1 //===- InstrProf.cpp - Instrumented profiling format support --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's instrumentation based PGO and 10 // coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/InstrProf.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Config/config.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/ProfileData/InstrProfReader.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Compression.h" 38 #include "llvm/Support/Endian.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/LEB128.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SwapByteOrder.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstddef> 48 #include <cstdint> 49 #include <cstring> 50 #include <memory> 51 #include <string> 52 #include <system_error> 53 #include <type_traits> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 static cl::opt<bool> StaticFuncFullModulePrefix( 60 "static-func-full-module-prefix", cl::init(true), cl::Hidden, 61 cl::desc("Use full module build paths in the profile counter names for " 62 "static functions.")); 63 64 // This option is tailored to users that have different top-level directory in 65 // profile-gen and profile-use compilation. Users need to specific the number 66 // of levels to strip. A value larger than the number of directories in the 67 // source file will strip all the directory names and only leave the basename. 68 // 69 // Note current ThinLTO module importing for the indirect-calls assumes 70 // the source directory name not being stripped. A non-zero option value here 71 // can potentially prevent some inter-module indirect-call-promotions. 72 static cl::opt<unsigned> StaticFuncStripDirNamePrefix( 73 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden, 74 cl::desc("Strip specified level of directory name from source path in " 75 "the profile counter name for static functions.")); 76 77 static std::string getInstrProfErrString(instrprof_error Err, 78 const std::string &ErrMsg = "") { 79 std::string Msg; 80 raw_string_ostream OS(Msg); 81 82 switch (Err) { 83 case instrprof_error::success: 84 OS << "success"; 85 break; 86 case instrprof_error::eof: 87 OS << "end of File"; 88 break; 89 case instrprof_error::unrecognized_format: 90 OS << "unrecognized instrumentation profile encoding format"; 91 break; 92 case instrprof_error::bad_magic: 93 OS << "invalid instrumentation profile data (bad magic)"; 94 break; 95 case instrprof_error::bad_header: 96 OS << "invalid instrumentation profile data (file header is corrupt)"; 97 break; 98 case instrprof_error::unsupported_version: 99 OS << "unsupported instrumentation profile format version"; 100 break; 101 case instrprof_error::unsupported_hash_type: 102 OS << "unsupported instrumentation profile hash type"; 103 break; 104 case instrprof_error::too_large: 105 OS << "too much profile data"; 106 break; 107 case instrprof_error::truncated: 108 OS << "truncated profile data"; 109 break; 110 case instrprof_error::malformed: 111 OS << "malformed instrumentation profile data"; 112 break; 113 case instrprof_error::missing_debug_info_for_correlation: 114 OS << "debug info for correlation is required"; 115 break; 116 case instrprof_error::unexpected_debug_info_for_correlation: 117 OS << "debug info for correlation is not necessary"; 118 break; 119 case instrprof_error::unable_to_correlate_profile: 120 OS << "unable to correlate profile"; 121 break; 122 case instrprof_error::invalid_prof: 123 OS << "invalid profile created. Please file a bug " 124 "at: " BUG_REPORT_URL 125 " and include the profraw files that caused this error."; 126 break; 127 case instrprof_error::unknown_function: 128 OS << "no profile data available for function"; 129 break; 130 case instrprof_error::hash_mismatch: 131 OS << "function control flow change detected (hash mismatch)"; 132 break; 133 case instrprof_error::count_mismatch: 134 OS << "function basic block count change detected (counter mismatch)"; 135 break; 136 case instrprof_error::counter_overflow: 137 OS << "counter overflow"; 138 break; 139 case instrprof_error::value_site_count_mismatch: 140 OS << "function value site count change detected (counter mismatch)"; 141 break; 142 case instrprof_error::compress_failed: 143 OS << "failed to compress data (zlib)"; 144 break; 145 case instrprof_error::uncompress_failed: 146 OS << "failed to uncompress data (zlib)"; 147 break; 148 case instrprof_error::empty_raw_profile: 149 OS << "empty raw profile file"; 150 break; 151 case instrprof_error::zlib_unavailable: 152 OS << "profile uses zlib compression but the profile reader was built " 153 "without zlib support"; 154 break; 155 } 156 157 // If optional error message is not empty, append it to the message. 158 if (!ErrMsg.empty()) 159 OS << ": " << ErrMsg; 160 161 return OS.str(); 162 } 163 164 namespace { 165 166 // FIXME: This class is only here to support the transition to llvm::Error. It 167 // will be removed once this transition is complete. Clients should prefer to 168 // deal with the Error value directly, rather than converting to error_code. 169 class InstrProfErrorCategoryType : public std::error_category { 170 const char *name() const noexcept override { return "llvm.instrprof"; } 171 172 std::string message(int IE) const override { 173 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 174 } 175 }; 176 177 } // end anonymous namespace 178 179 const std::error_category &llvm::instrprof_category() { 180 static InstrProfErrorCategoryType ErrorCategory; 181 return ErrorCategory; 182 } 183 184 namespace { 185 186 const char *InstrProfSectNameCommon[] = { 187 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 188 SectNameCommon, 189 #include "llvm/ProfileData/InstrProfData.inc" 190 }; 191 192 const char *InstrProfSectNameCoff[] = { 193 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 194 SectNameCoff, 195 #include "llvm/ProfileData/InstrProfData.inc" 196 }; 197 198 const char *InstrProfSectNamePrefix[] = { 199 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \ 200 Prefix, 201 #include "llvm/ProfileData/InstrProfData.inc" 202 }; 203 204 } // namespace 205 206 namespace llvm { 207 208 cl::opt<bool> DoInstrProfNameCompression( 209 "enable-name-compression", 210 cl::desc("Enable name/filename string compression"), cl::init(true)); 211 212 std::string getInstrProfSectionName(InstrProfSectKind IPSK, 213 Triple::ObjectFormatType OF, 214 bool AddSegmentInfo) { 215 std::string SectName; 216 217 if (OF == Triple::MachO && AddSegmentInfo) 218 SectName = InstrProfSectNamePrefix[IPSK]; 219 220 if (OF == Triple::COFF) 221 SectName += InstrProfSectNameCoff[IPSK]; 222 else 223 SectName += InstrProfSectNameCommon[IPSK]; 224 225 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo) 226 SectName += ",regular,live_support"; 227 228 return SectName; 229 } 230 231 void SoftInstrProfErrors::addError(instrprof_error IE) { 232 if (IE == instrprof_error::success) 233 return; 234 235 if (FirstError == instrprof_error::success) 236 FirstError = IE; 237 238 switch (IE) { 239 case instrprof_error::hash_mismatch: 240 ++NumHashMismatches; 241 break; 242 case instrprof_error::count_mismatch: 243 ++NumCountMismatches; 244 break; 245 case instrprof_error::counter_overflow: 246 ++NumCounterOverflows; 247 break; 248 case instrprof_error::value_site_count_mismatch: 249 ++NumValueSiteCountMismatches; 250 break; 251 default: 252 llvm_unreachable("Not a soft error"); 253 } 254 } 255 256 std::string InstrProfError::message() const { 257 return getInstrProfErrString(Err, Msg); 258 } 259 260 char InstrProfError::ID = 0; 261 262 std::string getPGOFuncName(StringRef RawFuncName, 263 GlobalValue::LinkageTypes Linkage, 264 StringRef FileName, 265 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 266 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 267 } 268 269 // Strip NumPrefix level of directory name from PathNameStr. If the number of 270 // directory separators is less than NumPrefix, strip all the directories and 271 // leave base file name only. 272 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) { 273 uint32_t Count = NumPrefix; 274 uint32_t Pos = 0, LastPos = 0; 275 for (auto & CI : PathNameStr) { 276 ++Pos; 277 if (llvm::sys::path::is_separator(CI)) { 278 LastPos = Pos; 279 --Count; 280 } 281 if (Count == 0) 282 break; 283 } 284 return PathNameStr.substr(LastPos); 285 } 286 287 // Return the PGOFuncName. This function has some special handling when called 288 // in LTO optimization. The following only applies when calling in LTO passes 289 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 290 // symbols. This happens after value profile annotation, but those internal 291 // linkage functions should not have a source prefix. 292 // Additionally, for ThinLTO mode, exported internal functions are promoted 293 // and renamed. We need to ensure that the original internal PGO name is 294 // used when computing the GUID that is compared against the profiled GUIDs. 295 // To differentiate compiler generated internal symbols from original ones, 296 // PGOFuncName meta data are created and attached to the original internal 297 // symbols in the value profile annotation step 298 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 299 // data, its original linkage must be non-internal. 300 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 301 if (!InLTO) { 302 StringRef FileName(F.getParent()->getSourceFileName()); 303 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1; 304 if (StripLevel < StaticFuncStripDirNamePrefix) 305 StripLevel = StaticFuncStripDirNamePrefix; 306 if (StripLevel) 307 FileName = stripDirPrefix(FileName, StripLevel); 308 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 309 } 310 311 // In LTO mode (when InLTO is true), first check if there is a meta data. 312 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 313 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 314 return S.str(); 315 } 316 317 // If there is no meta data, the function must be a global before the value 318 // profile annotation pass. Its current linkage may be internal if it is 319 // internalized in LTO mode. 320 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 321 } 322 323 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 324 if (FileName.empty()) 325 return PGOFuncName; 326 // Drop the file name including ':'. See also getPGOFuncName. 327 if (PGOFuncName.startswith(FileName)) 328 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 329 return PGOFuncName; 330 } 331 332 // \p FuncName is the string used as profile lookup key for the function. A 333 // symbol is created to hold the name. Return the legalized symbol name. 334 std::string getPGOFuncNameVarName(StringRef FuncName, 335 GlobalValue::LinkageTypes Linkage) { 336 std::string VarName = std::string(getInstrProfNameVarPrefix()); 337 VarName += FuncName; 338 339 if (!GlobalValue::isLocalLinkage(Linkage)) 340 return VarName; 341 342 // Now fix up illegal chars in local VarName that may upset the assembler. 343 const char *InvalidChars = "-:<>/\"'"; 344 size_t found = VarName.find_first_of(InvalidChars); 345 while (found != std::string::npos) { 346 VarName[found] = '_'; 347 found = VarName.find_first_of(InvalidChars, found + 1); 348 } 349 return VarName; 350 } 351 352 GlobalVariable *createPGOFuncNameVar(Module &M, 353 GlobalValue::LinkageTypes Linkage, 354 StringRef PGOFuncName) { 355 // We generally want to match the function's linkage, but available_externally 356 // and extern_weak both have the wrong semantics, and anything that doesn't 357 // need to link across compilation units doesn't need to be visible at all. 358 if (Linkage == GlobalValue::ExternalWeakLinkage) 359 Linkage = GlobalValue::LinkOnceAnyLinkage; 360 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 361 Linkage = GlobalValue::LinkOnceODRLinkage; 362 else if (Linkage == GlobalValue::InternalLinkage || 363 Linkage == GlobalValue::ExternalLinkage) 364 Linkage = GlobalValue::PrivateLinkage; 365 366 auto *Value = 367 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 368 auto FuncNameVar = 369 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 370 getPGOFuncNameVarName(PGOFuncName, Linkage)); 371 372 // Hide the symbol so that we correctly get a copy for each executable. 373 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 374 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 375 376 return FuncNameVar; 377 } 378 379 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 380 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 381 } 382 383 Error InstrProfSymtab::create(Module &M, bool InLTO) { 384 for (Function &F : M) { 385 // Function may not have a name: like using asm("") to overwrite the name. 386 // Ignore in this case. 387 if (!F.hasName()) 388 continue; 389 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 390 if (Error E = addFuncName(PGOFuncName)) 391 return E; 392 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 393 // In ThinLTO, local function may have been promoted to global and have 394 // suffix ".llvm." added to the function name. We need to add the 395 // stripped function name to the symbol table so that we can find a match 396 // from profile. 397 // 398 // We may have other suffixes similar as ".llvm." which are needed to 399 // be stripped before the matching, but ".__uniq." suffix which is used 400 // to differentiate internal linkage functions in different modules 401 // should be kept. Now this is the only suffix with the pattern ".xxx" 402 // which is kept before matching. 403 const std::string UniqSuffix = ".__uniq."; 404 auto pos = PGOFuncName.find(UniqSuffix); 405 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise 406 // search '.' from the beginning. 407 if (pos != std::string::npos) 408 pos += UniqSuffix.length(); 409 else 410 pos = 0; 411 pos = PGOFuncName.find('.', pos); 412 if (pos != std::string::npos && pos != 0) { 413 const std::string &OtherFuncName = PGOFuncName.substr(0, pos); 414 if (Error E = addFuncName(OtherFuncName)) 415 return E; 416 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F); 417 } 418 } 419 Sorted = false; 420 finalizeSymtab(); 421 return Error::success(); 422 } 423 424 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) { 425 finalizeSymtab(); 426 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) { 427 return A.first < Address; 428 }); 429 // Raw function pointer collected by value profiler may be from 430 // external functions that are not instrumented. They won't have 431 // mapping data to be used by the deserializer. Force the value to 432 // be 0 in this case. 433 if (It != AddrToMD5Map.end() && It->first == Address) 434 return (uint64_t)It->second; 435 return 0; 436 } 437 438 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs, 439 bool doCompression, std::string &Result) { 440 assert(!NameStrs.empty() && "No name data to emit"); 441 442 uint8_t Header[16], *P = Header; 443 std::string UncompressedNameStrings = 444 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 445 446 assert(StringRef(UncompressedNameStrings) 447 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 448 "PGO name is invalid (contains separator token)"); 449 450 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 451 P += EncLen; 452 453 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 454 EncLen = encodeULEB128(CompressedLen, P); 455 P += EncLen; 456 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 457 unsigned HeaderLen = P - &Header[0]; 458 Result.append(HeaderStr, HeaderLen); 459 Result += InputStr; 460 return Error::success(); 461 }; 462 463 if (!doCompression) { 464 return WriteStringToResult(0, UncompressedNameStrings); 465 } 466 467 SmallString<128> CompressedNameStrings; 468 compression::zlib::compress(StringRef(UncompressedNameStrings), 469 CompressedNameStrings, 470 compression::zlib::BestSizeCompression); 471 472 return WriteStringToResult(CompressedNameStrings.size(), 473 CompressedNameStrings); 474 } 475 476 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 477 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 478 StringRef NameStr = 479 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 480 return NameStr; 481 } 482 483 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars, 484 std::string &Result, bool doCompression) { 485 std::vector<std::string> NameStrs; 486 for (auto *NameVar : NameVars) { 487 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar))); 488 } 489 return collectPGOFuncNameStrings( 490 NameStrs, compression::zlib::isAvailable() && doCompression, Result); 491 } 492 493 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 494 const uint8_t *P = NameStrings.bytes_begin(); 495 const uint8_t *EndP = NameStrings.bytes_end(); 496 while (P < EndP) { 497 uint32_t N; 498 uint64_t UncompressedSize = decodeULEB128(P, &N); 499 P += N; 500 uint64_t CompressedSize = decodeULEB128(P, &N); 501 P += N; 502 bool isCompressed = (CompressedSize != 0); 503 SmallString<128> UncompressedNameStrings; 504 StringRef NameStrings; 505 if (isCompressed) { 506 if (!llvm::compression::zlib::isAvailable()) 507 return make_error<InstrProfError>(instrprof_error::zlib_unavailable); 508 509 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 510 CompressedSize); 511 if (Error E = compression::zlib::uncompress(CompressedNameStrings, 512 UncompressedNameStrings, 513 UncompressedSize)) { 514 consumeError(std::move(E)); 515 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 516 } 517 P += CompressedSize; 518 NameStrings = StringRef(UncompressedNameStrings.data(), 519 UncompressedNameStrings.size()); 520 } else { 521 NameStrings = 522 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 523 P += UncompressedSize; 524 } 525 // Now parse the name strings. 526 SmallVector<StringRef, 0> Names; 527 NameStrings.split(Names, getInstrProfNameSeparator()); 528 for (StringRef &Name : Names) 529 if (Error E = Symtab.addFuncName(Name)) 530 return E; 531 532 while (P < EndP && *P == 0) 533 P++; 534 } 535 return Error::success(); 536 } 537 538 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const { 539 uint64_t FuncSum = 0; 540 Sum.NumEntries += Counts.size(); 541 for (uint64_t Count : Counts) 542 FuncSum += Count; 543 Sum.CountSum += FuncSum; 544 545 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) { 546 uint64_t KindSum = 0; 547 uint32_t NumValueSites = getNumValueSites(VK); 548 for (size_t I = 0; I < NumValueSites; ++I) { 549 uint32_t NV = getNumValueDataForSite(VK, I); 550 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I); 551 for (uint32_t V = 0; V < NV; V++) 552 KindSum += VD[V].Count; 553 } 554 Sum.ValueCounts[VK] += KindSum; 555 } 556 } 557 558 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input, 559 uint32_t ValueKind, 560 OverlapStats &Overlap, 561 OverlapStats &FuncLevelOverlap) { 562 this->sortByTargetValues(); 563 Input.sortByTargetValues(); 564 double Score = 0.0f, FuncLevelScore = 0.0f; 565 auto I = ValueData.begin(); 566 auto IE = ValueData.end(); 567 auto J = Input.ValueData.begin(); 568 auto JE = Input.ValueData.end(); 569 while (I != IE && J != JE) { 570 if (I->Value == J->Value) { 571 Score += OverlapStats::score(I->Count, J->Count, 572 Overlap.Base.ValueCounts[ValueKind], 573 Overlap.Test.ValueCounts[ValueKind]); 574 FuncLevelScore += OverlapStats::score( 575 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind], 576 FuncLevelOverlap.Test.ValueCounts[ValueKind]); 577 ++I; 578 } else if (I->Value < J->Value) { 579 ++I; 580 continue; 581 } 582 ++J; 583 } 584 Overlap.Overlap.ValueCounts[ValueKind] += Score; 585 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore; 586 } 587 588 // Return false on mismatch. 589 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind, 590 InstrProfRecord &Other, 591 OverlapStats &Overlap, 592 OverlapStats &FuncLevelOverlap) { 593 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 594 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind)); 595 if (!ThisNumValueSites) 596 return; 597 598 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 599 getOrCreateValueSitesForKind(ValueKind); 600 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 601 Other.getValueSitesForKind(ValueKind); 602 for (uint32_t I = 0; I < ThisNumValueSites; I++) 603 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap, 604 FuncLevelOverlap); 605 } 606 607 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap, 608 OverlapStats &FuncLevelOverlap, 609 uint64_t ValueCutoff) { 610 // FuncLevel CountSum for other should already computed and nonzero. 611 assert(FuncLevelOverlap.Test.CountSum >= 1.0f); 612 accumulateCounts(FuncLevelOverlap.Base); 613 bool Mismatch = (Counts.size() != Other.Counts.size()); 614 615 // Check if the value profiles mismatch. 616 if (!Mismatch) { 617 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { 618 uint32_t ThisNumValueSites = getNumValueSites(Kind); 619 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind); 620 if (ThisNumValueSites != OtherNumValueSites) { 621 Mismatch = true; 622 break; 623 } 624 } 625 } 626 if (Mismatch) { 627 Overlap.addOneMismatch(FuncLevelOverlap.Test); 628 return; 629 } 630 631 // Compute overlap for value counts. 632 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 633 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap); 634 635 double Score = 0.0; 636 uint64_t MaxCount = 0; 637 // Compute overlap for edge counts. 638 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 639 Score += OverlapStats::score(Counts[I], Other.Counts[I], 640 Overlap.Base.CountSum, Overlap.Test.CountSum); 641 MaxCount = std::max(Other.Counts[I], MaxCount); 642 } 643 Overlap.Overlap.CountSum += Score; 644 Overlap.Overlap.NumEntries += 1; 645 646 if (MaxCount >= ValueCutoff) { 647 double FuncScore = 0.0; 648 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) 649 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I], 650 FuncLevelOverlap.Base.CountSum, 651 FuncLevelOverlap.Test.CountSum); 652 FuncLevelOverlap.Overlap.CountSum = FuncScore; 653 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size(); 654 FuncLevelOverlap.Valid = true; 655 } 656 } 657 658 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, 659 uint64_t Weight, 660 function_ref<void(instrprof_error)> Warn) { 661 this->sortByTargetValues(); 662 Input.sortByTargetValues(); 663 auto I = ValueData.begin(); 664 auto IE = ValueData.end(); 665 for (const InstrProfValueData &J : Input.ValueData) { 666 while (I != IE && I->Value < J.Value) 667 ++I; 668 if (I != IE && I->Value == J.Value) { 669 bool Overflowed; 670 I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed); 671 if (Overflowed) 672 Warn(instrprof_error::counter_overflow); 673 ++I; 674 continue; 675 } 676 ValueData.insert(I, J); 677 } 678 } 679 680 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D, 681 function_ref<void(instrprof_error)> Warn) { 682 for (InstrProfValueData &I : ValueData) { 683 bool Overflowed; 684 I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D; 685 if (Overflowed) 686 Warn(instrprof_error::counter_overflow); 687 } 688 } 689 690 // Merge Value Profile data from Src record to this record for ValueKind. 691 // Scale merged value counts by \p Weight. 692 void InstrProfRecord::mergeValueProfData( 693 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight, 694 function_ref<void(instrprof_error)> Warn) { 695 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 696 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 697 if (ThisNumValueSites != OtherNumValueSites) { 698 Warn(instrprof_error::value_site_count_mismatch); 699 return; 700 } 701 if (!ThisNumValueSites) 702 return; 703 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 704 getOrCreateValueSitesForKind(ValueKind); 705 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = 706 Src.getValueSitesForKind(ValueKind); 707 for (uint32_t I = 0; I < ThisNumValueSites; I++) 708 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn); 709 } 710 711 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight, 712 function_ref<void(instrprof_error)> Warn) { 713 // If the number of counters doesn't match we either have bad data 714 // or a hash collision. 715 if (Counts.size() != Other.Counts.size()) { 716 Warn(instrprof_error::count_mismatch); 717 return; 718 } 719 720 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 721 bool Overflowed; 722 Counts[I] = 723 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 724 if (Overflowed) 725 Warn(instrprof_error::counter_overflow); 726 } 727 728 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 729 mergeValueProfData(Kind, Other, Weight, Warn); 730 } 731 732 void InstrProfRecord::scaleValueProfData( 733 uint32_t ValueKind, uint64_t N, uint64_t D, 734 function_ref<void(instrprof_error)> Warn) { 735 for (auto &R : getValueSitesForKind(ValueKind)) 736 R.scale(N, D, Warn); 737 } 738 739 void InstrProfRecord::scale(uint64_t N, uint64_t D, 740 function_ref<void(instrprof_error)> Warn) { 741 assert(D != 0 && "D cannot be 0"); 742 for (auto &Count : this->Counts) { 743 bool Overflowed; 744 Count = SaturatingMultiply(Count, N, &Overflowed) / D; 745 if (Overflowed) 746 Warn(instrprof_error::counter_overflow); 747 } 748 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 749 scaleValueProfData(Kind, N, D, Warn); 750 } 751 752 // Map indirect call target name hash to name string. 753 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 754 InstrProfSymtab *SymTab) { 755 if (!SymTab) 756 return Value; 757 758 if (ValueKind == IPVK_IndirectCallTarget) 759 return SymTab->getFunctionHashFromAddress(Value); 760 761 return Value; 762 } 763 764 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 765 InstrProfValueData *VData, uint32_t N, 766 InstrProfSymtab *ValueMap) { 767 for (uint32_t I = 0; I < N; I++) { 768 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 769 } 770 std::vector<InstrProfValueSiteRecord> &ValueSites = 771 getOrCreateValueSitesForKind(ValueKind); 772 if (N == 0) 773 ValueSites.emplace_back(); 774 else 775 ValueSites.emplace_back(VData, VData + N); 776 } 777 778 #define INSTR_PROF_COMMON_API_IMPL 779 #include "llvm/ProfileData/InstrProfData.inc" 780 781 /*! 782 * ValueProfRecordClosure Interface implementation for InstrProfRecord 783 * class. These C wrappers are used as adaptors so that C++ code can be 784 * invoked as callbacks. 785 */ 786 uint32_t getNumValueKindsInstrProf(const void *Record) { 787 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 788 } 789 790 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 791 return reinterpret_cast<const InstrProfRecord *>(Record) 792 ->getNumValueSites(VKind); 793 } 794 795 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 796 return reinterpret_cast<const InstrProfRecord *>(Record) 797 ->getNumValueData(VKind); 798 } 799 800 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 801 uint32_t S) { 802 return reinterpret_cast<const InstrProfRecord *>(R) 803 ->getNumValueDataForSite(VK, S); 804 } 805 806 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 807 uint32_t K, uint32_t S) { 808 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 809 } 810 811 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 812 ValueProfData *VD = 813 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 814 memset(VD, 0, TotalSizeInBytes); 815 return VD; 816 } 817 818 static ValueProfRecordClosure InstrProfRecordClosure = { 819 nullptr, 820 getNumValueKindsInstrProf, 821 getNumValueSitesInstrProf, 822 getNumValueDataInstrProf, 823 getNumValueDataForSiteInstrProf, 824 nullptr, 825 getValueForSiteInstrProf, 826 allocValueProfDataInstrProf}; 827 828 // Wrapper implementation using the closure mechanism. 829 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 830 auto Closure = InstrProfRecordClosure; 831 Closure.Record = &Record; 832 return getValueProfDataSize(&Closure); 833 } 834 835 // Wrapper implementation using the closure mechanism. 836 std::unique_ptr<ValueProfData> 837 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 838 InstrProfRecordClosure.Record = &Record; 839 840 std::unique_ptr<ValueProfData> VPD( 841 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 842 return VPD; 843 } 844 845 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 846 InstrProfSymtab *SymTab) { 847 Record.reserveSites(Kind, NumValueSites); 848 849 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 850 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 851 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 852 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab); 853 ValueData += ValueDataCount; 854 } 855 } 856 857 // For writing/serializing, Old is the host endianness, and New is 858 // byte order intended on disk. For Reading/deserialization, Old 859 // is the on-disk source endianness, and New is the host endianness. 860 void ValueProfRecord::swapBytes(support::endianness Old, 861 support::endianness New) { 862 using namespace support; 863 864 if (Old == New) 865 return; 866 867 if (getHostEndianness() != Old) { 868 sys::swapByteOrder<uint32_t>(NumValueSites); 869 sys::swapByteOrder<uint32_t>(Kind); 870 } 871 uint32_t ND = getValueProfRecordNumValueData(this); 872 InstrProfValueData *VD = getValueProfRecordValueData(this); 873 874 // No need to swap byte array: SiteCountArrray. 875 for (uint32_t I = 0; I < ND; I++) { 876 sys::swapByteOrder<uint64_t>(VD[I].Value); 877 sys::swapByteOrder<uint64_t>(VD[I].Count); 878 } 879 if (getHostEndianness() == Old) { 880 sys::swapByteOrder<uint32_t>(NumValueSites); 881 sys::swapByteOrder<uint32_t>(Kind); 882 } 883 } 884 885 void ValueProfData::deserializeTo(InstrProfRecord &Record, 886 InstrProfSymtab *SymTab) { 887 if (NumValueKinds == 0) 888 return; 889 890 ValueProfRecord *VR = getFirstValueProfRecord(this); 891 for (uint32_t K = 0; K < NumValueKinds; K++) { 892 VR->deserializeTo(Record, SymTab); 893 VR = getValueProfRecordNext(VR); 894 } 895 } 896 897 template <class T> 898 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 899 using namespace support; 900 901 if (Orig == little) 902 return endian::readNext<T, little, unaligned>(D); 903 else 904 return endian::readNext<T, big, unaligned>(D); 905 } 906 907 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 908 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 909 ValueProfData()); 910 } 911 912 Error ValueProfData::checkIntegrity() { 913 if (NumValueKinds > IPVK_Last + 1) 914 return make_error<InstrProfError>( 915 instrprof_error::malformed, "number of value profile kinds is invalid"); 916 // Total size needs to be multiple of quadword size. 917 if (TotalSize % sizeof(uint64_t)) 918 return make_error<InstrProfError>( 919 instrprof_error::malformed, "total size is not multiples of quardword"); 920 921 ValueProfRecord *VR = getFirstValueProfRecord(this); 922 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 923 if (VR->Kind > IPVK_Last) 924 return make_error<InstrProfError>(instrprof_error::malformed, 925 "value kind is invalid"); 926 VR = getValueProfRecordNext(VR); 927 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 928 return make_error<InstrProfError>( 929 instrprof_error::malformed, 930 "value profile address is greater than total size"); 931 } 932 return Error::success(); 933 } 934 935 Expected<std::unique_ptr<ValueProfData>> 936 ValueProfData::getValueProfData(const unsigned char *D, 937 const unsigned char *const BufferEnd, 938 support::endianness Endianness) { 939 using namespace support; 940 941 if (D + sizeof(ValueProfData) > BufferEnd) 942 return make_error<InstrProfError>(instrprof_error::truncated); 943 944 const unsigned char *Header = D; 945 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 946 if (D + TotalSize > BufferEnd) 947 return make_error<InstrProfError>(instrprof_error::too_large); 948 949 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 950 memcpy(VPD.get(), D, TotalSize); 951 // Byte swap. 952 VPD->swapBytesToHost(Endianness); 953 954 Error E = VPD->checkIntegrity(); 955 if (E) 956 return std::move(E); 957 958 return std::move(VPD); 959 } 960 961 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 962 using namespace support; 963 964 if (Endianness == getHostEndianness()) 965 return; 966 967 sys::swapByteOrder<uint32_t>(TotalSize); 968 sys::swapByteOrder<uint32_t>(NumValueKinds); 969 970 ValueProfRecord *VR = getFirstValueProfRecord(this); 971 for (uint32_t K = 0; K < NumValueKinds; K++) { 972 VR->swapBytes(Endianness, getHostEndianness()); 973 VR = getValueProfRecordNext(VR); 974 } 975 } 976 977 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 978 using namespace support; 979 980 if (Endianness == getHostEndianness()) 981 return; 982 983 ValueProfRecord *VR = getFirstValueProfRecord(this); 984 for (uint32_t K = 0; K < NumValueKinds; K++) { 985 ValueProfRecord *NVR = getValueProfRecordNext(VR); 986 VR->swapBytes(getHostEndianness(), Endianness); 987 VR = NVR; 988 } 989 sys::swapByteOrder<uint32_t>(TotalSize); 990 sys::swapByteOrder<uint32_t>(NumValueKinds); 991 } 992 993 void annotateValueSite(Module &M, Instruction &Inst, 994 const InstrProfRecord &InstrProfR, 995 InstrProfValueKind ValueKind, uint32_t SiteIdx, 996 uint32_t MaxMDCount) { 997 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 998 if (!NV) 999 return; 1000 1001 uint64_t Sum = 0; 1002 std::unique_ptr<InstrProfValueData[]> VD = 1003 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 1004 1005 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 1006 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 1007 } 1008 1009 void annotateValueSite(Module &M, Instruction &Inst, 1010 ArrayRef<InstrProfValueData> VDs, 1011 uint64_t Sum, InstrProfValueKind ValueKind, 1012 uint32_t MaxMDCount) { 1013 LLVMContext &Ctx = M.getContext(); 1014 MDBuilder MDHelper(Ctx); 1015 SmallVector<Metadata *, 3> Vals; 1016 // Tag 1017 Vals.push_back(MDHelper.createString("VP")); 1018 // Value Kind 1019 Vals.push_back(MDHelper.createConstant( 1020 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 1021 // Total Count 1022 Vals.push_back( 1023 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 1024 1025 // Value Profile Data 1026 uint32_t MDCount = MaxMDCount; 1027 for (auto &VD : VDs) { 1028 Vals.push_back(MDHelper.createConstant( 1029 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 1030 Vals.push_back(MDHelper.createConstant( 1031 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 1032 if (--MDCount == 0) 1033 break; 1034 } 1035 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 1036 } 1037 1038 bool getValueProfDataFromInst(const Instruction &Inst, 1039 InstrProfValueKind ValueKind, 1040 uint32_t MaxNumValueData, 1041 InstrProfValueData ValueData[], 1042 uint32_t &ActualNumValueData, uint64_t &TotalC, 1043 bool GetNoICPValue) { 1044 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 1045 if (!MD) 1046 return false; 1047 1048 unsigned NOps = MD->getNumOperands(); 1049 1050 if (NOps < 5) 1051 return false; 1052 1053 // Operand 0 is a string tag "VP": 1054 MDString *Tag = cast<MDString>(MD->getOperand(0)); 1055 if (!Tag) 1056 return false; 1057 1058 if (!Tag->getString().equals("VP")) 1059 return false; 1060 1061 // Now check kind: 1062 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 1063 if (!KindInt) 1064 return false; 1065 if (KindInt->getZExtValue() != ValueKind) 1066 return false; 1067 1068 // Get total count 1069 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 1070 if (!TotalCInt) 1071 return false; 1072 TotalC = TotalCInt->getZExtValue(); 1073 1074 ActualNumValueData = 0; 1075 1076 for (unsigned I = 3; I < NOps; I += 2) { 1077 if (ActualNumValueData >= MaxNumValueData) 1078 break; 1079 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 1080 ConstantInt *Count = 1081 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 1082 if (!Value || !Count) 1083 return false; 1084 uint64_t CntValue = Count->getZExtValue(); 1085 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM)) 1086 continue; 1087 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 1088 ValueData[ActualNumValueData].Count = CntValue; 1089 ActualNumValueData++; 1090 } 1091 return true; 1092 } 1093 1094 MDNode *getPGOFuncNameMetadata(const Function &F) { 1095 return F.getMetadata(getPGOFuncNameMetadataName()); 1096 } 1097 1098 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 1099 // Only for internal linkage functions. 1100 if (PGOFuncName == F.getName()) 1101 return; 1102 // Don't create duplicated meta-data. 1103 if (getPGOFuncNameMetadata(F)) 1104 return; 1105 LLVMContext &C = F.getContext(); 1106 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 1107 F.setMetadata(getPGOFuncNameMetadataName(), N); 1108 } 1109 1110 bool needsComdatForCounter(const Function &F, const Module &M) { 1111 if (F.hasComdat()) 1112 return true; 1113 1114 if (!Triple(M.getTargetTriple()).supportsCOMDAT()) 1115 return false; 1116 1117 // See createPGOFuncNameVar for more details. To avoid link errors, profile 1118 // counters for function with available_externally linkage needs to be changed 1119 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 1120 // created. Without using comdat, duplicate entries won't be removed by the 1121 // linker leading to increased data segement size and raw profile size. Even 1122 // worse, since the referenced counter from profile per-function data object 1123 // will be resolved to the common strong definition, the profile counts for 1124 // available_externally functions will end up being duplicated in raw profile 1125 // data. This can result in distorted profile as the counts of those dups 1126 // will be accumulated by the profile merger. 1127 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 1128 if (Linkage != GlobalValue::ExternalWeakLinkage && 1129 Linkage != GlobalValue::AvailableExternallyLinkage) 1130 return false; 1131 1132 return true; 1133 } 1134 1135 // Check if INSTR_PROF_RAW_VERSION_VAR is defined. 1136 bool isIRPGOFlagSet(const Module *M) { 1137 auto IRInstrVar = 1138 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); 1139 if (!IRInstrVar || IRInstrVar->hasLocalLinkage()) 1140 return false; 1141 1142 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only 1143 // have the decl. 1144 if (IRInstrVar->isDeclaration()) 1145 return true; 1146 1147 // Check if the flag is set. 1148 if (!IRInstrVar->hasInitializer()) 1149 return false; 1150 1151 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer()); 1152 if (!InitVal) 1153 return false; 1154 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0; 1155 } 1156 1157 // Check if we can safely rename this Comdat function. 1158 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) { 1159 if (F.getName().empty()) 1160 return false; 1161 if (!needsComdatForCounter(F, *(F.getParent()))) 1162 return false; 1163 // Unsafe to rename the address-taken function (which can be used in 1164 // function comparison). 1165 if (CheckAddressTaken && F.hasAddressTaken()) 1166 return false; 1167 // Only safe to do if this function may be discarded if it is not used 1168 // in the compilation unit. 1169 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage())) 1170 return false; 1171 1172 // For AvailableExternallyLinkage functions. 1173 if (!F.hasComdat()) { 1174 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); 1175 return true; 1176 } 1177 return true; 1178 } 1179 1180 // Create the variable for the profile file name. 1181 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) { 1182 if (InstrProfileOutput.empty()) 1183 return; 1184 Constant *ProfileNameConst = 1185 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true); 1186 GlobalVariable *ProfileNameVar = new GlobalVariable( 1187 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage, 1188 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)); 1189 Triple TT(M.getTargetTriple()); 1190 if (TT.supportsCOMDAT()) { 1191 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); 1192 ProfileNameVar->setComdat(M.getOrInsertComdat( 1193 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)))); 1194 } 1195 } 1196 1197 Error OverlapStats::accumulateCounts(const std::string &BaseFilename, 1198 const std::string &TestFilename, 1199 bool IsCS) { 1200 auto getProfileSum = [IsCS](const std::string &Filename, 1201 CountSumOrPercent &Sum) -> Error { 1202 auto ReaderOrErr = InstrProfReader::create(Filename); 1203 if (Error E = ReaderOrErr.takeError()) { 1204 return E; 1205 } 1206 auto Reader = std::move(ReaderOrErr.get()); 1207 Reader->accumulateCounts(Sum, IsCS); 1208 return Error::success(); 1209 }; 1210 auto Ret = getProfileSum(BaseFilename, Base); 1211 if (Ret) 1212 return Ret; 1213 Ret = getProfileSum(TestFilename, Test); 1214 if (Ret) 1215 return Ret; 1216 this->BaseFilename = &BaseFilename; 1217 this->TestFilename = &TestFilename; 1218 Valid = true; 1219 return Error::success(); 1220 } 1221 1222 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) { 1223 Mismatch.NumEntries += 1; 1224 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum; 1225 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1226 if (Test.ValueCounts[I] >= 1.0f) 1227 Mismatch.ValueCounts[I] += 1228 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I]; 1229 } 1230 } 1231 1232 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) { 1233 Unique.NumEntries += 1; 1234 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum; 1235 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1236 if (Test.ValueCounts[I] >= 1.0f) 1237 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I]; 1238 } 1239 } 1240 1241 void OverlapStats::dump(raw_fd_ostream &OS) const { 1242 if (!Valid) 1243 return; 1244 1245 const char *EntryName = 1246 (Level == ProgramLevel ? "functions" : "edge counters"); 1247 if (Level == ProgramLevel) { 1248 OS << "Profile overlap infomation for base_profile: " << *BaseFilename 1249 << " and test_profile: " << *TestFilename << "\nProgram level:\n"; 1250 } else { 1251 OS << "Function level:\n" 1252 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n"; 1253 } 1254 1255 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n"; 1256 if (Mismatch.NumEntries) 1257 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries 1258 << "\n"; 1259 if (Unique.NumEntries) 1260 OS << " # of " << EntryName 1261 << " only in test_profile: " << Unique.NumEntries << "\n"; 1262 1263 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100) 1264 << "\n"; 1265 if (Mismatch.NumEntries) 1266 OS << " Mismatched count percentage (Edge): " 1267 << format("%.3f%%", Mismatch.CountSum * 100) << "\n"; 1268 if (Unique.NumEntries) 1269 OS << " Percentage of Edge profile only in test_profile: " 1270 << format("%.3f%%", Unique.CountSum * 100) << "\n"; 1271 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum) 1272 << "\n" 1273 << " Edge profile test count sum: " << format("%.0f", Test.CountSum) 1274 << "\n"; 1275 1276 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { 1277 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f) 1278 continue; 1279 char ProfileKindName[20]; 1280 switch (I) { 1281 case IPVK_IndirectCallTarget: 1282 strncpy(ProfileKindName, "IndirectCall", 19); 1283 break; 1284 case IPVK_MemOPSize: 1285 strncpy(ProfileKindName, "MemOP", 19); 1286 break; 1287 default: 1288 snprintf(ProfileKindName, 19, "VP[%d]", I); 1289 break; 1290 } 1291 OS << " " << ProfileKindName 1292 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100) 1293 << "\n"; 1294 if (Mismatch.NumEntries) 1295 OS << " Mismatched count percentage (" << ProfileKindName 1296 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n"; 1297 if (Unique.NumEntries) 1298 OS << " Percentage of " << ProfileKindName 1299 << " profile only in test_profile: " 1300 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n"; 1301 OS << " " << ProfileKindName 1302 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I]) 1303 << "\n" 1304 << " " << ProfileKindName 1305 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I]) 1306 << "\n"; 1307 } 1308 } 1309 1310 namespace IndexedInstrProf { 1311 // A C++14 compatible version of the offsetof macro. 1312 template <typename T1, typename T2> 1313 inline size_t constexpr offsetOf(T1 T2::*Member) { 1314 constexpr T2 Object{}; 1315 return size_t(&(Object.*Member)) - size_t(&Object); 1316 } 1317 1318 static inline uint64_t read(const unsigned char *Buffer, size_t Offset) { 1319 return *reinterpret_cast<const uint64_t *>(Buffer + Offset); 1320 } 1321 1322 uint64_t Header::formatVersion() const { 1323 using namespace support; 1324 return endian::byte_swap<uint64_t, little>(Version); 1325 } 1326 1327 Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) { 1328 using namespace support; 1329 static_assert(std::is_standard_layout<Header>::value, 1330 "The header should be standard layout type since we use offset " 1331 "of fields to read."); 1332 Header H; 1333 1334 H.Magic = read(Buffer, offsetOf(&Header::Magic)); 1335 // Check the magic number. 1336 uint64_t Magic = endian::byte_swap<uint64_t, little>(H.Magic); 1337 if (Magic != IndexedInstrProf::Magic) 1338 return make_error<InstrProfError>(instrprof_error::bad_magic); 1339 1340 // Read the version. 1341 H.Version = read(Buffer, offsetOf(&Header::Version)); 1342 if (GET_VERSION(H.formatVersion()) > 1343 IndexedInstrProf::ProfVersion::CurrentVersion) 1344 return make_error<InstrProfError>(instrprof_error::unsupported_version); 1345 1346 switch (GET_VERSION(H.formatVersion())) { 1347 // When a new field is added in the header add a case statement here to 1348 // populate it. 1349 static_assert( 1350 IndexedInstrProf::ProfVersion::CurrentVersion == Version8, 1351 "Please update the reading code below if a new field has been added, " 1352 "if not add a case statement to fall through to the latest version."); 1353 case 8ull: 1354 H.MemProfOffset = read(Buffer, offsetOf(&Header::MemProfOffset)); 1355 LLVM_FALLTHROUGH; 1356 default: // Version7 (when the backwards compatible header was introduced). 1357 H.HashType = read(Buffer, offsetOf(&Header::HashType)); 1358 H.HashOffset = read(Buffer, offsetOf(&Header::HashOffset)); 1359 } 1360 1361 return H; 1362 } 1363 1364 size_t Header::size() const { 1365 switch (GET_VERSION(formatVersion())) { 1366 // When a new field is added to the header add a case statement here to 1367 // compute the size as offset of the new field + size of the new field. This 1368 // relies on the field being added to the end of the list. 1369 static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version8, 1370 "Please update the size computation below if a new field has " 1371 "been added to the header, if not add a case statement to " 1372 "fall through to the latest version."); 1373 case 8ull: 1374 return offsetOf(&Header::MemProfOffset) + sizeof(Header::MemProfOffset); 1375 default: // Version7 (when the backwards compatible header was introduced). 1376 return offsetOf(&Header::HashOffset) + sizeof(Header::HashOffset); 1377 } 1378 } 1379 1380 } // namespace IndexedInstrProf 1381 1382 } // end namespace llvm 1383