1 //===- InstrProf.cpp - Instrumented profiling format support --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for clang's instrumentation based PGO and 11 // coverage. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ProfileData/InstrProf.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Compression.h" 37 #include "llvm/Support/Endian.h" 38 #include "llvm/Support/Error.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/LEB128.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SwapByteOrder.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstddef> 48 #include <cstdint> 49 #include <cstring> 50 #include <memory> 51 #include <string> 52 #include <system_error> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 static cl::opt<bool> StaticFuncFullModulePrefix( 59 "static-func-full-module-prefix", cl::init(true), cl::Hidden, 60 cl::desc("Use full module build paths in the profile counter names for " 61 "static functions.")); 62 63 // This option is tailored to users that have different top-level directory in 64 // profile-gen and profile-use compilation. Users need to specific the number 65 // of levels to strip. A value larger than the number of directories in the 66 // source file will strip all the directory names and only leave the basename. 67 // 68 // Note current ThinLTO module importing for the indirect-calls assumes 69 // the source directory name not being stripped. A non-zero option value here 70 // can potentially prevent some inter-module indirect-call-promotions. 71 static cl::opt<unsigned> StaticFuncStripDirNamePrefix( 72 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden, 73 cl::desc("Strip specified level of directory name from source path in " 74 "the profile counter name for static functions.")); 75 76 static std::string getInstrProfErrString(instrprof_error Err) { 77 switch (Err) { 78 case instrprof_error::success: 79 return "Success"; 80 case instrprof_error::eof: 81 return "End of File"; 82 case instrprof_error::unrecognized_format: 83 return "Unrecognized instrumentation profile encoding format"; 84 case instrprof_error::bad_magic: 85 return "Invalid instrumentation profile data (bad magic)"; 86 case instrprof_error::bad_header: 87 return "Invalid instrumentation profile data (file header is corrupt)"; 88 case instrprof_error::unsupported_version: 89 return "Unsupported instrumentation profile format version"; 90 case instrprof_error::unsupported_hash_type: 91 return "Unsupported instrumentation profile hash type"; 92 case instrprof_error::too_large: 93 return "Too much profile data"; 94 case instrprof_error::truncated: 95 return "Truncated profile data"; 96 case instrprof_error::malformed: 97 return "Malformed instrumentation profile data"; 98 case instrprof_error::unknown_function: 99 return "No profile data available for function"; 100 case instrprof_error::hash_mismatch: 101 return "Function control flow change detected (hash mismatch)"; 102 case instrprof_error::count_mismatch: 103 return "Function basic block count change detected (counter mismatch)"; 104 case instrprof_error::counter_overflow: 105 return "Counter overflow"; 106 case instrprof_error::value_site_count_mismatch: 107 return "Function value site count change detected (counter mismatch)"; 108 case instrprof_error::compress_failed: 109 return "Failed to compress data (zlib)"; 110 case instrprof_error::uncompress_failed: 111 return "Failed to uncompress data (zlib)"; 112 case instrprof_error::empty_raw_profile: 113 return "Empty raw profile file"; 114 case instrprof_error::zlib_unavailable: 115 return "Profile uses zlib compression but the profile reader was built without zlib support"; 116 } 117 llvm_unreachable("A value of instrprof_error has no message."); 118 } 119 120 namespace { 121 122 // FIXME: This class is only here to support the transition to llvm::Error. It 123 // will be removed once this transition is complete. Clients should prefer to 124 // deal with the Error value directly, rather than converting to error_code. 125 class InstrProfErrorCategoryType : public std::error_category { 126 const char *name() const noexcept override { return "llvm.instrprof"; } 127 128 std::string message(int IE) const override { 129 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 130 } 131 }; 132 133 } // end anonymous namespace 134 135 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; 136 137 const std::error_category &llvm::instrprof_category() { 138 return *ErrorCategory; 139 } 140 141 namespace { 142 143 const char *InstrProfSectNameCommon[] = { 144 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 145 SectNameCommon, 146 #include "llvm/ProfileData/InstrProfData.inc" 147 }; 148 149 const char *InstrProfSectNameCoff[] = { 150 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 151 SectNameCoff, 152 #include "llvm/ProfileData/InstrProfData.inc" 153 }; 154 155 const char *InstrProfSectNamePrefix[] = { 156 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 157 Prefix, 158 #include "llvm/ProfileData/InstrProfData.inc" 159 }; 160 161 } // namespace 162 163 namespace llvm { 164 165 std::string getInstrProfSectionName(InstrProfSectKind IPSK, 166 Triple::ObjectFormatType OF, 167 bool AddSegmentInfo) { 168 std::string SectName; 169 170 if (OF == Triple::MachO && AddSegmentInfo) 171 SectName = InstrProfSectNamePrefix[IPSK]; 172 173 if (OF == Triple::COFF) 174 SectName += InstrProfSectNameCoff[IPSK]; 175 else 176 SectName += InstrProfSectNameCommon[IPSK]; 177 178 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo) 179 SectName += ",regular,live_support"; 180 181 return SectName; 182 } 183 184 void SoftInstrProfErrors::addError(instrprof_error IE) { 185 if (IE == instrprof_error::success) 186 return; 187 188 if (FirstError == instrprof_error::success) 189 FirstError = IE; 190 191 switch (IE) { 192 case instrprof_error::hash_mismatch: 193 ++NumHashMismatches; 194 break; 195 case instrprof_error::count_mismatch: 196 ++NumCountMismatches; 197 break; 198 case instrprof_error::counter_overflow: 199 ++NumCounterOverflows; 200 break; 201 case instrprof_error::value_site_count_mismatch: 202 ++NumValueSiteCountMismatches; 203 break; 204 default: 205 llvm_unreachable("Not a soft error"); 206 } 207 } 208 209 std::string InstrProfError::message() const { 210 return getInstrProfErrString(Err); 211 } 212 213 char InstrProfError::ID = 0; 214 215 std::string getPGOFuncName(StringRef RawFuncName, 216 GlobalValue::LinkageTypes Linkage, 217 StringRef FileName, 218 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 219 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 220 } 221 222 // Strip NumPrefix level of directory name from PathNameStr. If the number of 223 // directory separators is less than NumPrefix, strip all the directories and 224 // leave base file name only. 225 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) { 226 uint32_t Count = NumPrefix; 227 uint32_t Pos = 0, LastPos = 0; 228 for (auto & CI : PathNameStr) { 229 ++Pos; 230 if (llvm::sys::path::is_separator(CI)) { 231 LastPos = Pos; 232 --Count; 233 } 234 if (Count == 0) 235 break; 236 } 237 return PathNameStr.substr(LastPos); 238 } 239 240 // Return the PGOFuncName. This function has some special handling when called 241 // in LTO optimization. The following only applies when calling in LTO passes 242 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 243 // symbols. This happens after value profile annotation, but those internal 244 // linkage functions should not have a source prefix. 245 // Additionally, for ThinLTO mode, exported internal functions are promoted 246 // and renamed. We need to ensure that the original internal PGO name is 247 // used when computing the GUID that is compared against the profiled GUIDs. 248 // To differentiate compiler generated internal symbols from original ones, 249 // PGOFuncName meta data are created and attached to the original internal 250 // symbols in the value profile annotation step 251 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 252 // data, its original linkage must be non-internal. 253 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 254 if (!InLTO) { 255 StringRef FileName = (StaticFuncFullModulePrefix 256 ? F.getParent()->getName() 257 : sys::path::filename(F.getParent()->getName())); 258 if (StaticFuncFullModulePrefix && StaticFuncStripDirNamePrefix != 0) 259 FileName = stripDirPrefix(FileName, StaticFuncStripDirNamePrefix); 260 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 261 } 262 263 // In LTO mode (when InLTO is true), first check if there is a meta data. 264 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 265 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 266 return S.str(); 267 } 268 269 // If there is no meta data, the function must be a global before the value 270 // profile annotation pass. Its current linkage may be internal if it is 271 // internalized in LTO mode. 272 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 273 } 274 275 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 276 if (FileName.empty()) 277 return PGOFuncName; 278 // Drop the file name including ':'. See also getPGOFuncName. 279 if (PGOFuncName.startswith(FileName)) 280 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 281 return PGOFuncName; 282 } 283 284 // \p FuncName is the string used as profile lookup key for the function. A 285 // symbol is created to hold the name. Return the legalized symbol name. 286 std::string getPGOFuncNameVarName(StringRef FuncName, 287 GlobalValue::LinkageTypes Linkage) { 288 std::string VarName = getInstrProfNameVarPrefix(); 289 VarName += FuncName; 290 291 if (!GlobalValue::isLocalLinkage(Linkage)) 292 return VarName; 293 294 // Now fix up illegal chars in local VarName that may upset the assembler. 295 const char *InvalidChars = "-:<>/\"'"; 296 size_t found = VarName.find_first_of(InvalidChars); 297 while (found != std::string::npos) { 298 VarName[found] = '_'; 299 found = VarName.find_first_of(InvalidChars, found + 1); 300 } 301 return VarName; 302 } 303 304 GlobalVariable *createPGOFuncNameVar(Module &M, 305 GlobalValue::LinkageTypes Linkage, 306 StringRef PGOFuncName) { 307 // We generally want to match the function's linkage, but available_externally 308 // and extern_weak both have the wrong semantics, and anything that doesn't 309 // need to link across compilation units doesn't need to be visible at all. 310 if (Linkage == GlobalValue::ExternalWeakLinkage) 311 Linkage = GlobalValue::LinkOnceAnyLinkage; 312 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 313 Linkage = GlobalValue::LinkOnceODRLinkage; 314 else if (Linkage == GlobalValue::InternalLinkage || 315 Linkage == GlobalValue::ExternalLinkage) 316 Linkage = GlobalValue::PrivateLinkage; 317 318 auto *Value = 319 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 320 auto FuncNameVar = 321 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 322 getPGOFuncNameVarName(PGOFuncName, Linkage)); 323 324 // Hide the symbol so that we correctly get a copy for each executable. 325 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 326 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 327 328 return FuncNameVar; 329 } 330 331 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 332 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 333 } 334 335 Error InstrProfSymtab::create(Module &M, bool InLTO) { 336 for (Function &F : M) { 337 // Function may not have a name: like using asm("") to overwrite the name. 338 // Ignore in this case. 339 if (!F.hasName()) 340 continue; 341 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 342 if (Error E = addFuncName(PGOFuncName)) 343 return E; 344 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 345 // In ThinLTO, local function may have been promoted to global and have 346 // suffix added to the function name. We need to add the stripped function 347 // name to the symbol table so that we can find a match from profile. 348 if (InLTO) { 349 auto pos = PGOFuncName.find('.'); 350 if (pos != std::string::npos) { 351 const std::string &OtherFuncName = PGOFuncName.substr(0, pos); 352 if (Error E = addFuncName(OtherFuncName)) 353 return E; 354 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F); 355 } 356 } 357 } 358 Sorted = false; 359 finalizeSymtab(); 360 return Error::success(); 361 } 362 363 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs, 364 bool doCompression, std::string &Result) { 365 assert(!NameStrs.empty() && "No name data to emit"); 366 367 uint8_t Header[16], *P = Header; 368 std::string UncompressedNameStrings = 369 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 370 371 assert(StringRef(UncompressedNameStrings) 372 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 373 "PGO name is invalid (contains separator token)"); 374 375 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 376 P += EncLen; 377 378 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 379 EncLen = encodeULEB128(CompressedLen, P); 380 P += EncLen; 381 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 382 unsigned HeaderLen = P - &Header[0]; 383 Result.append(HeaderStr, HeaderLen); 384 Result += InputStr; 385 return Error::success(); 386 }; 387 388 if (!doCompression) { 389 return WriteStringToResult(0, UncompressedNameStrings); 390 } 391 392 SmallString<128> CompressedNameStrings; 393 Error E = zlib::compress(StringRef(UncompressedNameStrings), 394 CompressedNameStrings, zlib::BestSizeCompression); 395 if (E) { 396 consumeError(std::move(E)); 397 return make_error<InstrProfError>(instrprof_error::compress_failed); 398 } 399 400 return WriteStringToResult(CompressedNameStrings.size(), 401 CompressedNameStrings); 402 } 403 404 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 405 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 406 StringRef NameStr = 407 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 408 return NameStr; 409 } 410 411 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars, 412 std::string &Result, bool doCompression) { 413 std::vector<std::string> NameStrs; 414 for (auto *NameVar : NameVars) { 415 NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar)); 416 } 417 return collectPGOFuncNameStrings( 418 NameStrs, zlib::isAvailable() && doCompression, Result); 419 } 420 421 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 422 const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data()); 423 const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() + 424 NameStrings.size()); 425 while (P < EndP) { 426 uint32_t N; 427 uint64_t UncompressedSize = decodeULEB128(P, &N); 428 P += N; 429 uint64_t CompressedSize = decodeULEB128(P, &N); 430 P += N; 431 bool isCompressed = (CompressedSize != 0); 432 SmallString<128> UncompressedNameStrings; 433 StringRef NameStrings; 434 if (isCompressed) { 435 if (!llvm::zlib::isAvailable()) 436 return make_error<InstrProfError>(instrprof_error::zlib_unavailable); 437 438 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 439 CompressedSize); 440 if (Error E = 441 zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, 442 UncompressedSize)) { 443 consumeError(std::move(E)); 444 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 445 } 446 P += CompressedSize; 447 NameStrings = StringRef(UncompressedNameStrings.data(), 448 UncompressedNameStrings.size()); 449 } else { 450 NameStrings = 451 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 452 P += UncompressedSize; 453 } 454 // Now parse the name strings. 455 SmallVector<StringRef, 0> Names; 456 NameStrings.split(Names, getInstrProfNameSeparator()); 457 for (StringRef &Name : Names) 458 if (Error E = Symtab.addFuncName(Name)) 459 return E; 460 461 while (P < EndP && *P == 0) 462 P++; 463 } 464 return Error::success(); 465 } 466 467 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, 468 uint64_t Weight, 469 function_ref<void(instrprof_error)> Warn) { 470 this->sortByTargetValues(); 471 Input.sortByTargetValues(); 472 auto I = ValueData.begin(); 473 auto IE = ValueData.end(); 474 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; 475 ++J) { 476 while (I != IE && I->Value < J->Value) 477 ++I; 478 if (I != IE && I->Value == J->Value) { 479 bool Overflowed; 480 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); 481 if (Overflowed) 482 Warn(instrprof_error::counter_overflow); 483 ++I; 484 continue; 485 } 486 ValueData.insert(I, *J); 487 } 488 } 489 490 void InstrProfValueSiteRecord::scale(uint64_t Weight, 491 function_ref<void(instrprof_error)> Warn) { 492 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { 493 bool Overflowed; 494 I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); 495 if (Overflowed) 496 Warn(instrprof_error::counter_overflow); 497 } 498 } 499 500 // Merge Value Profile data from Src record to this record for ValueKind. 501 // Scale merged value counts by \p Weight. 502 void InstrProfRecord::mergeValueProfData( 503 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight, 504 function_ref<void(instrprof_error)> Warn) { 505 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 506 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 507 if (ThisNumValueSites != OtherNumValueSites) { 508 Warn(instrprof_error::value_site_count_mismatch); 509 return; 510 } 511 if (!ThisNumValueSites) 512 return; 513 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 514 getOrCreateValueSitesForKind(ValueKind); 515 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 516 Src.getValueSitesForKind(ValueKind); 517 for (uint32_t I = 0; I < ThisNumValueSites; I++) 518 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn); 519 } 520 521 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight, 522 function_ref<void(instrprof_error)> Warn) { 523 // If the number of counters doesn't match we either have bad data 524 // or a hash collision. 525 if (Counts.size() != Other.Counts.size()) { 526 Warn(instrprof_error::count_mismatch); 527 return; 528 } 529 530 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 531 bool Overflowed; 532 Counts[I] = 533 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 534 if (Overflowed) 535 Warn(instrprof_error::counter_overflow); 536 } 537 538 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 539 mergeValueProfData(Kind, Other, Weight, Warn); 540 } 541 542 void InstrProfRecord::scaleValueProfData( 543 uint32_t ValueKind, uint64_t Weight, 544 function_ref<void(instrprof_error)> Warn) { 545 for (auto &R : getValueSitesForKind(ValueKind)) 546 R.scale(Weight, Warn); 547 } 548 549 void InstrProfRecord::scale(uint64_t Weight, 550 function_ref<void(instrprof_error)> Warn) { 551 for (auto &Count : this->Counts) { 552 bool Overflowed; 553 Count = SaturatingMultiply(Count, Weight, &Overflowed); 554 if (Overflowed) 555 Warn(instrprof_error::counter_overflow); 556 } 557 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 558 scaleValueProfData(Kind, Weight, Warn); 559 } 560 561 // Map indirect call target name hash to name string. 562 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 563 ValueMapType *ValueMap) { 564 if (!ValueMap) 565 return Value; 566 switch (ValueKind) { 567 case IPVK_IndirectCallTarget: { 568 auto Result = 569 std::lower_bound(ValueMap->begin(), ValueMap->end(), Value, 570 [](const std::pair<uint64_t, uint64_t> &LHS, 571 uint64_t RHS) { return LHS.first < RHS; }); 572 // Raw function pointer collected by value profiler may be from 573 // external functions that are not instrumented. They won't have 574 // mapping data to be used by the deserializer. Force the value to 575 // be 0 in this case. 576 if (Result != ValueMap->end() && Result->first == Value) 577 Value = (uint64_t)Result->second; 578 else 579 Value = 0; 580 break; 581 } 582 } 583 return Value; 584 } 585 586 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 587 InstrProfValueData *VData, uint32_t N, 588 ValueMapType *ValueMap) { 589 for (uint32_t I = 0; I < N; I++) { 590 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 591 } 592 std::vector<InstrProfValueSiteRecord> &ValueSites = 593 getOrCreateValueSitesForKind(ValueKind); 594 if (N == 0) 595 ValueSites.emplace_back(); 596 else 597 ValueSites.emplace_back(VData, VData + N); 598 } 599 600 #define INSTR_PROF_COMMON_API_IMPL 601 #include "llvm/ProfileData/InstrProfData.inc" 602 603 /*! 604 * \brief ValueProfRecordClosure Interface implementation for InstrProfRecord 605 * class. These C wrappers are used as adaptors so that C++ code can be 606 * invoked as callbacks. 607 */ 608 uint32_t getNumValueKindsInstrProf(const void *Record) { 609 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 610 } 611 612 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 613 return reinterpret_cast<const InstrProfRecord *>(Record) 614 ->getNumValueSites(VKind); 615 } 616 617 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 618 return reinterpret_cast<const InstrProfRecord *>(Record) 619 ->getNumValueData(VKind); 620 } 621 622 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 623 uint32_t S) { 624 return reinterpret_cast<const InstrProfRecord *>(R) 625 ->getNumValueDataForSite(VK, S); 626 } 627 628 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 629 uint32_t K, uint32_t S) { 630 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 631 } 632 633 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 634 ValueProfData *VD = 635 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 636 memset(VD, 0, TotalSizeInBytes); 637 return VD; 638 } 639 640 static ValueProfRecordClosure InstrProfRecordClosure = { 641 nullptr, 642 getNumValueKindsInstrProf, 643 getNumValueSitesInstrProf, 644 getNumValueDataInstrProf, 645 getNumValueDataForSiteInstrProf, 646 nullptr, 647 getValueForSiteInstrProf, 648 allocValueProfDataInstrProf}; 649 650 // Wrapper implementation using the closure mechanism. 651 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 652 auto Closure = InstrProfRecordClosure; 653 Closure.Record = &Record; 654 return getValueProfDataSize(&Closure); 655 } 656 657 // Wrapper implementation using the closure mechanism. 658 std::unique_ptr<ValueProfData> 659 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 660 InstrProfRecordClosure.Record = &Record; 661 662 std::unique_ptr<ValueProfData> VPD( 663 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 664 return VPD; 665 } 666 667 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 668 InstrProfRecord::ValueMapType *VMap) { 669 Record.reserveSites(Kind, NumValueSites); 670 671 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 672 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 673 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 674 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap); 675 ValueData += ValueDataCount; 676 } 677 } 678 679 // For writing/serializing, Old is the host endianness, and New is 680 // byte order intended on disk. For Reading/deserialization, Old 681 // is the on-disk source endianness, and New is the host endianness. 682 void ValueProfRecord::swapBytes(support::endianness Old, 683 support::endianness New) { 684 using namespace support; 685 686 if (Old == New) 687 return; 688 689 if (getHostEndianness() != Old) { 690 sys::swapByteOrder<uint32_t>(NumValueSites); 691 sys::swapByteOrder<uint32_t>(Kind); 692 } 693 uint32_t ND = getValueProfRecordNumValueData(this); 694 InstrProfValueData *VD = getValueProfRecordValueData(this); 695 696 // No need to swap byte array: SiteCountArrray. 697 for (uint32_t I = 0; I < ND; I++) { 698 sys::swapByteOrder<uint64_t>(VD[I].Value); 699 sys::swapByteOrder<uint64_t>(VD[I].Count); 700 } 701 if (getHostEndianness() == Old) { 702 sys::swapByteOrder<uint32_t>(NumValueSites); 703 sys::swapByteOrder<uint32_t>(Kind); 704 } 705 } 706 707 void ValueProfData::deserializeTo(InstrProfRecord &Record, 708 InstrProfRecord::ValueMapType *VMap) { 709 if (NumValueKinds == 0) 710 return; 711 712 ValueProfRecord *VR = getFirstValueProfRecord(this); 713 for (uint32_t K = 0; K < NumValueKinds; K++) { 714 VR->deserializeTo(Record, VMap); 715 VR = getValueProfRecordNext(VR); 716 } 717 } 718 719 template <class T> 720 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 721 using namespace support; 722 723 if (Orig == little) 724 return endian::readNext<T, little, unaligned>(D); 725 else 726 return endian::readNext<T, big, unaligned>(D); 727 } 728 729 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 730 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 731 ValueProfData()); 732 } 733 734 Error ValueProfData::checkIntegrity() { 735 if (NumValueKinds > IPVK_Last + 1) 736 return make_error<InstrProfError>(instrprof_error::malformed); 737 // Total size needs to be mulltiple of quadword size. 738 if (TotalSize % sizeof(uint64_t)) 739 return make_error<InstrProfError>(instrprof_error::malformed); 740 741 ValueProfRecord *VR = getFirstValueProfRecord(this); 742 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 743 if (VR->Kind > IPVK_Last) 744 return make_error<InstrProfError>(instrprof_error::malformed); 745 VR = getValueProfRecordNext(VR); 746 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 747 return make_error<InstrProfError>(instrprof_error::malformed); 748 } 749 return Error::success(); 750 } 751 752 Expected<std::unique_ptr<ValueProfData>> 753 ValueProfData::getValueProfData(const unsigned char *D, 754 const unsigned char *const BufferEnd, 755 support::endianness Endianness) { 756 using namespace support; 757 758 if (D + sizeof(ValueProfData) > BufferEnd) 759 return make_error<InstrProfError>(instrprof_error::truncated); 760 761 const unsigned char *Header = D; 762 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 763 if (D + TotalSize > BufferEnd) 764 return make_error<InstrProfError>(instrprof_error::too_large); 765 766 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 767 memcpy(VPD.get(), D, TotalSize); 768 // Byte swap. 769 VPD->swapBytesToHost(Endianness); 770 771 Error E = VPD->checkIntegrity(); 772 if (E) 773 return std::move(E); 774 775 return std::move(VPD); 776 } 777 778 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 779 using namespace support; 780 781 if (Endianness == getHostEndianness()) 782 return; 783 784 sys::swapByteOrder<uint32_t>(TotalSize); 785 sys::swapByteOrder<uint32_t>(NumValueKinds); 786 787 ValueProfRecord *VR = getFirstValueProfRecord(this); 788 for (uint32_t K = 0; K < NumValueKinds; K++) { 789 VR->swapBytes(Endianness, getHostEndianness()); 790 VR = getValueProfRecordNext(VR); 791 } 792 } 793 794 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 795 using namespace support; 796 797 if (Endianness == getHostEndianness()) 798 return; 799 800 ValueProfRecord *VR = getFirstValueProfRecord(this); 801 for (uint32_t K = 0; K < NumValueKinds; K++) { 802 ValueProfRecord *NVR = getValueProfRecordNext(VR); 803 VR->swapBytes(getHostEndianness(), Endianness); 804 VR = NVR; 805 } 806 sys::swapByteOrder<uint32_t>(TotalSize); 807 sys::swapByteOrder<uint32_t>(NumValueKinds); 808 } 809 810 void annotateValueSite(Module &M, Instruction &Inst, 811 const InstrProfRecord &InstrProfR, 812 InstrProfValueKind ValueKind, uint32_t SiteIdx, 813 uint32_t MaxMDCount) { 814 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 815 if (!NV) 816 return; 817 818 uint64_t Sum = 0; 819 std::unique_ptr<InstrProfValueData[]> VD = 820 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 821 822 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 823 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 824 } 825 826 void annotateValueSite(Module &M, Instruction &Inst, 827 ArrayRef<InstrProfValueData> VDs, 828 uint64_t Sum, InstrProfValueKind ValueKind, 829 uint32_t MaxMDCount) { 830 LLVMContext &Ctx = M.getContext(); 831 MDBuilder MDHelper(Ctx); 832 SmallVector<Metadata *, 3> Vals; 833 // Tag 834 Vals.push_back(MDHelper.createString("VP")); 835 // Value Kind 836 Vals.push_back(MDHelper.createConstant( 837 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 838 // Total Count 839 Vals.push_back( 840 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 841 842 // Value Profile Data 843 uint32_t MDCount = MaxMDCount; 844 for (auto &VD : VDs) { 845 Vals.push_back(MDHelper.createConstant( 846 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 847 Vals.push_back(MDHelper.createConstant( 848 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 849 if (--MDCount == 0) 850 break; 851 } 852 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 853 } 854 855 bool getValueProfDataFromInst(const Instruction &Inst, 856 InstrProfValueKind ValueKind, 857 uint32_t MaxNumValueData, 858 InstrProfValueData ValueData[], 859 uint32_t &ActualNumValueData, uint64_t &TotalC) { 860 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 861 if (!MD) 862 return false; 863 864 unsigned NOps = MD->getNumOperands(); 865 866 if (NOps < 5) 867 return false; 868 869 // Operand 0 is a string tag "VP": 870 MDString *Tag = cast<MDString>(MD->getOperand(0)); 871 if (!Tag) 872 return false; 873 874 if (!Tag->getString().equals("VP")) 875 return false; 876 877 // Now check kind: 878 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 879 if (!KindInt) 880 return false; 881 if (KindInt->getZExtValue() != ValueKind) 882 return false; 883 884 // Get total count 885 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 886 if (!TotalCInt) 887 return false; 888 TotalC = TotalCInt->getZExtValue(); 889 890 ActualNumValueData = 0; 891 892 for (unsigned I = 3; I < NOps; I += 2) { 893 if (ActualNumValueData >= MaxNumValueData) 894 break; 895 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 896 ConstantInt *Count = 897 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 898 if (!Value || !Count) 899 return false; 900 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 901 ValueData[ActualNumValueData].Count = Count->getZExtValue(); 902 ActualNumValueData++; 903 } 904 return true; 905 } 906 907 MDNode *getPGOFuncNameMetadata(const Function &F) { 908 return F.getMetadata(getPGOFuncNameMetadataName()); 909 } 910 911 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 912 // Only for internal linkage functions. 913 if (PGOFuncName == F.getName()) 914 return; 915 // Don't create duplicated meta-data. 916 if (getPGOFuncNameMetadata(F)) 917 return; 918 LLVMContext &C = F.getContext(); 919 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 920 F.setMetadata(getPGOFuncNameMetadataName(), N); 921 } 922 923 bool needsComdatForCounter(const Function &F, const Module &M) { 924 if (F.hasComdat()) 925 return true; 926 927 Triple TT(M.getTargetTriple()); 928 if (!TT.isOSBinFormatELF() && !TT.isOSBinFormatWasm()) 929 return false; 930 931 // See createPGOFuncNameVar for more details. To avoid link errors, profile 932 // counters for function with available_externally linkage needs to be changed 933 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 934 // created. Without using comdat, duplicate entries won't be removed by the 935 // linker leading to increased data segement size and raw profile size. Even 936 // worse, since the referenced counter from profile per-function data object 937 // will be resolved to the common strong definition, the profile counts for 938 // available_externally functions will end up being duplicated in raw profile 939 // data. This can result in distorted profile as the counts of those dups 940 // will be accumulated by the profile merger. 941 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 942 if (Linkage != GlobalValue::ExternalWeakLinkage && 943 Linkage != GlobalValue::AvailableExternallyLinkage) 944 return false; 945 946 return true; 947 } 948 949 // Check if INSTR_PROF_RAW_VERSION_VAR is defined. 950 bool isIRPGOFlagSet(const Module *M) { 951 auto IRInstrVar = 952 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 953 if (!IRInstrVar || IRInstrVar->isDeclaration() || 954 IRInstrVar->hasLocalLinkage()) 955 return false; 956 957 // Check if the flag is set. 958 if (!IRInstrVar->hasInitializer()) 959 return false; 960 961 const Constant *InitVal = IRInstrVar->getInitializer(); 962 if (!InitVal) 963 return false; 964 965 return (dyn_cast<ConstantInt>(InitVal)->getZExtValue() & 966 VARIANT_MASK_IR_PROF) != 0; 967 } 968 969 // Check if we can safely rename this Comdat function. 970 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) { 971 if (F.getName().empty()) 972 return false; 973 if (!needsComdatForCounter(F, *(F.getParent()))) 974 return false; 975 // Unsafe to rename the address-taken function (which can be used in 976 // function comparison). 977 if (CheckAddressTaken && F.hasAddressTaken()) 978 return false; 979 // Only safe to do if this function may be discarded if it is not used 980 // in the compilation unit. 981 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage())) 982 return false; 983 984 // For AvailableExternallyLinkage functions. 985 if (!F.hasComdat()) { 986 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 987 return true; 988 } 989 return true; 990 } 991 992 // Parse the value profile options. 993 void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart, 994 int64_t &RangeLast) { 995 static const int64_t DefaultMemOPSizeRangeStart = 0; 996 static const int64_t DefaultMemOPSizeRangeLast = 8; 997 RangeStart = DefaultMemOPSizeRangeStart; 998 RangeLast = DefaultMemOPSizeRangeLast; 999 1000 if (!MemOPSizeRange.empty()) { 1001 auto Pos = MemOPSizeRange.find(':'); 1002 if (Pos != std::string::npos) { 1003 if (Pos > 0) 1004 MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart); 1005 if (Pos < MemOPSizeRange.size() - 1) 1006 MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast); 1007 } else 1008 MemOPSizeRange.getAsInteger(10, RangeLast); 1009 } 1010 assert(RangeLast >= RangeStart); 1011 } 1012 1013 } // end namespace llvm 1014