1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The ELF component of yaml2obj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/StringSet.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/MC/StringTableBuilder.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/ObjectYAML/ELFYAML.h" 21 #include "llvm/ObjectYAML/yaml2obj.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/LEB128.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 #include "llvm/Support/WithColor.h" 26 #include "llvm/Support/YAMLTraits.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace llvm; 30 31 // This class is used to build up a contiguous binary blob while keeping 32 // track of an offset in the output (which notionally begins at 33 // `InitialOffset`). 34 namespace { 35 class ContiguousBlobAccumulator { 36 const uint64_t InitialOffset; 37 SmallVector<char, 128> Buf; 38 raw_svector_ostream OS; 39 40 public: 41 ContiguousBlobAccumulator(uint64_t InitialOffset_) 42 : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} 43 44 template <class Integer> 45 raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) { 46 Offset = padToAlignment(Align); 47 return OS; 48 } 49 50 /// \returns The new offset. 51 uint64_t padToAlignment(unsigned Align) { 52 if (Align == 0) 53 Align = 1; 54 uint64_t CurrentOffset = InitialOffset + OS.tell(); 55 uint64_t AlignedOffset = alignTo(CurrentOffset, Align); 56 OS.write_zeros(AlignedOffset - CurrentOffset); 57 return AlignedOffset; // == CurrentOffset; 58 } 59 60 void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } 61 }; 62 63 // Used to keep track of section and symbol names, so that in the YAML file 64 // sections and symbols can be referenced by name instead of by index. 65 class NameToIdxMap { 66 StringMap<unsigned> Map; 67 68 public: 69 /// \Returns false if name is already present in the map. 70 bool addName(StringRef Name, unsigned Ndx) { 71 return Map.insert({Name, Ndx}).second; 72 } 73 /// \Returns false if name is not present in the map. 74 bool lookup(StringRef Name, unsigned &Idx) const { 75 auto I = Map.find(Name); 76 if (I == Map.end()) 77 return false; 78 Idx = I->getValue(); 79 return true; 80 } 81 /// Asserts if name is not present in the map. 82 unsigned get(StringRef Name) const { 83 unsigned Idx; 84 if (lookup(Name, Idx)) 85 return Idx; 86 assert(false && "Expected section not found in index"); 87 return 0; 88 } 89 unsigned size() const { return Map.size(); } 90 }; 91 92 namespace { 93 struct Fragment { 94 uint64_t Offset; 95 uint64_t Size; 96 uint32_t Type; 97 uint64_t AddrAlign; 98 }; 99 } // namespace 100 101 /// "Single point of truth" for the ELF file construction. 102 /// TODO: This class still has a ways to go before it is truly a "single 103 /// point of truth". 104 template <class ELFT> class ELFState { 105 typedef typename ELFT::Ehdr Elf_Ehdr; 106 typedef typename ELFT::Phdr Elf_Phdr; 107 typedef typename ELFT::Shdr Elf_Shdr; 108 typedef typename ELFT::Sym Elf_Sym; 109 typedef typename ELFT::Rel Elf_Rel; 110 typedef typename ELFT::Rela Elf_Rela; 111 typedef typename ELFT::Relr Elf_Relr; 112 typedef typename ELFT::Dyn Elf_Dyn; 113 typedef typename ELFT::uint uintX_t; 114 115 enum class SymtabType { Static, Dynamic }; 116 117 /// The future ".strtab" section. 118 StringTableBuilder DotStrtab{StringTableBuilder::ELF}; 119 120 /// The future ".shstrtab" section. 121 StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; 122 123 /// The future ".dynstr" section. 124 StringTableBuilder DotDynstr{StringTableBuilder::ELF}; 125 126 NameToIdxMap SN2I; 127 NameToIdxMap SymN2I; 128 NameToIdxMap DynSymN2I; 129 ELFYAML::Object &Doc; 130 131 bool HasError = false; 132 yaml::ErrorHandler ErrHandler; 133 void reportError(const Twine &Msg); 134 135 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 136 const StringTableBuilder &Strtab); 137 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); 138 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); 139 140 void buildSectionIndex(); 141 void buildSymbolIndexes(); 142 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders); 143 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, 144 StringRef SecName, ELFYAML::Section *YAMLSec); 145 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 146 ContiguousBlobAccumulator &CBA); 147 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, 148 ContiguousBlobAccumulator &CBA, 149 ELFYAML::Section *YAMLSec); 150 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 151 StringTableBuilder &STB, 152 ContiguousBlobAccumulator &CBA, 153 ELFYAML::Section *YAMLSec); 154 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 155 std::vector<Elf_Shdr> &SHeaders); 156 157 std::vector<Fragment> 158 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 159 ArrayRef<typename ELFT::Shdr> SHeaders); 160 161 void finalizeStrings(); 162 void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS); 163 void writeSectionContent(Elf_Shdr &SHeader, 164 const ELFYAML::RawContentSection &Section, 165 ContiguousBlobAccumulator &CBA); 166 void writeSectionContent(Elf_Shdr &SHeader, 167 const ELFYAML::RelocationSection &Section, 168 ContiguousBlobAccumulator &CBA); 169 void writeSectionContent(Elf_Shdr &SHeader, 170 const ELFYAML::RelrSection &Section, 171 ContiguousBlobAccumulator &CBA); 172 void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, 173 ContiguousBlobAccumulator &CBA); 174 void writeSectionContent(Elf_Shdr &SHeader, 175 const ELFYAML::SymtabShndxSection &Shndx, 176 ContiguousBlobAccumulator &CBA); 177 void writeSectionContent(Elf_Shdr &SHeader, 178 const ELFYAML::SymverSection &Section, 179 ContiguousBlobAccumulator &CBA); 180 void writeSectionContent(Elf_Shdr &SHeader, 181 const ELFYAML::VerneedSection &Section, 182 ContiguousBlobAccumulator &CBA); 183 void writeSectionContent(Elf_Shdr &SHeader, 184 const ELFYAML::VerdefSection &Section, 185 ContiguousBlobAccumulator &CBA); 186 void writeSectionContent(Elf_Shdr &SHeader, 187 const ELFYAML::MipsABIFlags &Section, 188 ContiguousBlobAccumulator &CBA); 189 void writeSectionContent(Elf_Shdr &SHeader, 190 const ELFYAML::DynamicSection &Section, 191 ContiguousBlobAccumulator &CBA); 192 void writeSectionContent(Elf_Shdr &SHeader, 193 const ELFYAML::StackSizesSection &Section, 194 ContiguousBlobAccumulator &CBA); 195 void writeSectionContent(Elf_Shdr &SHeader, 196 const ELFYAML::HashSection &Section, 197 ContiguousBlobAccumulator &CBA); 198 void writeSectionContent(Elf_Shdr &SHeader, 199 const ELFYAML::AddrsigSection &Section, 200 ContiguousBlobAccumulator &CBA); 201 void writeSectionContent(Elf_Shdr &SHeader, 202 const ELFYAML::NoteSection &Section, 203 ContiguousBlobAccumulator &CBA); 204 void writeSectionContent(Elf_Shdr &SHeader, 205 const ELFYAML::GnuHashSection &Section, 206 ContiguousBlobAccumulator &CBA); 207 void writeSectionContent(Elf_Shdr &SHeader, 208 const ELFYAML::LinkerOptionsSection &Section, 209 ContiguousBlobAccumulator &CBA); 210 void writeSectionContent(Elf_Shdr &SHeader, 211 const ELFYAML::DependentLibrariesSection &Section, 212 ContiguousBlobAccumulator &CBA); 213 void writeSectionContent(Elf_Shdr &SHeader, 214 const ELFYAML::CallGraphProfileSection &Section, 215 ContiguousBlobAccumulator &CBA); 216 217 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA); 218 219 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); 220 221 public: 222 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 223 yaml::ErrorHandler EH); 224 }; 225 } // end anonymous namespace 226 227 template <class T> static size_t arrayDataSize(ArrayRef<T> A) { 228 return A.size() * sizeof(T); 229 } 230 231 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { 232 OS.write((const char *)A.data(), arrayDataSize(A)); 233 } 234 235 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } 236 237 template <class ELFT> 238 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) 239 : Doc(D), ErrHandler(EH) { 240 std::vector<ELFYAML::Section *> Sections = Doc.getSections(); 241 StringSet<> DocSections; 242 for (const ELFYAML::Section *Sec : Sections) 243 if (!Sec->Name.empty()) 244 DocSections.insert(Sec->Name); 245 246 // Insert SHT_NULL section implicitly when it is not defined in YAML. 247 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL) 248 Doc.Chunks.insert( 249 Doc.Chunks.begin(), 250 std::make_unique<ELFYAML::Section>( 251 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true)); 252 253 std::vector<StringRef> ImplicitSections; 254 if (Doc.DynamicSymbols) 255 ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"}); 256 if (Doc.Symbols) 257 ImplicitSections.push_back(".symtab"); 258 ImplicitSections.insert(ImplicitSections.end(), {".strtab", ".shstrtab"}); 259 260 // Insert placeholders for implicit sections that are not 261 // defined explicitly in YAML. 262 for (StringRef SecName : ImplicitSections) { 263 if (DocSections.count(SecName)) 264 continue; 265 266 std::unique_ptr<ELFYAML::Chunk> Sec = std::make_unique<ELFYAML::Section>( 267 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/); 268 Sec->Name = SecName; 269 Doc.Chunks.push_back(std::move(Sec)); 270 } 271 } 272 273 template <class ELFT> 274 void ELFState<ELFT>::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) { 275 using namespace llvm::ELF; 276 277 Elf_Ehdr Header; 278 zero(Header); 279 Header.e_ident[EI_MAG0] = 0x7f; 280 Header.e_ident[EI_MAG1] = 'E'; 281 Header.e_ident[EI_MAG2] = 'L'; 282 Header.e_ident[EI_MAG3] = 'F'; 283 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 284 Header.e_ident[EI_DATA] = Doc.Header.Data; 285 Header.e_ident[EI_VERSION] = EV_CURRENT; 286 Header.e_ident[EI_OSABI] = Doc.Header.OSABI; 287 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; 288 Header.e_type = Doc.Header.Type; 289 Header.e_machine = Doc.Header.Machine; 290 Header.e_version = EV_CURRENT; 291 Header.e_entry = Doc.Header.Entry; 292 Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0; 293 Header.e_flags = Doc.Header.Flags; 294 Header.e_ehsize = sizeof(Elf_Ehdr); 295 Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0; 296 Header.e_phnum = Doc.ProgramHeaders.size(); 297 298 Header.e_shentsize = 299 Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); 300 // Immediately following the ELF header and program headers. 301 // Align the start of the section header and write the ELF header. 302 uint64_t SHOff; 303 CBA.getOSAndAlignedOffset(SHOff, sizeof(typename ELFT::uint)); 304 Header.e_shoff = 305 Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff; 306 Header.e_shnum = 307 Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.getSections().size(); 308 Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx 309 : SN2I.get(".shstrtab"); 310 311 OS.write((const char *)&Header, sizeof(Header)); 312 } 313 314 template <class ELFT> 315 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) { 316 for (const auto &YamlPhdr : Doc.ProgramHeaders) { 317 Elf_Phdr Phdr; 318 Phdr.p_type = YamlPhdr.Type; 319 Phdr.p_flags = YamlPhdr.Flags; 320 Phdr.p_vaddr = YamlPhdr.VAddr; 321 Phdr.p_paddr = YamlPhdr.PAddr; 322 PHeaders.push_back(Phdr); 323 } 324 } 325 326 template <class ELFT> 327 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec, 328 StringRef LocSym) { 329 unsigned Index; 330 if (SN2I.lookup(S, Index) || to_integer(S, Index)) 331 return Index; 332 333 assert(LocSec.empty() || LocSym.empty()); 334 if (!LocSym.empty()) 335 reportError("unknown section referenced: '" + S + "' by YAML symbol '" + 336 LocSym + "'"); 337 else 338 reportError("unknown section referenced: '" + S + "' by YAML section '" + 339 LocSec + "'"); 340 return 0; 341 } 342 343 template <class ELFT> 344 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec, 345 bool IsDynamic) { 346 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; 347 unsigned Index; 348 // Here we try to look up S in the symbol table. If it is not there, 349 // treat its value as a symbol index. 350 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { 351 reportError("unknown symbol referenced: '" + S + "' by YAML section '" + 352 LocSec + "'"); 353 return 0; 354 } 355 return Index; 356 } 357 358 template <class ELFT> 359 static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) { 360 if (!From) 361 return; 362 if (From->ShFlags) 363 To.sh_flags = *From->ShFlags; 364 if (From->ShName) 365 To.sh_name = *From->ShName; 366 if (From->ShOffset) 367 To.sh_offset = *From->ShOffset; 368 if (From->ShSize) 369 To.sh_size = *From->ShSize; 370 } 371 372 template <class ELFT> 373 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA, 374 Elf_Shdr &Header, StringRef SecName, 375 ELFYAML::Section *YAMLSec) { 376 // Check if the header was already initialized. 377 if (Header.sh_offset) 378 return false; 379 380 if (SecName == ".symtab") 381 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); 382 else if (SecName == ".strtab") 383 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); 384 else if (SecName == ".shstrtab") 385 initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec); 386 else if (SecName == ".dynsym") 387 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); 388 else if (SecName == ".dynstr") 389 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); 390 else 391 return false; 392 393 // Override section fields if requested. 394 overrideFields<ELFT>(YAMLSec, Header); 395 return true; 396 } 397 398 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { 399 size_t SuffixPos = S.rfind(" ["); 400 if (SuffixPos == StringRef::npos) 401 return S; 402 return S.substr(0, SuffixPos); 403 } 404 405 template <class ELFT> 406 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 407 ContiguousBlobAccumulator &CBA) { 408 // Ensure SHN_UNDEF entry is present. An all-zero section header is a 409 // valid SHN_UNDEF entry since SHT_NULL == 0. 410 SHeaders.resize(Doc.getSections().size()); 411 412 size_t SecNdx = -1; 413 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) { 414 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) { 415 writeFill(*S, CBA); 416 continue; 417 } 418 419 ++SecNdx; 420 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get()); 421 if (SecNdx == 0 && Sec->IsImplicit) 422 continue; 423 424 // We have a few sections like string or symbol tables that are usually 425 // added implicitly to the end. However, if they are explicitly specified 426 // in the YAML, we need to write them here. This ensures the file offset 427 // remains correct. 428 Elf_Shdr &SHeader = SHeaders[SecNdx]; 429 if (initImplicitHeader(CBA, SHeader, Sec->Name, 430 Sec->IsImplicit ? nullptr : Sec)) 431 continue; 432 433 assert(Sec && "It can't be null unless it is an implicit section. But all " 434 "implicit sections should already have been handled above."); 435 436 SHeader.sh_name = 437 DotShStrtab.getOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); 438 SHeader.sh_type = Sec->Type; 439 if (Sec->Flags) 440 SHeader.sh_flags = *Sec->Flags; 441 SHeader.sh_addr = Sec->Address; 442 SHeader.sh_addralign = Sec->AddressAlign; 443 444 if (!Sec->Link.empty()) 445 SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name); 446 447 if (SecNdx == 0) { 448 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 449 // We do not write any content for special SHN_UNDEF section. 450 if (RawSec->Size) 451 SHeader.sh_size = *RawSec->Size; 452 if (RawSec->Info) 453 SHeader.sh_info = *RawSec->Info; 454 } 455 if (Sec->EntSize) 456 SHeader.sh_entsize = *Sec->EntSize; 457 } else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 458 writeSectionContent(SHeader, *S, CBA); 459 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) { 460 writeSectionContent(SHeader, *S, CBA); 461 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) { 462 writeSectionContent(SHeader, *S, CBA); 463 } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) { 464 writeSectionContent(SHeader, *S, CBA); 465 } else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) { 466 writeSectionContent(SHeader, *S, CBA); 467 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) { 468 writeSectionContent(SHeader, *S, CBA); 469 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) { 470 SHeader.sh_entsize = 0; 471 SHeader.sh_size = S->Size; 472 // SHT_NOBITS section does not have content 473 // so just to setup the section offset. 474 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 475 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) { 476 writeSectionContent(SHeader, *S, CBA); 477 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) { 478 writeSectionContent(SHeader, *S, CBA); 479 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 480 writeSectionContent(SHeader, *S, CBA); 481 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 482 writeSectionContent(SHeader, *S, CBA); 483 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) { 484 writeSectionContent(SHeader, *S, CBA); 485 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) { 486 writeSectionContent(SHeader, *S, CBA); 487 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) { 488 writeSectionContent(SHeader, *S, CBA); 489 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) { 490 writeSectionContent(SHeader, *S, CBA); 491 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) { 492 writeSectionContent(SHeader, *S, CBA); 493 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) { 494 writeSectionContent(SHeader, *S, CBA); 495 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) { 496 writeSectionContent(SHeader, *S, CBA); 497 } else if (auto S = dyn_cast<ELFYAML::CallGraphProfileSection>(Sec)) { 498 writeSectionContent(SHeader, *S, CBA); 499 } else { 500 llvm_unreachable("Unknown section type"); 501 } 502 503 // Override section fields if requested. 504 overrideFields<ELFT>(Sec, SHeader); 505 } 506 } 507 508 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) { 509 for (size_t I = 0; I < Symbols.size(); ++I) 510 if (Symbols[I].Binding.value != ELF::STB_LOCAL) 511 return I; 512 return Symbols.size(); 513 } 514 515 static uint64_t writeContent(raw_ostream &OS, 516 const Optional<yaml::BinaryRef> &Content, 517 const Optional<llvm::yaml::Hex64> &Size) { 518 size_t ContentSize = 0; 519 if (Content) { 520 Content->writeAsBinary(OS); 521 ContentSize = Content->binary_size(); 522 } 523 524 if (!Size) 525 return ContentSize; 526 527 OS.write_zeros(*Size - ContentSize); 528 return *Size; 529 } 530 531 template <class ELFT> 532 std::vector<typename ELFT::Sym> 533 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 534 const StringTableBuilder &Strtab) { 535 std::vector<Elf_Sym> Ret; 536 Ret.resize(Symbols.size() + 1); 537 538 size_t I = 0; 539 for (const ELFYAML::Symbol &Sym : Symbols) { 540 Elf_Sym &Symbol = Ret[++I]; 541 542 // If NameIndex, which contains the name offset, is explicitly specified, we 543 // use it. This is useful for preparing broken objects. Otherwise, we add 544 // the specified Name to the string table builder to get its offset. 545 if (Sym.StName) 546 Symbol.st_name = *Sym.StName; 547 else if (!Sym.Name.empty()) 548 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); 549 550 Symbol.setBindingAndType(Sym.Binding, Sym.Type); 551 if (!Sym.Section.empty()) 552 Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name); 553 else if (Sym.Index) 554 Symbol.st_shndx = *Sym.Index; 555 556 Symbol.st_value = Sym.Value; 557 Symbol.st_other = Sym.Other ? *Sym.Other : 0; 558 Symbol.st_size = Sym.Size; 559 } 560 561 return Ret; 562 } 563 564 template <class ELFT> 565 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, 566 SymtabType STType, 567 ContiguousBlobAccumulator &CBA, 568 ELFYAML::Section *YAMLSec) { 569 570 bool IsStatic = STType == SymtabType::Static; 571 ArrayRef<ELFYAML::Symbol> Symbols; 572 if (IsStatic && Doc.Symbols) 573 Symbols = *Doc.Symbols; 574 else if (!IsStatic && Doc.DynamicSymbols) 575 Symbols = *Doc.DynamicSymbols; 576 577 ELFYAML::RawContentSection *RawSec = 578 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 579 if (RawSec && (RawSec->Content || RawSec->Size)) { 580 bool HasSymbolsDescription = 581 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols); 582 if (HasSymbolsDescription) { 583 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`"); 584 if (RawSec->Content) 585 reportError("cannot specify both `Content` and " + Property + 586 " for symbol table section '" + RawSec->Name + "'"); 587 if (RawSec->Size) 588 reportError("cannot specify both `Size` and " + Property + 589 " for symbol table section '" + RawSec->Name + "'"); 590 return; 591 } 592 } 593 594 zero(SHeader); 595 SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); 596 597 if (YAMLSec) 598 SHeader.sh_type = YAMLSec->Type; 599 else 600 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; 601 602 if (RawSec && !RawSec->Link.empty()) { 603 // If the Link field is explicitly defined in the document, 604 // we should use it. 605 SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name); 606 } else { 607 // When we describe the .dynsym section in the document explicitly, it is 608 // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not 609 // added implicitly and we should be able to leave the Link zeroed if 610 // .dynstr is not defined. 611 unsigned Link = 0; 612 if (IsStatic) 613 Link = SN2I.get(".strtab"); 614 else 615 SN2I.lookup(".dynstr", Link); 616 SHeader.sh_link = Link; 617 } 618 619 if (YAMLSec && YAMLSec->Flags) 620 SHeader.sh_flags = *YAMLSec->Flags; 621 else if (!IsStatic) 622 SHeader.sh_flags = ELF::SHF_ALLOC; 623 624 // If the symbol table section is explicitly described in the YAML 625 // then we should set the fields requested. 626 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) 627 : findFirstNonGlobal(Symbols) + 1; 628 SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) 629 ? (uint64_t)(*YAMLSec->EntSize) 630 : sizeof(Elf_Sym); 631 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; 632 SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0; 633 634 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 635 if (RawSec && (RawSec->Content || RawSec->Size)) { 636 assert(Symbols.empty()); 637 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 638 return; 639 } 640 641 std::vector<Elf_Sym> Syms = 642 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); 643 writeArrayData(OS, makeArrayRef(Syms)); 644 SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); 645 } 646 647 template <class ELFT> 648 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 649 StringTableBuilder &STB, 650 ContiguousBlobAccumulator &CBA, 651 ELFYAML::Section *YAMLSec) { 652 zero(SHeader); 653 SHeader.sh_name = DotShStrtab.getOffset(Name); 654 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; 655 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 656 657 ELFYAML::RawContentSection *RawSec = 658 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 659 660 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 661 if (RawSec && (RawSec->Content || RawSec->Size)) { 662 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 663 } else { 664 STB.write(OS); 665 SHeader.sh_size = STB.getSize(); 666 } 667 668 if (YAMLSec && YAMLSec->EntSize) 669 SHeader.sh_entsize = *YAMLSec->EntSize; 670 671 if (RawSec && RawSec->Info) 672 SHeader.sh_info = *RawSec->Info; 673 674 if (YAMLSec && YAMLSec->Flags) 675 SHeader.sh_flags = *YAMLSec->Flags; 676 else if (Name == ".dynstr") 677 SHeader.sh_flags = ELF::SHF_ALLOC; 678 679 // If the section is explicitly described in the YAML 680 // then we want to use its section address. 681 if (YAMLSec) 682 SHeader.sh_addr = YAMLSec->Address; 683 } 684 685 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) { 686 ErrHandler(Msg); 687 HasError = true; 688 } 689 690 template <class ELFT> 691 std::vector<Fragment> 692 ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 693 ArrayRef<typename ELFT::Shdr> SHeaders) { 694 DenseMap<StringRef, ELFYAML::Fill *> NameToFill; 695 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) 696 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) 697 NameToFill[S->Name] = S; 698 699 std::vector<Fragment> Ret; 700 for (const ELFYAML::SectionName &SecName : Phdr.Sections) { 701 unsigned Index; 702 if (SN2I.lookup(SecName.Section, Index)) { 703 const typename ELFT::Shdr &H = SHeaders[Index]; 704 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign}); 705 continue; 706 } 707 708 if (ELFYAML::Fill *Fill = NameToFill.lookup(SecName.Section)) { 709 Ret.push_back({Fill->ShOffset, Fill->Size, llvm::ELF::SHT_PROGBITS, 710 /*ShAddrAlign=*/1}); 711 continue; 712 } 713 714 reportError("unknown section or fill referenced: '" + SecName.Section + 715 "' by program header"); 716 } 717 718 return Ret; 719 } 720 721 template <class ELFT> 722 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 723 std::vector<Elf_Shdr> &SHeaders) { 724 uint32_t PhdrIdx = 0; 725 for (auto &YamlPhdr : Doc.ProgramHeaders) { 726 Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; 727 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders); 728 729 if (YamlPhdr.Offset) { 730 PHeader.p_offset = *YamlPhdr.Offset; 731 } else { 732 if (YamlPhdr.Sections.size()) 733 PHeader.p_offset = UINT32_MAX; 734 else 735 PHeader.p_offset = 0; 736 737 // Find the minimum offset for the program header. 738 for (const Fragment &F : Fragments) 739 PHeader.p_offset = std::min((uint64_t)PHeader.p_offset, F.Offset); 740 } 741 742 // Find the maximum offset of the end of a section in order to set p_filesz 743 // and p_memsz. When setting p_filesz, trailing SHT_NOBITS sections are not 744 // counted. 745 uint64_t FileOffset = PHeader.p_offset, MemOffset = PHeader.p_offset; 746 for (const Fragment &F : Fragments) { 747 uint64_t End = F.Offset + F.Size; 748 MemOffset = std::max(MemOffset, End); 749 750 if (F.Type != llvm::ELF::SHT_NOBITS) 751 FileOffset = std::max(FileOffset, End); 752 } 753 754 // Set the file size and the memory size if not set explicitly. 755 PHeader.p_filesz = YamlPhdr.FileSize ? uint64_t(*YamlPhdr.FileSize) 756 : FileOffset - PHeader.p_offset; 757 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) 758 : MemOffset - PHeader.p_offset; 759 760 if (YamlPhdr.Align) { 761 PHeader.p_align = *YamlPhdr.Align; 762 } else { 763 // Set the alignment of the segment to be the maximum alignment of the 764 // sections so that by default the segment has a valid and sensible 765 // alignment. 766 PHeader.p_align = 1; 767 for (const Fragment &F : Fragments) 768 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign); 769 } 770 } 771 } 772 773 template <class ELFT> 774 void ELFState<ELFT>::writeSectionContent( 775 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, 776 ContiguousBlobAccumulator &CBA) { 777 raw_ostream &OS = 778 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 779 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 780 781 if (Section.EntSize) 782 SHeader.sh_entsize = *Section.EntSize; 783 784 if (Section.Info) 785 SHeader.sh_info = *Section.Info; 786 } 787 788 static bool isMips64EL(const ELFYAML::Object &Doc) { 789 return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && 790 Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && 791 Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 792 } 793 794 template <class ELFT> 795 void ELFState<ELFT>::writeSectionContent( 796 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, 797 ContiguousBlobAccumulator &CBA) { 798 assert((Section.Type == llvm::ELF::SHT_REL || 799 Section.Type == llvm::ELF::SHT_RELA) && 800 "Section type is not SHT_REL nor SHT_RELA"); 801 802 bool IsRela = Section.Type == llvm::ELF::SHT_RELA; 803 if (Section.EntSize) 804 SHeader.sh_entsize = *Section.EntSize; 805 else 806 SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 807 SHeader.sh_size = (IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)) * 808 Section.Relocations.size(); 809 810 // For relocation section set link to .symtab by default. 811 unsigned Link = 0; 812 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 813 SHeader.sh_link = Link; 814 815 if (!Section.RelocatableSec.empty()) 816 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); 817 818 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 819 for (const auto &Rel : Section.Relocations) { 820 unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, 821 Section.Link == ".dynsym") 822 : 0; 823 if (IsRela) { 824 Elf_Rela REntry; 825 zero(REntry); 826 REntry.r_offset = Rel.Offset; 827 REntry.r_addend = Rel.Addend; 828 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 829 OS.write((const char *)&REntry, sizeof(REntry)); 830 } else { 831 Elf_Rel REntry; 832 zero(REntry); 833 REntry.r_offset = Rel.Offset; 834 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 835 OS.write((const char *)&REntry, sizeof(REntry)); 836 } 837 } 838 } 839 840 template <class ELFT> 841 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 842 const ELFYAML::RelrSection &Section, 843 ContiguousBlobAccumulator &CBA) { 844 raw_ostream &OS = 845 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 846 SHeader.sh_entsize = 847 Section.EntSize ? uint64_t(*Section.EntSize) : sizeof(Elf_Relr); 848 849 if (Section.Content) { 850 SHeader.sh_size = writeContent(OS, Section.Content, None); 851 return; 852 } 853 854 if (!Section.Entries) 855 return; 856 857 for (llvm::yaml::Hex64 E : *Section.Entries) { 858 if (!ELFT::Is64Bits && E > UINT32_MAX) 859 reportError(Section.Name + ": the value is too large for 32-bits: 0x" + 860 Twine::utohexstr(E)); 861 support::endian::write<uintX_t>(OS, E, ELFT::TargetEndianness); 862 } 863 864 SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size(); 865 } 866 867 template <class ELFT> 868 void ELFState<ELFT>::writeSectionContent( 869 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, 870 ContiguousBlobAccumulator &CBA) { 871 raw_ostream &OS = 872 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 873 874 for (uint32_t E : Shndx.Entries) 875 support::endian::write<uint32_t>(OS, E, ELFT::TargetEndianness); 876 877 SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4; 878 SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize; 879 } 880 881 template <class ELFT> 882 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 883 const ELFYAML::Group &Section, 884 ContiguousBlobAccumulator &CBA) { 885 assert(Section.Type == llvm::ELF::SHT_GROUP && 886 "Section type is not SHT_GROUP"); 887 888 unsigned Link = 0; 889 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 890 SHeader.sh_link = Link; 891 892 SHeader.sh_entsize = 4; 893 SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); 894 895 if (Section.Signature) 896 SHeader.sh_info = 897 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); 898 899 raw_ostream &OS = 900 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 901 902 for (const ELFYAML::SectionOrType &Member : Section.Members) { 903 unsigned int SectionIndex = 0; 904 if (Member.sectionNameOrType == "GRP_COMDAT") 905 SectionIndex = llvm::ELF::GRP_COMDAT; 906 else 907 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); 908 support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness); 909 } 910 } 911 912 template <class ELFT> 913 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 914 const ELFYAML::SymverSection &Section, 915 ContiguousBlobAccumulator &CBA) { 916 raw_ostream &OS = 917 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 918 for (uint16_t Version : Section.Entries) 919 support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness); 920 921 SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2; 922 SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; 923 } 924 925 template <class ELFT> 926 void ELFState<ELFT>::writeSectionContent( 927 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, 928 ContiguousBlobAccumulator &CBA) { 929 raw_ostream &OS = 930 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 931 932 if (Section.Content || Section.Size) { 933 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 934 return; 935 } 936 937 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { 938 support::endian::write<uintX_t>(OS, E.Address, ELFT::TargetEndianness); 939 SHeader.sh_size += sizeof(uintX_t) + encodeULEB128(E.Size, OS); 940 } 941 } 942 943 template <class ELFT> 944 void ELFState<ELFT>::writeSectionContent( 945 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, 946 ContiguousBlobAccumulator &CBA) { 947 raw_ostream &OS = 948 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 949 950 if (Section.Content) { 951 SHeader.sh_size = writeContent(OS, Section.Content, None); 952 return; 953 } 954 955 if (!Section.Options) 956 return; 957 958 for (const ELFYAML::LinkerOption &LO : *Section.Options) { 959 OS.write(LO.Key.data(), LO.Key.size()); 960 OS.write('\0'); 961 OS.write(LO.Value.data(), LO.Value.size()); 962 OS.write('\0'); 963 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2); 964 } 965 } 966 967 template <class ELFT> 968 void ELFState<ELFT>::writeSectionContent( 969 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, 970 ContiguousBlobAccumulator &CBA) { 971 raw_ostream &OS = 972 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 973 974 if (Section.Content) { 975 SHeader.sh_size = writeContent(OS, Section.Content, None); 976 return; 977 } 978 979 if (!Section.Libs) 980 return; 981 982 for (StringRef Lib : *Section.Libs) { 983 OS.write(Lib.data(), Lib.size()); 984 OS.write('\0'); 985 SHeader.sh_size += Lib.size() + 1; 986 } 987 } 988 989 template <class ELFT> 990 void ELFState<ELFT>::writeSectionContent( 991 Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section, 992 ContiguousBlobAccumulator &CBA) { 993 raw_ostream &OS = 994 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 995 996 if (Section.EntSize) 997 SHeader.sh_entsize = *Section.EntSize; 998 else 999 SHeader.sh_entsize = 16; 1000 1001 unsigned Link = 0; 1002 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1003 SHeader.sh_link = Link; 1004 1005 if (Section.Content) { 1006 SHeader.sh_size = writeContent(OS, Section.Content, None); 1007 return; 1008 } 1009 1010 if (!Section.Entries) 1011 return; 1012 1013 for (const ELFYAML::CallGraphEntry &E : *Section.Entries) { 1014 unsigned From = toSymbolIndex(E.From, Section.Name, /*IsDynamic=*/false); 1015 unsigned To = toSymbolIndex(E.To, Section.Name, /*IsDynamic=*/false); 1016 1017 support::endian::write<uint32_t>(OS, From, ELFT::TargetEndianness); 1018 support::endian::write<uint32_t>(OS, To, ELFT::TargetEndianness); 1019 support::endian::write<uint64_t>(OS, E.Weight, ELFT::TargetEndianness); 1020 SHeader.sh_size += 16; 1021 } 1022 } 1023 1024 template <class ELFT> 1025 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1026 const ELFYAML::HashSection &Section, 1027 ContiguousBlobAccumulator &CBA) { 1028 raw_ostream &OS = 1029 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1030 1031 unsigned Link = 0; 1032 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1033 SHeader.sh_link = Link; 1034 1035 if (Section.Content || Section.Size) { 1036 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1037 return; 1038 } 1039 1040 support::endian::write<uint32_t>(OS, Section.Bucket->size(), 1041 ELFT::TargetEndianness); 1042 support::endian::write<uint32_t>(OS, Section.Chain->size(), 1043 ELFT::TargetEndianness); 1044 for (uint32_t Val : *Section.Bucket) 1045 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1046 for (uint32_t Val : *Section.Chain) 1047 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1048 1049 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; 1050 } 1051 1052 template <class ELFT> 1053 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1054 const ELFYAML::VerdefSection &Section, 1055 ContiguousBlobAccumulator &CBA) { 1056 typedef typename ELFT::Verdef Elf_Verdef; 1057 typedef typename ELFT::Verdaux Elf_Verdaux; 1058 raw_ostream &OS = 1059 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1060 1061 SHeader.sh_info = Section.Info; 1062 1063 if (Section.Content) { 1064 SHeader.sh_size = writeContent(OS, Section.Content, None); 1065 return; 1066 } 1067 1068 if (!Section.Entries) 1069 return; 1070 1071 uint64_t AuxCnt = 0; 1072 for (size_t I = 0; I < Section.Entries->size(); ++I) { 1073 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I]; 1074 1075 Elf_Verdef VerDef; 1076 VerDef.vd_version = E.Version; 1077 VerDef.vd_flags = E.Flags; 1078 VerDef.vd_ndx = E.VersionNdx; 1079 VerDef.vd_hash = E.Hash; 1080 VerDef.vd_aux = sizeof(Elf_Verdef); 1081 VerDef.vd_cnt = E.VerNames.size(); 1082 if (I == Section.Entries->size() - 1) 1083 VerDef.vd_next = 0; 1084 else 1085 VerDef.vd_next = 1086 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); 1087 OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); 1088 1089 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { 1090 Elf_Verdaux VernAux; 1091 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); 1092 if (J == E.VerNames.size() - 1) 1093 VernAux.vda_next = 0; 1094 else 1095 VernAux.vda_next = sizeof(Elf_Verdaux); 1096 OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); 1097 } 1098 } 1099 1100 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) + 1101 AuxCnt * sizeof(Elf_Verdaux); 1102 } 1103 1104 template <class ELFT> 1105 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1106 const ELFYAML::VerneedSection &Section, 1107 ContiguousBlobAccumulator &CBA) { 1108 typedef typename ELFT::Verneed Elf_Verneed; 1109 typedef typename ELFT::Vernaux Elf_Vernaux; 1110 1111 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1112 SHeader.sh_info = Section.Info; 1113 1114 if (Section.Content) { 1115 SHeader.sh_size = writeContent(OS, Section.Content, None); 1116 return; 1117 } 1118 1119 if (!Section.VerneedV) 1120 return; 1121 1122 uint64_t AuxCnt = 0; 1123 for (size_t I = 0; I < Section.VerneedV->size(); ++I) { 1124 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I]; 1125 1126 Elf_Verneed VerNeed; 1127 VerNeed.vn_version = VE.Version; 1128 VerNeed.vn_file = DotDynstr.getOffset(VE.File); 1129 if (I == Section.VerneedV->size() - 1) 1130 VerNeed.vn_next = 0; 1131 else 1132 VerNeed.vn_next = 1133 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); 1134 VerNeed.vn_cnt = VE.AuxV.size(); 1135 VerNeed.vn_aux = sizeof(Elf_Verneed); 1136 OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); 1137 1138 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { 1139 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; 1140 1141 Elf_Vernaux VernAux; 1142 VernAux.vna_hash = VAuxE.Hash; 1143 VernAux.vna_flags = VAuxE.Flags; 1144 VernAux.vna_other = VAuxE.Other; 1145 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); 1146 if (J == VE.AuxV.size() - 1) 1147 VernAux.vna_next = 0; 1148 else 1149 VernAux.vna_next = sizeof(Elf_Vernaux); 1150 OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); 1151 } 1152 } 1153 1154 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) + 1155 AuxCnt * sizeof(Elf_Vernaux); 1156 } 1157 1158 template <class ELFT> 1159 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1160 const ELFYAML::MipsABIFlags &Section, 1161 ContiguousBlobAccumulator &CBA) { 1162 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && 1163 "Section type is not SHT_MIPS_ABIFLAGS"); 1164 1165 object::Elf_Mips_ABIFlags<ELFT> Flags; 1166 zero(Flags); 1167 SHeader.sh_entsize = sizeof(Flags); 1168 SHeader.sh_size = SHeader.sh_entsize; 1169 1170 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1171 Flags.version = Section.Version; 1172 Flags.isa_level = Section.ISALevel; 1173 Flags.isa_rev = Section.ISARevision; 1174 Flags.gpr_size = Section.GPRSize; 1175 Flags.cpr1_size = Section.CPR1Size; 1176 Flags.cpr2_size = Section.CPR2Size; 1177 Flags.fp_abi = Section.FpABI; 1178 Flags.isa_ext = Section.ISAExtension; 1179 Flags.ases = Section.ASEs; 1180 Flags.flags1 = Section.Flags1; 1181 Flags.flags2 = Section.Flags2; 1182 OS.write((const char *)&Flags, sizeof(Flags)); 1183 } 1184 1185 template <class ELFT> 1186 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1187 const ELFYAML::DynamicSection &Section, 1188 ContiguousBlobAccumulator &CBA) { 1189 assert(Section.Type == llvm::ELF::SHT_DYNAMIC && 1190 "Section type is not SHT_DYNAMIC"); 1191 1192 if (!Section.Entries.empty() && Section.Content) 1193 reportError("cannot specify both raw content and explicit entries " 1194 "for dynamic section '" + 1195 Section.Name + "'"); 1196 1197 if (Section.Content) 1198 SHeader.sh_size = Section.Content->binary_size(); 1199 else 1200 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); 1201 if (Section.EntSize) 1202 SHeader.sh_entsize = *Section.EntSize; 1203 else 1204 SHeader.sh_entsize = sizeof(Elf_Dyn); 1205 1206 raw_ostream &OS = 1207 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1208 for (const ELFYAML::DynamicEntry &DE : Section.Entries) { 1209 support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness); 1210 support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness); 1211 } 1212 if (Section.Content) 1213 Section.Content->writeAsBinary(OS); 1214 } 1215 1216 template <class ELFT> 1217 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1218 const ELFYAML::AddrsigSection &Section, 1219 ContiguousBlobAccumulator &CBA) { 1220 raw_ostream &OS = 1221 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1222 1223 unsigned Link = 0; 1224 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1225 SHeader.sh_link = Link; 1226 1227 if (Section.Content || Section.Size) { 1228 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1229 return; 1230 } 1231 1232 for (StringRef Sym : *Section.Symbols) 1233 SHeader.sh_size += encodeULEB128( 1234 toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false), OS); 1235 } 1236 1237 template <class ELFT> 1238 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1239 const ELFYAML::NoteSection &Section, 1240 ContiguousBlobAccumulator &CBA) { 1241 raw_ostream &OS = 1242 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1243 uint64_t Offset = OS.tell(); 1244 1245 if (Section.Content || Section.Size) { 1246 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1247 return; 1248 } 1249 1250 for (const ELFYAML::NoteEntry &NE : *Section.Notes) { 1251 // Write name size. 1252 if (NE.Name.empty()) 1253 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1254 else 1255 support::endian::write<uint32_t>(OS, NE.Name.size() + 1, 1256 ELFT::TargetEndianness); 1257 1258 // Write description size. 1259 if (NE.Desc.binary_size() == 0) 1260 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1261 else 1262 support::endian::write<uint32_t>(OS, NE.Desc.binary_size(), 1263 ELFT::TargetEndianness); 1264 1265 // Write type. 1266 support::endian::write<uint32_t>(OS, NE.Type, ELFT::TargetEndianness); 1267 1268 // Write name, null terminator and padding. 1269 if (!NE.Name.empty()) { 1270 support::endian::write<uint8_t>(OS, arrayRefFromStringRef(NE.Name), 1271 ELFT::TargetEndianness); 1272 support::endian::write<uint8_t>(OS, 0, ELFT::TargetEndianness); 1273 CBA.padToAlignment(4); 1274 } 1275 1276 // Write description and padding. 1277 if (NE.Desc.binary_size() != 0) { 1278 NE.Desc.writeAsBinary(OS); 1279 CBA.padToAlignment(4); 1280 } 1281 } 1282 1283 SHeader.sh_size = OS.tell() - Offset; 1284 } 1285 1286 template <class ELFT> 1287 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1288 const ELFYAML::GnuHashSection &Section, 1289 ContiguousBlobAccumulator &CBA) { 1290 raw_ostream &OS = 1291 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1292 1293 unsigned Link = 0; 1294 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1295 SHeader.sh_link = Link; 1296 1297 if (Section.Content) { 1298 SHeader.sh_size = writeContent(OS, Section.Content, None); 1299 return; 1300 } 1301 1302 // We write the header first, starting with the hash buckets count. Normally 1303 // it is the number of entries in HashBuckets, but the "NBuckets" property can 1304 // be used to override this field, which is useful for producing broken 1305 // objects. 1306 if (Section.Header->NBuckets) 1307 support::endian::write<uint32_t>(OS, *Section.Header->NBuckets, 1308 ELFT::TargetEndianness); 1309 else 1310 support::endian::write<uint32_t>(OS, Section.HashBuckets->size(), 1311 ELFT::TargetEndianness); 1312 1313 // Write the index of the first symbol in the dynamic symbol table accessible 1314 // via the hash table. 1315 support::endian::write<uint32_t>(OS, Section.Header->SymNdx, 1316 ELFT::TargetEndianness); 1317 1318 // Write the number of words in the Bloom filter. As above, the "MaskWords" 1319 // property can be used to set this field to any value. 1320 if (Section.Header->MaskWords) 1321 support::endian::write<uint32_t>(OS, *Section.Header->MaskWords, 1322 ELFT::TargetEndianness); 1323 else 1324 support::endian::write<uint32_t>(OS, Section.BloomFilter->size(), 1325 ELFT::TargetEndianness); 1326 1327 // Write the shift constant used by the Bloom filter. 1328 support::endian::write<uint32_t>(OS, Section.Header->Shift2, 1329 ELFT::TargetEndianness); 1330 1331 // We've finished writing the header. Now write the Bloom filter. 1332 for (llvm::yaml::Hex64 Val : *Section.BloomFilter) 1333 support::endian::write<typename ELFT::uint>(OS, Val, 1334 ELFT::TargetEndianness); 1335 1336 // Write an array of hash buckets. 1337 for (llvm::yaml::Hex32 Val : *Section.HashBuckets) 1338 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1339 1340 // Write an array of hash values. 1341 for (llvm::yaml::Hex32 Val : *Section.HashValues) 1342 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1343 1344 SHeader.sh_size = 16 /*Header size*/ + 1345 Section.BloomFilter->size() * sizeof(typename ELFT::uint) + 1346 Section.HashBuckets->size() * 4 + 1347 Section.HashValues->size() * 4; 1348 } 1349 1350 template <class ELFT> 1351 void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill, 1352 ContiguousBlobAccumulator &CBA) { 1353 raw_ostream &OS = CBA.getOSAndAlignedOffset(Fill.ShOffset, /*Align=*/1); 1354 1355 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0; 1356 if (!PatternSize) { 1357 OS.write_zeros(Fill.Size); 1358 return; 1359 } 1360 1361 // Fill the content with the specified pattern. 1362 uint64_t Written = 0; 1363 for (; Written + PatternSize <= Fill.Size; Written += PatternSize) 1364 Fill.Pattern->writeAsBinary(OS); 1365 Fill.Pattern->writeAsBinary(OS, Fill.Size - Written); 1366 } 1367 1368 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() { 1369 size_t SecNdx = -1; 1370 StringSet<> Seen; 1371 for (size_t I = 0; I < Doc.Chunks.size(); ++I) { 1372 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I]; 1373 bool IsSection = isa<ELFYAML::Section>(C.get()); 1374 if (IsSection) 1375 ++SecNdx; 1376 1377 if (C->Name.empty()) 1378 continue; 1379 1380 if (!Seen.insert(C->Name).second) 1381 reportError("repeated section/fill name: '" + C->Name + 1382 "' at YAML section/fill number " + Twine(I)); 1383 if (!IsSection || HasError) 1384 continue; 1385 1386 if (!SN2I.addName(C->Name, SecNdx)) 1387 llvm_unreachable("buildSectionIndex() failed"); 1388 DotShStrtab.add(ELFYAML::dropUniqueSuffix(C->Name)); 1389 } 1390 1391 DotShStrtab.finalize(); 1392 } 1393 1394 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() { 1395 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) { 1396 for (size_t I = 0, S = V.size(); I < S; ++I) { 1397 const ELFYAML::Symbol &Sym = V[I]; 1398 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) 1399 reportError("repeated symbol name: '" + Sym.Name + "'"); 1400 } 1401 }; 1402 1403 if (Doc.Symbols) 1404 Build(*Doc.Symbols, SymN2I); 1405 if (Doc.DynamicSymbols) 1406 Build(*Doc.DynamicSymbols, DynSymN2I); 1407 } 1408 1409 template <class ELFT> void ELFState<ELFT>::finalizeStrings() { 1410 // Add the regular symbol names to .strtab section. 1411 if (Doc.Symbols) 1412 for (const ELFYAML::Symbol &Sym : *Doc.Symbols) 1413 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1414 DotStrtab.finalize(); 1415 1416 // Add the dynamic symbol names to .dynstr section. 1417 if (Doc.DynamicSymbols) 1418 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols) 1419 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1420 1421 // SHT_GNU_verdef and SHT_GNU_verneed sections might also 1422 // add strings to .dynstr section. 1423 for (const ELFYAML::Chunk *Sec : Doc.getSections()) { 1424 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 1425 if (VerNeed->VerneedV) { 1426 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) { 1427 DotDynstr.add(VE.File); 1428 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) 1429 DotDynstr.add(Aux.Name); 1430 } 1431 } 1432 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 1433 if (VerDef->Entries) 1434 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries) 1435 for (StringRef Name : E.VerNames) 1436 DotDynstr.add(Name); 1437 } 1438 } 1439 1440 DotDynstr.finalize(); 1441 } 1442 1443 template <class ELFT> 1444 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 1445 yaml::ErrorHandler EH) { 1446 ELFState<ELFT> State(Doc, EH); 1447 1448 // Finalize .strtab and .dynstr sections. We do that early because want to 1449 // finalize the string table builders before writing the content of the 1450 // sections that might want to use them. 1451 State.finalizeStrings(); 1452 1453 State.buildSectionIndex(); 1454 if (State.HasError) 1455 return false; 1456 1457 State.buildSymbolIndexes(); 1458 1459 std::vector<Elf_Phdr> PHeaders; 1460 State.initProgramHeaders(PHeaders); 1461 1462 // XXX: This offset is tightly coupled with the order that we write 1463 // things to `OS`. 1464 const size_t SectionContentBeginOffset = 1465 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); 1466 ContiguousBlobAccumulator CBA(SectionContentBeginOffset); 1467 1468 std::vector<Elf_Shdr> SHeaders; 1469 State.initSectionHeaders(SHeaders, CBA); 1470 1471 // Now we can decide segment offsets. 1472 State.setProgramHeaderLayout(PHeaders, SHeaders); 1473 1474 if (State.HasError) 1475 return false; 1476 1477 State.writeELFHeader(CBA, OS); 1478 writeArrayData(OS, makeArrayRef(PHeaders)); 1479 CBA.writeBlobToStream(OS); 1480 writeArrayData(OS, makeArrayRef(SHeaders)); 1481 return true; 1482 } 1483 1484 namespace llvm { 1485 namespace yaml { 1486 1487 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) { 1488 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 1489 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); 1490 if (Is64Bit) { 1491 if (IsLE) 1492 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH); 1493 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH); 1494 } 1495 if (IsLE) 1496 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH); 1497 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH); 1498 } 1499 1500 } // namespace yaml 1501 } // namespace llvm 1502