1 //=-- InstrProf.cpp - Instrumented profiling format support -----------------=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for clang's instrumentation based PGO and 11 // coverage. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ProfileData/InstrProf.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/Support/Compression.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/ManagedStatic.h" 27 #include "llvm/Support/Path.h" 28 29 using namespace llvm; 30 31 static cl::opt<bool> StaticFuncFullModulePrefix( 32 "static-func-full-module-prefix", cl::init(false), 33 cl::desc("Use full module build paths in the profile counter names for " 34 "static functions.")); 35 36 namespace { 37 std::string getInstrProfErrString(instrprof_error Err) { 38 switch (Err) { 39 case instrprof_error::success: 40 return "Success"; 41 case instrprof_error::eof: 42 return "End of File"; 43 case instrprof_error::unrecognized_format: 44 return "Unrecognized instrumentation profile encoding format"; 45 case instrprof_error::bad_magic: 46 return "Invalid instrumentation profile data (bad magic)"; 47 case instrprof_error::bad_header: 48 return "Invalid instrumentation profile data (file header is corrupt)"; 49 case instrprof_error::unsupported_version: 50 return "Unsupported instrumentation profile format version"; 51 case instrprof_error::unsupported_hash_type: 52 return "Unsupported instrumentation profile hash type"; 53 case instrprof_error::too_large: 54 return "Too much profile data"; 55 case instrprof_error::truncated: 56 return "Truncated profile data"; 57 case instrprof_error::malformed: 58 return "Malformed instrumentation profile data"; 59 case instrprof_error::unknown_function: 60 return "No profile data available for function"; 61 case instrprof_error::hash_mismatch: 62 return "Function control flow change detected (hash mismatch)"; 63 case instrprof_error::count_mismatch: 64 return "Function basic block count change detected (counter mismatch)"; 65 case instrprof_error::counter_overflow: 66 return "Counter overflow"; 67 case instrprof_error::value_site_count_mismatch: 68 return "Function value site count change detected (counter mismatch)"; 69 case instrprof_error::compress_failed: 70 return "Failed to compress data (zlib)"; 71 case instrprof_error::uncompress_failed: 72 return "Failed to uncompress data (zlib)"; 73 case instrprof_error::empty_raw_profile: 74 return "Empty raw profile file"; 75 } 76 llvm_unreachable("A value of instrprof_error has no message."); 77 } 78 79 // FIXME: This class is only here to support the transition to llvm::Error. It 80 // will be removed once this transition is complete. Clients should prefer to 81 // deal with the Error value directly, rather than converting to error_code. 82 class InstrProfErrorCategoryType : public std::error_category { 83 const char *name() const noexcept override { return "llvm.instrprof"; } 84 std::string message(int IE) const override { 85 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 86 } 87 }; 88 } // end anonymous namespace 89 90 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; 91 92 const std::error_category &llvm::instrprof_category() { 93 return *ErrorCategory; 94 } 95 96 namespace llvm { 97 98 void SoftInstrProfErrors::addError(instrprof_error IE) { 99 if (IE == instrprof_error::success) 100 return; 101 102 if (FirstError == instrprof_error::success) 103 FirstError = IE; 104 105 switch (IE) { 106 case instrprof_error::hash_mismatch: 107 ++NumHashMismatches; 108 break; 109 case instrprof_error::count_mismatch: 110 ++NumCountMismatches; 111 break; 112 case instrprof_error::counter_overflow: 113 ++NumCounterOverflows; 114 break; 115 case instrprof_error::value_site_count_mismatch: 116 ++NumValueSiteCountMismatches; 117 break; 118 default: 119 llvm_unreachable("Not a soft error"); 120 } 121 } 122 123 std::string InstrProfError::message() const { 124 return getInstrProfErrString(Err); 125 } 126 127 char InstrProfError::ID = 0; 128 129 std::string getPGOFuncName(StringRef RawFuncName, 130 GlobalValue::LinkageTypes Linkage, 131 StringRef FileName, 132 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 133 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 134 } 135 136 // Return the PGOFuncName. This function has some special handling when called 137 // in LTO optimization. The following only applies when calling in LTO passes 138 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 139 // symbols. This happens after value profile annotation, but those internal 140 // linkage functions should not have a source prefix. 141 // Additionally, for ThinLTO mode, exported internal functions are promoted 142 // and renamed. We need to ensure that the original internal PGO name is 143 // used when computing the GUID that is compared against the profiled GUIDs. 144 // To differentiate compiler generated internal symbols from original ones, 145 // PGOFuncName meta data are created and attached to the original internal 146 // symbols in the value profile annotation step 147 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 148 // data, its original linkage must be non-internal. 149 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 150 if (!InLTO) { 151 StringRef FileName = (StaticFuncFullModulePrefix 152 ? F.getParent()->getName() 153 : sys::path::filename(F.getParent()->getName())); 154 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 155 } 156 157 // In LTO mode (when InLTO is true), first check if there is a meta data. 158 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 159 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 160 return S.str(); 161 } 162 163 // If there is no meta data, the function must be a global before the value 164 // profile annotation pass. Its current linkage may be internal if it is 165 // internalized in LTO mode. 166 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 167 } 168 169 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 170 if (FileName.empty()) 171 return PGOFuncName; 172 // Drop the file name including ':'. See also getPGOFuncName. 173 if (PGOFuncName.startswith(FileName)) 174 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 175 return PGOFuncName; 176 } 177 178 // \p FuncName is the string used as profile lookup key for the function. A 179 // symbol is created to hold the name. Return the legalized symbol name. 180 std::string getPGOFuncNameVarName(StringRef FuncName, 181 GlobalValue::LinkageTypes Linkage) { 182 std::string VarName = getInstrProfNameVarPrefix(); 183 VarName += FuncName; 184 185 if (!GlobalValue::isLocalLinkage(Linkage)) 186 return VarName; 187 188 // Now fix up illegal chars in local VarName that may upset the assembler. 189 const char *InvalidChars = "-:<>/\"'"; 190 size_t found = VarName.find_first_of(InvalidChars); 191 while (found != std::string::npos) { 192 VarName[found] = '_'; 193 found = VarName.find_first_of(InvalidChars, found + 1); 194 } 195 return VarName; 196 } 197 198 GlobalVariable *createPGOFuncNameVar(Module &M, 199 GlobalValue::LinkageTypes Linkage, 200 StringRef PGOFuncName) { 201 202 // We generally want to match the function's linkage, but available_externally 203 // and extern_weak both have the wrong semantics, and anything that doesn't 204 // need to link across compilation units doesn't need to be visible at all. 205 if (Linkage == GlobalValue::ExternalWeakLinkage) 206 Linkage = GlobalValue::LinkOnceAnyLinkage; 207 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 208 Linkage = GlobalValue::LinkOnceODRLinkage; 209 else if (Linkage == GlobalValue::InternalLinkage || 210 Linkage == GlobalValue::ExternalLinkage) 211 Linkage = GlobalValue::PrivateLinkage; 212 213 auto *Value = 214 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 215 auto FuncNameVar = 216 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 217 getPGOFuncNameVarName(PGOFuncName, Linkage)); 218 219 // Hide the symbol so that we correctly get a copy for each executable. 220 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 221 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 222 223 return FuncNameVar; 224 } 225 226 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 227 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 228 } 229 230 void InstrProfSymtab::create(Module &M, bool InLTO) { 231 for (Function &F : M) { 232 // Function may not have a name: like using asm("") to overwrite the name. 233 // Ignore in this case. 234 if (!F.hasName()) 235 continue; 236 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 237 addFuncName(PGOFuncName); 238 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 239 } 240 241 finalizeSymtab(); 242 } 243 244 Error collectPGOFuncNameStrings(const std::vector<std::string> &NameStrs, 245 bool doCompression, std::string &Result) { 246 assert(NameStrs.size() && "No name data to emit"); 247 248 uint8_t Header[16], *P = Header; 249 std::string UncompressedNameStrings = 250 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 251 252 assert(StringRef(UncompressedNameStrings) 253 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 254 "PGO name is invalid (contains separator token)"); 255 256 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 257 P += EncLen; 258 259 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 260 EncLen = encodeULEB128(CompressedLen, P); 261 P += EncLen; 262 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 263 unsigned HeaderLen = P - &Header[0]; 264 Result.append(HeaderStr, HeaderLen); 265 Result += InputStr; 266 return Error::success(); 267 }; 268 269 if (!doCompression) { 270 return WriteStringToResult(0, UncompressedNameStrings); 271 } 272 273 SmallString<128> CompressedNameStrings; 274 zlib::Status Success = 275 zlib::compress(StringRef(UncompressedNameStrings), CompressedNameStrings, 276 zlib::BestSizeCompression); 277 278 if (Success != zlib::StatusOK) 279 return make_error<InstrProfError>(instrprof_error::compress_failed); 280 281 return WriteStringToResult(CompressedNameStrings.size(), 282 CompressedNameStrings); 283 } 284 285 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 286 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 287 StringRef NameStr = 288 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 289 return NameStr; 290 } 291 292 Error collectPGOFuncNameStrings(const std::vector<GlobalVariable *> &NameVars, 293 std::string &Result, bool doCompression) { 294 std::vector<std::string> NameStrs; 295 for (auto *NameVar : NameVars) { 296 NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar)); 297 } 298 return collectPGOFuncNameStrings( 299 NameStrs, zlib::isAvailable() && doCompression, Result); 300 } 301 302 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 303 const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data()); 304 const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() + 305 NameStrings.size()); 306 while (P < EndP) { 307 uint32_t N; 308 uint64_t UncompressedSize = decodeULEB128(P, &N); 309 P += N; 310 uint64_t CompressedSize = decodeULEB128(P, &N); 311 P += N; 312 bool isCompressed = (CompressedSize != 0); 313 SmallString<128> UncompressedNameStrings; 314 StringRef NameStrings; 315 if (isCompressed) { 316 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 317 CompressedSize); 318 if (zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, 319 UncompressedSize) != zlib::StatusOK) 320 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 321 P += CompressedSize; 322 NameStrings = StringRef(UncompressedNameStrings.data(), 323 UncompressedNameStrings.size()); 324 } else { 325 NameStrings = 326 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 327 P += UncompressedSize; 328 } 329 // Now parse the name strings. 330 SmallVector<StringRef, 0> Names; 331 NameStrings.split(Names, getInstrProfNameSeparator()); 332 for (StringRef &Name : Names) 333 Symtab.addFuncName(Name); 334 335 while (P < EndP && *P == 0) 336 P++; 337 } 338 Symtab.finalizeSymtab(); 339 return Error::success(); 340 } 341 342 void InstrProfValueSiteRecord::merge(SoftInstrProfErrors &SIPE, 343 InstrProfValueSiteRecord &Input, 344 uint64_t Weight) { 345 this->sortByTargetValues(); 346 Input.sortByTargetValues(); 347 auto I = ValueData.begin(); 348 auto IE = ValueData.end(); 349 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; 350 ++J) { 351 while (I != IE && I->Value < J->Value) 352 ++I; 353 if (I != IE && I->Value == J->Value) { 354 bool Overflowed; 355 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); 356 if (Overflowed) 357 SIPE.addError(instrprof_error::counter_overflow); 358 ++I; 359 continue; 360 } 361 ValueData.insert(I, *J); 362 } 363 } 364 365 void InstrProfValueSiteRecord::scale(SoftInstrProfErrors &SIPE, 366 uint64_t Weight) { 367 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { 368 bool Overflowed; 369 I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); 370 if (Overflowed) 371 SIPE.addError(instrprof_error::counter_overflow); 372 } 373 } 374 375 // Merge Value Profile data from Src record to this record for ValueKind. 376 // Scale merged value counts by \p Weight. 377 void InstrProfRecord::mergeValueProfData(uint32_t ValueKind, 378 InstrProfRecord &Src, 379 uint64_t Weight) { 380 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 381 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 382 if (ThisNumValueSites != OtherNumValueSites) { 383 SIPE.addError(instrprof_error::value_site_count_mismatch); 384 return; 385 } 386 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 387 getValueSitesForKind(ValueKind); 388 std::vector<InstrProfValueSiteRecord> &OtherSiteRecords = 389 Src.getValueSitesForKind(ValueKind); 390 for (uint32_t I = 0; I < ThisNumValueSites; I++) 391 ThisSiteRecords[I].merge(SIPE, OtherSiteRecords[I], Weight); 392 } 393 394 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight) { 395 // If the number of counters doesn't match we either have bad data 396 // or a hash collision. 397 if (Counts.size() != Other.Counts.size()) { 398 SIPE.addError(instrprof_error::count_mismatch); 399 return; 400 } 401 402 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 403 bool Overflowed; 404 Counts[I] = 405 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 406 if (Overflowed) 407 SIPE.addError(instrprof_error::counter_overflow); 408 } 409 410 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 411 mergeValueProfData(Kind, Other, Weight); 412 } 413 414 void InstrProfRecord::scaleValueProfData(uint32_t ValueKind, uint64_t Weight) { 415 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 416 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 417 getValueSitesForKind(ValueKind); 418 for (uint32_t I = 0; I < ThisNumValueSites; I++) 419 ThisSiteRecords[I].scale(SIPE, Weight); 420 } 421 422 void InstrProfRecord::scale(uint64_t Weight) { 423 for (auto &Count : this->Counts) { 424 bool Overflowed; 425 Count = SaturatingMultiply(Count, Weight, &Overflowed); 426 if (Overflowed) 427 SIPE.addError(instrprof_error::counter_overflow); 428 } 429 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 430 scaleValueProfData(Kind, Weight); 431 } 432 433 // Map indirect call target name hash to name string. 434 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 435 ValueMapType *ValueMap) { 436 if (!ValueMap) 437 return Value; 438 switch (ValueKind) { 439 case IPVK_IndirectCallTarget: { 440 auto Result = 441 std::lower_bound(ValueMap->begin(), ValueMap->end(), Value, 442 [](const std::pair<uint64_t, uint64_t> &LHS, 443 uint64_t RHS) { return LHS.first < RHS; }); 444 // Raw function pointer collected by value profiler may be from 445 // external functions that are not instrumented. They won't have 446 // mapping data to be used by the deserializer. Force the value to 447 // be 0 in this case. 448 if (Result != ValueMap->end() && Result->first == Value) 449 Value = (uint64_t)Result->second; 450 else 451 Value = 0; 452 break; 453 } 454 } 455 return Value; 456 } 457 458 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 459 InstrProfValueData *VData, uint32_t N, 460 ValueMapType *ValueMap) { 461 for (uint32_t I = 0; I < N; I++) { 462 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 463 } 464 std::vector<InstrProfValueSiteRecord> &ValueSites = 465 getValueSitesForKind(ValueKind); 466 if (N == 0) 467 ValueSites.emplace_back(); 468 else 469 ValueSites.emplace_back(VData, VData + N); 470 } 471 472 #define INSTR_PROF_COMMON_API_IMPL 473 #include "llvm/ProfileData/InstrProfData.inc" 474 475 /*! 476 * \brief ValueProfRecordClosure Interface implementation for InstrProfRecord 477 * class. These C wrappers are used as adaptors so that C++ code can be 478 * invoked as callbacks. 479 */ 480 uint32_t getNumValueKindsInstrProf(const void *Record) { 481 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 482 } 483 484 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 485 return reinterpret_cast<const InstrProfRecord *>(Record) 486 ->getNumValueSites(VKind); 487 } 488 489 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 490 return reinterpret_cast<const InstrProfRecord *>(Record) 491 ->getNumValueData(VKind); 492 } 493 494 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 495 uint32_t S) { 496 return reinterpret_cast<const InstrProfRecord *>(R) 497 ->getNumValueDataForSite(VK, S); 498 } 499 500 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 501 uint32_t K, uint32_t S) { 502 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 503 } 504 505 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 506 ValueProfData *VD = 507 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 508 memset(VD, 0, TotalSizeInBytes); 509 return VD; 510 } 511 512 static ValueProfRecordClosure InstrProfRecordClosure = { 513 nullptr, 514 getNumValueKindsInstrProf, 515 getNumValueSitesInstrProf, 516 getNumValueDataInstrProf, 517 getNumValueDataForSiteInstrProf, 518 nullptr, 519 getValueForSiteInstrProf, 520 allocValueProfDataInstrProf}; 521 522 // Wrapper implementation using the closure mechanism. 523 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 524 InstrProfRecordClosure.Record = &Record; 525 return getValueProfDataSize(&InstrProfRecordClosure); 526 } 527 528 // Wrapper implementation using the closure mechanism. 529 std::unique_ptr<ValueProfData> 530 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 531 InstrProfRecordClosure.Record = &Record; 532 533 std::unique_ptr<ValueProfData> VPD( 534 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 535 return VPD; 536 } 537 538 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 539 InstrProfRecord::ValueMapType *VMap) { 540 Record.reserveSites(Kind, NumValueSites); 541 542 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 543 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 544 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 545 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap); 546 ValueData += ValueDataCount; 547 } 548 } 549 550 // For writing/serializing, Old is the host endianness, and New is 551 // byte order intended on disk. For Reading/deserialization, Old 552 // is the on-disk source endianness, and New is the host endianness. 553 void ValueProfRecord::swapBytes(support::endianness Old, 554 support::endianness New) { 555 using namespace support; 556 if (Old == New) 557 return; 558 559 if (getHostEndianness() != Old) { 560 sys::swapByteOrder<uint32_t>(NumValueSites); 561 sys::swapByteOrder<uint32_t>(Kind); 562 } 563 uint32_t ND = getValueProfRecordNumValueData(this); 564 InstrProfValueData *VD = getValueProfRecordValueData(this); 565 566 // No need to swap byte array: SiteCountArrray. 567 for (uint32_t I = 0; I < ND; I++) { 568 sys::swapByteOrder<uint64_t>(VD[I].Value); 569 sys::swapByteOrder<uint64_t>(VD[I].Count); 570 } 571 if (getHostEndianness() == Old) { 572 sys::swapByteOrder<uint32_t>(NumValueSites); 573 sys::swapByteOrder<uint32_t>(Kind); 574 } 575 } 576 577 void ValueProfData::deserializeTo(InstrProfRecord &Record, 578 InstrProfRecord::ValueMapType *VMap) { 579 if (NumValueKinds == 0) 580 return; 581 582 ValueProfRecord *VR = getFirstValueProfRecord(this); 583 for (uint32_t K = 0; K < NumValueKinds; K++) { 584 VR->deserializeTo(Record, VMap); 585 VR = getValueProfRecordNext(VR); 586 } 587 } 588 589 template <class T> 590 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 591 using namespace support; 592 if (Orig == little) 593 return endian::readNext<T, little, unaligned>(D); 594 else 595 return endian::readNext<T, big, unaligned>(D); 596 } 597 598 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 599 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 600 ValueProfData()); 601 } 602 603 Error ValueProfData::checkIntegrity() { 604 if (NumValueKinds > IPVK_Last + 1) 605 return make_error<InstrProfError>(instrprof_error::malformed); 606 // Total size needs to be mulltiple of quadword size. 607 if (TotalSize % sizeof(uint64_t)) 608 return make_error<InstrProfError>(instrprof_error::malformed); 609 610 ValueProfRecord *VR = getFirstValueProfRecord(this); 611 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 612 if (VR->Kind > IPVK_Last) 613 return make_error<InstrProfError>(instrprof_error::malformed); 614 VR = getValueProfRecordNext(VR); 615 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 616 return make_error<InstrProfError>(instrprof_error::malformed); 617 } 618 return Error::success(); 619 } 620 621 Expected<std::unique_ptr<ValueProfData>> 622 ValueProfData::getValueProfData(const unsigned char *D, 623 const unsigned char *const BufferEnd, 624 support::endianness Endianness) { 625 using namespace support; 626 if (D + sizeof(ValueProfData) > BufferEnd) 627 return make_error<InstrProfError>(instrprof_error::truncated); 628 629 const unsigned char *Header = D; 630 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 631 if (D + TotalSize > BufferEnd) 632 return make_error<InstrProfError>(instrprof_error::too_large); 633 634 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 635 memcpy(VPD.get(), D, TotalSize); 636 // Byte swap. 637 VPD->swapBytesToHost(Endianness); 638 639 Error E = VPD->checkIntegrity(); 640 if (E) 641 return std::move(E); 642 643 return std::move(VPD); 644 } 645 646 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 647 using namespace support; 648 if (Endianness == getHostEndianness()) 649 return; 650 651 sys::swapByteOrder<uint32_t>(TotalSize); 652 sys::swapByteOrder<uint32_t>(NumValueKinds); 653 654 ValueProfRecord *VR = getFirstValueProfRecord(this); 655 for (uint32_t K = 0; K < NumValueKinds; K++) { 656 VR->swapBytes(Endianness, getHostEndianness()); 657 VR = getValueProfRecordNext(VR); 658 } 659 } 660 661 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 662 using namespace support; 663 if (Endianness == getHostEndianness()) 664 return; 665 666 ValueProfRecord *VR = getFirstValueProfRecord(this); 667 for (uint32_t K = 0; K < NumValueKinds; K++) { 668 ValueProfRecord *NVR = getValueProfRecordNext(VR); 669 VR->swapBytes(getHostEndianness(), Endianness); 670 VR = NVR; 671 } 672 sys::swapByteOrder<uint32_t>(TotalSize); 673 sys::swapByteOrder<uint32_t>(NumValueKinds); 674 } 675 676 void annotateValueSite(Module &M, Instruction &Inst, 677 const InstrProfRecord &InstrProfR, 678 InstrProfValueKind ValueKind, uint32_t SiteIdx, 679 uint32_t MaxMDCount) { 680 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 681 if (!NV) 682 return; 683 684 uint64_t Sum = 0; 685 std::unique_ptr<InstrProfValueData[]> VD = 686 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 687 688 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 689 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 690 } 691 692 void annotateValueSite(Module &M, Instruction &Inst, 693 ArrayRef<InstrProfValueData> VDs, 694 uint64_t Sum, InstrProfValueKind ValueKind, 695 uint32_t MaxMDCount) { 696 LLVMContext &Ctx = M.getContext(); 697 MDBuilder MDHelper(Ctx); 698 SmallVector<Metadata *, 3> Vals; 699 // Tag 700 Vals.push_back(MDHelper.createString("VP")); 701 // Value Kind 702 Vals.push_back(MDHelper.createConstant( 703 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 704 // Total Count 705 Vals.push_back( 706 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 707 708 // Value Profile Data 709 uint32_t MDCount = MaxMDCount; 710 for (auto &VD : VDs) { 711 Vals.push_back(MDHelper.createConstant( 712 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 713 Vals.push_back(MDHelper.createConstant( 714 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 715 if (--MDCount == 0) 716 break; 717 } 718 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 719 } 720 721 bool getValueProfDataFromInst(const Instruction &Inst, 722 InstrProfValueKind ValueKind, 723 uint32_t MaxNumValueData, 724 InstrProfValueData ValueData[], 725 uint32_t &ActualNumValueData, uint64_t &TotalC) { 726 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 727 if (!MD) 728 return false; 729 730 unsigned NOps = MD->getNumOperands(); 731 732 if (NOps < 5) 733 return false; 734 735 // Operand 0 is a string tag "VP": 736 MDString *Tag = cast<MDString>(MD->getOperand(0)); 737 if (!Tag) 738 return false; 739 740 if (!Tag->getString().equals("VP")) 741 return false; 742 743 // Now check kind: 744 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 745 if (!KindInt) 746 return false; 747 if (KindInt->getZExtValue() != ValueKind) 748 return false; 749 750 // Get total count 751 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 752 if (!TotalCInt) 753 return false; 754 TotalC = TotalCInt->getZExtValue(); 755 756 ActualNumValueData = 0; 757 758 for (unsigned I = 3; I < NOps; I += 2) { 759 if (ActualNumValueData >= MaxNumValueData) 760 break; 761 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 762 ConstantInt *Count = 763 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 764 if (!Value || !Count) 765 return false; 766 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 767 ValueData[ActualNumValueData].Count = Count->getZExtValue(); 768 ActualNumValueData++; 769 } 770 return true; 771 } 772 773 MDNode *getPGOFuncNameMetadata(const Function &F) { 774 return F.getMetadata(getPGOFuncNameMetadataName()); 775 } 776 777 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 778 // Only for internal linkage functions. 779 if (PGOFuncName == F.getName()) 780 return; 781 // Don't create duplicated meta-data. 782 if (getPGOFuncNameMetadata(F)) 783 return; 784 LLVMContext &C = F.getContext(); 785 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 786 F.setMetadata(getPGOFuncNameMetadataName(), N); 787 } 788 789 bool needsComdatForCounter(const Function &F, const Module &M) { 790 if (F.hasComdat()) 791 return true; 792 793 Triple TT(M.getTargetTriple()); 794 if (!TT.isOSBinFormatELF()) 795 return false; 796 797 // See createPGOFuncNameVar for more details. To avoid link errors, profile 798 // counters for function with available_externally linkage needs to be changed 799 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 800 // created. Without using comdat, duplicate entries won't be removed by the 801 // linker leading to increased data segement size and raw profile size. Even 802 // worse, since the referenced counter from profile per-function data object 803 // will be resolved to the common strong definition, the profile counts for 804 // available_externally functions will end up being duplicated in raw profile 805 // data. This can result in distorted profile as the counts of those dups 806 // will be accumulated by the profile merger. 807 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 808 if (Linkage != GlobalValue::ExternalWeakLinkage && 809 Linkage != GlobalValue::AvailableExternallyLinkage) 810 return false; 811 812 return true; 813 } 814 } // end namespace llvm 815