1 //=-- InstrProf.cpp - Instrumented profiling format support -----------------=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for clang's instrumentation based PGO and 11 // coverage. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ProfileData/InstrProf.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/Support/Compression.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/ManagedStatic.h" 27 #include "llvm/Support/Path.h" 28 29 using namespace llvm; 30 31 static cl::opt<bool> StaticFuncFullModulePrefix( 32 "static-func-full-module-prefix", cl::init(false), 33 cl::desc("Use full module build paths in the profile counter names for " 34 "static functions.")); 35 36 namespace { 37 std::string getInstrProfErrString(instrprof_error Err) { 38 switch (Err) { 39 case instrprof_error::success: 40 return "Success"; 41 case instrprof_error::eof: 42 return "End of File"; 43 case instrprof_error::unrecognized_format: 44 return "Unrecognized instrumentation profile encoding format"; 45 case instrprof_error::bad_magic: 46 return "Invalid instrumentation profile data (bad magic)"; 47 case instrprof_error::bad_header: 48 return "Invalid instrumentation profile data (file header is corrupt)"; 49 case instrprof_error::unsupported_version: 50 return "Unsupported instrumentation profile format version"; 51 case instrprof_error::unsupported_hash_type: 52 return "Unsupported instrumentation profile hash type"; 53 case instrprof_error::too_large: 54 return "Too much profile data"; 55 case instrprof_error::truncated: 56 return "Truncated profile data"; 57 case instrprof_error::malformed: 58 return "Malformed instrumentation profile data"; 59 case instrprof_error::unknown_function: 60 return "No profile data available for function"; 61 case instrprof_error::hash_mismatch: 62 return "Function control flow change detected (hash mismatch)"; 63 case instrprof_error::count_mismatch: 64 return "Function basic block count change detected (counter mismatch)"; 65 case instrprof_error::counter_overflow: 66 return "Counter overflow"; 67 case instrprof_error::value_site_count_mismatch: 68 return "Function value site count change detected (counter mismatch)"; 69 case instrprof_error::compress_failed: 70 return "Failed to compress data (zlib)"; 71 case instrprof_error::uncompress_failed: 72 return "Failed to uncompress data (zlib)"; 73 } 74 llvm_unreachable("A value of instrprof_error has no message."); 75 } 76 77 // FIXME: This class is only here to support the transition to llvm::Error. It 78 // will be removed once this transition is complete. Clients should prefer to 79 // deal with the Error value directly, rather than converting to error_code. 80 class InstrProfErrorCategoryType : public std::error_category { 81 const char *name() const LLVM_NOEXCEPT override { return "llvm.instrprof"; } 82 std::string message(int IE) const override { 83 return getInstrProfErrString(static_cast<instrprof_error>(IE)); 84 } 85 }; 86 } // end anonymous namespace 87 88 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; 89 90 const std::error_category &llvm::instrprof_category() { 91 return *ErrorCategory; 92 } 93 94 namespace llvm { 95 96 void SoftInstrProfErrors::addError(instrprof_error IE) { 97 if (IE == instrprof_error::success) 98 return; 99 100 if (FirstError == instrprof_error::success) 101 FirstError = IE; 102 103 switch (IE) { 104 case instrprof_error::hash_mismatch: 105 ++NumHashMismatches; 106 break; 107 case instrprof_error::count_mismatch: 108 ++NumCountMismatches; 109 break; 110 case instrprof_error::counter_overflow: 111 ++NumCounterOverflows; 112 break; 113 case instrprof_error::value_site_count_mismatch: 114 ++NumValueSiteCountMismatches; 115 break; 116 default: 117 llvm_unreachable("Not a soft error"); 118 } 119 } 120 121 std::string InstrProfError::message() const { 122 return getInstrProfErrString(Err); 123 } 124 125 char InstrProfError::ID = 0; 126 127 std::string getPGOFuncName(StringRef RawFuncName, 128 GlobalValue::LinkageTypes Linkage, 129 StringRef FileName, 130 uint64_t Version LLVM_ATTRIBUTE_UNUSED) { 131 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); 132 } 133 134 // Return the PGOFuncName. This function has some special handling when called 135 // in LTO optimization. The following only applies when calling in LTO passes 136 // (when \c InLTO is true): LTO's internalization privatizes many global linkage 137 // symbols. This happens after value profile annotation, but those internal 138 // linkage functions should not have a source prefix. 139 // Additionally, for ThinLTO mode, exported internal functions are promoted 140 // and renamed. We need to ensure that the original internal PGO name is 141 // used when computing the GUID that is compared against the profiled GUIDs. 142 // To differentiate compiler generated internal symbols from original ones, 143 // PGOFuncName meta data are created and attached to the original internal 144 // symbols in the value profile annotation step 145 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta 146 // data, its original linkage must be non-internal. 147 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { 148 if (!InLTO) { 149 StringRef FileName = (StaticFuncFullModulePrefix 150 ? F.getParent()->getName() 151 : sys::path::filename(F.getParent()->getName())); 152 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); 153 } 154 155 // In LTO mode (when InLTO is true), first check if there is a meta data. 156 if (MDNode *MD = getPGOFuncNameMetadata(F)) { 157 StringRef S = cast<MDString>(MD->getOperand(0))->getString(); 158 return S.str(); 159 } 160 161 // If there is no meta data, the function must be a global before the value 162 // profile annotation pass. Its current linkage may be internal if it is 163 // internalized in LTO mode. 164 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); 165 } 166 167 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { 168 if (FileName.empty()) 169 return PGOFuncName; 170 // Drop the file name including ':'. See also getPGOFuncName. 171 if (PGOFuncName.startswith(FileName)) 172 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); 173 return PGOFuncName; 174 } 175 176 // \p FuncName is the string used as profile lookup key for the function. A 177 // symbol is created to hold the name. Return the legalized symbol name. 178 std::string getPGOFuncNameVarName(StringRef FuncName, 179 GlobalValue::LinkageTypes Linkage) { 180 std::string VarName = getInstrProfNameVarPrefix(); 181 VarName += FuncName; 182 183 if (!GlobalValue::isLocalLinkage(Linkage)) 184 return VarName; 185 186 // Now fix up illegal chars in local VarName that may upset the assembler. 187 const char *InvalidChars = "-:<>/\"'"; 188 size_t found = VarName.find_first_of(InvalidChars); 189 while (found != std::string::npos) { 190 VarName[found] = '_'; 191 found = VarName.find_first_of(InvalidChars, found + 1); 192 } 193 return VarName; 194 } 195 196 GlobalVariable *createPGOFuncNameVar(Module &M, 197 GlobalValue::LinkageTypes Linkage, 198 StringRef PGOFuncName) { 199 200 // We generally want to match the function's linkage, but available_externally 201 // and extern_weak both have the wrong semantics, and anything that doesn't 202 // need to link across compilation units doesn't need to be visible at all. 203 if (Linkage == GlobalValue::ExternalWeakLinkage) 204 Linkage = GlobalValue::LinkOnceAnyLinkage; 205 else if (Linkage == GlobalValue::AvailableExternallyLinkage) 206 Linkage = GlobalValue::LinkOnceODRLinkage; 207 else if (Linkage == GlobalValue::InternalLinkage || 208 Linkage == GlobalValue::ExternalLinkage) 209 Linkage = GlobalValue::PrivateLinkage; 210 211 auto *Value = 212 ConstantDataArray::getString(M.getContext(), PGOFuncName, false); 213 auto FuncNameVar = 214 new GlobalVariable(M, Value->getType(), true, Linkage, Value, 215 getPGOFuncNameVarName(PGOFuncName, Linkage)); 216 217 // Hide the symbol so that we correctly get a copy for each executable. 218 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) 219 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); 220 221 return FuncNameVar; 222 } 223 224 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { 225 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); 226 } 227 228 void InstrProfSymtab::create(Module &M, bool InLTO) { 229 for (Function &F : M) { 230 // Function may not have a name: like using asm("") to overwrite the name. 231 // Ignore in this case. 232 if (!F.hasName()) 233 continue; 234 const std::string &PGOFuncName = getPGOFuncName(F, InLTO); 235 addFuncName(PGOFuncName); 236 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); 237 } 238 239 finalizeSymtab(); 240 } 241 242 Error collectPGOFuncNameStrings(const std::vector<std::string> &NameStrs, 243 bool doCompression, std::string &Result) { 244 assert(NameStrs.size() && "No name data to emit"); 245 246 uint8_t Header[16], *P = Header; 247 std::string UncompressedNameStrings = 248 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); 249 250 assert(StringRef(UncompressedNameStrings) 251 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && 252 "PGO name is invalid (contains separator token)"); 253 254 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); 255 P += EncLen; 256 257 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { 258 EncLen = encodeULEB128(CompressedLen, P); 259 P += EncLen; 260 char *HeaderStr = reinterpret_cast<char *>(&Header[0]); 261 unsigned HeaderLen = P - &Header[0]; 262 Result.append(HeaderStr, HeaderLen); 263 Result += InputStr; 264 return Error::success(); 265 }; 266 267 if (!doCompression) { 268 return WriteStringToResult(0, UncompressedNameStrings); 269 } 270 271 SmallString<128> CompressedNameStrings; 272 zlib::Status Success = 273 zlib::compress(StringRef(UncompressedNameStrings), CompressedNameStrings, 274 zlib::BestSizeCompression); 275 276 if (Success != zlib::StatusOK) 277 return make_error<InstrProfError>(instrprof_error::compress_failed); 278 279 return WriteStringToResult(CompressedNameStrings.size(), 280 CompressedNameStrings); 281 } 282 283 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { 284 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); 285 StringRef NameStr = 286 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); 287 return NameStr; 288 } 289 290 Error collectPGOFuncNameStrings(const std::vector<GlobalVariable *> &NameVars, 291 std::string &Result, bool doCompression) { 292 std::vector<std::string> NameStrs; 293 for (auto *NameVar : NameVars) { 294 NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar)); 295 } 296 return collectPGOFuncNameStrings( 297 NameStrs, zlib::isAvailable() && doCompression, Result); 298 } 299 300 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { 301 const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data()); 302 const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() + 303 NameStrings.size()); 304 while (P < EndP) { 305 uint32_t N; 306 uint64_t UncompressedSize = decodeULEB128(P, &N); 307 P += N; 308 uint64_t CompressedSize = decodeULEB128(P, &N); 309 P += N; 310 bool isCompressed = (CompressedSize != 0); 311 SmallString<128> UncompressedNameStrings; 312 StringRef NameStrings; 313 if (isCompressed) { 314 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), 315 CompressedSize); 316 if (zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, 317 UncompressedSize) != zlib::StatusOK) 318 return make_error<InstrProfError>(instrprof_error::uncompress_failed); 319 P += CompressedSize; 320 NameStrings = StringRef(UncompressedNameStrings.data(), 321 UncompressedNameStrings.size()); 322 } else { 323 NameStrings = 324 StringRef(reinterpret_cast<const char *>(P), UncompressedSize); 325 P += UncompressedSize; 326 } 327 // Now parse the name strings. 328 SmallVector<StringRef, 0> Names; 329 NameStrings.split(Names, getInstrProfNameSeparator()); 330 for (StringRef &Name : Names) 331 Symtab.addFuncName(Name); 332 333 while (P < EndP && *P == 0) 334 P++; 335 } 336 Symtab.finalizeSymtab(); 337 return Error::success(); 338 } 339 340 void InstrProfValueSiteRecord::merge(SoftInstrProfErrors &SIPE, 341 InstrProfValueSiteRecord &Input, 342 uint64_t Weight) { 343 this->sortByTargetValues(); 344 Input.sortByTargetValues(); 345 auto I = ValueData.begin(); 346 auto IE = ValueData.end(); 347 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; 348 ++J) { 349 while (I != IE && I->Value < J->Value) 350 ++I; 351 if (I != IE && I->Value == J->Value) { 352 bool Overflowed; 353 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); 354 if (Overflowed) 355 SIPE.addError(instrprof_error::counter_overflow); 356 ++I; 357 continue; 358 } 359 ValueData.insert(I, *J); 360 } 361 } 362 363 void InstrProfValueSiteRecord::scale(SoftInstrProfErrors &SIPE, 364 uint64_t Weight) { 365 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { 366 bool Overflowed; 367 I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); 368 if (Overflowed) 369 SIPE.addError(instrprof_error::counter_overflow); 370 } 371 } 372 373 // Merge Value Profile data from Src record to this record for ValueKind. 374 // Scale merged value counts by \p Weight. 375 void InstrProfRecord::mergeValueProfData(uint32_t ValueKind, 376 InstrProfRecord &Src, 377 uint64_t Weight) { 378 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 379 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); 380 if (ThisNumValueSites != OtherNumValueSites) { 381 SIPE.addError(instrprof_error::value_site_count_mismatch); 382 return; 383 } 384 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 385 getValueSitesForKind(ValueKind); 386 std::vector<InstrProfValueSiteRecord> &OtherSiteRecords = 387 Src.getValueSitesForKind(ValueKind); 388 for (uint32_t I = 0; I < ThisNumValueSites; I++) 389 ThisSiteRecords[I].merge(SIPE, OtherSiteRecords[I], Weight); 390 } 391 392 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight) { 393 // If the number of counters doesn't match we either have bad data 394 // or a hash collision. 395 if (Counts.size() != Other.Counts.size()) { 396 SIPE.addError(instrprof_error::count_mismatch); 397 return; 398 } 399 400 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { 401 bool Overflowed; 402 Counts[I] = 403 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); 404 if (Overflowed) 405 SIPE.addError(instrprof_error::counter_overflow); 406 } 407 408 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 409 mergeValueProfData(Kind, Other, Weight); 410 } 411 412 void InstrProfRecord::scaleValueProfData(uint32_t ValueKind, uint64_t Weight) { 413 uint32_t ThisNumValueSites = getNumValueSites(ValueKind); 414 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = 415 getValueSitesForKind(ValueKind); 416 for (uint32_t I = 0; I < ThisNumValueSites; I++) 417 ThisSiteRecords[I].scale(SIPE, Weight); 418 } 419 420 void InstrProfRecord::scale(uint64_t Weight) { 421 for (auto &Count : this->Counts) { 422 bool Overflowed; 423 Count = SaturatingMultiply(Count, Weight, &Overflowed); 424 if (Overflowed) 425 SIPE.addError(instrprof_error::counter_overflow); 426 } 427 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 428 scaleValueProfData(Kind, Weight); 429 } 430 431 // Map indirect call target name hash to name string. 432 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, 433 ValueMapType *ValueMap) { 434 if (!ValueMap) 435 return Value; 436 switch (ValueKind) { 437 case IPVK_IndirectCallTarget: { 438 auto Result = 439 std::lower_bound(ValueMap->begin(), ValueMap->end(), Value, 440 [](const std::pair<uint64_t, uint64_t> &LHS, 441 uint64_t RHS) { return LHS.first < RHS; }); 442 // Raw function pointer collected by value profiler may be from 443 // external functions that are not instrumented. They won't have 444 // mapping data to be used by the deserializer. Force the value to 445 // be 0 in this case. 446 if (Result != ValueMap->end() && Result->first == Value) 447 Value = (uint64_t)Result->second; 448 else 449 Value = 0; 450 break; 451 } 452 } 453 return Value; 454 } 455 456 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, 457 InstrProfValueData *VData, uint32_t N, 458 ValueMapType *ValueMap) { 459 for (uint32_t I = 0; I < N; I++) { 460 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); 461 } 462 std::vector<InstrProfValueSiteRecord> &ValueSites = 463 getValueSitesForKind(ValueKind); 464 if (N == 0) 465 ValueSites.emplace_back(); 466 else 467 ValueSites.emplace_back(VData, VData + N); 468 } 469 470 #define INSTR_PROF_COMMON_API_IMPL 471 #include "llvm/ProfileData/InstrProfData.inc" 472 473 /*! 474 * \brief ValueProfRecordClosure Interface implementation for InstrProfRecord 475 * class. These C wrappers are used as adaptors so that C++ code can be 476 * invoked as callbacks. 477 */ 478 uint32_t getNumValueKindsInstrProf(const void *Record) { 479 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); 480 } 481 482 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { 483 return reinterpret_cast<const InstrProfRecord *>(Record) 484 ->getNumValueSites(VKind); 485 } 486 487 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { 488 return reinterpret_cast<const InstrProfRecord *>(Record) 489 ->getNumValueData(VKind); 490 } 491 492 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, 493 uint32_t S) { 494 return reinterpret_cast<const InstrProfRecord *>(R) 495 ->getNumValueDataForSite(VK, S); 496 } 497 498 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, 499 uint32_t K, uint32_t S) { 500 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); 501 } 502 503 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { 504 ValueProfData *VD = 505 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); 506 memset(VD, 0, TotalSizeInBytes); 507 return VD; 508 } 509 510 static ValueProfRecordClosure InstrProfRecordClosure = { 511 nullptr, 512 getNumValueKindsInstrProf, 513 getNumValueSitesInstrProf, 514 getNumValueDataInstrProf, 515 getNumValueDataForSiteInstrProf, 516 nullptr, 517 getValueForSiteInstrProf, 518 allocValueProfDataInstrProf}; 519 520 // Wrapper implementation using the closure mechanism. 521 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { 522 InstrProfRecordClosure.Record = &Record; 523 return getValueProfDataSize(&InstrProfRecordClosure); 524 } 525 526 // Wrapper implementation using the closure mechanism. 527 std::unique_ptr<ValueProfData> 528 ValueProfData::serializeFrom(const InstrProfRecord &Record) { 529 InstrProfRecordClosure.Record = &Record; 530 531 std::unique_ptr<ValueProfData> VPD( 532 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); 533 return VPD; 534 } 535 536 void ValueProfRecord::deserializeTo(InstrProfRecord &Record, 537 InstrProfRecord::ValueMapType *VMap) { 538 Record.reserveSites(Kind, NumValueSites); 539 540 InstrProfValueData *ValueData = getValueProfRecordValueData(this); 541 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { 542 uint8_t ValueDataCount = this->SiteCountArray[VSite]; 543 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap); 544 ValueData += ValueDataCount; 545 } 546 } 547 548 // For writing/serializing, Old is the host endianness, and New is 549 // byte order intended on disk. For Reading/deserialization, Old 550 // is the on-disk source endianness, and New is the host endianness. 551 void ValueProfRecord::swapBytes(support::endianness Old, 552 support::endianness New) { 553 using namespace support; 554 if (Old == New) 555 return; 556 557 if (getHostEndianness() != Old) { 558 sys::swapByteOrder<uint32_t>(NumValueSites); 559 sys::swapByteOrder<uint32_t>(Kind); 560 } 561 uint32_t ND = getValueProfRecordNumValueData(this); 562 InstrProfValueData *VD = getValueProfRecordValueData(this); 563 564 // No need to swap byte array: SiteCountArrray. 565 for (uint32_t I = 0; I < ND; I++) { 566 sys::swapByteOrder<uint64_t>(VD[I].Value); 567 sys::swapByteOrder<uint64_t>(VD[I].Count); 568 } 569 if (getHostEndianness() == Old) { 570 sys::swapByteOrder<uint32_t>(NumValueSites); 571 sys::swapByteOrder<uint32_t>(Kind); 572 } 573 } 574 575 void ValueProfData::deserializeTo(InstrProfRecord &Record, 576 InstrProfRecord::ValueMapType *VMap) { 577 if (NumValueKinds == 0) 578 return; 579 580 ValueProfRecord *VR = getFirstValueProfRecord(this); 581 for (uint32_t K = 0; K < NumValueKinds; K++) { 582 VR->deserializeTo(Record, VMap); 583 VR = getValueProfRecordNext(VR); 584 } 585 } 586 587 template <class T> 588 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { 589 using namespace support; 590 if (Orig == little) 591 return endian::readNext<T, little, unaligned>(D); 592 else 593 return endian::readNext<T, big, unaligned>(D); 594 } 595 596 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { 597 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) 598 ValueProfData()); 599 } 600 601 Error ValueProfData::checkIntegrity() { 602 if (NumValueKinds > IPVK_Last + 1) 603 return make_error<InstrProfError>(instrprof_error::malformed); 604 // Total size needs to be mulltiple of quadword size. 605 if (TotalSize % sizeof(uint64_t)) 606 return make_error<InstrProfError>(instrprof_error::malformed); 607 608 ValueProfRecord *VR = getFirstValueProfRecord(this); 609 for (uint32_t K = 0; K < this->NumValueKinds; K++) { 610 if (VR->Kind > IPVK_Last) 611 return make_error<InstrProfError>(instrprof_error::malformed); 612 VR = getValueProfRecordNext(VR); 613 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) 614 return make_error<InstrProfError>(instrprof_error::malformed); 615 } 616 return Error::success(); 617 } 618 619 Expected<std::unique_ptr<ValueProfData>> 620 ValueProfData::getValueProfData(const unsigned char *D, 621 const unsigned char *const BufferEnd, 622 support::endianness Endianness) { 623 using namespace support; 624 if (D + sizeof(ValueProfData) > BufferEnd) 625 return make_error<InstrProfError>(instrprof_error::truncated); 626 627 const unsigned char *Header = D; 628 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); 629 if (D + TotalSize > BufferEnd) 630 return make_error<InstrProfError>(instrprof_error::too_large); 631 632 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); 633 memcpy(VPD.get(), D, TotalSize); 634 // Byte swap. 635 VPD->swapBytesToHost(Endianness); 636 637 Error E = VPD->checkIntegrity(); 638 if (E) 639 return std::move(E); 640 641 return std::move(VPD); 642 } 643 644 void ValueProfData::swapBytesToHost(support::endianness Endianness) { 645 using namespace support; 646 if (Endianness == getHostEndianness()) 647 return; 648 649 sys::swapByteOrder<uint32_t>(TotalSize); 650 sys::swapByteOrder<uint32_t>(NumValueKinds); 651 652 ValueProfRecord *VR = getFirstValueProfRecord(this); 653 for (uint32_t K = 0; K < NumValueKinds; K++) { 654 VR->swapBytes(Endianness, getHostEndianness()); 655 VR = getValueProfRecordNext(VR); 656 } 657 } 658 659 void ValueProfData::swapBytesFromHost(support::endianness Endianness) { 660 using namespace support; 661 if (Endianness == getHostEndianness()) 662 return; 663 664 ValueProfRecord *VR = getFirstValueProfRecord(this); 665 for (uint32_t K = 0; K < NumValueKinds; K++) { 666 ValueProfRecord *NVR = getValueProfRecordNext(VR); 667 VR->swapBytes(getHostEndianness(), Endianness); 668 VR = NVR; 669 } 670 sys::swapByteOrder<uint32_t>(TotalSize); 671 sys::swapByteOrder<uint32_t>(NumValueKinds); 672 } 673 674 void annotateValueSite(Module &M, Instruction &Inst, 675 const InstrProfRecord &InstrProfR, 676 InstrProfValueKind ValueKind, uint32_t SiteIdx, 677 uint32_t MaxMDCount) { 678 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); 679 if (!NV) 680 return; 681 682 uint64_t Sum = 0; 683 std::unique_ptr<InstrProfValueData[]> VD = 684 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); 685 686 ArrayRef<InstrProfValueData> VDs(VD.get(), NV); 687 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); 688 } 689 690 void annotateValueSite(Module &M, Instruction &Inst, 691 ArrayRef<InstrProfValueData> VDs, 692 uint64_t Sum, InstrProfValueKind ValueKind, 693 uint32_t MaxMDCount) { 694 LLVMContext &Ctx = M.getContext(); 695 MDBuilder MDHelper(Ctx); 696 SmallVector<Metadata *, 3> Vals; 697 // Tag 698 Vals.push_back(MDHelper.createString("VP")); 699 // Value Kind 700 Vals.push_back(MDHelper.createConstant( 701 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); 702 // Total Count 703 Vals.push_back( 704 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); 705 706 // Value Profile Data 707 uint32_t MDCount = MaxMDCount; 708 for (auto &VD : VDs) { 709 Vals.push_back(MDHelper.createConstant( 710 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); 711 Vals.push_back(MDHelper.createConstant( 712 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); 713 if (--MDCount == 0) 714 break; 715 } 716 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); 717 } 718 719 bool getValueProfDataFromInst(const Instruction &Inst, 720 InstrProfValueKind ValueKind, 721 uint32_t MaxNumValueData, 722 InstrProfValueData ValueData[], 723 uint32_t &ActualNumValueData, uint64_t &TotalC) { 724 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); 725 if (!MD) 726 return false; 727 728 unsigned NOps = MD->getNumOperands(); 729 730 if (NOps < 5) 731 return false; 732 733 // Operand 0 is a string tag "VP": 734 MDString *Tag = cast<MDString>(MD->getOperand(0)); 735 if (!Tag) 736 return false; 737 738 if (!Tag->getString().equals("VP")) 739 return false; 740 741 // Now check kind: 742 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 743 if (!KindInt) 744 return false; 745 if (KindInt->getZExtValue() != ValueKind) 746 return false; 747 748 // Get total count 749 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 750 if (!TotalCInt) 751 return false; 752 TotalC = TotalCInt->getZExtValue(); 753 754 ActualNumValueData = 0; 755 756 for (unsigned I = 3; I < NOps; I += 2) { 757 if (ActualNumValueData >= MaxNumValueData) 758 break; 759 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); 760 ConstantInt *Count = 761 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); 762 if (!Value || !Count) 763 return false; 764 ValueData[ActualNumValueData].Value = Value->getZExtValue(); 765 ValueData[ActualNumValueData].Count = Count->getZExtValue(); 766 ActualNumValueData++; 767 } 768 return true; 769 } 770 771 MDNode *getPGOFuncNameMetadata(const Function &F) { 772 return F.getMetadata(getPGOFuncNameMetadataName()); 773 } 774 775 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { 776 // Only for internal linkage functions. 777 if (PGOFuncName == F.getName()) 778 return; 779 // Don't create duplicated meta-data. 780 if (getPGOFuncNameMetadata(F)) 781 return; 782 LLVMContext &C = F.getContext(); 783 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); 784 F.setMetadata(getPGOFuncNameMetadataName(), N); 785 } 786 787 bool needsComdatForCounter(const Function &F, const Module &M) { 788 if (F.hasComdat()) 789 return true; 790 791 Triple TT(M.getTargetTriple()); 792 if (!TT.isOSBinFormatELF()) 793 return false; 794 795 // See createPGOFuncNameVar for more details. To avoid link errors, profile 796 // counters for function with available_externally linkage needs to be changed 797 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be 798 // created. Without using comdat, duplicate entries won't be removed by the 799 // linker leading to increased data segement size and raw profile size. Even 800 // worse, since the referenced counter from profile per-function data object 801 // will be resolved to the common strong definition, the profile counts for 802 // available_externally functions will end up being duplicated in raw profile 803 // data. This can result in distorted profile as the counts of those dups 804 // will be accumulated by the profile merger. 805 GlobalValue::LinkageTypes Linkage = F.getLinkage(); 806 if (Linkage != GlobalValue::ExternalWeakLinkage && 807 Linkage != GlobalValue::AvailableExternallyLinkage) 808 return false; 809 810 return true; 811 } 812 } // end namespace llvm 813