1 //=-- InstrProfWriter.cpp - Instrumented profiling writer -------------------=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing profiling data for clang's 11 // instrumentation based PGO and coverage. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ProfileData/InstrProfWriter.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/Support/EndianStream.h" 18 #include "llvm/Support/OnDiskHashTable.h" 19 20 using namespace llvm; 21 22 namespace { 23 class InstrProfRecordTrait { 24 public: 25 typedef StringRef key_type; 26 typedef StringRef key_type_ref; 27 28 typedef const InstrProfWriter::ProfilingData *const data_type; 29 typedef const InstrProfWriter::ProfilingData *const data_type_ref; 30 31 typedef uint64_t hash_value_type; 32 typedef uint64_t offset_type; 33 34 static hash_value_type ComputeHash(key_type_ref K) { 35 return IndexedInstrProf::ComputeHash(IndexedInstrProf::HashType, K); 36 } 37 38 static std::pair<offset_type, offset_type> 39 EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) { 40 using namespace llvm::support; 41 endian::Writer<little> LE(Out); 42 43 offset_type N = K.size(); 44 LE.write<offset_type>(N); 45 46 offset_type M = 0; 47 for (const auto &ProfileData : *V) { 48 const InstrProfRecord &ProfRecord = ProfileData.second; 49 M += sizeof(uint64_t); // The function hash 50 M += sizeof(uint64_t); // The size of the Counts vector 51 M += ProfRecord.Counts.size() * sizeof(uint64_t); 52 53 // Value data 54 M += sizeof(uint64_t); // Number of value kinds with value sites. 55 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 56 uint32_t NumValueSites = ProfRecord.getNumValueSites(Kind); 57 if (NumValueSites == 0) continue; 58 M += sizeof(uint64_t); // Value kind 59 M += sizeof(uint64_t); // The number of value sites for given value kind 60 for (uint32_t I = 0; I < NumValueSites; I++) { 61 M += sizeof(uint64_t); // Number of value data pairs at a value site 62 uint64_t NumValueDataForSite = 63 ProfRecord.getNumValueDataForSite(Kind, I); 64 M += 2 * sizeof(uint64_t) * NumValueDataForSite; // Value data pairs 65 } 66 } 67 } 68 LE.write<offset_type>(M); 69 70 return std::make_pair(N, M); 71 } 72 73 static void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N){ 74 Out.write(K.data(), N); 75 } 76 77 static void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, 78 offset_type) { 79 using namespace llvm::support; 80 endian::Writer<little> LE(Out); 81 for (const auto &ProfileData : *V) { 82 const InstrProfRecord &ProfRecord = ProfileData.second; 83 84 LE.write<uint64_t>(ProfileData.first); // Function hash 85 LE.write<uint64_t>(ProfRecord.Counts.size()); 86 for (uint64_t I : ProfRecord.Counts) LE.write<uint64_t>(I); 87 88 // Compute the number of value kinds with value sites. 89 uint64_t NumValueKinds = ProfRecord.getNumValueKinds(); 90 LE.write<uint64_t>(NumValueKinds); 91 92 // Write value data 93 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 94 uint32_t NumValueSites = ProfRecord.getNumValueSites(Kind); 95 if (NumValueSites == 0) continue; 96 LE.write<uint64_t>(Kind); // Write value kind 97 // Write number of value sites for current value kind 98 LE.write<uint64_t>(NumValueSites); 99 100 for (uint32_t I = 0; I < NumValueSites; I++) { 101 // Write number of value data pairs at this value site 102 uint64_t NumValueDataForSite = 103 ProfRecord.getNumValueDataForSite(Kind, I); 104 LE.write<uint64_t>(NumValueDataForSite); 105 std::unique_ptr<InstrProfValueData[]> VD = 106 ProfRecord.getValueForSite(Kind, I); 107 108 for (uint32_t V = 0; V < NumValueDataForSite; V++) { 109 if (Kind == IPVK_IndirectCallTarget) 110 LE.write<uint64_t>(ComputeHash((const char *)VD[V].Value)); 111 else 112 LE.write<uint64_t>(VD[V].Value); 113 LE.write<uint64_t>(VD[V].Count); 114 } 115 } 116 } 117 } 118 } 119 }; 120 } 121 122 static std::error_code combineInstrProfRecords(InstrProfRecord &Dest, 123 InstrProfRecord &Source, 124 uint64_t &MaxFunctionCount) { 125 // If the number of counters doesn't match we either have bad data 126 // or a hash collision. 127 if (Dest.Counts.size() != Source.Counts.size()) 128 return instrprof_error::count_mismatch; 129 130 for (size_t I = 0, E = Source.Counts.size(); I < E; ++I) { 131 if (Dest.Counts[I] + Source.Counts[I] < Dest.Counts[I]) 132 return instrprof_error::counter_overflow; 133 Dest.Counts[I] += Source.Counts[I]; 134 } 135 136 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 137 if (std::error_code EC = Dest.mergeValueProfData(Kind, Source)) return EC; 138 } 139 140 // We keep track of the max function count as we go for simplicity. 141 if (Dest.Counts[0] > MaxFunctionCount) 142 MaxFunctionCount = Dest.Counts[0]; 143 144 return instrprof_error::success; 145 } 146 147 void InstrProfWriter::updateStringTableReferences(InstrProfRecord &I) { 148 I.updateStrings(&StringTable); 149 } 150 151 std::error_code InstrProfWriter::addRecord(InstrProfRecord &&I) { 152 updateStringTableReferences(I); 153 auto &ProfileDataMap = FunctionData[I.Name]; 154 155 auto Where = ProfileDataMap.find(I.Hash); 156 if (Where == ProfileDataMap.end()) { 157 // We've never seen a function with this name and hash, add it. 158 ProfileDataMap[I.Hash] = I; 159 160 // We keep track of the max function count as we go for simplicity. 161 if (I.Counts[0] > MaxFunctionCount) 162 MaxFunctionCount = I.Counts[0]; 163 return instrprof_error::success; 164 } 165 166 // We're updating a function we've seen before. 167 return combineInstrProfRecords(Where->second, I, MaxFunctionCount); 168 } 169 170 std::pair<uint64_t, uint64_t> InstrProfWriter::writeImpl(raw_ostream &OS) { 171 OnDiskChainedHashTableGenerator<InstrProfRecordTrait> Generator; 172 173 // Populate the hash table generator. 174 for (const auto &I : FunctionData) 175 Generator.insert(I.getKey(), &I.getValue()); 176 177 using namespace llvm::support; 178 endian::Writer<little> LE(OS); 179 180 // Write the header. 181 IndexedInstrProf::Header Header; 182 Header.Magic = IndexedInstrProf::Magic; 183 Header.Version = IndexedInstrProf::Version; 184 Header.MaxFunctionCount = MaxFunctionCount; 185 Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType); 186 Header.HashOffset = 0; 187 int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t); 188 189 // Only write out all the fields execpt 'HashOffset'. We need 190 // to remember the offset of that field to allow back patching 191 // later. 192 for (int I = 0; I < N - 1; I++) 193 LE.write<uint64_t>(reinterpret_cast<uint64_t *>(&Header)[I]); 194 195 // Save a space to write the hash table start location. 196 uint64_t HashTableStartLoc = OS.tell(); 197 // Reserve the space for HashOffset field. 198 LE.write<uint64_t>(0); 199 // Write the hash table. 200 uint64_t HashTableStart = Generator.Emit(OS); 201 202 return std::make_pair(HashTableStartLoc, HashTableStart); 203 } 204 205 void InstrProfWriter::write(raw_fd_ostream &OS) { 206 // Write the hash table. 207 auto TableStart = writeImpl(OS); 208 209 // Go back and fill in the hash table start. 210 using namespace support; 211 OS.seek(TableStart.first); 212 // Now patch the HashOffset field previously reserved. 213 endian::Writer<little>(OS).write<uint64_t>(TableStart.second); 214 } 215 216 std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() { 217 std::string Data; 218 llvm::raw_string_ostream OS(Data); 219 // Write the hash table. 220 auto TableStart = writeImpl(OS); 221 OS.flush(); 222 223 // Go back and fill in the hash table start. 224 using namespace support; 225 uint64_t Bytes = endian::byte_swap<uint64_t, little>(TableStart.second); 226 Data.replace(TableStart.first, sizeof(uint64_t), (const char *)&Bytes, 227 sizeof(uint64_t)); 228 229 // Return this in an aligned memory buffer. 230 return MemoryBuffer::getMemBufferCopy(Data); 231 } 232