1 //=-- InstrProf.cpp - Instrumented profiling format support -----------------=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for clang's instrumentation based PGO and 11 // coverage. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ProfileData/InstrProf.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/GlobalVariable.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/Support/Compression.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/LEB128.h" 25 #include "llvm/Support/ManagedStatic.h" 26 27 using namespace llvm; 28 29 namespace { 30 std::string getInstrProfErrString(instrprof_error Err) { 31 switch (Err) { 32 case instrprof_error::success: 33 return "Success"; 34 case instrprof_error::eof: 35 return "End of File"; 36 case instrprof_error::unrecognized_format: 37 return "Unrecognized instrumentation profile encoding format"; 38 case instrprof_error::bad_magic: 39 return "Invalid instrumentation profile data (bad magic)"; 40 case instrprof_error::bad_header: 41 return "Invalid instrumentation profile data (file header is corrupt)"; 42 case instrprof_error::unsupported_version: 43 return "Unsupported instrumentation profile format version"; 44 case instrprof_error::unsupported_hash_type: 45 return "Unsupported instrumentation profile hash type"; 46 case instrprof_error::too_large: 47 return "Too much profile data"; 48 case instrprof_error::truncated: 49 return "Truncated profile data"; 50 case instrprof_error::malformed: 51 return "Malformed instrumentation profile data"; 52 case instrprof_error::unknown_function: 53 return "No profile data available for function"; 54 case instrprof_error::hash_mismatch: 55 return "Function control flow change detected (hash mismatch)"; 56 case instrprof_error::count_mismatch: 57 return "Function basic block count change detected (counter mismatch)"; 58 case instrprof_error::counter_overflow: 59 return "Counter overflow"; 60 case instrprof_error::value_site_count_mismatch: 61 return "Function value site count change detected (counter mismatch)"; 62 case instrprof_error::compress_failed: 63 return "Failed to compress data (zlib)"; 64 case instrprof_error::uncompress_failed: 65 return "Failed to uncompress data (zlib)"; 66 } 67 llvm_unreachable("A value of instrprof_error has no message."); 68 } 69 70 // FIXME: This class is only here to support the transition to llvm::Error. It 71 // will be removed once this transition is complete. Clients should prefer to 72 // deal with the Error value directly, rather than converting to error_code. 73 class InstrProfErrorCategoryType : public std::error_category { 74 const char *name() const LLVM_NOEXCEPT override { return "llvm.instrprof"; } 75 std::string message(int IE) const override { 76 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 77 } 78 }; 79 } // end anonymous namespace 80 81 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; 82 83 const std::error_category &llvm::instrprof_category() { 84 return *ErrorCategory; 85 } 86 87 namespace llvm { 88 89 void SoftInstrProfErrors::addError(instrprof_error IE) { 90 if (IE == instrprof_error::success) 91 return; 92 93 if (FirstError == instrprof_error::success) 94 FirstError = IE; 95 96 switch (IE) { 97 case instrprof_error::hash_mismatch: 98 ++NumHashMismatches; 99 break; 100 case instrprof_error::count_mismatch: 101 ++NumCountMismatches; 102 break; 103 case instrprof_error::counter_overflow: 104 ++NumCounterOverflows; 105 break; 106 case instrprof_error::value_site_count_mismatch: 107 ++NumValueSiteCountMismatches; 108 break; 109 default: 110 llvm_unreachable("Not a soft error"); 111 } 112 } 113 114 std::string InstrProfError::message() const { 115 return getInstrProfErrString(Err); 116 } 117 118 char InstrProfError::ID = 0; 119 120 std::string getPGOFuncName(StringRef RawFuncName, 121 GlobalValue::LinkageTypes Linkage, 122 StringRef FileName, 123 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 124 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 125 } 126 127 // Return the PGOFuncName. This function has some special handling when called 128 // in LTO optimization. The following only applies when calling in LTO passes 129 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 130 // symbols. This happens after value profile annotation, but those internal 131 // linkage functions should not have a source prefix. 132 // To differentiate compiler generated internal symbols from original ones, 133 // PGOFuncName meta data are created and attached to the original internal 134 // symbols in the value profile annotation step 135 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 136 // data, its original linkage must be non-internal. 137 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 138 if (!InLTO) 139 return getPGOFuncName(F.getName(), F.getLinkage(), F.getParent()->getName(), 140 Version); 141 142 // In LTO mode (when InLTO is true), first check if there is a meta data. 143 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 144 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 145 return S.str(); 146 } 147 148 // If there is no meta data, the function must be a global before the value 149 // profile annotation pass. Its current linkage may be internal if it is 150 // internalized in LTO mode. 151 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 152 } 153 154 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 155 if (FileName.empty()) 156 return PGOFuncName; 157 // Drop the file name including ':'. See also getPGOFuncName. 158 if (PGOFuncName.startswith(FileName)) 159 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 160 return PGOFuncName; 161 } 162 163 // \p FuncName is the string used as profile lookup key for the function. A 164 // symbol is created to hold the name. Return the legalized symbol name. 165 std::string getPGOFuncNameVarName(StringRef FuncName, 166 GlobalValue::LinkageTypes Linkage) { 167 std::string VarName = getInstrProfNameVarPrefix(); 168 VarName += FuncName; 169 170 if (!GlobalValue::isLocalLinkage(Linkage)) 171 return VarName; 172 173 // Now fix up illegal chars in local VarName that may upset the assembler. 174 const char *InvalidChars = "-:<>\"'"; 175 size_t found = VarName.find_first_of(InvalidChars); 176 while (found != std::string::npos) { 177 VarName[found] = '_'; 178 found = VarName.find_first_of(InvalidChars, found + 1); 179 } 180 return VarName; 181 } 182 183 GlobalVariable *createPGOFuncNameVar(Module &M, 184 GlobalValue::LinkageTypes Linkage, 185 StringRef PGOFuncName) { 186 187 // We generally want to match the function's linkage, but available_externally 188 // and extern_weak both have the wrong semantics, and anything that doesn't 189 // need to link across compilation units doesn't need to be visible at all. 190 if (Linkage == GlobalValue::ExternalWeakLinkage) 191 Linkage = GlobalValue::LinkOnceAnyLinkage; 192 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 193 Linkage = GlobalValue::LinkOnceODRLinkage; 194 else if (Linkage == GlobalValue::InternalLinkage || 195 Linkage == GlobalValue::ExternalLinkage) 196 Linkage = GlobalValue::PrivateLinkage; 197 198 auto *Value = 199 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 200 auto FuncNameVar = 201 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 202 getPGOFuncNameVarName(PGOFuncName, Linkage)); 203 204 // Hide the symbol so that we correctly get a copy for each executable. 205 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 206 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 207 208 return FuncNameVar; 209 } 210 211 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 212 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 213 } 214 215 void InstrProfSymtab::create(Module &M, bool InLTO) { 216 for (Function &F : M) { 217 // Function may not have a name: like using asm("") to overwrite the name. 218 // Ignore in this case. 219 if (!F.hasName()) 220 continue; 221 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 222 addFuncName(PGOFuncName); 223 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 224 } 225 226 finalizeSymtab(); 227 } 228 229 Error collectPGOFuncNameStrings(const std::vector<std::string> &NameStrs, 230 bool doCompression, std::string &Result) { 231 assert(NameStrs.size() && "No name data to emit"); 232 233 uint8_t Header[16], *P = Header; 234 std::string UncompressedNameStrings = 235 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 236 237 assert(StringRef(UncompressedNameStrings) 238 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 239 "PGO name is invalid (contains separator token)"); 240 241 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 242 P += EncLen; 243 244 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 245 EncLen = encodeULEB128(CompressedLen, P); 246 P += EncLen; 247 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 248 unsigned HeaderLen = P - &Header[0]; 249 Result.append(HeaderStr, HeaderLen); 250 Result += InputStr; 251 return Error::success(); 252 }; 253 254 if (!doCompression) { 255 return WriteStringToResult(0, UncompressedNameStrings); 256 } 257 258 SmallString<128> CompressedNameStrings; 259 zlib::Status Success = 260 zlib::compress(StringRef(UncompressedNameStrings), CompressedNameStrings, 261 zlib::BestSizeCompression); 262 263 if (Success != zlib::StatusOK) 264 return make_error<InstrProfError>(instrprof_error::compress_failed); 265 266 return WriteStringToResult(CompressedNameStrings.size(), 267 CompressedNameStrings); 268 } 269 270 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 271 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 272 StringRef NameStr = 273 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 274 return NameStr; 275 } 276 277 Error collectPGOFuncNameStrings(const std::vector<GlobalVariable *> &NameVars, 278 std::string &Result, bool doCompression) { 279 std::vector<std::string> NameStrs; 280 for (auto *NameVar : NameVars) { 281 NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar)); 282 } 283 return collectPGOFuncNameStrings( 284 NameStrs, zlib::isAvailable() && doCompression, Result); 285 } 286 287 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 288 const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data()); 289 const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() + 290 NameStrings.size()); 291 while (P < EndP) { 292 uint32_t N; 293 uint64_t UncompressedSize = decodeULEB128(P, &N); 294 P += N; 295 uint64_t CompressedSize = decodeULEB128(P, &N); 296 P += N; 297 bool isCompressed = (CompressedSize != 0); 298 SmallString<128> UncompressedNameStrings; 299 StringRef NameStrings; 300 if (isCompressed) { 301 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 302 CompressedSize); 303 if (zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, 304 UncompressedSize) != zlib::StatusOK) 305 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 306 P += CompressedSize; 307 NameStrings = StringRef(UncompressedNameStrings.data(), 308 UncompressedNameStrings.size()); 309 } else { 310 NameStrings = 311 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 312 P += UncompressedSize; 313 } 314 // Now parse the name strings. 315 SmallVector<StringRef, 0> Names; 316 NameStrings.split(Names, getInstrProfNameSeparator()); 317 for (StringRef &Name : Names) 318 Symtab.addFuncName(Name); 319 320 while (P < EndP && *P == 0) 321 P++; 322 } 323 Symtab.finalizeSymtab(); 324 return Error::success(); 325 } 326 327 void InstrProfValueSiteRecord::merge(SoftInstrProfErrors &SIPE, 328 InstrProfValueSiteRecord &Input, 329 uint64_t Weight) { 330 this->sortByTargetValues(); 331 Input.sortByTargetValues(); 332 auto I = ValueData.begin(); 333 auto IE = ValueData.end(); 334 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; 335 ++J) { 336 while (I != IE && I->Value < J->Value) 337 ++I; 338 if (I != IE && I->Value == J->Value) { 339 bool Overflowed; 340 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); 341 if (Overflowed) 342 SIPE.addError(instrprof_error::counter_overflow); 343 ++I; 344 continue; 345 } 346 ValueData.insert(I, *J); 347 } 348 } 349 350 void InstrProfValueSiteRecord::scale(SoftInstrProfErrors &SIPE, 351 uint64_t Weight) { 352 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { 353 bool Overflowed; 354 I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); 355 if (Overflowed) 356 SIPE.addError(instrprof_error::counter_overflow); 357 } 358 } 359 360 // Merge Value Profile data from Src record to this record for ValueKind. 361 // Scale merged value counts by \p Weight. 362 void InstrProfRecord::mergeValueProfData(uint32_t ValueKind, 363 InstrProfRecord &Src, 364 uint64_t Weight) { 365 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 366 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 367 if (ThisNumValueSites != OtherNumValueSites) { 368 SIPE.addError(instrprof_error::value_site_count_mismatch); 369 return; 370 } 371 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 372 getValueSitesForKind(ValueKind); 373 std::vector<InstrProfValueSiteRecord> &OtherSiteRecords = 374 Src.getValueSitesForKind(ValueKind); 375 for (uint32_t I = 0; I < ThisNumValueSites; I++) 376 ThisSiteRecords[I].merge(SIPE, OtherSiteRecords[I], Weight); 377 } 378 379 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight) { 380 // If the number of counters doesn't match we either have bad data 381 // or a hash collision. 382 if (Counts.size() != Other.Counts.size()) { 383 SIPE.addError(instrprof_error::count_mismatch); 384 return; 385 } 386 387 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 388 bool Overflowed; 389 Counts[I] = 390 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 391 if (Overflowed) 392 SIPE.addError(instrprof_error::counter_overflow); 393 } 394 395 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 396 mergeValueProfData(Kind, Other, Weight); 397 } 398 399 void InstrProfRecord::scaleValueProfData(uint32_t ValueKind, uint64_t Weight) { 400 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 401 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 402 getValueSitesForKind(ValueKind); 403 for (uint32_t I = 0; I < ThisNumValueSites; I++) 404 ThisSiteRecords[I].scale(SIPE, Weight); 405 } 406 407 void InstrProfRecord::scale(uint64_t Weight) { 408 for (auto &Count : this->Counts) { 409 bool Overflowed; 410 Count = SaturatingMultiply(Count, Weight, &Overflowed); 411 if (Overflowed) 412 SIPE.addError(instrprof_error::counter_overflow); 413 } 414 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 415 scaleValueProfData(Kind, Weight); 416 } 417 418 // Map indirect call target name hash to name string. 419 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 420 ValueMapType *ValueMap) { 421 if (!ValueMap) 422 return Value; 423 switch (ValueKind) { 424 case IPVK_IndirectCallTarget: { 425 auto Result = 426 std::lower_bound(ValueMap->begin(), ValueMap->end(), Value, 427 [](const std::pair<uint64_t, uint64_t> &LHS, 428 uint64_t RHS) { return LHS.first < RHS; }); 429 // Raw function pointer collected by value profiler may be from 430 // external functions that are not instrumented. They won't have 431 // mapping data to be used by the deserializer. Force the value to 432 // be 0 in this case. 433 if (Result != ValueMap->end() && Result->first == Value) 434 Value = (uint64_t)Result->second; 435 else 436 Value = 0; 437 break; 438 } 439 } 440 return Value; 441 } 442 443 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 444 InstrProfValueData *VData, uint32_t N, 445 ValueMapType *ValueMap) { 446 for (uint32_t I = 0; I < N; I++) { 447 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 448 } 449 std::vector<InstrProfValueSiteRecord> &ValueSites = 450 getValueSitesForKind(ValueKind); 451 if (N == 0) 452 ValueSites.emplace_back(); 453 else 454 ValueSites.emplace_back(VData, VData + N); 455 } 456 457 #define INSTR_PROF_COMMON_API_IMPL 458 #include "llvm/ProfileData/InstrProfData.inc" 459 460 /*! 461 * \brief ValueProfRecordClosure Interface implementation for InstrProfRecord 462 * class. These C wrappers are used as adaptors so that C++ code can be 463 * invoked as callbacks. 464 */ 465 uint32_t getNumValueKindsInstrProf(const void *Record) { 466 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 467 } 468 469 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 470 return reinterpret_cast<const InstrProfRecord *>(Record) 471 ->getNumValueSites(VKind); 472 } 473 474 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 475 return reinterpret_cast<const InstrProfRecord *>(Record) 476 ->getNumValueData(VKind); 477 } 478 479 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 480 uint32_t S) { 481 return reinterpret_cast<const InstrProfRecord *>(R) 482 ->getNumValueDataForSite(VK, S); 483 } 484 485 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 486 uint32_t K, uint32_t S) { 487 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 488 } 489 490 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 491 ValueProfData *VD = 492 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 493 memset(VD, 0, TotalSizeInBytes); 494 return VD; 495 } 496 497 static ValueProfRecordClosure InstrProfRecordClosure = { 498 nullptr, 499 getNumValueKindsInstrProf, 500 getNumValueSitesInstrProf, 501 getNumValueDataInstrProf, 502 getNumValueDataForSiteInstrProf, 503 nullptr, 504 getValueForSiteInstrProf, 505 allocValueProfDataInstrProf}; 506 507 // Wrapper implementation using the closure mechanism. 508 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 509 InstrProfRecordClosure.Record = &Record; 510 return getValueProfDataSize(&InstrProfRecordClosure); 511 } 512 513 // Wrapper implementation using the closure mechanism. 514 std::unique_ptr<ValueProfData> 515 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 516 InstrProfRecordClosure.Record = &Record; 517 518 std::unique_ptr<ValueProfData> VPD( 519 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 520 return VPD; 521 } 522 523 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 524 InstrProfRecord::ValueMapType *VMap) { 525 Record.reserveSites(Kind, NumValueSites); 526 527 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 528 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 529 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 530 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap); 531 ValueData += ValueDataCount; 532 } 533 } 534 535 // For writing/serializing, Old is the host endianness, and New is 536 // byte order intended on disk. For Reading/deserialization, Old 537 // is the on-disk source endianness, and New is the host endianness. 538 void ValueProfRecord::swapBytes(support::endianness Old, 539 support::endianness New) { 540 using namespace support; 541 if (Old == New) 542 return; 543 544 if (getHostEndianness() != Old) { 545 sys::swapByteOrder<uint32_t>(NumValueSites); 546 sys::swapByteOrder<uint32_t>(Kind); 547 } 548 uint32_t ND = getValueProfRecordNumValueData(this); 549 InstrProfValueData *VD = getValueProfRecordValueData(this); 550 551 // No need to swap byte array: SiteCountArrray. 552 for (uint32_t I = 0; I < ND; I++) { 553 sys::swapByteOrder<uint64_t>(VD[I].Value); 554 sys::swapByteOrder<uint64_t>(VD[I].Count); 555 } 556 if (getHostEndianness() == Old) { 557 sys::swapByteOrder<uint32_t>(NumValueSites); 558 sys::swapByteOrder<uint32_t>(Kind); 559 } 560 } 561 562 void ValueProfData::deserializeTo(InstrProfRecord &Record, 563 InstrProfRecord::ValueMapType *VMap) { 564 if (NumValueKinds == 0) 565 return; 566 567 ValueProfRecord *VR = getFirstValueProfRecord(this); 568 for (uint32_t K = 0; K < NumValueKinds; K++) { 569 VR->deserializeTo(Record, VMap); 570 VR = getValueProfRecordNext(VR); 571 } 572 } 573 574 template <class T> 575 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 576 using namespace support; 577 if (Orig == little) 578 return endian::readNext<T, little, unaligned>(D); 579 else 580 return endian::readNext<T, big, unaligned>(D); 581 } 582 583 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 584 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 585 ValueProfData()); 586 } 587 588 Error ValueProfData::checkIntegrity() { 589 if (NumValueKinds > IPVK_Last + 1) 590 return make_error<InstrProfError>(instrprof_error::malformed); 591 // Total size needs to be mulltiple of quadword size. 592 if (TotalSize % sizeof(uint64_t)) 593 return make_error<InstrProfError>(instrprof_error::malformed); 594 595 ValueProfRecord *VR = getFirstValueProfRecord(this); 596 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 597 if (VR->Kind > IPVK_Last) 598 return make_error<InstrProfError>(instrprof_error::malformed); 599 VR = getValueProfRecordNext(VR); 600 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 601 return make_error<InstrProfError>(instrprof_error::malformed); 602 } 603 return Error::success(); 604 } 605 606 Expected<std::unique_ptr<ValueProfData>> 607 ValueProfData::getValueProfData(const unsigned char *D, 608 const unsigned char *const BufferEnd, 609 support::endianness Endianness) { 610 using namespace support; 611 if (D + sizeof(ValueProfData) > BufferEnd) 612 return make_error<InstrProfError>(instrprof_error::truncated); 613 614 const unsigned char *Header = D; 615 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 616 if (D + TotalSize > BufferEnd) 617 return make_error<InstrProfError>(instrprof_error::too_large); 618 619 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 620 memcpy(VPD.get(), D, TotalSize); 621 // Byte swap. 622 VPD->swapBytesToHost(Endianness); 623 624 Error E = VPD->checkIntegrity(); 625 if (E) 626 return std::move(E); 627 628 return std::move(VPD); 629 } 630 631 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 632 using namespace support; 633 if (Endianness == getHostEndianness()) 634 return; 635 636 sys::swapByteOrder<uint32_t>(TotalSize); 637 sys::swapByteOrder<uint32_t>(NumValueKinds); 638 639 ValueProfRecord *VR = getFirstValueProfRecord(this); 640 for (uint32_t K = 0; K < NumValueKinds; K++) { 641 VR->swapBytes(Endianness, getHostEndianness()); 642 VR = getValueProfRecordNext(VR); 643 } 644 } 645 646 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 647 using namespace support; 648 if (Endianness == getHostEndianness()) 649 return; 650 651 ValueProfRecord *VR = getFirstValueProfRecord(this); 652 for (uint32_t K = 0; K < NumValueKinds; K++) { 653 ValueProfRecord *NVR = getValueProfRecordNext(VR); 654 VR->swapBytes(getHostEndianness(), Endianness); 655 VR = NVR; 656 } 657 sys::swapByteOrder<uint32_t>(TotalSize); 658 sys::swapByteOrder<uint32_t>(NumValueKinds); 659 } 660 661 void annotateValueSite(Module &M, Instruction &Inst, 662 const InstrProfRecord &InstrProfR, 663 InstrProfValueKind ValueKind, uint32_t SiteIdx, 664 uint32_t MaxMDCount) { 665 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 666 if (!NV) 667 return; 668 669 uint64_t Sum = 0; 670 std::unique_ptr<InstrProfValueData[]> VD = 671 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 672 673 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 674 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 675 } 676 677 void annotateValueSite(Module &M, Instruction &Inst, 678 ArrayRef<InstrProfValueData> VDs, 679 uint64_t Sum, InstrProfValueKind ValueKind, 680 uint32_t MaxMDCount) { 681 LLVMContext &Ctx = M.getContext(); 682 MDBuilder MDHelper(Ctx); 683 SmallVector<Metadata *, 3> Vals; 684 // Tag 685 Vals.push_back(MDHelper.createString("VP")); 686 // Value Kind 687 Vals.push_back(MDHelper.createConstant( 688 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 689 // Total Count 690 Vals.push_back( 691 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 692 693 // Value Profile Data 694 uint32_t MDCount = MaxMDCount; 695 for (auto &VD : VDs) { 696 Vals.push_back(MDHelper.createConstant( 697 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 698 Vals.push_back(MDHelper.createConstant( 699 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 700 if (--MDCount == 0) 701 break; 702 } 703 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 704 } 705 706 bool getValueProfDataFromInst(const Instruction &Inst, 707 InstrProfValueKind ValueKind, 708 uint32_t MaxNumValueData, 709 InstrProfValueData ValueData[], 710 uint32_t &ActualNumValueData, uint64_t &TotalC) { 711 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 712 if (!MD) 713 return false; 714 715 unsigned NOps = MD->getNumOperands(); 716 717 if (NOps < 5) 718 return false; 719 720 // Operand 0 is a string tag "VP": 721 MDString *Tag = cast<MDString>(MD->getOperand(0)); 722 if (!Tag) 723 return false; 724 725 if (!Tag->getString().equals("VP")) 726 return false; 727 728 // Now check kind: 729 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 730 if (!KindInt) 731 return false; 732 if (KindInt->getZExtValue() != ValueKind) 733 return false; 734 735 // Get total count 736 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 737 if (!TotalCInt) 738 return false; 739 TotalC = TotalCInt->getZExtValue(); 740 741 ActualNumValueData = 0; 742 743 for (unsigned I = 3; I < NOps; I += 2) { 744 if (ActualNumValueData >= MaxNumValueData) 745 break; 746 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 747 ConstantInt *Count = 748 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 749 if (!Value || !Count) 750 return false; 751 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 752 ValueData[ActualNumValueData].Count = Count->getZExtValue(); 753 ActualNumValueData++; 754 } 755 return true; 756 } 757 758 MDNode *getPGOFuncNameMetadata(const Function &F) { 759 return F.getMetadata(getPGOFuncNameMetadataName()); 760 } 761 762 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 763 // Only for internal linkage functions. 764 if (PGOFuncName == F.getName()) 765 return; 766 // Don't create duplicated meta-data. 767 if (getPGOFuncNameMetadata(F)) 768 return; 769 LLVMContext &C = F.getContext(); 770 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 771 F.setMetadata(getPGOFuncNameMetadataName(), N); 772 } 773 774 } // end namespace llvm 775