1 //=-- InstrProf.cpp - Instrumented profiling format support -----------------=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for clang's instrumentation based PGO and 11 // coverage. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ProfileData/InstrProf.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/GlobalVariable.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/Support/Compression.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/LEB128.h" 25 #include "llvm/Support/ManagedStatic.h" 26 27 using namespace llvm; 28 29 namespace { 30 std::string getInstrProfErrString(instrprof_error Err) { 31 switch (Err) { 32 case instrprof_error::success: 33 return "Success"; 34 case instrprof_error::eof: 35 return "End of File"; 36 case instrprof_error::unrecognized_format: 37 return "Unrecognized instrumentation profile encoding format"; 38 case instrprof_error::bad_magic: 39 return "Invalid instrumentation profile data (bad magic)"; 40 case instrprof_error::bad_header: 41 return "Invalid instrumentation profile data (file header is corrupt)"; 42 case instrprof_error::unsupported_version: 43 return "Unsupported instrumentation profile format version"; 44 case instrprof_error::unsupported_hash_type: 45 return "Unsupported instrumentation profile hash type"; 46 case instrprof_error::too_large: 47 return "Too much profile data"; 48 case instrprof_error::truncated: 49 return "Truncated profile data"; 50 case instrprof_error::malformed: 51 return "Malformed instrumentation profile data"; 52 case instrprof_error::unknown_function: 53 return "No profile data available for function"; 54 case instrprof_error::hash_mismatch: 55 return "Function control flow change detected (hash mismatch)"; 56 case instrprof_error::count_mismatch: 57 return "Function basic block count change detected (counter mismatch)"; 58 case instrprof_error::counter_overflow: 59 return "Counter overflow"; 60 case instrprof_error::value_site_count_mismatch: 61 return "Function value site count change detected (counter mismatch)"; 62 case instrprof_error::compress_failed: 63 return "Failed to compress data (zlib)"; 64 case instrprof_error::uncompress_failed: 65 return "Failed to uncompress data (zlib)"; 66 } 67 llvm_unreachable("A value of instrprof_error has no message."); 68 } 69 70 // FIXME: This class is only here to support the transition to llvm::Error. It 71 // will be removed once this transition is complete. Clients should prefer to 72 // deal with the Error value directly, rather than converting to error_code. 73 class InstrProfErrorCategoryType : public std::error_category { 74 const char *name() const LLVM_NOEXCEPT override { return "llvm.instrprof"; } 75 std::string message(int IE) const override { 76 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 77 } 78 }; 79 } // end anonymous namespace 80 81 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; 82 83 const std::error_category &llvm::instrprof_category() { 84 return *ErrorCategory; 85 } 86 87 namespace llvm { 88 89 void SoftInstrProfErrors::addError(instrprof_error IE) { 90 if (IE == instrprof_error::success) 91 return; 92 93 if (FirstError == instrprof_error::success) 94 FirstError = IE; 95 96 switch (IE) { 97 case instrprof_error::hash_mismatch: 98 ++NumHashMismatches; 99 break; 100 case instrprof_error::count_mismatch: 101 ++NumCountMismatches; 102 break; 103 case instrprof_error::counter_overflow: 104 ++NumCounterOverflows; 105 break; 106 case instrprof_error::value_site_count_mismatch: 107 ++NumValueSiteCountMismatches; 108 break; 109 default: 110 llvm_unreachable("Not a soft error"); 111 } 112 } 113 114 std::string InstrProfError::message() const { 115 return getInstrProfErrString(Err); 116 } 117 118 char InstrProfError::ID = 0; 119 120 std::string getPGOFuncName(StringRef RawFuncName, 121 GlobalValue::LinkageTypes Linkage, 122 StringRef FileName, 123 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 124 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 125 } 126 127 // Return the PGOFuncName. This function has some special handling when called 128 // in LTO optimization. The following only applies when calling in LTO passes 129 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 130 // symbols. This happens after value profile annotation, but those internal 131 // linkage functions should not have a source prefix. 132 // To differentiate compiler generated internal symbols from original ones, 133 // PGOFuncName meta data are created and attached to the original internal 134 // symbols in the value profile annotation step 135 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 136 // data, its original linkage must be non-internal. 137 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 138 if (!InLTO) 139 return getPGOFuncName(F.getName(), F.getLinkage(), F.getParent()->getName(), 140 Version); 141 142 // In LTO mode (when InLTO is true), first check if there is a meta data. 143 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 144 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 145 return S.str(); 146 } 147 148 // If there is no meta data, the function must be a global before the value 149 // profile annotation pass. Its current linkage may be internal if it is 150 // internalized in LTO mode. 151 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 152 } 153 154 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 155 if (FileName.empty()) 156 return PGOFuncName; 157 // Drop the file name including ':'. See also getPGOFuncName. 158 if (PGOFuncName.startswith(FileName)) 159 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 160 return PGOFuncName; 161 } 162 163 // \p FuncName is the string used as profile lookup key for the function. A 164 // symbol is created to hold the name. Return the legalized symbol name. 165 std::string getPGOFuncNameVarName(StringRef FuncName, 166 GlobalValue::LinkageTypes Linkage) { 167 std::string VarName = getInstrProfNameVarPrefix(); 168 VarName += FuncName; 169 170 if (!GlobalValue::isLocalLinkage(Linkage)) 171 return VarName; 172 173 // Now fix up illegal chars in local VarName that may upset the assembler. 174 const char *InvalidChars = "-:<>\"'"; 175 size_t found = VarName.find_first_of(InvalidChars); 176 while (found != std::string::npos) { 177 VarName[found] = '_'; 178 found = VarName.find_first_of(InvalidChars, found + 1); 179 } 180 return VarName; 181 } 182 183 GlobalVariable *createPGOFuncNameVar(Module &M, 184 GlobalValue::LinkageTypes Linkage, 185 StringRef PGOFuncName) { 186 187 // We generally want to match the function's linkage, but available_externally 188 // and extern_weak both have the wrong semantics, and anything that doesn't 189 // need to link across compilation units doesn't need to be visible at all. 190 if (Linkage == GlobalValue::ExternalWeakLinkage) 191 Linkage = GlobalValue::LinkOnceAnyLinkage; 192 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 193 Linkage = GlobalValue::LinkOnceODRLinkage; 194 else if (Linkage == GlobalValue::InternalLinkage || 195 Linkage == GlobalValue::ExternalLinkage) 196 Linkage = GlobalValue::PrivateLinkage; 197 198 auto *Value = 199 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 200 auto FuncNameVar = 201 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 202 getPGOFuncNameVarName(PGOFuncName, Linkage)); 203 204 // Hide the symbol so that we correctly get a copy for each executable. 205 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 206 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 207 208 return FuncNameVar; 209 } 210 211 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 212 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 213 } 214 215 void InstrProfSymtab::create(Module &M, bool InLTO) { 216 for (Function &F : M) { 217 // Function may not have a name: like using asm("") to overwrite the name. 218 // Ignore in this case. 219 if (!F.hasName()) 220 continue; 221 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 222 addFuncName(PGOFuncName); 223 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 224 } 225 226 finalizeSymtab(); 227 } 228 229 Error collectPGOFuncNameStrings(const std::vector<std::string> &NameStrs, 230 bool doCompression, std::string &Result) { 231 assert(NameStrs.size() && "No name data to emit"); 232 233 uint8_t Header[16], *P = Header; 234 std::string UncompressedNameStrings = 235 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 236 237 assert(StringRef(UncompressedNameStrings) 238 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 239 "PGO name is invalid (contains separator token)"); 240 241 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 242 P += EncLen; 243 244 auto WriteStringToResult = [&](size_t CompressedLen, 245 const std::string &InputStr) { 246 EncLen = encodeULEB128(CompressedLen, P); 247 P += EncLen; 248 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 249 unsigned HeaderLen = P - &Header[0]; 250 Result.append(HeaderStr, HeaderLen); 251 Result += InputStr; 252 return Error::success(); 253 }; 254 255 if (!doCompression) { 256 return WriteStringToResult(0, UncompressedNameStrings); 257 } 258 259 SmallVector<char, 128> CompressedNameStrings; 260 zlib::Status Success = 261 zlib::compress(StringRef(UncompressedNameStrings), CompressedNameStrings, 262 zlib::BestSizeCompression); 263 264 if (Success != zlib::StatusOK) 265 return make_error<InstrProfError>(instrprof_error::compress_failed); 266 267 return WriteStringToResult( 268 CompressedNameStrings.size(), 269 std::string(CompressedNameStrings.data(), CompressedNameStrings.size())); 270 } 271 272 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 273 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 274 StringRef NameStr = 275 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 276 return NameStr; 277 } 278 279 Error collectPGOFuncNameStrings(const std::vector<GlobalVariable *> &NameVars, 280 std::string &Result, bool doCompression) { 281 std::vector<std::string> NameStrs; 282 for (auto *NameVar : NameVars) { 283 NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar)); 284 } 285 return collectPGOFuncNameStrings( 286 NameStrs, zlib::isAvailable() && doCompression, Result); 287 } 288 289 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 290 const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data()); 291 const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() + 292 NameStrings.size()); 293 while (P < EndP) { 294 uint32_t N; 295 uint64_t UncompressedSize = decodeULEB128(P, &N); 296 P += N; 297 uint64_t CompressedSize = decodeULEB128(P, &N); 298 P += N; 299 bool isCompressed = (CompressedSize != 0); 300 SmallString<128> UncompressedNameStrings; 301 StringRef NameStrings; 302 if (isCompressed) { 303 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 304 CompressedSize); 305 if (zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, 306 UncompressedSize) != zlib::StatusOK) 307 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 308 P += CompressedSize; 309 NameStrings = StringRef(UncompressedNameStrings.data(), 310 UncompressedNameStrings.size()); 311 } else { 312 NameStrings = 313 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 314 P += UncompressedSize; 315 } 316 // Now parse the name strings. 317 SmallVector<StringRef, 0> Names; 318 NameStrings.split(Names, getInstrProfNameSeparator()); 319 for (StringRef &Name : Names) 320 Symtab.addFuncName(Name); 321 322 while (P < EndP && *P == 0) 323 P++; 324 } 325 Symtab.finalizeSymtab(); 326 return Error::success(); 327 } 328 329 void InstrProfValueSiteRecord::merge(SoftInstrProfErrors &SIPE, 330 InstrProfValueSiteRecord &Input, 331 uint64_t Weight) { 332 this->sortByTargetValues(); 333 Input.sortByTargetValues(); 334 auto I = ValueData.begin(); 335 auto IE = ValueData.end(); 336 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; 337 ++J) { 338 while (I != IE && I->Value < J->Value) 339 ++I; 340 if (I != IE && I->Value == J->Value) { 341 bool Overflowed; 342 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); 343 if (Overflowed) 344 SIPE.addError(instrprof_error::counter_overflow); 345 ++I; 346 continue; 347 } 348 ValueData.insert(I, *J); 349 } 350 } 351 352 void InstrProfValueSiteRecord::scale(SoftInstrProfErrors &SIPE, 353 uint64_t Weight) { 354 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { 355 bool Overflowed; 356 I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); 357 if (Overflowed) 358 SIPE.addError(instrprof_error::counter_overflow); 359 } 360 } 361 362 // Merge Value Profile data from Src record to this record for ValueKind. 363 // Scale merged value counts by \p Weight. 364 void InstrProfRecord::mergeValueProfData(uint32_t ValueKind, 365 InstrProfRecord &Src, 366 uint64_t Weight) { 367 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 368 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 369 if (ThisNumValueSites != OtherNumValueSites) { 370 SIPE.addError(instrprof_error::value_site_count_mismatch); 371 return; 372 } 373 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 374 getValueSitesForKind(ValueKind); 375 std::vector<InstrProfValueSiteRecord> &OtherSiteRecords = 376 Src.getValueSitesForKind(ValueKind); 377 for (uint32_t I = 0; I < ThisNumValueSites; I++) 378 ThisSiteRecords[I].merge(SIPE, OtherSiteRecords[I], Weight); 379 } 380 381 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight) { 382 // If the number of counters doesn't match we either have bad data 383 // or a hash collision. 384 if (Counts.size() != Other.Counts.size()) { 385 SIPE.addError(instrprof_error::count_mismatch); 386 return; 387 } 388 389 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 390 bool Overflowed; 391 Counts[I] = 392 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 393 if (Overflowed) 394 SIPE.addError(instrprof_error::counter_overflow); 395 } 396 397 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 398 mergeValueProfData(Kind, Other, Weight); 399 } 400 401 void InstrProfRecord::scaleValueProfData(uint32_t ValueKind, uint64_t Weight) { 402 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 403 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 404 getValueSitesForKind(ValueKind); 405 for (uint32_t I = 0; I < ThisNumValueSites; I++) 406 ThisSiteRecords[I].scale(SIPE, Weight); 407 } 408 409 void InstrProfRecord::scale(uint64_t Weight) { 410 for (auto &Count : this->Counts) { 411 bool Overflowed; 412 Count = SaturatingMultiply(Count, Weight, &Overflowed); 413 if (Overflowed) 414 SIPE.addError(instrprof_error::counter_overflow); 415 } 416 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 417 scaleValueProfData(Kind, Weight); 418 } 419 420 // Map indirect call target name hash to name string. 421 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 422 ValueMapType *ValueMap) { 423 if (!ValueMap) 424 return Value; 425 switch (ValueKind) { 426 case IPVK_IndirectCallTarget: { 427 auto Result = 428 std::lower_bound(ValueMap->begin(), ValueMap->end(), Value, 429 [](const std::pair<uint64_t, uint64_t> &LHS, 430 uint64_t RHS) { return LHS.first < RHS; }); 431 // Raw function pointer collected by value profiler may be from 432 // external functions that are not instrumented. They won't have 433 // mapping data to be used by the deserializer. Force the value to 434 // be 0 in this case. 435 if (Result != ValueMap->end() && Result->first == Value) 436 Value = (uint64_t)Result->second; 437 else 438 Value = 0; 439 break; 440 } 441 } 442 return Value; 443 } 444 445 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 446 InstrProfValueData *VData, uint32_t N, 447 ValueMapType *ValueMap) { 448 for (uint32_t I = 0; I < N; I++) { 449 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 450 } 451 std::vector<InstrProfValueSiteRecord> &ValueSites = 452 getValueSitesForKind(ValueKind); 453 if (N == 0) 454 ValueSites.emplace_back(); 455 else 456 ValueSites.emplace_back(VData, VData + N); 457 } 458 459 #define INSTR_PROF_COMMON_API_IMPL 460 #include "llvm/ProfileData/InstrProfData.inc" 461 462 /*! 463 * \brief ValueProfRecordClosure Interface implementation for InstrProfRecord 464 * class. These C wrappers are used as adaptors so that C++ code can be 465 * invoked as callbacks. 466 */ 467 uint32_t getNumValueKindsInstrProf(const void *Record) { 468 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 469 } 470 471 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 472 return reinterpret_cast<const InstrProfRecord *>(Record) 473 ->getNumValueSites(VKind); 474 } 475 476 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 477 return reinterpret_cast<const InstrProfRecord *>(Record) 478 ->getNumValueData(VKind); 479 } 480 481 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 482 uint32_t S) { 483 return reinterpret_cast<const InstrProfRecord *>(R) 484 ->getNumValueDataForSite(VK, S); 485 } 486 487 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 488 uint32_t K, uint32_t S) { 489 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 490 } 491 492 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 493 ValueProfData *VD = 494 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 495 memset(VD, 0, TotalSizeInBytes); 496 return VD; 497 } 498 499 static ValueProfRecordClosure InstrProfRecordClosure = { 500 nullptr, 501 getNumValueKindsInstrProf, 502 getNumValueSitesInstrProf, 503 getNumValueDataInstrProf, 504 getNumValueDataForSiteInstrProf, 505 nullptr, 506 getValueForSiteInstrProf, 507 allocValueProfDataInstrProf}; 508 509 // Wrapper implementation using the closure mechanism. 510 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 511 InstrProfRecordClosure.Record = &Record; 512 return getValueProfDataSize(&InstrProfRecordClosure); 513 } 514 515 // Wrapper implementation using the closure mechanism. 516 std::unique_ptr<ValueProfData> 517 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 518 InstrProfRecordClosure.Record = &Record; 519 520 std::unique_ptr<ValueProfData> VPD( 521 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 522 return VPD; 523 } 524 525 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 526 InstrProfRecord::ValueMapType *VMap) { 527 Record.reserveSites(Kind, NumValueSites); 528 529 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 530 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 531 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 532 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap); 533 ValueData += ValueDataCount; 534 } 535 } 536 537 // For writing/serializing, Old is the host endianness, and New is 538 // byte order intended on disk. For Reading/deserialization, Old 539 // is the on-disk source endianness, and New is the host endianness. 540 void ValueProfRecord::swapBytes(support::endianness Old, 541 support::endianness New) { 542 using namespace support; 543 if (Old == New) 544 return; 545 546 if (getHostEndianness() != Old) { 547 sys::swapByteOrder<uint32_t>(NumValueSites); 548 sys::swapByteOrder<uint32_t>(Kind); 549 } 550 uint32_t ND = getValueProfRecordNumValueData(this); 551 InstrProfValueData *VD = getValueProfRecordValueData(this); 552 553 // No need to swap byte array: SiteCountArrray. 554 for (uint32_t I = 0; I < ND; I++) { 555 sys::swapByteOrder<uint64_t>(VD[I].Value); 556 sys::swapByteOrder<uint64_t>(VD[I].Count); 557 } 558 if (getHostEndianness() == Old) { 559 sys::swapByteOrder<uint32_t>(NumValueSites); 560 sys::swapByteOrder<uint32_t>(Kind); 561 } 562 } 563 564 void ValueProfData::deserializeTo(InstrProfRecord &Record, 565 InstrProfRecord::ValueMapType *VMap) { 566 if (NumValueKinds == 0) 567 return; 568 569 ValueProfRecord *VR = getFirstValueProfRecord(this); 570 for (uint32_t K = 0; K < NumValueKinds; K++) { 571 VR->deserializeTo(Record, VMap); 572 VR = getValueProfRecordNext(VR); 573 } 574 } 575 576 template <class T> 577 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 578 using namespace support; 579 if (Orig == little) 580 return endian::readNext<T, little, unaligned>(D); 581 else 582 return endian::readNext<T, big, unaligned>(D); 583 } 584 585 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 586 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 587 ValueProfData()); 588 } 589 590 Error ValueProfData::checkIntegrity() { 591 if (NumValueKinds > IPVK_Last + 1) 592 return make_error<InstrProfError>(instrprof_error::malformed); 593 // Total size needs to be mulltiple of quadword size. 594 if (TotalSize % sizeof(uint64_t)) 595 return make_error<InstrProfError>(instrprof_error::malformed); 596 597 ValueProfRecord *VR = getFirstValueProfRecord(this); 598 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 599 if (VR->Kind > IPVK_Last) 600 return make_error<InstrProfError>(instrprof_error::malformed); 601 VR = getValueProfRecordNext(VR); 602 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 603 return make_error<InstrProfError>(instrprof_error::malformed); 604 } 605 return Error::success(); 606 } 607 608 Expected<std::unique_ptr<ValueProfData>> 609 ValueProfData::getValueProfData(const unsigned char *D, 610 const unsigned char *const BufferEnd, 611 support::endianness Endianness) { 612 using namespace support; 613 if (D + sizeof(ValueProfData) > BufferEnd) 614 return make_error<InstrProfError>(instrprof_error::truncated); 615 616 const unsigned char *Header = D; 617 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 618 if (D + TotalSize > BufferEnd) 619 return make_error<InstrProfError>(instrprof_error::too_large); 620 621 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 622 memcpy(VPD.get(), D, TotalSize); 623 // Byte swap. 624 VPD->swapBytesToHost(Endianness); 625 626 Error E = VPD->checkIntegrity(); 627 if (E) 628 return std::move(E); 629 630 return std::move(VPD); 631 } 632 633 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 634 using namespace support; 635 if (Endianness == getHostEndianness()) 636 return; 637 638 sys::swapByteOrder<uint32_t>(TotalSize); 639 sys::swapByteOrder<uint32_t>(NumValueKinds); 640 641 ValueProfRecord *VR = getFirstValueProfRecord(this); 642 for (uint32_t K = 0; K < NumValueKinds; K++) { 643 VR->swapBytes(Endianness, getHostEndianness()); 644 VR = getValueProfRecordNext(VR); 645 } 646 } 647 648 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 649 using namespace support; 650 if (Endianness == getHostEndianness()) 651 return; 652 653 ValueProfRecord *VR = getFirstValueProfRecord(this); 654 for (uint32_t K = 0; K < NumValueKinds; K++) { 655 ValueProfRecord *NVR = getValueProfRecordNext(VR); 656 VR->swapBytes(getHostEndianness(), Endianness); 657 VR = NVR; 658 } 659 sys::swapByteOrder<uint32_t>(TotalSize); 660 sys::swapByteOrder<uint32_t>(NumValueKinds); 661 } 662 663 void annotateValueSite(Module &M, Instruction &Inst, 664 const InstrProfRecord &InstrProfR, 665 InstrProfValueKind ValueKind, uint32_t SiteIdx, 666 uint32_t MaxMDCount) { 667 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 668 if (!NV) 669 return; 670 671 uint64_t Sum = 0; 672 std::unique_ptr<InstrProfValueData[]> VD = 673 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 674 675 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 676 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 677 } 678 679 void annotateValueSite(Module &M, Instruction &Inst, 680 ArrayRef<InstrProfValueData> VDs, 681 uint64_t Sum, InstrProfValueKind ValueKind, 682 uint32_t MaxMDCount) { 683 LLVMContext &Ctx = M.getContext(); 684 MDBuilder MDHelper(Ctx); 685 SmallVector<Metadata *, 3> Vals; 686 // Tag 687 Vals.push_back(MDHelper.createString("VP")); 688 // Value Kind 689 Vals.push_back(MDHelper.createConstant( 690 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 691 // Total Count 692 Vals.push_back( 693 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 694 695 // Value Profile Data 696 uint32_t MDCount = MaxMDCount; 697 for (auto &VD : VDs) { 698 Vals.push_back(MDHelper.createConstant( 699 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 700 Vals.push_back(MDHelper.createConstant( 701 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 702 if (--MDCount == 0) 703 break; 704 } 705 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 706 } 707 708 bool getValueProfDataFromInst(const Instruction &Inst, 709 InstrProfValueKind ValueKind, 710 uint32_t MaxNumValueData, 711 InstrProfValueData ValueData[], 712 uint32_t &ActualNumValueData, uint64_t &TotalC) { 713 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 714 if (!MD) 715 return false; 716 717 unsigned NOps = MD->getNumOperands(); 718 719 if (NOps < 5) 720 return false; 721 722 // Operand 0 is a string tag "VP": 723 MDString *Tag = cast<MDString>(MD->getOperand(0)); 724 if (!Tag) 725 return false; 726 727 if (!Tag->getString().equals("VP")) 728 return false; 729 730 // Now check kind: 731 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 732 if (!KindInt) 733 return false; 734 if (KindInt->getZExtValue() != ValueKind) 735 return false; 736 737 // Get total count 738 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 739 if (!TotalCInt) 740 return false; 741 TotalC = TotalCInt->getZExtValue(); 742 743 ActualNumValueData = 0; 744 745 for (unsigned I = 3; I < NOps; I += 2) { 746 if (ActualNumValueData >= MaxNumValueData) 747 break; 748 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 749 ConstantInt *Count = 750 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 751 if (!Value || !Count) 752 return false; 753 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 754 ValueData[ActualNumValueData].Count = Count->getZExtValue(); 755 ActualNumValueData++; 756 } 757 return true; 758 } 759 760 MDNode *getPGOFuncNameMetadata(const Function &F) { 761 return F.getMetadata(getPGOFuncNameMetadataName()); 762 } 763 764 void createPGOFuncNameMetadata(Function &F, const std::string &PGOFuncName) { 765 // Only for internal linkage functions. 766 if (PGOFuncName == F.getName()) 767 return; 768 // Don't create duplicated meta-data. 769 if (getPGOFuncNameMetadata(F)) 770 return; 771 LLVMContext &C = F.getContext(); 772 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName.c_str())); 773 F.setMetadata(getPGOFuncNameMetadataName(), N); 774 } 775 776 } // end namespace llvm 777