };
65 }
66 
67 Error checkBuffer(const MemoryBuffer &Buffer) {
68   if (!RawMemProfReader::hasFormat(Buffer))
69     return make_error<InstrProfError>(instrprof_error::bad_magic);
70 
71   if (Buffer.getBufferSize() == 0)
72     return make_error<InstrProfError>(instrprof_error::empty_raw_profile);
73 
74   if (Buffer.getBufferSize() < sizeof(Header)) {
75     return make_error<InstrProfError>(instrprof_error::truncated);
76   }
77 
78   // The size of the buffer can be > header total size since we allow repeated
79   // serialization of memprof profiles to the same file.
80   uint64_t TotalSize = 0;
81   const char *Next = Buffer.getBufferStart();
82   while (Next < Buffer.getBufferEnd()) {
83     auto *H = reinterpret_cast<const Header *>(Next);
84     if (H->Version != MEMPROF_RAW_VERSION) {
85       return make_error<InstrProfError>(instrprof_error::unsupported_version);
86     }
87 
88     TotalSize += H->TotalSize;
89     Next += H->TotalSize;
90   }
91 
92   if (Buffer.getBufferSize() != TotalSize) {
93     return make_error<InstrProfError>(instrprof_error::malformed);
94   }
95   return Error::success();
96 }
97 
98 llvm::SmallVector<SegmentEntry> readSegmentEntries(const char *Ptr) {
99   using namespace support;
100 
101   const uint64_t NumItemsToRead =
102       endian::readNext<uint64_t, little, unaligned>(Ptr);
103   llvm::SmallVector<SegmentEntry> Items;
104   for (uint64_t I = 0; I < NumItemsToRead; I++) {
105     Items.push_back(*reinterpret_cast<const SegmentEntry *>(
106         Ptr + I * sizeof(SegmentEntry)));
107   }
108   return Items;
109 }
110 
111 llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>>
112 readMemInfoBlocks(const char *Ptr) {
113   using namespace support;
114 
115   const uint64_t NumItemsToRead =
116       endian::readNext<uint64_t, little, unaligned>(Ptr);
117   llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>> Items;
118   for (uint64_t I = 0; I < NumItemsToRead; I++) {
119     const uint64_t Id = endian::readNext<uint64_t, little, unaligned>(Ptr);
120     const MemInfoBlock MIB = *reinterpret_cast<const MemInfoBlock *>(Ptr);
121     Items.push_back({Id, MIB});
122     // Only increment by size of MIB since readNext implicitly increments.
123     Ptr += sizeof(MemInfoBlock);
124   }
125   return Items;
126 }
127 
128 CallStackMap readStackInfo(const char *Ptr) {
129   using namespace support;
130 
131   const uint64_t NumItemsToRead =
132       endian::readNext<uint64_t, little, unaligned>(Ptr);
133   CallStackMap Items;
134 
135   for (uint64_t I = 0; I < NumItemsToRead; I++) {
136     const uint64_t StackId = endian::readNext<uint64_t, little, unaligned>(Ptr);
137     const uint64_t NumPCs = endian::readNext<uint64_t, little, unaligned>(Ptr);
138 
139     SmallVector<uint64_t> CallStack;
140     for (uint64_t J = 0; J < NumPCs; J++) {
141       CallStack.push_back(endian::readNext<uint64_t, little, unaligned>(Ptr));
142     }
143 
144     Items[StackId] = CallStack;
145   }
146   return Items;
147 }
148 
149 // Merges the contents of stack information in \p From to \p To. Returns true if
150 // any stack ids observed previously map to a different set of program counter
151 // addresses.
152 bool mergeStackMap(const CallStackMap &From, CallStackMap &To) {
153   for (const auto &IdStack : From) {
154     auto I = To.find(IdStack.first);
155     if (I == To.end()) {
156       To[IdStack.first] = IdStack.second;
157     } else {
158       // Check that the PCs are the same (in order).
159       if (IdStack.second != I->second)
160         return true;
161     }
162   }
163   return false;
164 }
165 
166 Error report(Error E, const StringRef Context) {
167   return joinErrors(createStringError(inconvertibleErrorCode(), Context),
168                     std::move(E));
169 }
170 
171 bool isRuntimePath(const StringRef Path) {
172   return StringRef(llvm::sys::path::convert_to_slash(Path))
173       .contains("memprof/memprof_");
174 }
175 } // namespace
176 
177 Expected<std::unique_ptr<RawMemProfReader>>
178 RawMemProfReader::create(const Twine &Path, const StringRef ProfiledBinary) {
179   auto BufferOr = MemoryBuffer::getFileOrSTDIN(Path);
180   if (std::error_code EC = BufferOr.getError())
181     return report(errorCodeToError(EC), Path.getSingleStringRef());
182 
183   std::unique_ptr<MemoryBuffer> Buffer(BufferOr.get().release());
184   if (Error E = checkBuffer(*Buffer))
185     return report(std::move(E), Path.getSingleStringRef());
186 
187   if (ProfiledBinary.empty())
188     return report(
189         errorCodeToError(make_error_code(std::errc::invalid_argument)),
190         "Path to profiled binary is empty!");
191 
192   auto BinaryOr = llvm::object::createBinary(ProfiledBinary);
193   if (!BinaryOr) {
194     return report(BinaryOr.takeError(), ProfiledBinary);
195   }
196 
197   std::unique_ptr<RawMemProfReader> Reader(
198       new RawMemProfReader(std::move(Buffer), std::move(BinaryOr.get())));
199   if (Error E = Reader->initialize()) {
200     return std::move(E);
201   }
202   return std::move(Reader);
203 }
204 
205 bool RawMemProfReader::hasFormat(const StringRef Path) {
206   auto BufferOr = MemoryBuffer::getFileOrSTDIN(Path);
207   if (!BufferOr)
208     return false;
209 
210   std::unique_ptr<MemoryBuffer> Buffer(BufferOr.get().release());
211   return hasFormat(*Buffer);
212 }
213 
214 bool RawMemProfReader::hasFormat(const MemoryBuffer &Buffer) {
215   if (Buffer.getBufferSize() < sizeof(uint64_t))
216     return false;
217   // Aligned read to sanity check that the buffer was allocated with at least 8b
218   // alignment.
219   const uint64_t Magic = alignedRead(Buffer.getBufferStart());
220   return Magic == MEMPROF_RAW_MAGIC_64;
221 }
222 
223 void RawMemProfReader::printYAML(raw_ostream &OS) {
224   OS << "MemprofProfile:\n";
225   // TODO: Update printSummaries to print out the data after the profile has
226   // been symbolized and pruned. We can parse some raw profile characteristics
227   // from the data buffer for additional information.
228   printSummaries(OS);
229   // Print out the merged contents of the profiles.
230   OS << "  Records:\n";
231   for (const auto &Entry : *this) {
232     OS << "  -\n";
233     OS << "    FunctionGUID: " << Entry.first << "\n";
234     Entry.second.print(OS);
235   }
236 }
237 
238 void RawMemProfReader::printSummaries(raw_ostream &OS) const {
239   const char *Next = DataBuffer->getBufferStart();
240   while (Next < DataBuffer->getBufferEnd()) {
241     auto Summary = computeSummary(Next);
242     OS << "  -\n";
243     OS << "  Header:\n";
244     OS << "    Version: " << Summary.Version << "\n";
245     OS << "    TotalSizeBytes: " << Summary.TotalSizeBytes << "\n";
246     OS << "    NumSegments: " << Summary.NumSegments << "\n";
247     OS << "    NumMibInfo: " << Summary.NumMIBInfo << "\n";
248     OS << "    NumStackOffsets: " << Summary.NumStackOffsets << "\n";
249     // TODO: Print the build ids once we can record them using the
250     // sanitizer_procmaps library for linux.
251 
252     auto *H = reinterpret_cast<const Header *>(Next);
253     Next += H->TotalSize;
254   }
255 }
256 
257 Error RawMemProfReader::initialize() {
258   const StringRef FileName = Binary.getBinary()->getFileName();
259 
260   auto *ElfObject = dyn_cast<object::ELFObjectFileBase>(Binary.getBinary());
261   if (!ElfObject) {
262     return report(make_error<StringError>(Twine("Not an ELF file: "),
263                                           inconvertibleErrorCode()),
264                   FileName);
265   }
266 
267   auto Triple = ElfObject->makeTriple();
268   if (!Triple.isX86())
269     return report(make_error<StringError>(Twine("Unsupported target: ") +
270                                               Triple.getArchName(),
271                                           inconvertibleErrorCode()),
272                   FileName);
273 
274   auto *Object = cast<object::ObjectFile>(Binary.getBinary());
275   std::unique_ptr<DIContext> Context = DWARFContext::create(
276       *Object, DWARFContext::ProcessDebugRelocations::Process);
277 
278   auto SOFOr = symbolize::SymbolizableObjectFile::create(
279       Object, std::move(Context), /*UntagAddresses=*/false);
280   if (!SOFOr)
281     return report(SOFOr.takeError(), FileName);
282   Symbolizer = std::move(SOFOr.get());
283 
284   if (Error E = readRawProfile())
285     return E;
286 
287   if (Error E = symbolizeAndFilterStackFrames())
288     return E;
289 
290   return mapRawProfileToRecords();
291 }
292 
293 Error RawMemProfReader::mapRawProfileToRecords() {
294   // Hold a mapping from function to each callsite location we encounter within
295   // it that is part of some dynamic allocation context. The location is stored
296   // as a pointer to a symbolized list of inline frames.
297   using LocationPtr = const llvm::SmallVector<MemProfRecord::Frame> *;
298   llvm::DenseMap<GlobalValue::GUID, llvm::SetVector<LocationPtr>>
299       PerFunctionCallSites;
300 
301   // Convert the raw profile callstack data into memprof records. While doing so
302   // keep track of related contexts so that we can fill these in later.
303   for (const auto &Entry : CallstackProfileData) {
304     const uint64_t StackId = Entry.first;
305 
306     auto It = StackMap.find(StackId);
307     if (It == StackMap.end())
308       return make_error<InstrProfError>(
309           instrprof_error::malformed,
310           "memprof callstack record does not contain id: " + Twine(StackId));
311 
312     // Construct the symbolized callstack.
313     llvm::SmallVector<MemProfRecord::Frame> Callstack;
314     Callstack.reserve(It->getSecond().size());
315 
316     llvm::ArrayRef<uint64_t> Addresses = It->getSecond();
317     for (size_t I = 0; I < Addresses.size(); I++) {
318       const uint64_t Address = Addresses[I];
319       assert(SymbolizedFrame.count(Address) > 0 &&
320              "Address not found in SymbolizedFrame map");
321       const SmallVector<MemProfRecord::Frame> &Frames =
322           SymbolizedFrame[Address];
323 
324       assert(!Frames.back().IsInlineFrame &&
325              "The last frame should not be inlined");
326 
327       // Record the callsites for each function. Skip the first frame of the
328       // first address since it is the allocation site itself that is recorded
329       // as an alloc site.
330       for (size_t J = 0; J < Frames.size(); J++) {
331         if (I == 0 && J == 0)
332           continue;
333         // We attach the entire bottom-up frame here for the callsite even
334         // though we only need the frames up to and including the frame for
335         // Frames[J].Function. This will enable better deduplication for
336         // compression in the future.
337         PerFunctionCallSites[Frames[J].Function].insert(&Frames);
338       }
339 
340       // Add all the frames to the current allocation callstack.
341       Callstack.append(Frames.begin(), Frames.end());
342     }
343 
344     // We attach the memprof record to each function bottom-up including the
345     // first non-inline frame.
346     for (size_t I = 0; /*Break out using the condition below*/; I++) {
347       auto Result =
348           FunctionProfileData.insert({Callstack[I].Function, MemProfRecord()});
349       MemProfRecord &Record = Result.first->second;
350       Record.AllocSites.emplace_back(Callstack, Entry.second);
351 
352       if (!Callstack[I].IsInlineFrame)
353         break;
354     }
355   }
356 
357   // Fill in the related callsites per function.
358   for (auto I = PerFunctionCallSites.begin(), E = PerFunctionCallSites.end();
359        I != E; I++) {
360     const GlobalValue::GUID Id = I->first;
361     // Some functions may have only callsite data and no allocation data. Here
362     // we insert a new entry for callsite data if we need to.
363     auto Result = FunctionProfileData.insert({Id, MemProfRecord()});
364     MemProfRecord &Record = Result.first->second;
365     for (LocationPtr Loc : I->getSecond()) {
366       Record.CallSites.push_back(*Loc);
367     }
368   }
369 
370   return Error::success();
371 }
372 
373 Error RawMemProfReader::symbolizeAndFilterStackFrames() {
374   // The specifier to use when symbolization is requested.
375   const DILineInfoSpecifier Specifier(
376       DILineInfoSpecifier::FileLineInfoKind::RawValue,
377       DILineInfoSpecifier::FunctionNameKind::LinkageName);
378 
379   // For entries where all PCs in the callstack are discarded, we erase the
380   // entry from the stack map.
381   llvm::SmallVector<uint64_t> EntriesToErase;
382   // We keep track of all prior discarded entries so that we can avoid invoking
383   // the symbolizer for such entries.
384   llvm::DenseSet<uint64_t> AllVAddrsToDiscard;
385   for (auto &Entry : StackMap) {
386     for (const uint64_t VAddr : Entry.getSecond()) {
387       // Check if we have already symbolized and cached the result or if we
388       // don't want to attempt symbolization since we know this address is bad.
389       // In this case the address is also removed from the current callstack.
390       if (SymbolizedFrame.count(VAddr) > 0 ||
391           AllVAddrsToDiscard.contains(VAddr))
392         continue;
393 
394       Expected<DIInliningInfo> DIOr = Symbolizer->symbolizeInlinedCode(
395           getModuleOffset(VAddr), Specifier, /*UseSymbolTable=*/false);
396       if (!DIOr)
397         return DIOr.takeError();
398       DIInliningInfo DI = DIOr.get();
399 
400       // Drop frames which we can't symbolize or if they belong to the runtime.
401       if (DI.getFrame(0).FunctionName == DILineInfo::BadString ||
402           isRuntimePath(DI.getFrame(0).FileName)) {
403         AllVAddrsToDiscard.insert(VAddr);
404         continue;
405       }
406 
407       for (size_t I = 0, NumFrames = DI.getNumberOfFrames(); I < NumFrames;
408            I++) {
409         const auto &Frame = DI.getFrame(I);
410         LLVM_DEBUG(
411             // Print out the name to guid mapping for debugging.
412             llvm::dbgs() << "FunctionName: " << Frame.FunctionName << " GUID: "
413                          << MemProfRecord::getGUID(Frame.FunctionName)
414                          << "\n";);
415         SymbolizedFrame[VAddr].emplace_back(
416             MemProfRecord::getGUID(Frame.FunctionName),
417             Frame.Line - Frame.StartLine, Frame.Column,
418             // Only the last entry is not an inlined location.
419             I != NumFrames - 1);
420       }
421     }
422 
423     auto &CallStack = Entry.getSecond();
424     CallStack.erase(std::remove_if(CallStack.begin(), CallStack.end(),
425                                    [&AllVAddrsToDiscard](const uint64_t A) {
426                                      return AllVAddrsToDiscard.contains(A);
427                                    }),
428                     CallStack.end());
429     if (CallStack.empty())
430       EntriesToErase.push_back(Entry.getFirst());
431   }
432 
433   // Drop the entries where the callstack is empty.
434   for (const uint64_t Id : EntriesToErase) {
435     StackMap.erase(Id);
436     CallstackProfileData.erase(Id);
437   }
438 
439   if (StackMap.empty())
440     return make_error<InstrProfError>(
441         instrprof_error::malformed,
442         "no entries in callstack map after symbolization");
443 
444   return Error::success();
445 }
446 
447 Error RawMemProfReader::readRawProfile() {
448   const char *Next = DataBuffer->getBufferStart();
449 
450   while (Next < DataBuffer->getBufferEnd()) {
451     auto *Header = reinterpret_cast<const memprof::Header *>(Next);
452 
453     // Read in the segment information, check whether its the same across all
454     // profiles in this binary file.
455     const llvm::SmallVector<SegmentEntry> Entries =
456         readSegmentEntries(Next + Header->SegmentOffset);
457     if (!SegmentInfo.empty() && SegmentInfo != Entries) {
458       // We do not expect segment information to change when deserializing from
459       // the same binary profile file. This can happen if dynamic libraries are
460       // loaded/unloaded between profile dumping.
461       return make_error<InstrProfError>(
462           instrprof_error::malformed,
463           "memprof raw profile has different segment information");
464     }
465     SegmentInfo.assign(Entries.begin(), Entries.end());
466 
467     // Read in the MemInfoBlocks. Merge them based on stack id - we assume that
468     // raw profiles in the same binary file are from the same process so the
469     // stackdepot ids are the same.
470     for (const auto &Value : readMemInfoBlocks(Next + Header->MIBOffset)) {
471       if (CallstackProfileData.count(Value.first)) {
472         CallstackProfileData[Value.first].Merge(Value.second);
473       } else {
474         CallstackProfileData[Value.first] = Value.second;
475       }
476     }
477 
478     // Read in the callstack for each ids. For multiple raw profiles in the same
479     // file, we expect that the callstack is the same for a unique id.
480     const CallStackMap CSM = readStackInfo(Next + Header->StackOffset);
481     if (StackMap.empty()) {
482       StackMap = CSM;
483     } else {
484       if (mergeStackMap(CSM, StackMap))
485         return make_error<InstrProfError>(
486             instrprof_error::malformed,
487             "memprof raw profile got different call stack for same id");
488     }
489 
490     Next += Header->TotalSize;
491   }
492 
493   return Error::success();
494 }
495 
496 object::SectionedAddress
497 RawMemProfReader::getModuleOffset(const uint64_t VirtualAddress) {
498   LLVM_DEBUG({
499   SegmentEntry *ContainingSegment = nullptr;
500   for (auto &SE : SegmentInfo) {
501     if (VirtualAddress > SE.Start && VirtualAddress <= SE.End) {
502       ContainingSegment = &SE;
503     }
504   }
505 
506   // Ensure that the virtual address is valid.
507   assert(ContainingSegment && "Could not find a segment entry");
508   });
509 
510   // TODO: Compute the file offset based on the maps and program headers. For
511   // now this only works for non PIE binaries.
512   return object::SectionedAddress{VirtualAddress};
513 }
514 
515 Error RawMemProfReader::readNextRecord(GuidMemProfRecordPair &GuidRecord) {
516   if (FunctionProfileData.empty())
517     return make_error<InstrProfError>(instrprof_error::empty_raw_profile);
518 
519   if (Iter == FunctionProfileData.end())
520     return make_error<InstrProfError>(instrprof_error::eof);
521 
522   GuidRecord = {Iter->first, Iter->second};
523   Iter++;
524   return Error::success();
525 }
526 } // namespace memprof
527 } // namespace llvm
528