1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The ELF component of yaml2obj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/StringSet.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/MC/StringTableBuilder.h" 18 #include "llvm/Object/ELFObjectFile.h" 19 #include "llvm/ObjectYAML/ELFYAML.h" 20 #include "llvm/ObjectYAML/yaml2obj.h" 21 #include "llvm/Support/EndianStream.h" 22 #include "llvm/Support/LEB128.h" 23 #include "llvm/Support/MemoryBuffer.h" 24 #include "llvm/Support/WithColor.h" 25 #include "llvm/Support/YAMLTraits.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 using namespace llvm; 29 30 // This class is used to build up a contiguous binary blob while keeping 31 // track of an offset in the output (which notionally begins at 32 // `InitialOffset`). 33 namespace { 34 class ContiguousBlobAccumulator { 35 const uint64_t InitialOffset; 36 SmallVector<char, 128> Buf; 37 raw_svector_ostream OS; 38 39 public: 40 ContiguousBlobAccumulator(uint64_t InitialOffset_) 41 : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} 42 43 template <class Integer> 44 raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) { 45 Offset = padToAlignment(Align); 46 return OS; 47 } 48 49 /// \returns The new offset. 50 uint64_t padToAlignment(unsigned Align) { 51 if (Align == 0) 52 Align = 1; 53 uint64_t CurrentOffset = InitialOffset + OS.tell(); 54 uint64_t AlignedOffset = alignTo(CurrentOffset, Align); 55 OS.write_zeros(AlignedOffset - CurrentOffset); 56 return AlignedOffset; // == CurrentOffset; 57 } 58 59 void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } 60 }; 61 62 // Used to keep track of section and symbol names, so that in the YAML file 63 // sections and symbols can be referenced by name instead of by index. 64 class NameToIdxMap { 65 StringMap<unsigned> Map; 66 67 public: 68 /// \Returns false if name is already present in the map. 69 bool addName(StringRef Name, unsigned Ndx) { 70 return Map.insert({Name, Ndx}).second; 71 } 72 /// \Returns false if name is not present in the map. 73 bool lookup(StringRef Name, unsigned &Idx) const { 74 auto I = Map.find(Name); 75 if (I == Map.end()) 76 return false; 77 Idx = I->getValue(); 78 return true; 79 } 80 /// Asserts if name is not present in the map. 81 unsigned get(StringRef Name) const { 82 unsigned Idx; 83 if (lookup(Name, Idx)) 84 return Idx; 85 assert(false && "Expected section not found in index"); 86 return 0; 87 } 88 unsigned size() const { return Map.size(); } 89 }; 90 91 /// "Single point of truth" for the ELF file construction. 92 /// TODO: This class still has a ways to go before it is truly a "single 93 /// point of truth". 94 template <class ELFT> class ELFState { 95 typedef typename ELFT::Ehdr Elf_Ehdr; 96 typedef typename ELFT::Phdr Elf_Phdr; 97 typedef typename ELFT::Shdr Elf_Shdr; 98 typedef typename ELFT::Sym Elf_Sym; 99 typedef typename ELFT::Rel Elf_Rel; 100 typedef typename ELFT::Rela Elf_Rela; 101 typedef typename ELFT::Relr Elf_Relr; 102 typedef typename ELFT::Dyn Elf_Dyn; 103 104 enum class SymtabType { Static, Dynamic }; 105 106 /// The future ".strtab" section. 107 StringTableBuilder DotStrtab{StringTableBuilder::ELF}; 108 109 /// The future ".shstrtab" section. 110 StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; 111 112 /// The future ".dynstr" section. 113 StringTableBuilder DotDynstr{StringTableBuilder::ELF}; 114 115 NameToIdxMap SN2I; 116 NameToIdxMap SymN2I; 117 NameToIdxMap DynSymN2I; 118 ELFYAML::Object &Doc; 119 120 bool HasError = false; 121 yaml::ErrorHandler ErrHandler; 122 void reportError(const Twine &Msg); 123 124 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 125 const StringTableBuilder &Strtab); 126 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); 127 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); 128 129 void buildSectionIndex(); 130 void buildSymbolIndexes(); 131 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders); 132 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, 133 StringRef SecName, ELFYAML::Section *YAMLSec); 134 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 135 ContiguousBlobAccumulator &CBA); 136 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, 137 ContiguousBlobAccumulator &CBA, 138 ELFYAML::Section *YAMLSec); 139 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 140 StringTableBuilder &STB, 141 ContiguousBlobAccumulator &CBA, 142 ELFYAML::Section *YAMLSec); 143 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 144 std::vector<Elf_Shdr> &SHeaders); 145 void finalizeStrings(); 146 void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS); 147 void writeSectionContent(Elf_Shdr &SHeader, 148 const ELFYAML::RawContentSection &Section, 149 ContiguousBlobAccumulator &CBA); 150 void writeSectionContent(Elf_Shdr &SHeader, 151 const ELFYAML::RelocationSection &Section, 152 ContiguousBlobAccumulator &CBA); 153 void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, 154 ContiguousBlobAccumulator &CBA); 155 void writeSectionContent(Elf_Shdr &SHeader, 156 const ELFYAML::SymtabShndxSection &Shndx, 157 ContiguousBlobAccumulator &CBA); 158 void writeSectionContent(Elf_Shdr &SHeader, 159 const ELFYAML::SymverSection &Section, 160 ContiguousBlobAccumulator &CBA); 161 void writeSectionContent(Elf_Shdr &SHeader, 162 const ELFYAML::VerneedSection &Section, 163 ContiguousBlobAccumulator &CBA); 164 void writeSectionContent(Elf_Shdr &SHeader, 165 const ELFYAML::VerdefSection &Section, 166 ContiguousBlobAccumulator &CBA); 167 void writeSectionContent(Elf_Shdr &SHeader, 168 const ELFYAML::MipsABIFlags &Section, 169 ContiguousBlobAccumulator &CBA); 170 void writeSectionContent(Elf_Shdr &SHeader, 171 const ELFYAML::DynamicSection &Section, 172 ContiguousBlobAccumulator &CBA); 173 void writeSectionContent(Elf_Shdr &SHeader, 174 const ELFYAML::StackSizesSection &Section, 175 ContiguousBlobAccumulator &CBA); 176 void writeSectionContent(Elf_Shdr &SHeader, 177 const ELFYAML::HashSection &Section, 178 ContiguousBlobAccumulator &CBA); 179 void writeSectionContent(Elf_Shdr &SHeader, 180 const ELFYAML::AddrsigSection &Section, 181 ContiguousBlobAccumulator &CBA); 182 void writeSectionContent(Elf_Shdr &SHeader, 183 const ELFYAML::NoteSection &Section, 184 ContiguousBlobAccumulator &CBA); 185 void writeSectionContent(Elf_Shdr &SHeader, 186 const ELFYAML::GnuHashSection &Section, 187 ContiguousBlobAccumulator &CBA); 188 189 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); 190 191 public: 192 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 193 yaml::ErrorHandler EH); 194 }; 195 } // end anonymous namespace 196 197 template <class T> static size_t arrayDataSize(ArrayRef<T> A) { 198 return A.size() * sizeof(T); 199 } 200 201 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { 202 OS.write((const char *)A.data(), arrayDataSize(A)); 203 } 204 205 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } 206 207 template <class ELFT> 208 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) 209 : Doc(D), ErrHandler(EH) { 210 StringSet<> DocSections; 211 for (std::unique_ptr<ELFYAML::Section> &D : Doc.Sections) 212 if (!D->Name.empty()) 213 DocSections.insert(D->Name); 214 215 // Insert SHT_NULL section implicitly when it is not defined in YAML. 216 if (Doc.Sections.empty() || Doc.Sections.front()->Type != ELF::SHT_NULL) 217 Doc.Sections.insert( 218 Doc.Sections.begin(), 219 std::make_unique<ELFYAML::Section>( 220 ELFYAML::Section::SectionKind::RawContent, /*IsImplicit=*/true)); 221 222 std::vector<StringRef> ImplicitSections; 223 if (Doc.Symbols) 224 ImplicitSections.push_back(".symtab"); 225 ImplicitSections.insert(ImplicitSections.end(), {".strtab", ".shstrtab"}); 226 227 if (!Doc.DynamicSymbols.empty()) 228 ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"}); 229 230 // Insert placeholders for implicit sections that are not 231 // defined explicitly in YAML. 232 for (StringRef SecName : ImplicitSections) { 233 if (DocSections.count(SecName)) 234 continue; 235 236 std::unique_ptr<ELFYAML::Section> Sec = std::make_unique<ELFYAML::Section>( 237 ELFYAML::Section::SectionKind::RawContent, true /*IsImplicit*/); 238 Sec->Name = SecName; 239 Doc.Sections.push_back(std::move(Sec)); 240 } 241 } 242 243 template <class ELFT> 244 void ELFState<ELFT>::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) { 245 using namespace llvm::ELF; 246 247 Elf_Ehdr Header; 248 zero(Header); 249 Header.e_ident[EI_MAG0] = 0x7f; 250 Header.e_ident[EI_MAG1] = 'E'; 251 Header.e_ident[EI_MAG2] = 'L'; 252 Header.e_ident[EI_MAG3] = 'F'; 253 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 254 Header.e_ident[EI_DATA] = Doc.Header.Data; 255 Header.e_ident[EI_VERSION] = EV_CURRENT; 256 Header.e_ident[EI_OSABI] = Doc.Header.OSABI; 257 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; 258 Header.e_type = Doc.Header.Type; 259 Header.e_machine = Doc.Header.Machine; 260 Header.e_version = EV_CURRENT; 261 Header.e_entry = Doc.Header.Entry; 262 Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0; 263 Header.e_flags = Doc.Header.Flags; 264 Header.e_ehsize = sizeof(Elf_Ehdr); 265 Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0; 266 Header.e_phnum = Doc.ProgramHeaders.size(); 267 268 Header.e_shentsize = 269 Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); 270 // Immediately following the ELF header and program headers. 271 // Align the start of the section header and write the ELF header. 272 uint64_t SHOff; 273 CBA.getOSAndAlignedOffset(SHOff, sizeof(typename ELFT::uint)); 274 Header.e_shoff = 275 Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff; 276 Header.e_shnum = 277 Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.Sections.size(); 278 Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx 279 : SN2I.get(".shstrtab"); 280 281 OS.write((const char *)&Header, sizeof(Header)); 282 } 283 284 template <class ELFT> 285 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) { 286 for (const auto &YamlPhdr : Doc.ProgramHeaders) { 287 Elf_Phdr Phdr; 288 Phdr.p_type = YamlPhdr.Type; 289 Phdr.p_flags = YamlPhdr.Flags; 290 Phdr.p_vaddr = YamlPhdr.VAddr; 291 Phdr.p_paddr = YamlPhdr.PAddr; 292 PHeaders.push_back(Phdr); 293 } 294 } 295 296 template <class ELFT> 297 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec, 298 StringRef LocSym) { 299 unsigned Index; 300 if (SN2I.lookup(S, Index) || to_integer(S, Index)) 301 return Index; 302 303 assert(LocSec.empty() || LocSym.empty()); 304 if (!LocSym.empty()) 305 reportError("unknown section referenced: '" + S + "' by YAML symbol '" + 306 LocSym + "'"); 307 else 308 reportError("unknown section referenced: '" + S + "' by YAML section '" + 309 LocSec + "'"); 310 return 0; 311 } 312 313 template <class ELFT> 314 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec, 315 bool IsDynamic) { 316 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; 317 unsigned Index; 318 // Here we try to look up S in the symbol table. If it is not there, 319 // treat its value as a symbol index. 320 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { 321 reportError("unknown symbol referenced: '" + S + "' by YAML section '" + 322 LocSec + "'"); 323 return 0; 324 } 325 return Index; 326 } 327 328 template <class ELFT> 329 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA, 330 Elf_Shdr &Header, StringRef SecName, 331 ELFYAML::Section *YAMLSec) { 332 // Check if the header was already initialized. 333 if (Header.sh_offset) 334 return false; 335 336 if (SecName == ".symtab") 337 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); 338 else if (SecName == ".strtab") 339 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); 340 else if (SecName == ".shstrtab") 341 initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec); 342 else if (SecName == ".dynsym") 343 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); 344 else if (SecName == ".dynstr") 345 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); 346 else 347 return false; 348 349 // Override the fields if requested. 350 if (YAMLSec) { 351 if (YAMLSec->ShName) 352 Header.sh_name = *YAMLSec->ShName; 353 if (YAMLSec->ShOffset) 354 Header.sh_offset = *YAMLSec->ShOffset; 355 if (YAMLSec->ShSize) 356 Header.sh_size = *YAMLSec->ShSize; 357 } 358 359 return true; 360 } 361 362 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { 363 size_t SuffixPos = S.rfind(" ["); 364 if (SuffixPos == StringRef::npos) 365 return S; 366 return S.substr(0, SuffixPos); 367 } 368 369 template <class ELFT> 370 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 371 ContiguousBlobAccumulator &CBA) { 372 // Ensure SHN_UNDEF entry is present. An all-zero section header is a 373 // valid SHN_UNDEF entry since SHT_NULL == 0. 374 SHeaders.resize(Doc.Sections.size()); 375 376 for (size_t I = 0; I < Doc.Sections.size(); ++I) { 377 ELFYAML::Section *Sec = Doc.Sections[I].get(); 378 if (I == 0 && Sec->IsImplicit) 379 continue; 380 381 // We have a few sections like string or symbol tables that are usually 382 // added implicitly to the end. However, if they are explicitly specified 383 // in the YAML, we need to write them here. This ensures the file offset 384 // remains correct. 385 Elf_Shdr &SHeader = SHeaders[I]; 386 if (initImplicitHeader(CBA, SHeader, Sec->Name, 387 Sec->IsImplicit ? nullptr : Sec)) 388 continue; 389 390 assert(Sec && "It can't be null unless it is an implicit section. But all " 391 "implicit sections should already have been handled above."); 392 393 SHeader.sh_name = 394 DotShStrtab.getOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); 395 SHeader.sh_type = Sec->Type; 396 if (Sec->Flags) 397 SHeader.sh_flags = *Sec->Flags; 398 SHeader.sh_addr = Sec->Address; 399 SHeader.sh_addralign = Sec->AddressAlign; 400 401 if (!Sec->Link.empty()) 402 SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name); 403 404 if (I == 0) { 405 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 406 // We do not write any content for special SHN_UNDEF section. 407 if (RawSec->Size) 408 SHeader.sh_size = *RawSec->Size; 409 if (RawSec->Info) 410 SHeader.sh_info = *RawSec->Info; 411 } 412 if (Sec->EntSize) 413 SHeader.sh_entsize = *Sec->EntSize; 414 } else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 415 writeSectionContent(SHeader, *S, CBA); 416 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) { 417 writeSectionContent(SHeader, *S, CBA); 418 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) { 419 writeSectionContent(SHeader, *S, CBA); 420 } else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) { 421 writeSectionContent(SHeader, *S, CBA); 422 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) { 423 writeSectionContent(SHeader, *S, CBA); 424 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) { 425 SHeader.sh_entsize = 0; 426 SHeader.sh_size = S->Size; 427 // SHT_NOBITS section does not have content 428 // so just to setup the section offset. 429 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 430 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) { 431 writeSectionContent(SHeader, *S, CBA); 432 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) { 433 writeSectionContent(SHeader, *S, CBA); 434 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 435 writeSectionContent(SHeader, *S, CBA); 436 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 437 writeSectionContent(SHeader, *S, CBA); 438 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) { 439 writeSectionContent(SHeader, *S, CBA); 440 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) { 441 writeSectionContent(SHeader, *S, CBA); 442 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) { 443 writeSectionContent(SHeader, *S, CBA); 444 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) { 445 writeSectionContent(SHeader, *S, CBA); 446 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) { 447 writeSectionContent(SHeader, *S, CBA); 448 } else { 449 llvm_unreachable("Unknown section type"); 450 } 451 452 // Override the fields if requested. 453 if (Sec) { 454 if (Sec->ShName) 455 SHeader.sh_name = *Sec->ShName; 456 if (Sec->ShOffset) 457 SHeader.sh_offset = *Sec->ShOffset; 458 if (Sec->ShSize) 459 SHeader.sh_size = *Sec->ShSize; 460 } 461 } 462 } 463 464 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) { 465 for (size_t I = 0; I < Symbols.size(); ++I) 466 if (Symbols[I].Binding.value != ELF::STB_LOCAL) 467 return I; 468 return Symbols.size(); 469 } 470 471 static uint64_t writeContent(raw_ostream &OS, 472 const Optional<yaml::BinaryRef> &Content, 473 const Optional<llvm::yaml::Hex64> &Size) { 474 size_t ContentSize = 0; 475 if (Content) { 476 Content->writeAsBinary(OS); 477 ContentSize = Content->binary_size(); 478 } 479 480 if (!Size) 481 return ContentSize; 482 483 OS.write_zeros(*Size - ContentSize); 484 return *Size; 485 } 486 487 template <class ELFT> 488 std::vector<typename ELFT::Sym> 489 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 490 const StringTableBuilder &Strtab) { 491 std::vector<Elf_Sym> Ret; 492 Ret.resize(Symbols.size() + 1); 493 494 size_t I = 0; 495 for (const ELFYAML::Symbol &Sym : Symbols) { 496 Elf_Sym &Symbol = Ret[++I]; 497 498 // If NameIndex, which contains the name offset, is explicitly specified, we 499 // use it. This is useful for preparing broken objects. Otherwise, we add 500 // the specified Name to the string table builder to get its offset. 501 if (Sym.NameIndex) 502 Symbol.st_name = *Sym.NameIndex; 503 else if (!Sym.Name.empty()) 504 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); 505 506 Symbol.setBindingAndType(Sym.Binding, Sym.Type); 507 if (!Sym.Section.empty()) 508 Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name); 509 else if (Sym.Index) 510 Symbol.st_shndx = *Sym.Index; 511 512 Symbol.st_value = Sym.Value; 513 Symbol.st_other = Sym.Other ? *Sym.Other : 0; 514 Symbol.st_size = Sym.Size; 515 } 516 517 return Ret; 518 } 519 520 template <class ELFT> 521 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, 522 SymtabType STType, 523 ContiguousBlobAccumulator &CBA, 524 ELFYAML::Section *YAMLSec) { 525 526 bool IsStatic = STType == SymtabType::Static; 527 ArrayRef<ELFYAML::Symbol> Symbols; 528 if (IsStatic && Doc.Symbols) 529 Symbols = *Doc.Symbols; 530 else if (!IsStatic) 531 Symbols = Doc.DynamicSymbols; 532 533 ELFYAML::RawContentSection *RawSec = 534 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 535 if (RawSec && !Symbols.empty() && (RawSec->Content || RawSec->Size)) { 536 if (RawSec->Content) 537 reportError("cannot specify both `Content` and " + 538 (IsStatic ? Twine("`Symbols`") : Twine("`DynamicSymbols`")) + 539 " for symbol table section '" + RawSec->Name + "'"); 540 if (RawSec->Size) 541 reportError("cannot specify both `Size` and " + 542 (IsStatic ? Twine("`Symbols`") : Twine("`DynamicSymbols`")) + 543 " for symbol table section '" + RawSec->Name + "'"); 544 return; 545 } 546 547 zero(SHeader); 548 SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); 549 550 if (YAMLSec) 551 SHeader.sh_type = YAMLSec->Type; 552 else 553 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; 554 555 if (RawSec && !RawSec->Link.empty()) { 556 // If the Link field is explicitly defined in the document, 557 // we should use it. 558 SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name); 559 } else { 560 // When we describe the .dynsym section in the document explicitly, it is 561 // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not 562 // added implicitly and we should be able to leave the Link zeroed if 563 // .dynstr is not defined. 564 unsigned Link = 0; 565 if (IsStatic) 566 Link = SN2I.get(".strtab"); 567 else 568 SN2I.lookup(".dynstr", Link); 569 SHeader.sh_link = Link; 570 } 571 572 if (YAMLSec && YAMLSec->Flags) 573 SHeader.sh_flags = *YAMLSec->Flags; 574 else if (!IsStatic) 575 SHeader.sh_flags = ELF::SHF_ALLOC; 576 577 // If the symbol table section is explicitly described in the YAML 578 // then we should set the fields requested. 579 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) 580 : findFirstNonGlobal(Symbols) + 1; 581 SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) 582 ? (uint64_t)(*YAMLSec->EntSize) 583 : sizeof(Elf_Sym); 584 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; 585 SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0; 586 587 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 588 if (RawSec && (RawSec->Content || RawSec->Size)) { 589 assert(Symbols.empty()); 590 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 591 return; 592 } 593 594 std::vector<Elf_Sym> Syms = 595 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); 596 writeArrayData(OS, makeArrayRef(Syms)); 597 SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); 598 } 599 600 template <class ELFT> 601 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 602 StringTableBuilder &STB, 603 ContiguousBlobAccumulator &CBA, 604 ELFYAML::Section *YAMLSec) { 605 zero(SHeader); 606 SHeader.sh_name = DotShStrtab.getOffset(Name); 607 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; 608 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 609 610 ELFYAML::RawContentSection *RawSec = 611 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 612 613 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 614 if (RawSec && (RawSec->Content || RawSec->Size)) { 615 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 616 } else { 617 STB.write(OS); 618 SHeader.sh_size = STB.getSize(); 619 } 620 621 if (YAMLSec && YAMLSec->EntSize) 622 SHeader.sh_entsize = *YAMLSec->EntSize; 623 624 if (RawSec && RawSec->Info) 625 SHeader.sh_info = *RawSec->Info; 626 627 if (YAMLSec && YAMLSec->Flags) 628 SHeader.sh_flags = *YAMLSec->Flags; 629 else if (Name == ".dynstr") 630 SHeader.sh_flags = ELF::SHF_ALLOC; 631 632 // If the section is explicitly described in the YAML 633 // then we want to use its section address. 634 if (YAMLSec) 635 SHeader.sh_addr = YAMLSec->Address; 636 } 637 638 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) { 639 ErrHandler(Msg); 640 HasError = true; 641 } 642 643 template <class ELFT> 644 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 645 std::vector<Elf_Shdr> &SHeaders) { 646 uint32_t PhdrIdx = 0; 647 for (auto &YamlPhdr : Doc.ProgramHeaders) { 648 Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; 649 650 std::vector<Elf_Shdr *> Sections; 651 for (const ELFYAML::SectionName &SecName : YamlPhdr.Sections) { 652 unsigned Index; 653 if (!SN2I.lookup(SecName.Section, Index)) { 654 reportError("unknown section referenced: '" + SecName.Section + 655 "' by program header"); 656 continue; 657 } 658 Sections.push_back(&SHeaders[Index]); 659 } 660 661 if (YamlPhdr.Offset) { 662 PHeader.p_offset = *YamlPhdr.Offset; 663 } else { 664 if (YamlPhdr.Sections.size()) 665 PHeader.p_offset = UINT32_MAX; 666 else 667 PHeader.p_offset = 0; 668 669 // Find the minimum offset for the program header. 670 for (Elf_Shdr *SHeader : Sections) 671 PHeader.p_offset = std::min(PHeader.p_offset, SHeader->sh_offset); 672 } 673 674 // Find the maximum offset of the end of a section in order to set p_filesz 675 // and p_memsz. When setting p_filesz, trailing SHT_NOBITS sections are not 676 // counted. 677 uint64_t FileOffset = PHeader.p_offset, MemOffset = PHeader.p_offset; 678 for (Elf_Shdr *SHeader : Sections) { 679 uint64_t End = SHeader->sh_offset + SHeader->sh_size; 680 MemOffset = std::max(MemOffset, End); 681 682 if (SHeader->sh_type != llvm::ELF::SHT_NOBITS) 683 FileOffset = std::max(FileOffset, End); 684 } 685 686 // Set the file size and the memory size if not set explicitly. 687 PHeader.p_filesz = YamlPhdr.FileSize ? uint64_t(*YamlPhdr.FileSize) 688 : FileOffset - PHeader.p_offset; 689 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) 690 : MemOffset - PHeader.p_offset; 691 692 if (YamlPhdr.Align) { 693 PHeader.p_align = *YamlPhdr.Align; 694 } else { 695 // Set the alignment of the segment to be the maximum alignment of the 696 // sections so that by default the segment has a valid and sensible 697 // alignment. 698 PHeader.p_align = 1; 699 for (Elf_Shdr *SHeader : Sections) 700 PHeader.p_align = std::max(PHeader.p_align, SHeader->sh_addralign); 701 } 702 } 703 } 704 705 template <class ELFT> 706 void ELFState<ELFT>::writeSectionContent( 707 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, 708 ContiguousBlobAccumulator &CBA) { 709 raw_ostream &OS = 710 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 711 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 712 713 if (Section.EntSize) 714 SHeader.sh_entsize = *Section.EntSize; 715 else if (Section.Type == llvm::ELF::SHT_RELR) 716 SHeader.sh_entsize = sizeof(Elf_Relr); 717 else 718 SHeader.sh_entsize = 0; 719 720 if (Section.Info) 721 SHeader.sh_info = *Section.Info; 722 } 723 724 static bool isMips64EL(const ELFYAML::Object &Doc) { 725 return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && 726 Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && 727 Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 728 } 729 730 template <class ELFT> 731 void ELFState<ELFT>::writeSectionContent( 732 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, 733 ContiguousBlobAccumulator &CBA) { 734 assert((Section.Type == llvm::ELF::SHT_REL || 735 Section.Type == llvm::ELF::SHT_RELA) && 736 "Section type is not SHT_REL nor SHT_RELA"); 737 738 bool IsRela = Section.Type == llvm::ELF::SHT_RELA; 739 SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 740 SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size(); 741 742 // For relocation section set link to .symtab by default. 743 unsigned Link = 0; 744 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 745 SHeader.sh_link = Link; 746 747 if (!Section.RelocatableSec.empty()) 748 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); 749 750 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 751 for (const auto &Rel : Section.Relocations) { 752 unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, 753 Section.Link == ".dynsym") 754 : 0; 755 if (IsRela) { 756 Elf_Rela REntry; 757 zero(REntry); 758 REntry.r_offset = Rel.Offset; 759 REntry.r_addend = Rel.Addend; 760 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 761 OS.write((const char *)&REntry, sizeof(REntry)); 762 } else { 763 Elf_Rel REntry; 764 zero(REntry); 765 REntry.r_offset = Rel.Offset; 766 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 767 OS.write((const char *)&REntry, sizeof(REntry)); 768 } 769 } 770 } 771 772 template <class ELFT> 773 void ELFState<ELFT>::writeSectionContent( 774 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, 775 ContiguousBlobAccumulator &CBA) { 776 raw_ostream &OS = 777 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 778 779 for (uint32_t E : Shndx.Entries) 780 support::endian::write<uint32_t>(OS, E, ELFT::TargetEndianness); 781 782 SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4; 783 SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize; 784 } 785 786 template <class ELFT> 787 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 788 const ELFYAML::Group &Section, 789 ContiguousBlobAccumulator &CBA) { 790 assert(Section.Type == llvm::ELF::SHT_GROUP && 791 "Section type is not SHT_GROUP"); 792 793 unsigned Link = 0; 794 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 795 SHeader.sh_link = Link; 796 797 SHeader.sh_entsize = 4; 798 SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); 799 800 if (Section.Signature) 801 SHeader.sh_info = 802 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); 803 804 raw_ostream &OS = 805 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 806 807 for (const ELFYAML::SectionOrType &Member : Section.Members) { 808 unsigned int SectionIndex = 0; 809 if (Member.sectionNameOrType == "GRP_COMDAT") 810 SectionIndex = llvm::ELF::GRP_COMDAT; 811 else 812 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); 813 support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness); 814 } 815 } 816 817 template <class ELFT> 818 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 819 const ELFYAML::SymverSection &Section, 820 ContiguousBlobAccumulator &CBA) { 821 raw_ostream &OS = 822 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 823 for (uint16_t Version : Section.Entries) 824 support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness); 825 826 SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2; 827 SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; 828 } 829 830 template <class ELFT> 831 void ELFState<ELFT>::writeSectionContent( 832 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, 833 ContiguousBlobAccumulator &CBA) { 834 using uintX_t = typename ELFT::uint; 835 raw_ostream &OS = 836 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 837 838 if (Section.Content || Section.Size) { 839 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 840 return; 841 } 842 843 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { 844 support::endian::write<uintX_t>(OS, E.Address, ELFT::TargetEndianness); 845 SHeader.sh_size += sizeof(uintX_t) + encodeULEB128(E.Size, OS); 846 } 847 } 848 849 template <class ELFT> 850 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 851 const ELFYAML::HashSection &Section, 852 ContiguousBlobAccumulator &CBA) { 853 raw_ostream &OS = 854 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 855 856 unsigned Link = 0; 857 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 858 SHeader.sh_link = Link; 859 860 if (Section.Content || Section.Size) { 861 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 862 return; 863 } 864 865 support::endian::write<uint32_t>(OS, Section.Bucket->size(), 866 ELFT::TargetEndianness); 867 support::endian::write<uint32_t>(OS, Section.Chain->size(), 868 ELFT::TargetEndianness); 869 for (uint32_t Val : *Section.Bucket) 870 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 871 for (uint32_t Val : *Section.Chain) 872 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 873 874 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; 875 } 876 877 template <class ELFT> 878 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 879 const ELFYAML::VerdefSection &Section, 880 ContiguousBlobAccumulator &CBA) { 881 typedef typename ELFT::Verdef Elf_Verdef; 882 typedef typename ELFT::Verdaux Elf_Verdaux; 883 raw_ostream &OS = 884 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 885 886 uint64_t AuxCnt = 0; 887 for (size_t I = 0; I < Section.Entries.size(); ++I) { 888 const ELFYAML::VerdefEntry &E = Section.Entries[I]; 889 890 Elf_Verdef VerDef; 891 VerDef.vd_version = E.Version; 892 VerDef.vd_flags = E.Flags; 893 VerDef.vd_ndx = E.VersionNdx; 894 VerDef.vd_hash = E.Hash; 895 VerDef.vd_aux = sizeof(Elf_Verdef); 896 VerDef.vd_cnt = E.VerNames.size(); 897 if (I == Section.Entries.size() - 1) 898 VerDef.vd_next = 0; 899 else 900 VerDef.vd_next = 901 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); 902 OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); 903 904 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { 905 Elf_Verdaux VernAux; 906 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); 907 if (J == E.VerNames.size() - 1) 908 VernAux.vda_next = 0; 909 else 910 VernAux.vda_next = sizeof(Elf_Verdaux); 911 OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); 912 } 913 } 914 915 SHeader.sh_size = Section.Entries.size() * sizeof(Elf_Verdef) + 916 AuxCnt * sizeof(Elf_Verdaux); 917 SHeader.sh_info = Section.Info; 918 } 919 920 template <class ELFT> 921 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 922 const ELFYAML::VerneedSection &Section, 923 ContiguousBlobAccumulator &CBA) { 924 typedef typename ELFT::Verneed Elf_Verneed; 925 typedef typename ELFT::Vernaux Elf_Vernaux; 926 927 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 928 929 uint64_t AuxCnt = 0; 930 for (size_t I = 0; I < Section.VerneedV.size(); ++I) { 931 const ELFYAML::VerneedEntry &VE = Section.VerneedV[I]; 932 933 Elf_Verneed VerNeed; 934 VerNeed.vn_version = VE.Version; 935 VerNeed.vn_file = DotDynstr.getOffset(VE.File); 936 if (I == Section.VerneedV.size() - 1) 937 VerNeed.vn_next = 0; 938 else 939 VerNeed.vn_next = 940 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); 941 VerNeed.vn_cnt = VE.AuxV.size(); 942 VerNeed.vn_aux = sizeof(Elf_Verneed); 943 OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); 944 945 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { 946 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; 947 948 Elf_Vernaux VernAux; 949 VernAux.vna_hash = VAuxE.Hash; 950 VernAux.vna_flags = VAuxE.Flags; 951 VernAux.vna_other = VAuxE.Other; 952 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); 953 if (J == VE.AuxV.size() - 1) 954 VernAux.vna_next = 0; 955 else 956 VernAux.vna_next = sizeof(Elf_Vernaux); 957 OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); 958 } 959 } 960 961 SHeader.sh_size = Section.VerneedV.size() * sizeof(Elf_Verneed) + 962 AuxCnt * sizeof(Elf_Vernaux); 963 SHeader.sh_info = Section.Info; 964 } 965 966 template <class ELFT> 967 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 968 const ELFYAML::MipsABIFlags &Section, 969 ContiguousBlobAccumulator &CBA) { 970 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && 971 "Section type is not SHT_MIPS_ABIFLAGS"); 972 973 object::Elf_Mips_ABIFlags<ELFT> Flags; 974 zero(Flags); 975 SHeader.sh_entsize = sizeof(Flags); 976 SHeader.sh_size = SHeader.sh_entsize; 977 978 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 979 Flags.version = Section.Version; 980 Flags.isa_level = Section.ISALevel; 981 Flags.isa_rev = Section.ISARevision; 982 Flags.gpr_size = Section.GPRSize; 983 Flags.cpr1_size = Section.CPR1Size; 984 Flags.cpr2_size = Section.CPR2Size; 985 Flags.fp_abi = Section.FpABI; 986 Flags.isa_ext = Section.ISAExtension; 987 Flags.ases = Section.ASEs; 988 Flags.flags1 = Section.Flags1; 989 Flags.flags2 = Section.Flags2; 990 OS.write((const char *)&Flags, sizeof(Flags)); 991 } 992 993 template <class ELFT> 994 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 995 const ELFYAML::DynamicSection &Section, 996 ContiguousBlobAccumulator &CBA) { 997 typedef typename ELFT::uint uintX_t; 998 999 assert(Section.Type == llvm::ELF::SHT_DYNAMIC && 1000 "Section type is not SHT_DYNAMIC"); 1001 1002 if (!Section.Entries.empty() && Section.Content) 1003 reportError("cannot specify both raw content and explicit entries " 1004 "for dynamic section '" + 1005 Section.Name + "'"); 1006 1007 if (Section.Content) 1008 SHeader.sh_size = Section.Content->binary_size(); 1009 else 1010 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); 1011 if (Section.EntSize) 1012 SHeader.sh_entsize = *Section.EntSize; 1013 else 1014 SHeader.sh_entsize = sizeof(Elf_Dyn); 1015 1016 raw_ostream &OS = 1017 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1018 for (const ELFYAML::DynamicEntry &DE : Section.Entries) { 1019 support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness); 1020 support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness); 1021 } 1022 if (Section.Content) 1023 Section.Content->writeAsBinary(OS); 1024 } 1025 1026 template <class ELFT> 1027 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1028 const ELFYAML::AddrsigSection &Section, 1029 ContiguousBlobAccumulator &CBA) { 1030 raw_ostream &OS = 1031 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1032 1033 unsigned Link = 0; 1034 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1035 SHeader.sh_link = Link; 1036 1037 if (Section.Content || Section.Size) { 1038 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1039 return; 1040 } 1041 1042 for (const ELFYAML::AddrsigSymbol &Sym : *Section.Symbols) { 1043 uint64_t Val = 1044 Sym.Name ? toSymbolIndex(*Sym.Name, Section.Name, /*IsDynamic=*/false) 1045 : (uint32_t)*Sym.Index; 1046 SHeader.sh_size += encodeULEB128(Val, OS); 1047 } 1048 } 1049 1050 template <class ELFT> 1051 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1052 const ELFYAML::NoteSection &Section, 1053 ContiguousBlobAccumulator &CBA) { 1054 raw_ostream &OS = 1055 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1056 uint64_t Offset = OS.tell(); 1057 1058 if (Section.Content || Section.Size) { 1059 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1060 return; 1061 } 1062 1063 for (const ELFYAML::NoteEntry &NE : *Section.Notes) { 1064 // Write name size. 1065 if (NE.Name.empty()) 1066 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1067 else 1068 support::endian::write<uint32_t>(OS, NE.Name.size() + 1, 1069 ELFT::TargetEndianness); 1070 1071 // Write description size. 1072 if (NE.Desc.binary_size() == 0) 1073 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1074 else 1075 support::endian::write<uint32_t>(OS, NE.Desc.binary_size(), 1076 ELFT::TargetEndianness); 1077 1078 // Write type. 1079 support::endian::write<uint32_t>(OS, NE.Type, ELFT::TargetEndianness); 1080 1081 // Write name, null terminator and padding. 1082 if (!NE.Name.empty()) { 1083 support::endian::write<uint8_t>(OS, arrayRefFromStringRef(NE.Name), 1084 ELFT::TargetEndianness); 1085 support::endian::write<uint8_t>(OS, 0, ELFT::TargetEndianness); 1086 CBA.padToAlignment(4); 1087 } 1088 1089 // Write description and padding. 1090 if (NE.Desc.binary_size() != 0) { 1091 NE.Desc.writeAsBinary(OS); 1092 CBA.padToAlignment(4); 1093 } 1094 } 1095 1096 SHeader.sh_size = OS.tell() - Offset; 1097 } 1098 1099 template <class ELFT> 1100 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1101 const ELFYAML::GnuHashSection &Section, 1102 ContiguousBlobAccumulator &CBA) { 1103 raw_ostream &OS = 1104 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1105 1106 unsigned Link = 0; 1107 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1108 SHeader.sh_link = Link; 1109 1110 if (Section.Content) { 1111 SHeader.sh_size = writeContent(OS, Section.Content, None); 1112 return; 1113 } 1114 1115 // We write the header first, starting with the hash buckets count. Normally 1116 // it is the number of entries in HashBuckets, but the "NBuckets" property can 1117 // be used to override this field, which is useful for producing broken 1118 // objects. 1119 if (Section.Header->NBuckets) 1120 support::endian::write<uint32_t>(OS, *Section.Header->NBuckets, 1121 ELFT::TargetEndianness); 1122 else 1123 support::endian::write<uint32_t>(OS, Section.HashBuckets->size(), 1124 ELFT::TargetEndianness); 1125 1126 // Write the index of the first symbol in the dynamic symbol table accessible 1127 // via the hash table. 1128 support::endian::write<uint32_t>(OS, Section.Header->SymNdx, 1129 ELFT::TargetEndianness); 1130 1131 // Write the number of words in the Bloom filter. As above, the "MaskWords" 1132 // property can be used to set this field to any value. 1133 if (Section.Header->MaskWords) 1134 support::endian::write<uint32_t>(OS, *Section.Header->MaskWords, 1135 ELFT::TargetEndianness); 1136 else 1137 support::endian::write<uint32_t>(OS, Section.BloomFilter->size(), 1138 ELFT::TargetEndianness); 1139 1140 // Write the shift constant used by the Bloom filter. 1141 support::endian::write<uint32_t>(OS, Section.Header->Shift2, 1142 ELFT::TargetEndianness); 1143 1144 // We've finished writing the header. Now write the Bloom filter. 1145 for (llvm::yaml::Hex64 Val : *Section.BloomFilter) 1146 support::endian::write<typename ELFT::uint>(OS, Val, 1147 ELFT::TargetEndianness); 1148 1149 // Write an array of hash buckets. 1150 for (llvm::yaml::Hex32 Val : *Section.HashBuckets) 1151 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1152 1153 // Write an array of hash values. 1154 for (llvm::yaml::Hex32 Val : *Section.HashValues) 1155 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1156 1157 SHeader.sh_size = 16 /*Header size*/ + 1158 Section.BloomFilter->size() * sizeof(typename ELFT::uint) + 1159 Section.HashBuckets->size() * 4 + 1160 Section.HashValues->size() * 4; 1161 } 1162 1163 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() { 1164 for (unsigned I = 0, E = Doc.Sections.size(); I != E; ++I) { 1165 StringRef Name = Doc.Sections[I]->Name; 1166 if (Name.empty()) 1167 continue; 1168 1169 DotShStrtab.add(ELFYAML::dropUniqueSuffix(Name)); 1170 if (!SN2I.addName(Name, I)) 1171 reportError("repeated section name: '" + Name + 1172 "' at YAML section number " + Twine(I)); 1173 } 1174 1175 DotShStrtab.finalize(); 1176 } 1177 1178 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() { 1179 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) { 1180 for (size_t I = 0, S = V.size(); I < S; ++I) { 1181 const ELFYAML::Symbol &Sym = V[I]; 1182 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) 1183 reportError("repeated symbol name: '" + Sym.Name + "'"); 1184 } 1185 }; 1186 1187 if (Doc.Symbols) 1188 Build(*Doc.Symbols, SymN2I); 1189 Build(Doc.DynamicSymbols, DynSymN2I); 1190 } 1191 1192 template <class ELFT> void ELFState<ELFT>::finalizeStrings() { 1193 // Add the regular symbol names to .strtab section. 1194 if (Doc.Symbols) 1195 for (const ELFYAML::Symbol &Sym : *Doc.Symbols) 1196 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1197 DotStrtab.finalize(); 1198 1199 // Add the dynamic symbol names to .dynstr section. 1200 for (const ELFYAML::Symbol &Sym : Doc.DynamicSymbols) 1201 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1202 1203 // SHT_GNU_verdef and SHT_GNU_verneed sections might also 1204 // add strings to .dynstr section. 1205 for (const std::unique_ptr<ELFYAML::Section> &Sec : Doc.Sections) { 1206 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec.get())) { 1207 for (const ELFYAML::VerneedEntry &VE : VerNeed->VerneedV) { 1208 DotDynstr.add(VE.File); 1209 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) 1210 DotDynstr.add(Aux.Name); 1211 } 1212 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec.get())) { 1213 for (const ELFYAML::VerdefEntry &E : VerDef->Entries) 1214 for (StringRef Name : E.VerNames) 1215 DotDynstr.add(Name); 1216 } 1217 } 1218 1219 DotDynstr.finalize(); 1220 } 1221 1222 template <class ELFT> 1223 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 1224 yaml::ErrorHandler EH) { 1225 ELFState<ELFT> State(Doc, EH); 1226 1227 // Finalize .strtab and .dynstr sections. We do that early because want to 1228 // finalize the string table builders before writing the content of the 1229 // sections that might want to use them. 1230 State.finalizeStrings(); 1231 1232 State.buildSectionIndex(); 1233 State.buildSymbolIndexes(); 1234 1235 std::vector<Elf_Phdr> PHeaders; 1236 State.initProgramHeaders(PHeaders); 1237 1238 // XXX: This offset is tightly coupled with the order that we write 1239 // things to `OS`. 1240 const size_t SectionContentBeginOffset = 1241 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); 1242 ContiguousBlobAccumulator CBA(SectionContentBeginOffset); 1243 1244 std::vector<Elf_Shdr> SHeaders; 1245 State.initSectionHeaders(SHeaders, CBA); 1246 1247 // Now we can decide segment offsets. 1248 State.setProgramHeaderLayout(PHeaders, SHeaders); 1249 1250 if (State.HasError) 1251 return false; 1252 1253 State.writeELFHeader(CBA, OS); 1254 writeArrayData(OS, makeArrayRef(PHeaders)); 1255 CBA.writeBlobToStream(OS); 1256 writeArrayData(OS, makeArrayRef(SHeaders)); 1257 return true; 1258 } 1259 1260 namespace llvm { 1261 namespace yaml { 1262 1263 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) { 1264 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 1265 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); 1266 if (Is64Bit) { 1267 if (IsLE) 1268 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH); 1269 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH); 1270 } 1271 if (IsLE) 1272 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH); 1273 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH); 1274 } 1275 1276 } // namespace yaml 1277 } // namespace llvm 1278