1 //===- InstrProf.cpp - Instrumented profiling format support --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's instrumentation based PGO and 10 // coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/InstrProf.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Config/config.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/ProfileData/InstrProfReader.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Compression.h" 38 #include "llvm/Support/Endian.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/LEB128.h" 42 #include "llvm/Support/ManagedStatic.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/Path.h" 45 #include "llvm/Support/SwapByteOrder.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <cstring> 51 #include <memory> 52 #include <string> 53 #include <system_error> 54 #include <type_traits> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 static cl::opt<bool> StaticFuncFullModulePrefix( 61 "static-func-full-module-prefix", cl::init(true), cl::Hidden, 62 cl::desc("Use full module build paths in the profile counter names for " 63 "static functions.")); 64 65 // This option is tailored to users that have different top-level directory in 66 // profile-gen and profile-use compilation. Users need to specific the number 67 // of levels to strip. A value larger than the number of directories in the 68 // source file will strip all the directory names and only leave the basename. 69 // 70 // Note current ThinLTO module importing for the indirect-calls assumes 71 // the source directory name not being stripped. A non-zero option value here 72 // can potentially prevent some inter-module indirect-call-promotions. 73 static cl::opt<unsigned> StaticFuncStripDirNamePrefix( 74 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden, 75 cl::desc("Strip specified level of directory name from source path in " 76 "the profile counter name for static functions.")); 77 78 static std::string getInstrProfErrString(instrprof_error Err, 79 const std::string &ErrMsg = "") { 80 std::string Msg; 81 raw_string_ostream OS(Msg); 82 83 switch (Err) { 84 case instrprof_error::success: 85 OS << "success"; 86 break; 87 case instrprof_error::eof: 88 OS << "end of File"; 89 break; 90 case instrprof_error::unrecognized_format: 91 OS << "unrecognized instrumentation profile encoding format"; 92 break; 93 case instrprof_error::bad_magic: 94 OS << "invalid instrumentation profile data (bad magic)"; 95 break; 96 case instrprof_error::bad_header: 97 OS << "invalid instrumentation profile data (file header is corrupt)"; 98 break; 99 case instrprof_error::unsupported_version: 100 OS << "unsupported instrumentation profile format version"; 101 break; 102 case instrprof_error::unsupported_hash_type: 103 OS << "unsupported instrumentation profile hash type"; 104 break; 105 case instrprof_error::too_large: 106 OS << "too much profile data"; 107 break; 108 case instrprof_error::truncated: 109 OS << "truncated profile data"; 110 break; 111 case instrprof_error::malformed: 112 OS << "malformed instrumentation profile data"; 113 break; 114 case instrprof_error::missing_debug_info_for_correlation: 115 OS << "debug info for correlation is required"; 116 break; 117 case instrprof_error::unexpected_debug_info_for_correlation: 118 OS << "debug info for correlation is not necessary"; 119 break; 120 case instrprof_error::unable_to_correlate_profile: 121 OS << "unable to correlate profile"; 122 break; 123 case instrprof_error::invalid_prof: 124 OS << "invalid profile created. Please file a bug " 125 "at: " BUG_REPORT_URL 126 " and include the profraw files that caused this error."; 127 break; 128 case instrprof_error::unknown_function: 129 OS << "no profile data available for function"; 130 break; 131 case instrprof_error::hash_mismatch: 132 OS << "function control flow change detected (hash mismatch)"; 133 break; 134 case instrprof_error::count_mismatch: 135 OS << "function basic block count change detected (counter mismatch)"; 136 break; 137 case instrprof_error::counter_overflow: 138 OS << "counter overflow"; 139 break; 140 case instrprof_error::value_site_count_mismatch: 141 OS << "function value site count change detected (counter mismatch)"; 142 break; 143 case instrprof_error::compress_failed: 144 OS << "failed to compress data (zlib)"; 145 break; 146 case instrprof_error::uncompress_failed: 147 OS << "failed to uncompress data (zlib)"; 148 break; 149 case instrprof_error::empty_raw_profile: 150 OS << "empty raw profile file"; 151 break; 152 case instrprof_error::zlib_unavailable: 153 OS << "profile uses zlib compression but the profile reader was built " 154 "without zlib support"; 155 break; 156 } 157 158 // If optional error message is not empty, append it to the message. 159 if (!ErrMsg.empty()) 160 OS << ": " << ErrMsg; 161 162 return OS.str(); 163 } 164 165 namespace { 166 167 // FIXME: This class is only here to support the transition to llvm::Error. It 168 // will be removed once this transition is complete. Clients should prefer to 169 // deal with the Error value directly, rather than converting to error_code. 170 class InstrProfErrorCategoryType : public std::error_category { 171 const char *name() const noexcept override { return "llvm.instrprof"; } 172 173 std::string message(int IE) const override { 174 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 175 } 176 }; 177 178 } // end anonymous namespace 179 180 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; 181 182 const std::error_category &llvm::instrprof_category() { 183 return *ErrorCategory; 184 } 185 186 namespace { 187 188 const char *InstrProfSectNameCommon[] = { 189 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 190 SectNameCommon, 191 #include "llvm/ProfileData/InstrProfData.inc" 192 }; 193 194 const char *InstrProfSectNameCoff[] = { 195 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 196 SectNameCoff, 197 #include "llvm/ProfileData/InstrProfData.inc" 198 }; 199 200 const char *InstrProfSectNamePrefix[] = { 201 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 202 Prefix, 203 #include "llvm/ProfileData/InstrProfData.inc" 204 }; 205 206 } // namespace 207 208 namespace llvm { 209 210 cl::opt<bool> DoInstrProfNameCompression( 211 "enable-name-compression", 212 cl::desc("Enable name/filename string compression"), cl::init(true)); 213 214 std::string getInstrProfSectionName(InstrProfSectKind IPSK, 215 Triple::ObjectFormatType OF, 216 bool AddSegmentInfo) { 217 std::string SectName; 218 219 if (OF == Triple::MachO && AddSegmentInfo) 220 SectName = InstrProfSectNamePrefix[IPSK]; 221 222 if (OF == Triple::COFF) 223 SectName += InstrProfSectNameCoff[IPSK]; 224 else 225 SectName += InstrProfSectNameCommon[IPSK]; 226 227 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo) 228 SectName += ",regular,live_support"; 229 230 return SectName; 231 } 232 233 void SoftInstrProfErrors::addError(instrprof_error IE) { 234 if (IE == instrprof_error::success) 235 return; 236 237 if (FirstError == instrprof_error::success) 238 FirstError = IE; 239 240 switch (IE) { 241 case instrprof_error::hash_mismatch: 242 ++NumHashMismatches; 243 break; 244 case instrprof_error::count_mismatch: 245 ++NumCountMismatches; 246 break; 247 case instrprof_error::counter_overflow: 248 ++NumCounterOverflows; 249 break; 250 case instrprof_error::value_site_count_mismatch: 251 ++NumValueSiteCountMismatches; 252 break; 253 default: 254 llvm_unreachable("Not a soft error"); 255 } 256 } 257 258 std::string InstrProfError::message() const { 259 return getInstrProfErrString(Err, Msg); 260 } 261 262 char InstrProfError::ID = 0; 263 264 std::string getPGOFuncName(StringRef RawFuncName, 265 GlobalValue::LinkageTypes Linkage, 266 StringRef FileName, 267 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 268 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 269 } 270 271 // Strip NumPrefix level of directory name from PathNameStr. If the number of 272 // directory separators is less than NumPrefix, strip all the directories and 273 // leave base file name only. 274 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) { 275 uint32_t Count = NumPrefix; 276 uint32_t Pos = 0, LastPos = 0; 277 for (auto & CI : PathNameStr) { 278 ++Pos; 279 if (llvm::sys::path::is_separator(CI)) { 280 LastPos = Pos; 281 --Count; 282 } 283 if (Count == 0) 284 break; 285 } 286 return PathNameStr.substr(LastPos); 287 } 288 289 // Return the PGOFuncName. This function has some special handling when called 290 // in LTO optimization. The following only applies when calling in LTO passes 291 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 292 // symbols. This happens after value profile annotation, but those internal 293 // linkage functions should not have a source prefix. 294 // Additionally, for ThinLTO mode, exported internal functions are promoted 295 // and renamed. We need to ensure that the original internal PGO name is 296 // used when computing the GUID that is compared against the profiled GUIDs. 297 // To differentiate compiler generated internal symbols from original ones, 298 // PGOFuncName meta data are created and attached to the original internal 299 // symbols in the value profile annotation step 300 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 301 // data, its original linkage must be non-internal. 302 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 303 if (!InLTO) { 304 StringRef FileName(F.getParent()->getSourceFileName()); 305 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1; 306 if (StripLevel < StaticFuncStripDirNamePrefix) 307 StripLevel = StaticFuncStripDirNamePrefix; 308 if (StripLevel) 309 FileName = stripDirPrefix(FileName, StripLevel); 310 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 311 } 312 313 // In LTO mode (when InLTO is true), first check if there is a meta data. 314 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 315 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 316 return S.str(); 317 } 318 319 // If there is no meta data, the function must be a global before the value 320 // profile annotation pass. Its current linkage may be internal if it is 321 // internalized in LTO mode. 322 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 323 } 324 325 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 326 if (FileName.empty()) 327 return PGOFuncName; 328 // Drop the file name including ':'. See also getPGOFuncName. 329 if (PGOFuncName.startswith(FileName)) 330 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 331 return PGOFuncName; 332 } 333 334 // \p FuncName is the string used as profile lookup key for the function. A 335 // symbol is created to hold the name. Return the legalized symbol name. 336 std::string getPGOFuncNameVarName(StringRef FuncName, 337 GlobalValue::LinkageTypes Linkage) { 338 std::string VarName = std::string(getInstrProfNameVarPrefix()); 339 VarName += FuncName; 340 341 if (!GlobalValue::isLocalLinkage(Linkage)) 342 return VarName; 343 344 // Now fix up illegal chars in local VarName that may upset the assembler. 345 const char *InvalidChars = "-:<>/\"'"; 346 size_t found = VarName.find_first_of(InvalidChars); 347 while (found != std::string::npos) { 348 VarName[found] = '_'; 349 found = VarName.find_first_of(InvalidChars, found + 1); 350 } 351 return VarName; 352 } 353 354 GlobalVariable *createPGOFuncNameVar(Module &M, 355 GlobalValue::LinkageTypes Linkage, 356 StringRef PGOFuncName) { 357 // We generally want to match the function's linkage, but available_externally 358 // and extern_weak both have the wrong semantics, and anything that doesn't 359 // need to link across compilation units doesn't need to be visible at all. 360 if (Linkage == GlobalValue::ExternalWeakLinkage) 361 Linkage = GlobalValue::LinkOnceAnyLinkage; 362 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 363 Linkage = GlobalValue::LinkOnceODRLinkage; 364 else if (Linkage == GlobalValue::InternalLinkage || 365 Linkage == GlobalValue::ExternalLinkage) 366 Linkage = GlobalValue::PrivateLinkage; 367 368 auto *Value = 369 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 370 auto FuncNameVar = 371 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 372 getPGOFuncNameVarName(PGOFuncName, Linkage)); 373 374 // Hide the symbol so that we correctly get a copy for each executable. 375 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 376 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 377 378 return FuncNameVar; 379 } 380 381 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 382 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 383 } 384 385 Error InstrProfSymtab::create(Module &M, bool InLTO) { 386 for (Function &F : M) { 387 // Function may not have a name: like using asm("") to overwrite the name. 388 // Ignore in this case. 389 if (!F.hasName()) 390 continue; 391 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 392 if (Error E = addFuncName(PGOFuncName)) 393 return E; 394 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 395 // In ThinLTO, local function may have been promoted to global and have 396 // suffix ".llvm." added to the function name. We need to add the 397 // stripped function name to the symbol table so that we can find a match 398 // from profile. 399 // 400 // We may have other suffixes similar as ".llvm." which are needed to 401 // be stripped before the matching, but ".__uniq." suffix which is used 402 // to differentiate internal linkage functions in different modules 403 // should be kept. Now this is the only suffix with the pattern ".xxx" 404 // which is kept before matching. 405 const std::string UniqSuffix = ".__uniq."; 406 auto pos = PGOFuncName.find(UniqSuffix); 407 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise 408 // search '.' from the beginning. 409 if (pos != std::string::npos) 410 pos += UniqSuffix.length(); 411 else 412 pos = 0; 413 pos = PGOFuncName.find('.', pos); 414 if (pos != std::string::npos && pos != 0) { 415 const std::string &OtherFuncName = PGOFuncName.substr(0, pos); 416 if (Error E = addFuncName(OtherFuncName)) 417 return E; 418 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F); 419 } 420 } 421 Sorted = false; 422 finalizeSymtab(); 423 return Error::success(); 424 } 425 426 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) { 427 finalizeSymtab(); 428 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) { 429 return A.first < Address; 430 }); 431 // Raw function pointer collected by value profiler may be from 432 // external functions that are not instrumented. They won't have 433 // mapping data to be used by the deserializer. Force the value to 434 // be 0 in this case. 435 if (It != AddrToMD5Map.end() && It->first == Address) 436 return (uint64_t)It->second; 437 return 0; 438 } 439 440 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs, 441 bool doCompression, std::string &Result) { 442 assert(!NameStrs.empty() && "No name data to emit"); 443 444 uint8_t Header[16], *P = Header; 445 std::string UncompressedNameStrings = 446 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 447 448 assert(StringRef(UncompressedNameStrings) 449 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 450 "PGO name is invalid (contains separator token)"); 451 452 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 453 P += EncLen; 454 455 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 456 EncLen = encodeULEB128(CompressedLen, P); 457 P += EncLen; 458 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 459 unsigned HeaderLen = P - &Header[0]; 460 Result.append(HeaderStr, HeaderLen); 461 Result += InputStr; 462 return Error::success(); 463 }; 464 465 if (!doCompression) { 466 return WriteStringToResult(0, UncompressedNameStrings); 467 } 468 469 SmallString<128> CompressedNameStrings; 470 compression::zlib::compress(StringRef(UncompressedNameStrings), 471 CompressedNameStrings, 472 compression::zlib::BestSizeCompression); 473 474 return WriteStringToResult(CompressedNameStrings.size(), 475 CompressedNameStrings); 476 } 477 478 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 479 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 480 StringRef NameStr = 481 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 482 return NameStr; 483 } 484 485 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars, 486 std::string &Result, bool doCompression) { 487 std::vector<std::string> NameStrs; 488 for (auto *NameVar : NameVars) { 489 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar))); 490 } 491 return collectPGOFuncNameStrings( 492 NameStrs, compression::zlib::isAvailable() && doCompression, Result); 493 } 494 495 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 496 const uint8_t *P = NameStrings.bytes_begin(); 497 const uint8_t *EndP = NameStrings.bytes_end(); 498 while (P < EndP) { 499 uint32_t N; 500 uint64_t UncompressedSize = decodeULEB128(P, &N); 501 P += N; 502 uint64_t CompressedSize = decodeULEB128(P, &N); 503 P += N; 504 bool isCompressed = (CompressedSize != 0); 505 SmallString<128> UncompressedNameStrings; 506 StringRef NameStrings; 507 if (isCompressed) { 508 if (!llvm::compression::zlib::isAvailable()) 509 return make_error<InstrProfError>(instrprof_error::zlib_unavailable); 510 511 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 512 CompressedSize); 513 if (Error E = compression::zlib::uncompress(CompressedNameStrings, 514 UncompressedNameStrings, 515 UncompressedSize)) { 516 consumeError(std::move(E)); 517 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 518 } 519 P += CompressedSize; 520 NameStrings = StringRef(UncompressedNameStrings.data(), 521 UncompressedNameStrings.size()); 522 } else { 523 NameStrings = 524 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 525 P += UncompressedSize; 526 } 527 // Now parse the name strings. 528 SmallVector<StringRef, 0> Names; 529 NameStrings.split(Names, getInstrProfNameSeparator()); 530 for (StringRef &Name : Names) 531 if (Error E = Symtab.addFuncName(Name)) 532 return E; 533 534 while (P < EndP && *P == 0) 535 P++; 536 } 537 return Error::success(); 538 } 539 540 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const { 541 uint64_t FuncSum = 0; 542 Sum.NumEntries += Counts.size(); 543 for (uint64_t Count : Counts) 544 FuncSum += Count; 545 Sum.CountSum += FuncSum; 546 547 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) { 548 uint64_t KindSum = 0; 549 uint32_t NumValueSites = getNumValueSites(VK); 550 for (size_t I = 0; I < NumValueSites; ++I) { 551 uint32_t NV = getNumValueDataForSite(VK, I); 552 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I); 553 for (uint32_t V = 0; V < NV; V++) 554 KindSum += VD[V].Count; 555 } 556 Sum.ValueCounts[VK] += KindSum; 557 } 558 } 559 560 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input, 561 uint32_t ValueKind, 562 OverlapStats &Overlap, 563 OverlapStats &FuncLevelOverlap) { 564 this->sortByTargetValues(); 565 Input.sortByTargetValues(); 566 double Score = 0.0f, FuncLevelScore = 0.0f; 567 auto I = ValueData.begin(); 568 auto IE = ValueData.end(); 569 auto J = Input.ValueData.begin(); 570 auto JE = Input.ValueData.end(); 571 while (I != IE && J != JE) { 572 if (I->Value == J->Value) { 573 Score += OverlapStats::score(I->Count, J->Count, 574 Overlap.Base.ValueCounts[ValueKind], 575 Overlap.Test.ValueCounts[ValueKind]); 576 FuncLevelScore += OverlapStats::score( 577 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind], 578 FuncLevelOverlap.Test.ValueCounts[ValueKind]); 579 ++I; 580 } else if (I->Value < J->Value) { 581 ++I; 582 continue; 583 } 584 ++J; 585 } 586 Overlap.Overlap.ValueCounts[ValueKind] += Score; 587 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore; 588 } 589 590 // Return false on mismatch. 591 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind, 592 InstrProfRecord &Other, 593 OverlapStats &Overlap, 594 OverlapStats &FuncLevelOverlap) { 595 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 596 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind)); 597 if (!ThisNumValueSites) 598 return; 599 600 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 601 getOrCreateValueSitesForKind(ValueKind); 602 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 603 Other.getValueSitesForKind(ValueKind); 604 for (uint32_t I = 0; I < ThisNumValueSites; I++) 605 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap, 606 FuncLevelOverlap); 607 } 608 609 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap, 610 OverlapStats &FuncLevelOverlap, 611 uint64_t ValueCutoff) { 612 // FuncLevel CountSum for other should already computed and nonzero. 613 assert(FuncLevelOverlap.Test.CountSum >= 1.0f); 614 accumulateCounts(FuncLevelOverlap.Base); 615 bool Mismatch = (Counts.size() != Other.Counts.size()); 616 617 // Check if the value profiles mismatch. 618 if (!Mismatch) { 619 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 620 uint32_t ThisNumValueSites = getNumValueSites(Kind); 621 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind); 622 if (ThisNumValueSites != OtherNumValueSites) { 623 Mismatch = true; 624 break; 625 } 626 } 627 } 628 if (Mismatch) { 629 Overlap.addOneMismatch(FuncLevelOverlap.Test); 630 return; 631 } 632 633 // Compute overlap for value counts. 634 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 635 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap); 636 637 double Score = 0.0; 638 uint64_t MaxCount = 0; 639 // Compute overlap for edge counts. 640 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 641 Score += OverlapStats::score(Counts[I], Other.Counts[I], 642 Overlap.Base.CountSum, Overlap.Test.CountSum); 643 MaxCount = std::max(Other.Counts[I], MaxCount); 644 } 645 Overlap.Overlap.CountSum += Score; 646 Overlap.Overlap.NumEntries += 1; 647 648 if (MaxCount >= ValueCutoff) { 649 double FuncScore = 0.0; 650 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) 651 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I], 652 FuncLevelOverlap.Base.CountSum, 653 FuncLevelOverlap.Test.CountSum); 654 FuncLevelOverlap.Overlap.CountSum = FuncScore; 655 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size(); 656 FuncLevelOverlap.Valid = true; 657 } 658 } 659 660 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, 661 uint64_t Weight, 662 function_ref<void(instrprof_error)> Warn) { 663 this->sortByTargetValues(); 664 Input.sortByTargetValues(); 665 auto I = ValueData.begin(); 666 auto IE = ValueData.end(); 667 for (const InstrProfValueData &J : Input.ValueData) { 668 while (I != IE && I->Value < J.Value) 669 ++I; 670 if (I != IE && I->Value == J.Value) { 671 bool Overflowed; 672 I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed); 673 if (Overflowed) 674 Warn(instrprof_error::counter_overflow); 675 ++I; 676 continue; 677 } 678 ValueData.insert(I, J); 679 } 680 } 681 682 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D, 683 function_ref<void(instrprof_error)> Warn) { 684 for (InstrProfValueData &I : ValueData) { 685 bool Overflowed; 686 I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D; 687 if (Overflowed) 688 Warn(instrprof_error::counter_overflow); 689 } 690 } 691 692 // Merge Value Profile data from Src record to this record for ValueKind. 693 // Scale merged value counts by \p Weight. 694 void InstrProfRecord::mergeValueProfData( 695 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight, 696 function_ref<void(instrprof_error)> Warn) { 697 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 698 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 699 if (ThisNumValueSites != OtherNumValueSites) { 700 Warn(instrprof_error::value_site_count_mismatch); 701 return; 702 } 703 if (!ThisNumValueSites) 704 return; 705 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 706 getOrCreateValueSitesForKind(ValueKind); 707 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 708 Src.getValueSitesForKind(ValueKind); 709 for (uint32_t I = 0; I < ThisNumValueSites; I++) 710 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn); 711 } 712 713 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight, 714 function_ref<void(instrprof_error)> Warn) { 715 // If the number of counters doesn't match we either have bad data 716 // or a hash collision. 717 if (Counts.size() != Other.Counts.size()) { 718 Warn(instrprof_error::count_mismatch); 719 return; 720 } 721 722 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 723 bool Overflowed; 724 Counts[I] = 725 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 726 if (Overflowed) 727 Warn(instrprof_error::counter_overflow); 728 } 729 730 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 731 mergeValueProfData(Kind, Other, Weight, Warn); 732 } 733 734 void InstrProfRecord::scaleValueProfData( 735 uint32_t ValueKind, uint64_t N, uint64_t D, 736 function_ref<void(instrprof_error)> Warn) { 737 for (auto &R : getValueSitesForKind(ValueKind)) 738 R.scale(N, D, Warn); 739 } 740 741 void InstrProfRecord::scale(uint64_t N, uint64_t D, 742 function_ref<void(instrprof_error)> Warn) { 743 assert(D != 0 && "D cannot be 0"); 744 for (auto &Count : this->Counts) { 745 bool Overflowed; 746 Count = SaturatingMultiply(Count, N, &Overflowed) / D; 747 if (Overflowed) 748 Warn(instrprof_error::counter_overflow); 749 } 750 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 751 scaleValueProfData(Kind, N, D, Warn); 752 } 753 754 // Map indirect call target name hash to name string. 755 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 756 InstrProfSymtab *SymTab) { 757 if (!SymTab) 758 return Value; 759 760 if (ValueKind == IPVK_IndirectCallTarget) 761 return SymTab->getFunctionHashFromAddress(Value); 762 763 return Value; 764 } 765 766 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 767 InstrProfValueData *VData, uint32_t N, 768 InstrProfSymtab *ValueMap) { 769 for (uint32_t I = 0; I < N; I++) { 770 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 771 } 772 std::vector<InstrProfValueSiteRecord> &ValueSites = 773 getOrCreateValueSitesForKind(ValueKind); 774 if (N == 0) 775 ValueSites.emplace_back(); 776 else 777 ValueSites.emplace_back(VData, VData + N); 778 } 779 780 #define INSTR_PROF_COMMON_API_IMPL 781 #include "llvm/ProfileData/InstrProfData.inc" 782 783 /*! 784 * ValueProfRecordClosure Interface implementation for InstrProfRecord 785 * class. These C wrappers are used as adaptors so that C++ code can be 786 * invoked as callbacks. 787 */ 788 uint32_t getNumValueKindsInstrProf(const void *Record) { 789 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 790 } 791 792 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 793 return reinterpret_cast<const InstrProfRecord *>(Record) 794 ->getNumValueSites(VKind); 795 } 796 797 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 798 return reinterpret_cast<const InstrProfRecord *>(Record) 799 ->getNumValueData(VKind); 800 } 801 802 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 803 uint32_t S) { 804 return reinterpret_cast<const InstrProfRecord *>(R) 805 ->getNumValueDataForSite(VK, S); 806 } 807 808 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 809 uint32_t K, uint32_t S) { 810 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 811 } 812 813 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 814 ValueProfData *VD = 815 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 816 memset(VD, 0, TotalSizeInBytes); 817 return VD; 818 } 819 820 static ValueProfRecordClosure InstrProfRecordClosure = { 821 nullptr, 822 getNumValueKindsInstrProf, 823 getNumValueSitesInstrProf, 824 getNumValueDataInstrProf, 825 getNumValueDataForSiteInstrProf, 826 nullptr, 827 getValueForSiteInstrProf, 828 allocValueProfDataInstrProf}; 829 830 // Wrapper implementation using the closure mechanism. 831 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 832 auto Closure = InstrProfRecordClosure; 833 Closure.Record = &Record; 834 return getValueProfDataSize(&Closure); 835 } 836 837 // Wrapper implementation using the closure mechanism. 838 std::unique_ptr<ValueProfData> 839 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 840 InstrProfRecordClosure.Record = &Record; 841 842 std::unique_ptr<ValueProfData> VPD( 843 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 844 return VPD; 845 } 846 847 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 848 InstrProfSymtab *SymTab) { 849 Record.reserveSites(Kind, NumValueSites); 850 851 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 852 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 853 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 854 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab); 855 ValueData += ValueDataCount; 856 } 857 } 858 859 // For writing/serializing, Old is the host endianness, and New is 860 // byte order intended on disk. For Reading/deserialization, Old 861 // is the on-disk source endianness, and New is the host endianness. 862 void ValueProfRecord::swapBytes(support::endianness Old, 863 support::endianness New) { 864 using namespace support; 865 866 if (Old == New) 867 return; 868 869 if (getHostEndianness() != Old) { 870 sys::swapByteOrder<uint32_t>(NumValueSites); 871 sys::swapByteOrder<uint32_t>(Kind); 872 } 873 uint32_t ND = getValueProfRecordNumValueData(this); 874 InstrProfValueData *VD = getValueProfRecordValueData(this); 875 876 // No need to swap byte array: SiteCountArrray. 877 for (uint32_t I = 0; I < ND; I++) { 878 sys::swapByteOrder<uint64_t>(VD[I].Value); 879 sys::swapByteOrder<uint64_t>(VD[I].Count); 880 } 881 if (getHostEndianness() == Old) { 882 sys::swapByteOrder<uint32_t>(NumValueSites); 883 sys::swapByteOrder<uint32_t>(Kind); 884 } 885 } 886 887 void ValueProfData::deserializeTo(InstrProfRecord &Record, 888 InstrProfSymtab *SymTab) { 889 if (NumValueKinds == 0) 890 return; 891 892 ValueProfRecord *VR = getFirstValueProfRecord(this); 893 for (uint32_t K = 0; K < NumValueKinds; K++) { 894 VR->deserializeTo(Record, SymTab); 895 VR = getValueProfRecordNext(VR); 896 } 897 } 898 899 template <class T> 900 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 901 using namespace support; 902 903 if (Orig == little) 904 return endian::readNext<T, little, unaligned>(D); 905 else 906 return endian::readNext<T, big, unaligned>(D); 907 } 908 909 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 910 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 911 ValueProfData()); 912 } 913 914 Error ValueProfData::checkIntegrity() { 915 if (NumValueKinds > IPVK_Last + 1) 916 return make_error<InstrProfError>( 917 instrprof_error::malformed, "number of value profile kinds is invalid"); 918 // Total size needs to be multiple of quadword size. 919 if (TotalSize % sizeof(uint64_t)) 920 return make_error<InstrProfError>( 921 instrprof_error::malformed, "total size is not multiples of quardword"); 922 923 ValueProfRecord *VR = getFirstValueProfRecord(this); 924 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 925 if (VR->Kind > IPVK_Last) 926 return make_error<InstrProfError>(instrprof_error::malformed, 927 "value kind is invalid"); 928 VR = getValueProfRecordNext(VR); 929 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 930 return make_error<InstrProfError>( 931 instrprof_error::malformed, 932 "value profile address is greater than total size"); 933 } 934 return Error::success(); 935 } 936 937 Expected<std::unique_ptr<ValueProfData>> 938 ValueProfData::getValueProfData(const unsigned char *D, 939 const unsigned char *const BufferEnd, 940 support::endianness Endianness) { 941 using namespace support; 942 943 if (D + sizeof(ValueProfData) > BufferEnd) 944 return make_error<InstrProfError>(instrprof_error::truncated); 945 946 const unsigned char *Header = D; 947 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 948 if (D + TotalSize > BufferEnd) 949 return make_error<InstrProfError>(instrprof_error::too_large); 950 951 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 952 memcpy(VPD.get(), D, TotalSize); 953 // Byte swap. 954 VPD->swapBytesToHost(Endianness); 955 956 Error E = VPD->checkIntegrity(); 957 if (E) 958 return std::move(E); 959 960 return std::move(VPD); 961 } 962 963 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 964 using namespace support; 965 966 if (Endianness == getHostEndianness()) 967 return; 968 969 sys::swapByteOrder<uint32_t>(TotalSize); 970 sys::swapByteOrder<uint32_t>(NumValueKinds); 971 972 ValueProfRecord *VR = getFirstValueProfRecord(this); 973 for (uint32_t K = 0; K < NumValueKinds; K++) { 974 VR->swapBytes(Endianness, getHostEndianness()); 975 VR = getValueProfRecordNext(VR); 976 } 977 } 978 979 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 980 using namespace support; 981 982 if (Endianness == getHostEndianness()) 983 return; 984 985 ValueProfRecord *VR = getFirstValueProfRecord(this); 986 for (uint32_t K = 0; K < NumValueKinds; K++) { 987 ValueProfRecord *NVR = getValueProfRecordNext(VR); 988 VR->swapBytes(getHostEndianness(), Endianness); 989 VR = NVR; 990 } 991 sys::swapByteOrder<uint32_t>(TotalSize); 992 sys::swapByteOrder<uint32_t>(NumValueKinds); 993 } 994 995 void annotateValueSite(Module &M, Instruction &Inst, 996 const InstrProfRecord &InstrProfR, 997 InstrProfValueKind ValueKind, uint32_t SiteIdx, 998 uint32_t MaxMDCount) { 999 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 1000 if (!NV) 1001 return; 1002 1003 uint64_t Sum = 0; 1004 std::unique_ptr<InstrProfValueData[]> VD = 1005 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 1006 1007 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 1008 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 1009 } 1010 1011 void annotateValueSite(Module &M, Instruction &Inst, 1012 ArrayRef<InstrProfValueData> VDs, 1013 uint64_t Sum, InstrProfValueKind ValueKind, 1014 uint32_t MaxMDCount) { 1015 LLVMContext &Ctx = M.getContext(); 1016 MDBuilder MDHelper(Ctx); 1017 SmallVector<Metadata *, 3> Vals; 1018 // Tag 1019 Vals.push_back(MDHelper.createString("VP")); 1020 // Value Kind 1021 Vals.push_back(MDHelper.createConstant( 1022 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 1023 // Total Count 1024 Vals.push_back( 1025 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 1026 1027 // Value Profile Data 1028 uint32_t MDCount = MaxMDCount; 1029 for (auto &VD : VDs) { 1030 Vals.push_back(MDHelper.createConstant( 1031 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 1032 Vals.push_back(MDHelper.createConstant( 1033 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 1034 if (--MDCount == 0) 1035 break; 1036 } 1037 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 1038 } 1039 1040 bool getValueProfDataFromInst(const Instruction &Inst, 1041 InstrProfValueKind ValueKind, 1042 uint32_t MaxNumValueData, 1043 InstrProfValueData ValueData[], 1044 uint32_t &ActualNumValueData, uint64_t &TotalC, 1045 bool GetNoICPValue) { 1046 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 1047 if (!MD) 1048 return false; 1049 1050 unsigned NOps = MD->getNumOperands(); 1051 1052 if (NOps < 5) 1053 return false; 1054 1055 // Operand 0 is a string tag "VP": 1056 MDString *Tag = cast<MDString>(MD->getOperand(0)); 1057 if (!Tag) 1058 return false; 1059 1060 if (!Tag->getString().equals("VP")) 1061 return false; 1062 1063 // Now check kind: 1064 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 1065 if (!KindInt) 1066 return false; 1067 if (KindInt->getZExtValue() != ValueKind) 1068 return false; 1069 1070 // Get total count 1071 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 1072 if (!TotalCInt) 1073 return false; 1074 TotalC = TotalCInt->getZExtValue(); 1075 1076 ActualNumValueData = 0; 1077 1078 for (unsigned I = 3; I < NOps; I += 2) { 1079 if (ActualNumValueData >= MaxNumValueData) 1080 break; 1081 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 1082 ConstantInt *Count = 1083 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 1084 if (!Value || !Count) 1085 return false; 1086 uint64_t CntValue = Count->getZExtValue(); 1087 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM)) 1088 continue; 1089 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 1090 ValueData[ActualNumValueData].Count = CntValue; 1091 ActualNumValueData++; 1092 } 1093 return true; 1094 } 1095 1096 MDNode *getPGOFuncNameMetadata(const Function &F) { 1097 return F.getMetadata(getPGOFuncNameMetadataName()); 1098 } 1099 1100 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 1101 // Only for internal linkage functions. 1102 if (PGOFuncName == F.getName()) 1103 return; 1104 // Don't create duplicated meta-data. 1105 if (getPGOFuncNameMetadata(F)) 1106 return; 1107 LLVMContext &C = F.getContext(); 1108 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 1109 F.setMetadata(getPGOFuncNameMetadataName(), N); 1110 } 1111 1112 bool needsComdatForCounter(const Function &F, const Module &M) { 1113 if (F.hasComdat()) 1114 return true; 1115 1116 if (!Triple(M.getTargetTriple()).supportsCOMDAT()) 1117 return false; 1118 1119 // See createPGOFuncNameVar for more details. To avoid link errors, profile 1120 // counters for function with available_externally linkage needs to be changed 1121 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 1122 // created. Without using comdat, duplicate entries won't be removed by the 1123 // linker leading to increased data segement size and raw profile size. Even 1124 // worse, since the referenced counter from profile per-function data object 1125 // will be resolved to the common strong definition, the profile counts for 1126 // available_externally functions will end up being duplicated in raw profile 1127 // data. This can result in distorted profile as the counts of those dups 1128 // will be accumulated by the profile merger. 1129 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 1130 if (Linkage != GlobalValue::ExternalWeakLinkage && 1131 Linkage != GlobalValue::AvailableExternallyLinkage) 1132 return false; 1133 1134 return true; 1135 } 1136 1137 // Check if INSTR_PROF_RAW_VERSION_VAR is defined. 1138 bool isIRPGOFlagSet(const Module *M) { 1139 auto IRInstrVar = 1140 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1141 if (!IRInstrVar || IRInstrVar->hasLocalLinkage()) 1142 return false; 1143 1144 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only 1145 // have the decl. 1146 if (IRInstrVar->isDeclaration()) 1147 return true; 1148 1149 // Check if the flag is set. 1150 if (!IRInstrVar->hasInitializer()) 1151 return false; 1152 1153 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer()); 1154 if (!InitVal) 1155 return false; 1156 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0; 1157 } 1158 1159 // Check if we can safely rename this Comdat function. 1160 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) { 1161 if (F.getName().empty()) 1162 return false; 1163 if (!needsComdatForCounter(F, *(F.getParent()))) 1164 return false; 1165 // Unsafe to rename the address-taken function (which can be used in 1166 // function comparison). 1167 if (CheckAddressTaken && F.hasAddressTaken()) 1168 return false; 1169 // Only safe to do if this function may be discarded if it is not used 1170 // in the compilation unit. 1171 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage())) 1172 return false; 1173 1174 // For AvailableExternallyLinkage functions. 1175 if (!F.hasComdat()) { 1176 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 1177 return true; 1178 } 1179 return true; 1180 } 1181 1182 // Create the variable for the profile file name. 1183 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) { 1184 if (InstrProfileOutput.empty()) 1185 return; 1186 Constant *ProfileNameConst = 1187 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true); 1188 GlobalVariable *ProfileNameVar = new GlobalVariable( 1189 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage, 1190 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)); 1191 Triple TT(M.getTargetTriple()); 1192 if (TT.supportsCOMDAT()) { 1193 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 1194 ProfileNameVar->setComdat(M.getOrInsertComdat( 1195 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)))); 1196 } 1197 } 1198 1199 Error OverlapStats::accumulateCounts(const std::string &BaseFilename, 1200 const std::string &TestFilename, 1201 bool IsCS) { 1202 auto getProfileSum = [IsCS](const std::string &Filename, 1203 CountSumOrPercent &Sum) -> Error { 1204 auto ReaderOrErr = InstrProfReader::create(Filename); 1205 if (Error E = ReaderOrErr.takeError()) { 1206 return E; 1207 } 1208 auto Reader = std::move(ReaderOrErr.get()); 1209 Reader->accumulateCounts(Sum, IsCS); 1210 return Error::success(); 1211 }; 1212 auto Ret = getProfileSum(BaseFilename, Base); 1213 if (Ret) 1214 return Ret; 1215 Ret = getProfileSum(TestFilename, Test); 1216 if (Ret) 1217 return Ret; 1218 this->BaseFilename = &BaseFilename; 1219 this->TestFilename = &TestFilename; 1220 Valid = true; 1221 return Error::success(); 1222 } 1223 1224 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) { 1225 Mismatch.NumEntries += 1; 1226 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum; 1227 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1228 if (Test.ValueCounts[I] >= 1.0f) 1229 Mismatch.ValueCounts[I] += 1230 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I]; 1231 } 1232 } 1233 1234 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) { 1235 Unique.NumEntries += 1; 1236 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum; 1237 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1238 if (Test.ValueCounts[I] >= 1.0f) 1239 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I]; 1240 } 1241 } 1242 1243 void OverlapStats::dump(raw_fd_ostream &OS) const { 1244 if (!Valid) 1245 return; 1246 1247 const char *EntryName = 1248 (Level == ProgramLevel ? "functions" : "edge counters"); 1249 if (Level == ProgramLevel) { 1250 OS << "Profile overlap infomation for base_profile: " << *BaseFilename 1251 << " and test_profile: " << *TestFilename << "\nProgram level:\n"; 1252 } else { 1253 OS << "Function level:\n" 1254 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n"; 1255 } 1256 1257 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n"; 1258 if (Mismatch.NumEntries) 1259 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries 1260 << "\n"; 1261 if (Unique.NumEntries) 1262 OS << " # of " << EntryName 1263 << " only in test_profile: " << Unique.NumEntries << "\n"; 1264 1265 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100) 1266 << "\n"; 1267 if (Mismatch.NumEntries) 1268 OS << " Mismatched count percentage (Edge): " 1269 << format("%.3f%%", Mismatch.CountSum * 100) << "\n"; 1270 if (Unique.NumEntries) 1271 OS << " Percentage of Edge profile only in test_profile: " 1272 << format("%.3f%%", Unique.CountSum * 100) << "\n"; 1273 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum) 1274 << "\n" 1275 << " Edge profile test count sum: " << format("%.0f", Test.CountSum) 1276 << "\n"; 1277 1278 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1279 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f) 1280 continue; 1281 char ProfileKindName[20]; 1282 switch (I) { 1283 case IPVK_IndirectCallTarget: 1284 strncpy(ProfileKindName, "IndirectCall", 19); 1285 break; 1286 case IPVK_MemOPSize: 1287 strncpy(ProfileKindName, "MemOP", 19); 1288 break; 1289 default: 1290 snprintf(ProfileKindName, 19, "VP[%d]", I); 1291 break; 1292 } 1293 OS << " " << ProfileKindName 1294 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100) 1295 << "\n"; 1296 if (Mismatch.NumEntries) 1297 OS << " Mismatched count percentage (" << ProfileKindName 1298 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n"; 1299 if (Unique.NumEntries) 1300 OS << " Percentage of " << ProfileKindName 1301 << " profile only in test_profile: " 1302 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n"; 1303 OS << " " << ProfileKindName 1304 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I]) 1305 << "\n" 1306 << " " << ProfileKindName 1307 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I]) 1308 << "\n"; 1309 } 1310 } 1311 1312 namespace IndexedInstrProf { 1313 // A C++14 compatible version of the offsetof macro. 1314 template <typename T1, typename T2> 1315 inline size_t constexpr offsetOf(T1 T2::*Member) { 1316 constexpr T2 Object{}; 1317 return size_t(&(Object.*Member)) - size_t(&Object); 1318 } 1319 1320 static inline uint64_t read(const unsigned char *Buffer, size_t Offset) { 1321 return *reinterpret_cast<const uint64_t *>(Buffer + Offset); 1322 } 1323 1324 uint64_t Header::formatVersion() const { 1325 using namespace support; 1326 return endian::byte_swap<uint64_t, little>(Version); 1327 } 1328 1329 Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) { 1330 using namespace support; 1331 static_assert(std::is_standard_layout<Header>::value, 1332 "The header should be standard layout type since we use offset " 1333 "of fields to read."); 1334 Header H; 1335 1336 H.Magic = read(Buffer, offsetOf(&Header::Magic)); 1337 // Check the magic number. 1338 uint64_t Magic = endian::byte_swap<uint64_t, little>(H.Magic); 1339 if (Magic != IndexedInstrProf::Magic) 1340 return make_error<InstrProfError>(instrprof_error::bad_magic); 1341 1342 // Read the version. 1343 H.Version = read(Buffer, offsetOf(&Header::Version)); 1344 if (GET_VERSION(H.formatVersion()) > 1345 IndexedInstrProf::ProfVersion::CurrentVersion) 1346 return make_error<InstrProfError>(instrprof_error::unsupported_version); 1347 1348 switch (GET_VERSION(H.formatVersion())) { 1349 // When a new field is added in the header add a case statement here to 1350 // populate it. 1351 static_assert( 1352 IndexedInstrProf::ProfVersion::CurrentVersion == Version8, 1353 "Please update the reading code below if a new field has been added, " 1354 "if not add a case statement to fall through to the latest version."); 1355 case 8ull: 1356 H.MemProfOffset = read(Buffer, offsetOf(&Header::MemProfOffset)); 1357 LLVM_FALLTHROUGH; 1358 default: // Version7 (when the backwards compatible header was introduced). 1359 H.HashType = read(Buffer, offsetOf(&Header::HashType)); 1360 H.HashOffset = read(Buffer, offsetOf(&Header::HashOffset)); 1361 } 1362 1363 return H; 1364 } 1365 1366 size_t Header::size() const { 1367 switch (GET_VERSION(formatVersion())) { 1368 // When a new field is added to the header add a case statement here to 1369 // compute the size as offset of the new field + size of the new field. This 1370 // relies on the field being added to the end of the list. 1371 static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version8, 1372 "Please update the size computation below if a new field has " 1373 "been added to the header, if not add a case statement to " 1374 "fall through to the latest version."); 1375 case 8ull: 1376 return offsetOf(&Header::MemProfOffset) + sizeof(Header::MemProfOffset); 1377 default: // Version7 (when the backwards compatible header was introduced). 1378 return offsetOf(&Header::HashOffset) + sizeof(Header::HashOffset); 1379 } 1380 } 1381 1382 } // namespace IndexedInstrProf 1383 1384 } // end namespace llvm 1385