1 //===- InstrProf.cpp - Instrumented profiling format support --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's instrumentation based PGO and 10 // coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/InstrProf.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Config/config.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/ProfileData/InstrProfReader.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Compression.h" 38 #include "llvm/Support/Endian.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/LEB128.h" 42 #include "llvm/Support/ManagedStatic.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/Path.h" 45 #include "llvm/Support/SwapByteOrder.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <cstring> 51 #include <memory> 52 #include <string> 53 #include <system_error> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 static cl::opt<bool> StaticFuncFullModulePrefix( 60 "static-func-full-module-prefix", cl::init(true), cl::Hidden, 61 cl::desc("Use full module build paths in the profile counter names for " 62 "static functions.")); 63 64 // This option is tailored to users that have different top-level directory in 65 // profile-gen and profile-use compilation. Users need to specific the number 66 // of levels to strip. A value larger than the number of directories in the 67 // source file will strip all the directory names and only leave the basename. 68 // 69 // Note current ThinLTO module importing for the indirect-calls assumes 70 // the source directory name not being stripped. A non-zero option value here 71 // can potentially prevent some inter-module indirect-call-promotions. 72 static cl::opt<unsigned> StaticFuncStripDirNamePrefix( 73 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden, 74 cl::desc("Strip specified level of directory name from source path in " 75 "the profile counter name for static functions.")); 76 77 static std::string getInstrProfErrString(instrprof_error Err) { 78 switch (Err) { 79 case instrprof_error::success: 80 return "Success"; 81 case instrprof_error::eof: 82 return "End of File"; 83 case instrprof_error::unrecognized_format: 84 return "Unrecognized instrumentation profile encoding format"; 85 case instrprof_error::bad_magic: 86 return "Invalid instrumentation profile data (bad magic)"; 87 case instrprof_error::bad_header: 88 return "Invalid instrumentation profile data (file header is corrupt)"; 89 case instrprof_error::unsupported_version: 90 return "Unsupported instrumentation profile format version"; 91 case instrprof_error::unsupported_hash_type: 92 return "Unsupported instrumentation profile hash type"; 93 case instrprof_error::too_large: 94 return "Too much profile data"; 95 case instrprof_error::truncated: 96 return "Truncated profile data"; 97 case instrprof_error::malformed: 98 return "Malformed instrumentation profile data"; 99 case instrprof_error::invalid_prof: 100 return "Invalid profile created. Please file a bug " 101 "at: " BUG_REPORT_URL 102 " and include the profraw files that caused this error."; 103 case instrprof_error::unknown_function: 104 return "No profile data available for function"; 105 case instrprof_error::hash_mismatch: 106 return "Function control flow change detected (hash mismatch)"; 107 case instrprof_error::count_mismatch: 108 return "Function basic block count change detected (counter mismatch)"; 109 case instrprof_error::counter_overflow: 110 return "Counter overflow"; 111 case instrprof_error::value_site_count_mismatch: 112 return "Function value site count change detected (counter mismatch)"; 113 case instrprof_error::compress_failed: 114 return "Failed to compress data (zlib)"; 115 case instrprof_error::uncompress_failed: 116 return "Failed to uncompress data (zlib)"; 117 case instrprof_error::empty_raw_profile: 118 return "Empty raw profile file"; 119 case instrprof_error::zlib_unavailable: 120 return "Profile uses zlib compression but the profile reader was built without zlib support"; 121 } 122 llvm_unreachable("A value of instrprof_error has no message."); 123 } 124 125 namespace { 126 127 // FIXME: This class is only here to support the transition to llvm::Error. It 128 // will be removed once this transition is complete. Clients should prefer to 129 // deal with the Error value directly, rather than converting to error_code. 130 class InstrProfErrorCategoryType : public std::error_category { 131 const char *name() const noexcept override { return "llvm.instrprof"; } 132 133 std::string message(int IE) const override { 134 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 135 } 136 }; 137 138 } // end anonymous namespace 139 140 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; 141 142 const std::error_category &llvm::instrprof_category() { 143 return *ErrorCategory; 144 } 145 146 namespace { 147 148 const char *InstrProfSectNameCommon[] = { 149 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 150 SectNameCommon, 151 #include "llvm/ProfileData/InstrProfData.inc" 152 }; 153 154 const char *InstrProfSectNameCoff[] = { 155 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 156 SectNameCoff, 157 #include "llvm/ProfileData/InstrProfData.inc" 158 }; 159 160 const char *InstrProfSectNamePrefix[] = { 161 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 162 Prefix, 163 #include "llvm/ProfileData/InstrProfData.inc" 164 }; 165 166 } // namespace 167 168 namespace llvm { 169 170 cl::opt<bool> DoInstrProfNameCompression( 171 "enable-name-compression", 172 cl::desc("Enable name/filename string compression"), cl::init(true)); 173 174 std::string getInstrProfSectionName(InstrProfSectKind IPSK, 175 Triple::ObjectFormatType OF, 176 bool AddSegmentInfo) { 177 std::string SectName; 178 179 if (OF == Triple::MachO && AddSegmentInfo) 180 SectName = InstrProfSectNamePrefix[IPSK]; 181 182 if (OF == Triple::COFF) 183 SectName += InstrProfSectNameCoff[IPSK]; 184 else 185 SectName += InstrProfSectNameCommon[IPSK]; 186 187 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo) 188 SectName += ",regular,live_support"; 189 190 return SectName; 191 } 192 193 void SoftInstrProfErrors::addError(instrprof_error IE) { 194 if (IE == instrprof_error::success) 195 return; 196 197 if (FirstError == instrprof_error::success) 198 FirstError = IE; 199 200 switch (IE) { 201 case instrprof_error::hash_mismatch: 202 ++NumHashMismatches; 203 break; 204 case instrprof_error::count_mismatch: 205 ++NumCountMismatches; 206 break; 207 case instrprof_error::counter_overflow: 208 ++NumCounterOverflows; 209 break; 210 case instrprof_error::value_site_count_mismatch: 211 ++NumValueSiteCountMismatches; 212 break; 213 default: 214 llvm_unreachable("Not a soft error"); 215 } 216 } 217 218 std::string InstrProfError::message() const { 219 return getInstrProfErrString(Err); 220 } 221 222 char InstrProfError::ID = 0; 223 224 std::string getPGOFuncName(StringRef RawFuncName, 225 GlobalValue::LinkageTypes Linkage, 226 StringRef FileName, 227 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 228 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 229 } 230 231 // Strip NumPrefix level of directory name from PathNameStr. If the number of 232 // directory separators is less than NumPrefix, strip all the directories and 233 // leave base file name only. 234 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) { 235 uint32_t Count = NumPrefix; 236 uint32_t Pos = 0, LastPos = 0; 237 for (auto & CI : PathNameStr) { 238 ++Pos; 239 if (llvm::sys::path::is_separator(CI)) { 240 LastPos = Pos; 241 --Count; 242 } 243 if (Count == 0) 244 break; 245 } 246 return PathNameStr.substr(LastPos); 247 } 248 249 // Return the PGOFuncName. This function has some special handling when called 250 // in LTO optimization. The following only applies when calling in LTO passes 251 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 252 // symbols. This happens after value profile annotation, but those internal 253 // linkage functions should not have a source prefix. 254 // Additionally, for ThinLTO mode, exported internal functions are promoted 255 // and renamed. We need to ensure that the original internal PGO name is 256 // used when computing the GUID that is compared against the profiled GUIDs. 257 // To differentiate compiler generated internal symbols from original ones, 258 // PGOFuncName meta data are created and attached to the original internal 259 // symbols in the value profile annotation step 260 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 261 // data, its original linkage must be non-internal. 262 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 263 if (!InLTO) { 264 StringRef FileName(F.getParent()->getSourceFileName()); 265 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1; 266 if (StripLevel < StaticFuncStripDirNamePrefix) 267 StripLevel = StaticFuncStripDirNamePrefix; 268 if (StripLevel) 269 FileName = stripDirPrefix(FileName, StripLevel); 270 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 271 } 272 273 // In LTO mode (when InLTO is true), first check if there is a meta data. 274 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 275 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 276 return S.str(); 277 } 278 279 // If there is no meta data, the function must be a global before the value 280 // profile annotation pass. Its current linkage may be internal if it is 281 // internalized in LTO mode. 282 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 283 } 284 285 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 286 if (FileName.empty()) 287 return PGOFuncName; 288 // Drop the file name including ':'. See also getPGOFuncName. 289 if (PGOFuncName.startswith(FileName)) 290 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 291 return PGOFuncName; 292 } 293 294 // \p FuncName is the string used as profile lookup key for the function. A 295 // symbol is created to hold the name. Return the legalized symbol name. 296 std::string getPGOFuncNameVarName(StringRef FuncName, 297 GlobalValue::LinkageTypes Linkage) { 298 std::string VarName = std::string(getInstrProfNameVarPrefix()); 299 VarName += FuncName; 300 301 if (!GlobalValue::isLocalLinkage(Linkage)) 302 return VarName; 303 304 // Now fix up illegal chars in local VarName that may upset the assembler. 305 const char *InvalidChars = "-:<>/\"'"; 306 size_t found = VarName.find_first_of(InvalidChars); 307 while (found != std::string::npos) { 308 VarName[found] = '_'; 309 found = VarName.find_first_of(InvalidChars, found + 1); 310 } 311 return VarName; 312 } 313 314 GlobalVariable *createPGOFuncNameVar(Module &M, 315 GlobalValue::LinkageTypes Linkage, 316 StringRef PGOFuncName) { 317 // We generally want to match the function's linkage, but available_externally 318 // and extern_weak both have the wrong semantics, and anything that doesn't 319 // need to link across compilation units doesn't need to be visible at all. 320 if (Linkage == GlobalValue::ExternalWeakLinkage) 321 Linkage = GlobalValue::LinkOnceAnyLinkage; 322 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 323 Linkage = GlobalValue::LinkOnceODRLinkage; 324 else if (Linkage == GlobalValue::InternalLinkage || 325 Linkage == GlobalValue::ExternalLinkage) 326 Linkage = GlobalValue::PrivateLinkage; 327 328 auto *Value = 329 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 330 auto FuncNameVar = 331 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 332 getPGOFuncNameVarName(PGOFuncName, Linkage)); 333 334 // Hide the symbol so that we correctly get a copy for each executable. 335 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 336 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 337 338 return FuncNameVar; 339 } 340 341 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 342 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 343 } 344 345 Error InstrProfSymtab::create(Module &M, bool InLTO) { 346 for (Function &F : M) { 347 // Function may not have a name: like using asm("") to overwrite the name. 348 // Ignore in this case. 349 if (!F.hasName()) 350 continue; 351 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 352 if (Error E = addFuncName(PGOFuncName)) 353 return E; 354 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 355 // In ThinLTO, local function may have been promoted to global and have 356 // suffix added to the function name. We need to add the stripped function 357 // name to the symbol table so that we can find a match from profile. 358 if (InLTO) { 359 auto pos = PGOFuncName.find('.'); 360 if (pos != std::string::npos) { 361 const std::string &OtherFuncName = PGOFuncName.substr(0, pos); 362 if (Error E = addFuncName(OtherFuncName)) 363 return E; 364 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F); 365 } 366 } 367 } 368 Sorted = false; 369 finalizeSymtab(); 370 return Error::success(); 371 } 372 373 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) { 374 finalizeSymtab(); 375 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) { 376 return A.first < Address; 377 }); 378 // Raw function pointer collected by value profiler may be from 379 // external functions that are not instrumented. They won't have 380 // mapping data to be used by the deserializer. Force the value to 381 // be 0 in this case. 382 if (It != AddrToMD5Map.end() && It->first == Address) 383 return (uint64_t)It->second; 384 return 0; 385 } 386 387 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs, 388 bool doCompression, std::string &Result) { 389 assert(!NameStrs.empty() && "No name data to emit"); 390 391 uint8_t Header[16], *P = Header; 392 std::string UncompressedNameStrings = 393 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 394 395 assert(StringRef(UncompressedNameStrings) 396 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 397 "PGO name is invalid (contains separator token)"); 398 399 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 400 P += EncLen; 401 402 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 403 EncLen = encodeULEB128(CompressedLen, P); 404 P += EncLen; 405 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 406 unsigned HeaderLen = P - &Header[0]; 407 Result.append(HeaderStr, HeaderLen); 408 Result += InputStr; 409 return Error::success(); 410 }; 411 412 if (!doCompression) { 413 return WriteStringToResult(0, UncompressedNameStrings); 414 } 415 416 SmallString<128> CompressedNameStrings; 417 Error E = zlib::compress(StringRef(UncompressedNameStrings), 418 CompressedNameStrings, zlib::BestSizeCompression); 419 if (E) { 420 consumeError(std::move(E)); 421 return make_error<InstrProfError>(instrprof_error::compress_failed); 422 } 423 424 return WriteStringToResult(CompressedNameStrings.size(), 425 CompressedNameStrings); 426 } 427 428 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 429 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 430 StringRef NameStr = 431 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 432 return NameStr; 433 } 434 435 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars, 436 std::string &Result, bool doCompression) { 437 std::vector<std::string> NameStrs; 438 for (auto *NameVar : NameVars) { 439 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar))); 440 } 441 return collectPGOFuncNameStrings( 442 NameStrs, zlib::isAvailable() && doCompression, Result); 443 } 444 445 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 446 const uint8_t *P = NameStrings.bytes_begin(); 447 const uint8_t *EndP = NameStrings.bytes_end(); 448 while (P < EndP) { 449 uint32_t N; 450 uint64_t UncompressedSize = decodeULEB128(P, &N); 451 P += N; 452 uint64_t CompressedSize = decodeULEB128(P, &N); 453 P += N; 454 bool isCompressed = (CompressedSize != 0); 455 SmallString<128> UncompressedNameStrings; 456 StringRef NameStrings; 457 if (isCompressed) { 458 if (!llvm::zlib::isAvailable()) 459 return make_error<InstrProfError>(instrprof_error::zlib_unavailable); 460 461 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 462 CompressedSize); 463 if (Error E = 464 zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, 465 UncompressedSize)) { 466 consumeError(std::move(E)); 467 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 468 } 469 P += CompressedSize; 470 NameStrings = StringRef(UncompressedNameStrings.data(), 471 UncompressedNameStrings.size()); 472 } else { 473 NameStrings = 474 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 475 P += UncompressedSize; 476 } 477 // Now parse the name strings. 478 SmallVector<StringRef, 0> Names; 479 NameStrings.split(Names, getInstrProfNameSeparator()); 480 for (StringRef &Name : Names) 481 if (Error E = Symtab.addFuncName(Name)) 482 return E; 483 484 while (P < EndP && *P == 0) 485 P++; 486 } 487 return Error::success(); 488 } 489 490 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const { 491 uint64_t FuncSum = 0; 492 Sum.NumEntries += Counts.size(); 493 for (size_t F = 0, E = Counts.size(); F < E; ++F) 494 FuncSum += Counts[F]; 495 Sum.CountSum += FuncSum; 496 497 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) { 498 uint64_t KindSum = 0; 499 uint32_t NumValueSites = getNumValueSites(VK); 500 for (size_t I = 0; I < NumValueSites; ++I) { 501 uint32_t NV = getNumValueDataForSite(VK, I); 502 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I); 503 for (uint32_t V = 0; V < NV; V++) 504 KindSum += VD[V].Count; 505 } 506 Sum.ValueCounts[VK] += KindSum; 507 } 508 } 509 510 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input, 511 uint32_t ValueKind, 512 OverlapStats &Overlap, 513 OverlapStats &FuncLevelOverlap) { 514 this->sortByTargetValues(); 515 Input.sortByTargetValues(); 516 double Score = 0.0f, FuncLevelScore = 0.0f; 517 auto I = ValueData.begin(); 518 auto IE = ValueData.end(); 519 auto J = Input.ValueData.begin(); 520 auto JE = Input.ValueData.end(); 521 while (I != IE && J != JE) { 522 if (I->Value == J->Value) { 523 Score += OverlapStats::score(I->Count, J->Count, 524 Overlap.Base.ValueCounts[ValueKind], 525 Overlap.Test.ValueCounts[ValueKind]); 526 FuncLevelScore += OverlapStats::score( 527 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind], 528 FuncLevelOverlap.Test.ValueCounts[ValueKind]); 529 ++I; 530 } else if (I->Value < J->Value) { 531 ++I; 532 continue; 533 } 534 ++J; 535 } 536 Overlap.Overlap.ValueCounts[ValueKind] += Score; 537 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore; 538 } 539 540 // Return false on mismatch. 541 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind, 542 InstrProfRecord &Other, 543 OverlapStats &Overlap, 544 OverlapStats &FuncLevelOverlap) { 545 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 546 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind)); 547 if (!ThisNumValueSites) 548 return; 549 550 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 551 getOrCreateValueSitesForKind(ValueKind); 552 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 553 Other.getValueSitesForKind(ValueKind); 554 for (uint32_t I = 0; I < ThisNumValueSites; I++) 555 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap, 556 FuncLevelOverlap); 557 } 558 559 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap, 560 OverlapStats &FuncLevelOverlap, 561 uint64_t ValueCutoff) { 562 // FuncLevel CountSum for other should already computed and nonzero. 563 assert(FuncLevelOverlap.Test.CountSum >= 1.0f); 564 accumulateCounts(FuncLevelOverlap.Base); 565 bool Mismatch = (Counts.size() != Other.Counts.size()); 566 567 // Check if the value profiles mismatch. 568 if (!Mismatch) { 569 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 570 uint32_t ThisNumValueSites = getNumValueSites(Kind); 571 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind); 572 if (ThisNumValueSites != OtherNumValueSites) { 573 Mismatch = true; 574 break; 575 } 576 } 577 } 578 if (Mismatch) { 579 Overlap.addOneMismatch(FuncLevelOverlap.Test); 580 return; 581 } 582 583 // Compute overlap for value counts. 584 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 585 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap); 586 587 double Score = 0.0; 588 uint64_t MaxCount = 0; 589 // Compute overlap for edge counts. 590 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 591 Score += OverlapStats::score(Counts[I], Other.Counts[I], 592 Overlap.Base.CountSum, Overlap.Test.CountSum); 593 MaxCount = std::max(Other.Counts[I], MaxCount); 594 } 595 Overlap.Overlap.CountSum += Score; 596 Overlap.Overlap.NumEntries += 1; 597 598 if (MaxCount >= ValueCutoff) { 599 double FuncScore = 0.0; 600 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) 601 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I], 602 FuncLevelOverlap.Base.CountSum, 603 FuncLevelOverlap.Test.CountSum); 604 FuncLevelOverlap.Overlap.CountSum = FuncScore; 605 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size(); 606 FuncLevelOverlap.Valid = true; 607 } 608 } 609 610 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, 611 uint64_t Weight, 612 function_ref<void(instrprof_error)> Warn) { 613 this->sortByTargetValues(); 614 Input.sortByTargetValues(); 615 auto I = ValueData.begin(); 616 auto IE = ValueData.end(); 617 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; 618 ++J) { 619 while (I != IE && I->Value < J->Value) 620 ++I; 621 if (I != IE && I->Value == J->Value) { 622 bool Overflowed; 623 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); 624 if (Overflowed) 625 Warn(instrprof_error::counter_overflow); 626 ++I; 627 continue; 628 } 629 ValueData.insert(I, *J); 630 } 631 } 632 633 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D, 634 function_ref<void(instrprof_error)> Warn) { 635 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { 636 bool Overflowed; 637 I->Count = SaturatingMultiply(I->Count, N, &Overflowed) / D; 638 if (Overflowed) 639 Warn(instrprof_error::counter_overflow); 640 } 641 } 642 643 // Merge Value Profile data from Src record to this record for ValueKind. 644 // Scale merged value counts by \p Weight. 645 void InstrProfRecord::mergeValueProfData( 646 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight, 647 function_ref<void(instrprof_error)> Warn) { 648 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 649 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 650 if (ThisNumValueSites != OtherNumValueSites) { 651 Warn(instrprof_error::value_site_count_mismatch); 652 return; 653 } 654 if (!ThisNumValueSites) 655 return; 656 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 657 getOrCreateValueSitesForKind(ValueKind); 658 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 659 Src.getValueSitesForKind(ValueKind); 660 for (uint32_t I = 0; I < ThisNumValueSites; I++) 661 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn); 662 } 663 664 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight, 665 function_ref<void(instrprof_error)> Warn) { 666 // If the number of counters doesn't match we either have bad data 667 // or a hash collision. 668 if (Counts.size() != Other.Counts.size()) { 669 Warn(instrprof_error::count_mismatch); 670 return; 671 } 672 673 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 674 bool Overflowed; 675 Counts[I] = 676 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 677 if (Overflowed) 678 Warn(instrprof_error::counter_overflow); 679 } 680 681 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 682 mergeValueProfData(Kind, Other, Weight, Warn); 683 } 684 685 void InstrProfRecord::scaleValueProfData( 686 uint32_t ValueKind, uint64_t N, uint64_t D, 687 function_ref<void(instrprof_error)> Warn) { 688 for (auto &R : getValueSitesForKind(ValueKind)) 689 R.scale(N, D, Warn); 690 } 691 692 void InstrProfRecord::scale(uint64_t N, uint64_t D, 693 function_ref<void(instrprof_error)> Warn) { 694 assert(D != 0 && "D cannot be 0"); 695 for (auto &Count : this->Counts) { 696 bool Overflowed; 697 Count = SaturatingMultiply(Count, N, &Overflowed) / D; 698 if (Overflowed) 699 Warn(instrprof_error::counter_overflow); 700 } 701 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 702 scaleValueProfData(Kind, N, D, Warn); 703 } 704 705 // Map indirect call target name hash to name string. 706 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 707 InstrProfSymtab *SymTab) { 708 if (!SymTab) 709 return Value; 710 711 if (ValueKind == IPVK_IndirectCallTarget) 712 return SymTab->getFunctionHashFromAddress(Value); 713 714 return Value; 715 } 716 717 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 718 InstrProfValueData *VData, uint32_t N, 719 InstrProfSymtab *ValueMap) { 720 for (uint32_t I = 0; I < N; I++) { 721 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 722 } 723 std::vector<InstrProfValueSiteRecord> &ValueSites = 724 getOrCreateValueSitesForKind(ValueKind); 725 if (N == 0) 726 ValueSites.emplace_back(); 727 else 728 ValueSites.emplace_back(VData, VData + N); 729 } 730 731 #define INSTR_PROF_COMMON_API_IMPL 732 #include "llvm/ProfileData/InstrProfData.inc" 733 734 /*! 735 * ValueProfRecordClosure Interface implementation for InstrProfRecord 736 * class. These C wrappers are used as adaptors so that C++ code can be 737 * invoked as callbacks. 738 */ 739 uint32_t getNumValueKindsInstrProf(const void *Record) { 740 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 741 } 742 743 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 744 return reinterpret_cast<const InstrProfRecord *>(Record) 745 ->getNumValueSites(VKind); 746 } 747 748 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 749 return reinterpret_cast<const InstrProfRecord *>(Record) 750 ->getNumValueData(VKind); 751 } 752 753 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 754 uint32_t S) { 755 return reinterpret_cast<const InstrProfRecord *>(R) 756 ->getNumValueDataForSite(VK, S); 757 } 758 759 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 760 uint32_t K, uint32_t S) { 761 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 762 } 763 764 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 765 ValueProfData *VD = 766 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 767 memset(VD, 0, TotalSizeInBytes); 768 return VD; 769 } 770 771 static ValueProfRecordClosure InstrProfRecordClosure = { 772 nullptr, 773 getNumValueKindsInstrProf, 774 getNumValueSitesInstrProf, 775 getNumValueDataInstrProf, 776 getNumValueDataForSiteInstrProf, 777 nullptr, 778 getValueForSiteInstrProf, 779 allocValueProfDataInstrProf}; 780 781 // Wrapper implementation using the closure mechanism. 782 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 783 auto Closure = InstrProfRecordClosure; 784 Closure.Record = &Record; 785 return getValueProfDataSize(&Closure); 786 } 787 788 // Wrapper implementation using the closure mechanism. 789 std::unique_ptr<ValueProfData> 790 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 791 InstrProfRecordClosure.Record = &Record; 792 793 std::unique_ptr<ValueProfData> VPD( 794 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 795 return VPD; 796 } 797 798 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 799 InstrProfSymtab *SymTab) { 800 Record.reserveSites(Kind, NumValueSites); 801 802 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 803 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 804 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 805 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab); 806 ValueData += ValueDataCount; 807 } 808 } 809 810 // For writing/serializing, Old is the host endianness, and New is 811 // byte order intended on disk. For Reading/deserialization, Old 812 // is the on-disk source endianness, and New is the host endianness. 813 void ValueProfRecord::swapBytes(support::endianness Old, 814 support::endianness New) { 815 using namespace support; 816 817 if (Old == New) 818 return; 819 820 if (getHostEndianness() != Old) { 821 sys::swapByteOrder<uint32_t>(NumValueSites); 822 sys::swapByteOrder<uint32_t>(Kind); 823 } 824 uint32_t ND = getValueProfRecordNumValueData(this); 825 InstrProfValueData *VD = getValueProfRecordValueData(this); 826 827 // No need to swap byte array: SiteCountArrray. 828 for (uint32_t I = 0; I < ND; I++) { 829 sys::swapByteOrder<uint64_t>(VD[I].Value); 830 sys::swapByteOrder<uint64_t>(VD[I].Count); 831 } 832 if (getHostEndianness() == Old) { 833 sys::swapByteOrder<uint32_t>(NumValueSites); 834 sys::swapByteOrder<uint32_t>(Kind); 835 } 836 } 837 838 void ValueProfData::deserializeTo(InstrProfRecord &Record, 839 InstrProfSymtab *SymTab) { 840 if (NumValueKinds == 0) 841 return; 842 843 ValueProfRecord *VR = getFirstValueProfRecord(this); 844 for (uint32_t K = 0; K < NumValueKinds; K++) { 845 VR->deserializeTo(Record, SymTab); 846 VR = getValueProfRecordNext(VR); 847 } 848 } 849 850 template <class T> 851 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 852 using namespace support; 853 854 if (Orig == little) 855 return endian::readNext<T, little, unaligned>(D); 856 else 857 return endian::readNext<T, big, unaligned>(D); 858 } 859 860 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 861 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 862 ValueProfData()); 863 } 864 865 Error ValueProfData::checkIntegrity() { 866 if (NumValueKinds > IPVK_Last + 1) 867 return make_error<InstrProfError>(instrprof_error::malformed); 868 // Total size needs to be mulltiple of quadword size. 869 if (TotalSize % sizeof(uint64_t)) 870 return make_error<InstrProfError>(instrprof_error::malformed); 871 872 ValueProfRecord *VR = getFirstValueProfRecord(this); 873 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 874 if (VR->Kind > IPVK_Last) 875 return make_error<InstrProfError>(instrprof_error::malformed); 876 VR = getValueProfRecordNext(VR); 877 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 878 return make_error<InstrProfError>(instrprof_error::malformed); 879 } 880 return Error::success(); 881 } 882 883 Expected<std::unique_ptr<ValueProfData>> 884 ValueProfData::getValueProfData(const unsigned char *D, 885 const unsigned char *const BufferEnd, 886 support::endianness Endianness) { 887 using namespace support; 888 889 if (D + sizeof(ValueProfData) > BufferEnd) 890 return make_error<InstrProfError>(instrprof_error::truncated); 891 892 const unsigned char *Header = D; 893 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 894 if (D + TotalSize > BufferEnd) 895 return make_error<InstrProfError>(instrprof_error::too_large); 896 897 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 898 memcpy(VPD.get(), D, TotalSize); 899 // Byte swap. 900 VPD->swapBytesToHost(Endianness); 901 902 Error E = VPD->checkIntegrity(); 903 if (E) 904 return std::move(E); 905 906 return std::move(VPD); 907 } 908 909 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 910 using namespace support; 911 912 if (Endianness == getHostEndianness()) 913 return; 914 915 sys::swapByteOrder<uint32_t>(TotalSize); 916 sys::swapByteOrder<uint32_t>(NumValueKinds); 917 918 ValueProfRecord *VR = getFirstValueProfRecord(this); 919 for (uint32_t K = 0; K < NumValueKinds; K++) { 920 VR->swapBytes(Endianness, getHostEndianness()); 921 VR = getValueProfRecordNext(VR); 922 } 923 } 924 925 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 926 using namespace support; 927 928 if (Endianness == getHostEndianness()) 929 return; 930 931 ValueProfRecord *VR = getFirstValueProfRecord(this); 932 for (uint32_t K = 0; K < NumValueKinds; K++) { 933 ValueProfRecord *NVR = getValueProfRecordNext(VR); 934 VR->swapBytes(getHostEndianness(), Endianness); 935 VR = NVR; 936 } 937 sys::swapByteOrder<uint32_t>(TotalSize); 938 sys::swapByteOrder<uint32_t>(NumValueKinds); 939 } 940 941 void annotateValueSite(Module &M, Instruction &Inst, 942 const InstrProfRecord &InstrProfR, 943 InstrProfValueKind ValueKind, uint32_t SiteIdx, 944 uint32_t MaxMDCount) { 945 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 946 if (!NV) 947 return; 948 949 uint64_t Sum = 0; 950 std::unique_ptr<InstrProfValueData[]> VD = 951 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 952 953 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 954 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 955 } 956 957 void annotateValueSite(Module &M, Instruction &Inst, 958 ArrayRef<InstrProfValueData> VDs, 959 uint64_t Sum, InstrProfValueKind ValueKind, 960 uint32_t MaxMDCount) { 961 LLVMContext &Ctx = M.getContext(); 962 MDBuilder MDHelper(Ctx); 963 SmallVector<Metadata *, 3> Vals; 964 // Tag 965 Vals.push_back(MDHelper.createString("VP")); 966 // Value Kind 967 Vals.push_back(MDHelper.createConstant( 968 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 969 // Total Count 970 Vals.push_back( 971 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 972 973 // Value Profile Data 974 uint32_t MDCount = MaxMDCount; 975 for (auto &VD : VDs) { 976 Vals.push_back(MDHelper.createConstant( 977 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 978 Vals.push_back(MDHelper.createConstant( 979 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 980 if (--MDCount == 0) 981 break; 982 } 983 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 984 } 985 986 bool getValueProfDataFromInst(const Instruction &Inst, 987 InstrProfValueKind ValueKind, 988 uint32_t MaxNumValueData, 989 InstrProfValueData ValueData[], 990 uint32_t &ActualNumValueData, uint64_t &TotalC, 991 bool GetZeroCntValue) { 992 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 993 if (!MD) 994 return false; 995 996 unsigned NOps = MD->getNumOperands(); 997 998 if (NOps < 5) 999 return false; 1000 1001 // Operand 0 is a string tag "VP": 1002 MDString *Tag = cast<MDString>(MD->getOperand(0)); 1003 if (!Tag) 1004 return false; 1005 1006 if (!Tag->getString().equals("VP")) 1007 return false; 1008 1009 // Now check kind: 1010 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 1011 if (!KindInt) 1012 return false; 1013 if (KindInt->getZExtValue() != ValueKind) 1014 return false; 1015 1016 // Get total count 1017 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 1018 if (!TotalCInt && !GetZeroCntValue) 1019 return false; 1020 TotalC = TotalCInt->getZExtValue(); 1021 1022 ActualNumValueData = 0; 1023 1024 for (unsigned I = 3; I < NOps; I += 2) { 1025 if (ActualNumValueData >= MaxNumValueData) 1026 break; 1027 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 1028 ConstantInt *Count = 1029 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 1030 if (!Value || (!Count && !GetZeroCntValue)) 1031 return false; 1032 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 1033 ValueData[ActualNumValueData].Count = Count->getZExtValue(); 1034 ActualNumValueData++; 1035 } 1036 return true; 1037 } 1038 1039 MDNode *getPGOFuncNameMetadata(const Function &F) { 1040 return F.getMetadata(getPGOFuncNameMetadataName()); 1041 } 1042 1043 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 1044 // Only for internal linkage functions. 1045 if (PGOFuncName == F.getName()) 1046 return; 1047 // Don't create duplicated meta-data. 1048 if (getPGOFuncNameMetadata(F)) 1049 return; 1050 LLVMContext &C = F.getContext(); 1051 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 1052 F.setMetadata(getPGOFuncNameMetadataName(), N); 1053 } 1054 1055 bool needsComdatForCounter(const Function &F, const Module &M) { 1056 if (F.hasComdat()) 1057 return true; 1058 1059 if (!Triple(M.getTargetTriple()).supportsCOMDAT()) 1060 return false; 1061 1062 // See createPGOFuncNameVar for more details. To avoid link errors, profile 1063 // counters for function with available_externally linkage needs to be changed 1064 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 1065 // created. Without using comdat, duplicate entries won't be removed by the 1066 // linker leading to increased data segement size and raw profile size. Even 1067 // worse, since the referenced counter from profile per-function data object 1068 // will be resolved to the common strong definition, the profile counts for 1069 // available_externally functions will end up being duplicated in raw profile 1070 // data. This can result in distorted profile as the counts of those dups 1071 // will be accumulated by the profile merger. 1072 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 1073 if (Linkage != GlobalValue::ExternalWeakLinkage && 1074 Linkage != GlobalValue::AvailableExternallyLinkage) 1075 return false; 1076 1077 return true; 1078 } 1079 1080 // Check if INSTR_PROF_RAW_VERSION_VAR is defined. 1081 bool isIRPGOFlagSet(const Module *M) { 1082 auto IRInstrVar = 1083 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1084 if (!IRInstrVar || IRInstrVar->isDeclaration() || 1085 IRInstrVar->hasLocalLinkage()) 1086 return false; 1087 1088 // Check if the flag is set. 1089 if (!IRInstrVar->hasInitializer()) 1090 return false; 1091 1092 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer()); 1093 if (!InitVal) 1094 return false; 1095 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0; 1096 } 1097 1098 // Check if we can safely rename this Comdat function. 1099 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) { 1100 if (F.getName().empty()) 1101 return false; 1102 if (!needsComdatForCounter(F, *(F.getParent()))) 1103 return false; 1104 // Unsafe to rename the address-taken function (which can be used in 1105 // function comparison). 1106 if (CheckAddressTaken && F.hasAddressTaken()) 1107 return false; 1108 // Only safe to do if this function may be discarded if it is not used 1109 // in the compilation unit. 1110 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage())) 1111 return false; 1112 1113 // For AvailableExternallyLinkage functions. 1114 if (!F.hasComdat()) { 1115 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 1116 return true; 1117 } 1118 return true; 1119 } 1120 1121 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime 1122 // aware this is an ir_level profile so it can set the version flag. 1123 void createIRLevelProfileFlagVar(Module &M, bool IsCS, 1124 bool InstrEntryBBEnabled) { 1125 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1126 Type *IntTy64 = Type::getInt64Ty(M.getContext()); 1127 uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF); 1128 if (IsCS) 1129 ProfileVersion |= VARIANT_MASK_CSIR_PROF; 1130 if (InstrEntryBBEnabled) 1131 ProfileVersion |= VARIANT_MASK_INSTR_ENTRY; 1132 auto IRLevelVersionVariable = new GlobalVariable( 1133 M, IntTy64, true, GlobalValue::WeakAnyLinkage, 1134 Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName); 1135 IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility); 1136 Triple TT(M.getTargetTriple()); 1137 if (TT.supportsCOMDAT()) { 1138 IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage); 1139 IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName)); 1140 } 1141 } 1142 1143 // Create the variable for the profile file name. 1144 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) { 1145 if (InstrProfileOutput.empty()) 1146 return; 1147 Constant *ProfileNameConst = 1148 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true); 1149 GlobalVariable *ProfileNameVar = new GlobalVariable( 1150 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage, 1151 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)); 1152 Triple TT(M.getTargetTriple()); 1153 if (TT.supportsCOMDAT()) { 1154 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 1155 ProfileNameVar->setComdat(M.getOrInsertComdat( 1156 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)))); 1157 } 1158 } 1159 1160 Error OverlapStats::accumulateCounts(const std::string &BaseFilename, 1161 const std::string &TestFilename, 1162 bool IsCS) { 1163 auto getProfileSum = [IsCS](const std::string &Filename, 1164 CountSumOrPercent &Sum) -> Error { 1165 auto ReaderOrErr = InstrProfReader::create(Filename); 1166 if (Error E = ReaderOrErr.takeError()) { 1167 return E; 1168 } 1169 auto Reader = std::move(ReaderOrErr.get()); 1170 Reader->accumulateCounts(Sum, IsCS); 1171 return Error::success(); 1172 }; 1173 auto Ret = getProfileSum(BaseFilename, Base); 1174 if (Ret) 1175 return Ret; 1176 Ret = getProfileSum(TestFilename, Test); 1177 if (Ret) 1178 return Ret; 1179 this->BaseFilename = &BaseFilename; 1180 this->TestFilename = &TestFilename; 1181 Valid = true; 1182 return Error::success(); 1183 } 1184 1185 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) { 1186 Mismatch.NumEntries += 1; 1187 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum; 1188 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1189 if (Test.ValueCounts[I] >= 1.0f) 1190 Mismatch.ValueCounts[I] += 1191 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I]; 1192 } 1193 } 1194 1195 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) { 1196 Unique.NumEntries += 1; 1197 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum; 1198 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1199 if (Test.ValueCounts[I] >= 1.0f) 1200 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I]; 1201 } 1202 } 1203 1204 void OverlapStats::dump(raw_fd_ostream &OS) const { 1205 if (!Valid) 1206 return; 1207 1208 const char *EntryName = 1209 (Level == ProgramLevel ? "functions" : "edge counters"); 1210 if (Level == ProgramLevel) { 1211 OS << "Profile overlap infomation for base_profile: " << *BaseFilename 1212 << " and test_profile: " << *TestFilename << "\nProgram level:\n"; 1213 } else { 1214 OS << "Function level:\n" 1215 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n"; 1216 } 1217 1218 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n"; 1219 if (Mismatch.NumEntries) 1220 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries 1221 << "\n"; 1222 if (Unique.NumEntries) 1223 OS << " # of " << EntryName 1224 << " only in test_profile: " << Unique.NumEntries << "\n"; 1225 1226 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100) 1227 << "\n"; 1228 if (Mismatch.NumEntries) 1229 OS << " Mismatched count percentage (Edge): " 1230 << format("%.3f%%", Mismatch.CountSum * 100) << "\n"; 1231 if (Unique.NumEntries) 1232 OS << " Percentage of Edge profile only in test_profile: " 1233 << format("%.3f%%", Unique.CountSum * 100) << "\n"; 1234 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum) 1235 << "\n" 1236 << " Edge profile test count sum: " << format("%.0f", Test.CountSum) 1237 << "\n"; 1238 1239 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1240 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f) 1241 continue; 1242 char ProfileKindName[20]; 1243 switch (I) { 1244 case IPVK_IndirectCallTarget: 1245 strncpy(ProfileKindName, "IndirectCall", 19); 1246 break; 1247 case IPVK_MemOPSize: 1248 strncpy(ProfileKindName, "MemOP", 19); 1249 break; 1250 default: 1251 snprintf(ProfileKindName, 19, "VP[%d]", I); 1252 break; 1253 } 1254 OS << " " << ProfileKindName 1255 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100) 1256 << "\n"; 1257 if (Mismatch.NumEntries) 1258 OS << " Mismatched count percentage (" << ProfileKindName 1259 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n"; 1260 if (Unique.NumEntries) 1261 OS << " Percentage of " << ProfileKindName 1262 << " profile only in test_profile: " 1263 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n"; 1264 OS << " " << ProfileKindName 1265 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I]) 1266 << "\n" 1267 << " " << ProfileKindName 1268 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I]) 1269 << "\n"; 1270 } 1271 } 1272 1273 } // end namespace llvm 1274