1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The ELF component of yaml2obj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/StringSet.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/MC/StringTableBuilder.h" 18 #include "llvm/Object/ELFObjectFile.h" 19 #include "llvm/ObjectYAML/ELFYAML.h" 20 #include "llvm/ObjectYAML/yaml2obj.h" 21 #include "llvm/Support/EndianStream.h" 22 #include "llvm/Support/MemoryBuffer.h" 23 #include "llvm/Support/WithColor.h" 24 #include "llvm/Support/YAMLTraits.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace llvm; 28 29 // This class is used to build up a contiguous binary blob while keeping 30 // track of an offset in the output (which notionally begins at 31 // `InitialOffset`). 32 namespace { 33 class ContiguousBlobAccumulator { 34 const uint64_t InitialOffset; 35 SmallVector<char, 128> Buf; 36 raw_svector_ostream OS; 37 38 /// \returns The new offset. 39 uint64_t padToAlignment(unsigned Align) { 40 if (Align == 0) 41 Align = 1; 42 uint64_t CurrentOffset = InitialOffset + OS.tell(); 43 uint64_t AlignedOffset = alignTo(CurrentOffset, Align); 44 OS.write_zeros(AlignedOffset - CurrentOffset); 45 return AlignedOffset; // == CurrentOffset; 46 } 47 48 public: 49 ContiguousBlobAccumulator(uint64_t InitialOffset_) 50 : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} 51 template <class Integer> 52 raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) { 53 Offset = padToAlignment(Align); 54 return OS; 55 } 56 void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } 57 }; 58 59 // Used to keep track of section and symbol names, so that in the YAML file 60 // sections and symbols can be referenced by name instead of by index. 61 class NameToIdxMap { 62 StringMap<unsigned> Map; 63 64 public: 65 /// \Returns false if name is already present in the map. 66 bool addName(StringRef Name, unsigned Ndx) { 67 return Map.insert({Name, Ndx}).second; 68 } 69 /// \Returns false if name is not present in the map. 70 bool lookup(StringRef Name, unsigned &Idx) const { 71 auto I = Map.find(Name); 72 if (I == Map.end()) 73 return false; 74 Idx = I->getValue(); 75 return true; 76 } 77 /// Asserts if name is not present in the map. 78 unsigned get(StringRef Name) const { 79 unsigned Idx; 80 if (lookup(Name, Idx)) 81 return Idx; 82 assert(false && "Expected section not found in index"); 83 return 0; 84 } 85 unsigned size() const { return Map.size(); } 86 }; 87 88 /// "Single point of truth" for the ELF file construction. 89 /// TODO: This class still has a ways to go before it is truly a "single 90 /// point of truth". 91 template <class ELFT> class ELFState { 92 typedef typename ELFT::Ehdr Elf_Ehdr; 93 typedef typename ELFT::Phdr Elf_Phdr; 94 typedef typename ELFT::Shdr Elf_Shdr; 95 typedef typename ELFT::Sym Elf_Sym; 96 typedef typename ELFT::Rel Elf_Rel; 97 typedef typename ELFT::Rela Elf_Rela; 98 typedef typename ELFT::Relr Elf_Relr; 99 typedef typename ELFT::Dyn Elf_Dyn; 100 101 enum class SymtabType { Static, Dynamic }; 102 103 /// The future ".strtab" section. 104 StringTableBuilder DotStrtab{StringTableBuilder::ELF}; 105 106 /// The future ".shstrtab" section. 107 StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; 108 109 /// The future ".dynstr" section. 110 StringTableBuilder DotDynstr{StringTableBuilder::ELF}; 111 112 NameToIdxMap SN2I; 113 NameToIdxMap SymN2I; 114 NameToIdxMap DynSymN2I; 115 ELFYAML::Object &Doc; 116 117 bool HasError = false; 118 yaml::ErrorHandler ErrHandler; 119 void reportError(const Twine &Msg); 120 121 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 122 const StringTableBuilder &Strtab); 123 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); 124 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); 125 126 void buildSectionIndex(); 127 void buildSymbolIndexes(); 128 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders); 129 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, 130 StringRef SecName, ELFYAML::Section *YAMLSec); 131 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 132 ContiguousBlobAccumulator &CBA); 133 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, 134 ContiguousBlobAccumulator &CBA, 135 ELFYAML::Section *YAMLSec); 136 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 137 StringTableBuilder &STB, 138 ContiguousBlobAccumulator &CBA, 139 ELFYAML::Section *YAMLSec); 140 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 141 std::vector<Elf_Shdr> &SHeaders); 142 void finalizeStrings(); 143 void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS); 144 void writeSectionContent(Elf_Shdr &SHeader, 145 const ELFYAML::RawContentSection &Section, 146 ContiguousBlobAccumulator &CBA); 147 void writeSectionContent(Elf_Shdr &SHeader, 148 const ELFYAML::RelocationSection &Section, 149 ContiguousBlobAccumulator &CBA); 150 void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, 151 ContiguousBlobAccumulator &CBA); 152 void writeSectionContent(Elf_Shdr &SHeader, 153 const ELFYAML::SymtabShndxSection &Shndx, 154 ContiguousBlobAccumulator &CBA); 155 void writeSectionContent(Elf_Shdr &SHeader, 156 const ELFYAML::SymverSection &Section, 157 ContiguousBlobAccumulator &CBA); 158 void writeSectionContent(Elf_Shdr &SHeader, 159 const ELFYAML::VerneedSection &Section, 160 ContiguousBlobAccumulator &CBA); 161 void writeSectionContent(Elf_Shdr &SHeader, 162 const ELFYAML::VerdefSection &Section, 163 ContiguousBlobAccumulator &CBA); 164 void writeSectionContent(Elf_Shdr &SHeader, 165 const ELFYAML::MipsABIFlags &Section, 166 ContiguousBlobAccumulator &CBA); 167 void writeSectionContent(Elf_Shdr &SHeader, 168 const ELFYAML::DynamicSection &Section, 169 ContiguousBlobAccumulator &CBA); 170 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); 171 172 public: 173 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 174 yaml::ErrorHandler EH); 175 }; 176 } // end anonymous namespace 177 178 template <class T> static size_t arrayDataSize(ArrayRef<T> A) { 179 return A.size() * sizeof(T); 180 } 181 182 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { 183 OS.write((const char *)A.data(), arrayDataSize(A)); 184 } 185 186 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } 187 188 template <class ELFT> 189 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) 190 : Doc(D), ErrHandler(EH) { 191 StringSet<> DocSections; 192 for (std::unique_ptr<ELFYAML::Section> &D : Doc.Sections) 193 if (!D->Name.empty()) 194 DocSections.insert(D->Name); 195 196 // Insert SHT_NULL section implicitly when it is not defined in YAML. 197 if (Doc.Sections.empty() || Doc.Sections.front()->Type != ELF::SHT_NULL) 198 Doc.Sections.insert( 199 Doc.Sections.begin(), 200 std::make_unique<ELFYAML::Section>( 201 ELFYAML::Section::SectionKind::RawContent, /*IsImplicit=*/true)); 202 203 std::vector<StringRef> ImplicitSections = {".symtab", ".strtab", ".shstrtab"}; 204 if (!Doc.DynamicSymbols.empty()) 205 ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"}); 206 207 // Insert placeholders for implicit sections that are not 208 // defined explicitly in YAML. 209 for (StringRef SecName : ImplicitSections) { 210 if (DocSections.count(SecName)) 211 continue; 212 213 std::unique_ptr<ELFYAML::Section> Sec = std::make_unique<ELFYAML::Section>( 214 ELFYAML::Section::SectionKind::RawContent, true /*IsImplicit*/); 215 Sec->Name = SecName; 216 Doc.Sections.push_back(std::move(Sec)); 217 } 218 } 219 220 template <class ELFT> 221 void ELFState<ELFT>::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) { 222 using namespace llvm::ELF; 223 224 Elf_Ehdr Header; 225 zero(Header); 226 Header.e_ident[EI_MAG0] = 0x7f; 227 Header.e_ident[EI_MAG1] = 'E'; 228 Header.e_ident[EI_MAG2] = 'L'; 229 Header.e_ident[EI_MAG3] = 'F'; 230 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 231 Header.e_ident[EI_DATA] = Doc.Header.Data; 232 Header.e_ident[EI_VERSION] = EV_CURRENT; 233 Header.e_ident[EI_OSABI] = Doc.Header.OSABI; 234 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; 235 Header.e_type = Doc.Header.Type; 236 Header.e_machine = Doc.Header.Machine; 237 Header.e_version = EV_CURRENT; 238 Header.e_entry = Doc.Header.Entry; 239 Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0; 240 Header.e_flags = Doc.Header.Flags; 241 Header.e_ehsize = sizeof(Elf_Ehdr); 242 Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0; 243 Header.e_phnum = Doc.ProgramHeaders.size(); 244 245 Header.e_shentsize = 246 Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); 247 // Immediately following the ELF header and program headers. 248 // Align the start of the section header and write the ELF header. 249 uint64_t SHOff; 250 CBA.getOSAndAlignedOffset(SHOff, sizeof(typename ELFT::uint)); 251 Header.e_shoff = 252 Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff; 253 Header.e_shnum = 254 Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.Sections.size(); 255 Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx 256 : SN2I.get(".shstrtab"); 257 258 OS.write((const char *)&Header, sizeof(Header)); 259 } 260 261 template <class ELFT> 262 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) { 263 for (const auto &YamlPhdr : Doc.ProgramHeaders) { 264 Elf_Phdr Phdr; 265 Phdr.p_type = YamlPhdr.Type; 266 Phdr.p_flags = YamlPhdr.Flags; 267 Phdr.p_vaddr = YamlPhdr.VAddr; 268 Phdr.p_paddr = YamlPhdr.PAddr; 269 PHeaders.push_back(Phdr); 270 } 271 } 272 273 template <class ELFT> 274 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec, 275 StringRef LocSym) { 276 unsigned Index; 277 if (SN2I.lookup(S, Index) || to_integer(S, Index)) 278 return Index; 279 280 assert(LocSec.empty() || LocSym.empty()); 281 if (!LocSym.empty()) 282 reportError("unknown section referenced: '" + S + "' by YAML symbol '" + 283 LocSym + "'"); 284 else 285 reportError("unknown section referenced: '" + S + "' by YAML section '" + 286 LocSec + "'"); 287 return 0; 288 } 289 290 template <class ELFT> 291 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec, 292 bool IsDynamic) { 293 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; 294 unsigned Index; 295 // Here we try to look up S in the symbol table. If it is not there, 296 // treat its value as a symbol index. 297 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { 298 reportError("unknown symbol referenced: '" + S + "' by YAML section '" + 299 LocSec + "'"); 300 return 0; 301 } 302 return Index; 303 } 304 305 template <class ELFT> 306 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA, 307 Elf_Shdr &Header, StringRef SecName, 308 ELFYAML::Section *YAMLSec) { 309 // Check if the header was already initialized. 310 if (Header.sh_offset) 311 return false; 312 313 if (SecName == ".symtab") 314 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); 315 else if (SecName == ".strtab") 316 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); 317 else if (SecName == ".shstrtab") 318 initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec); 319 else if (SecName == ".dynsym") 320 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); 321 else if (SecName == ".dynstr") 322 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); 323 else 324 return false; 325 326 // Override the fields if requested. 327 if (YAMLSec) { 328 if (YAMLSec->ShName) 329 Header.sh_name = *YAMLSec->ShName; 330 if (YAMLSec->ShOffset) 331 Header.sh_offset = *YAMLSec->ShOffset; 332 if (YAMLSec->ShSize) 333 Header.sh_size = *YAMLSec->ShSize; 334 } 335 336 return true; 337 } 338 339 static StringRef dropUniqueSuffix(StringRef S) { 340 size_t SuffixPos = S.rfind(" ["); 341 if (SuffixPos == StringRef::npos) 342 return S; 343 return S.substr(0, SuffixPos); 344 } 345 346 template <class ELFT> 347 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 348 ContiguousBlobAccumulator &CBA) { 349 // Ensure SHN_UNDEF entry is present. An all-zero section header is a 350 // valid SHN_UNDEF entry since SHT_NULL == 0. 351 SHeaders.resize(Doc.Sections.size()); 352 353 for (size_t I = 0; I < Doc.Sections.size(); ++I) { 354 ELFYAML::Section *Sec = Doc.Sections[I].get(); 355 if (I == 0 && Sec->IsImplicit) 356 continue; 357 358 // We have a few sections like string or symbol tables that are usually 359 // added implicitly to the end. However, if they are explicitly specified 360 // in the YAML, we need to write them here. This ensures the file offset 361 // remains correct. 362 Elf_Shdr &SHeader = SHeaders[I]; 363 if (initImplicitHeader(CBA, SHeader, Sec->Name, 364 Sec->IsImplicit ? nullptr : Sec)) 365 continue; 366 367 assert(Sec && "It can't be null unless it is an implicit section. But all " 368 "implicit sections should already have been handled above."); 369 370 SHeader.sh_name = DotShStrtab.getOffset(dropUniqueSuffix(Sec->Name)); 371 SHeader.sh_type = Sec->Type; 372 if (Sec->Flags) 373 SHeader.sh_flags = *Sec->Flags; 374 SHeader.sh_addr = Sec->Address; 375 SHeader.sh_addralign = Sec->AddressAlign; 376 377 if (!Sec->Link.empty()) 378 SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name); 379 380 if (I == 0) { 381 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 382 // We do not write any content for special SHN_UNDEF section. 383 if (RawSec->Size) 384 SHeader.sh_size = *RawSec->Size; 385 if (RawSec->Info) 386 SHeader.sh_info = *RawSec->Info; 387 } 388 if (Sec->EntSize) 389 SHeader.sh_entsize = *Sec->EntSize; 390 } else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 391 writeSectionContent(SHeader, *S, CBA); 392 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) { 393 writeSectionContent(SHeader, *S, CBA); 394 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) { 395 writeSectionContent(SHeader, *S, CBA); 396 } else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) { 397 writeSectionContent(SHeader, *S, CBA); 398 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) { 399 writeSectionContent(SHeader, *S, CBA); 400 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) { 401 SHeader.sh_entsize = 0; 402 SHeader.sh_size = S->Size; 403 // SHT_NOBITS section does not have content 404 // so just to setup the section offset. 405 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 406 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) { 407 writeSectionContent(SHeader, *S, CBA); 408 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) { 409 writeSectionContent(SHeader, *S, CBA); 410 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 411 writeSectionContent(SHeader, *S, CBA); 412 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 413 writeSectionContent(SHeader, *S, CBA); 414 } else { 415 llvm_unreachable("Unknown section type"); 416 } 417 418 // Override the fields if requested. 419 if (Sec) { 420 if (Sec->ShName) 421 SHeader.sh_name = *Sec->ShName; 422 if (Sec->ShOffset) 423 SHeader.sh_offset = *Sec->ShOffset; 424 if (Sec->ShSize) 425 SHeader.sh_size = *Sec->ShSize; 426 } 427 } 428 } 429 430 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) { 431 for (size_t I = 0; I < Symbols.size(); ++I) 432 if (Symbols[I].Binding.value != ELF::STB_LOCAL) 433 return I; 434 return Symbols.size(); 435 } 436 437 static uint64_t writeRawSectionData(raw_ostream &OS, 438 const ELFYAML::RawContentSection &RawSec) { 439 size_t ContentSize = 0; 440 if (RawSec.Content) { 441 RawSec.Content->writeAsBinary(OS); 442 ContentSize = RawSec.Content->binary_size(); 443 } 444 445 if (!RawSec.Size) 446 return ContentSize; 447 448 OS.write_zeros(*RawSec.Size - ContentSize); 449 return *RawSec.Size; 450 } 451 452 template <class ELFT> 453 std::vector<typename ELFT::Sym> 454 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 455 const StringTableBuilder &Strtab) { 456 std::vector<Elf_Sym> Ret; 457 Ret.resize(Symbols.size() + 1); 458 459 size_t I = 0; 460 for (const auto &Sym : Symbols) { 461 Elf_Sym &Symbol = Ret[++I]; 462 463 // If NameIndex, which contains the name offset, is explicitly specified, we 464 // use it. This is useful for preparing broken objects. Otherwise, we add 465 // the specified Name to the string table builder to get its offset. 466 if (Sym.NameIndex) 467 Symbol.st_name = *Sym.NameIndex; 468 else if (!Sym.Name.empty()) 469 Symbol.st_name = Strtab.getOffset(dropUniqueSuffix(Sym.Name)); 470 471 Symbol.setBindingAndType(Sym.Binding, Sym.Type); 472 if (!Sym.Section.empty()) 473 Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name); 474 else if (Sym.Index) 475 Symbol.st_shndx = *Sym.Index; 476 477 Symbol.st_value = Sym.Value; 478 Symbol.st_other = Sym.Other ? *Sym.Other : 0; 479 Symbol.st_size = Sym.Size; 480 } 481 482 return Ret; 483 } 484 485 template <class ELFT> 486 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, 487 SymtabType STType, 488 ContiguousBlobAccumulator &CBA, 489 ELFYAML::Section *YAMLSec) { 490 491 bool IsStatic = STType == SymtabType::Static; 492 const auto &Symbols = IsStatic ? Doc.Symbols : Doc.DynamicSymbols; 493 494 ELFYAML::RawContentSection *RawSec = 495 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 496 if (RawSec && !Symbols.empty() && (RawSec->Content || RawSec->Size)) { 497 if (RawSec->Content) 498 reportError("cannot specify both `Content` and " + 499 (IsStatic ? Twine("`Symbols`") : Twine("`DynamicSymbols`")) + 500 " for symbol table section '" + RawSec->Name + "'"); 501 if (RawSec->Size) 502 reportError("cannot specify both `Size` and " + 503 (IsStatic ? Twine("`Symbols`") : Twine("`DynamicSymbols`")) + 504 " for symbol table section '" + RawSec->Name + "'"); 505 return; 506 } 507 508 zero(SHeader); 509 SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); 510 511 if (YAMLSec) 512 SHeader.sh_type = YAMLSec->Type; 513 else 514 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; 515 516 if (RawSec && !RawSec->Link.empty()) { 517 // If the Link field is explicitly defined in the document, 518 // we should use it. 519 SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name); 520 } else { 521 // When we describe the .dynsym section in the document explicitly, it is 522 // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not 523 // added implicitly and we should be able to leave the Link zeroed if 524 // .dynstr is not defined. 525 unsigned Link = 0; 526 if (IsStatic) 527 Link = SN2I.get(".strtab"); 528 else 529 SN2I.lookup(".dynstr", Link); 530 SHeader.sh_link = Link; 531 } 532 533 if (YAMLSec && YAMLSec->Flags) 534 SHeader.sh_flags = *YAMLSec->Flags; 535 else if (!IsStatic) 536 SHeader.sh_flags = ELF::SHF_ALLOC; 537 538 // If the symbol table section is explicitly described in the YAML 539 // then we should set the fields requested. 540 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) 541 : findFirstNonGlobal(Symbols) + 1; 542 SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) 543 ? (uint64_t)(*YAMLSec->EntSize) 544 : sizeof(Elf_Sym); 545 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; 546 SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0; 547 548 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 549 if (RawSec && (RawSec->Content || RawSec->Size)) { 550 assert(Symbols.empty()); 551 SHeader.sh_size = writeRawSectionData(OS, *RawSec); 552 return; 553 } 554 555 std::vector<Elf_Sym> Syms = 556 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); 557 writeArrayData(OS, makeArrayRef(Syms)); 558 SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); 559 } 560 561 template <class ELFT> 562 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 563 StringTableBuilder &STB, 564 ContiguousBlobAccumulator &CBA, 565 ELFYAML::Section *YAMLSec) { 566 zero(SHeader); 567 SHeader.sh_name = DotShStrtab.getOffset(Name); 568 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; 569 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 570 571 ELFYAML::RawContentSection *RawSec = 572 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 573 574 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 575 if (RawSec && (RawSec->Content || RawSec->Size)) { 576 SHeader.sh_size = writeRawSectionData(OS, *RawSec); 577 } else { 578 STB.write(OS); 579 SHeader.sh_size = STB.getSize(); 580 } 581 582 if (YAMLSec && YAMLSec->EntSize) 583 SHeader.sh_entsize = *YAMLSec->EntSize; 584 585 if (RawSec && RawSec->Info) 586 SHeader.sh_info = *RawSec->Info; 587 588 if (YAMLSec && YAMLSec->Flags) 589 SHeader.sh_flags = *YAMLSec->Flags; 590 else if (Name == ".dynstr") 591 SHeader.sh_flags = ELF::SHF_ALLOC; 592 593 // If the section is explicitly described in the YAML 594 // then we want to use its section address. 595 if (YAMLSec) 596 SHeader.sh_addr = YAMLSec->Address; 597 } 598 599 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) { 600 ErrHandler(Msg); 601 HasError = true; 602 } 603 604 template <class ELFT> 605 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 606 std::vector<Elf_Shdr> &SHeaders) { 607 uint32_t PhdrIdx = 0; 608 for (auto &YamlPhdr : Doc.ProgramHeaders) { 609 Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; 610 611 std::vector<Elf_Shdr *> Sections; 612 for (const ELFYAML::SectionName &SecName : YamlPhdr.Sections) { 613 unsigned Index; 614 if (!SN2I.lookup(SecName.Section, Index)) { 615 reportError("unknown section referenced: '" + SecName.Section + 616 "' by program header"); 617 continue; 618 } 619 Sections.push_back(&SHeaders[Index]); 620 } 621 622 if (YamlPhdr.Offset) { 623 PHeader.p_offset = *YamlPhdr.Offset; 624 } else { 625 if (YamlPhdr.Sections.size()) 626 PHeader.p_offset = UINT32_MAX; 627 else 628 PHeader.p_offset = 0; 629 630 // Find the minimum offset for the program header. 631 for (Elf_Shdr *SHeader : Sections) 632 PHeader.p_offset = std::min(PHeader.p_offset, SHeader->sh_offset); 633 } 634 635 // Find the maximum offset of the end of a section in order to set p_filesz 636 // and p_memsz. When setting p_filesz, trailing SHT_NOBITS sections are not 637 // counted. 638 uint64_t FileOffset = PHeader.p_offset, MemOffset = PHeader.p_offset; 639 for (Elf_Shdr *SHeader : Sections) { 640 uint64_t End = SHeader->sh_offset + SHeader->sh_size; 641 MemOffset = std::max(MemOffset, End); 642 643 if (SHeader->sh_type != llvm::ELF::SHT_NOBITS) 644 FileOffset = std::max(FileOffset, End); 645 } 646 647 // Set the file size and the memory size if not set explicitly. 648 PHeader.p_filesz = YamlPhdr.FileSize ? uint64_t(*YamlPhdr.FileSize) 649 : FileOffset - PHeader.p_offset; 650 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) 651 : MemOffset - PHeader.p_offset; 652 653 if (YamlPhdr.Align) { 654 PHeader.p_align = *YamlPhdr.Align; 655 } else { 656 // Set the alignment of the segment to be the maximum alignment of the 657 // sections so that by default the segment has a valid and sensible 658 // alignment. 659 PHeader.p_align = 1; 660 for (Elf_Shdr *SHeader : Sections) 661 PHeader.p_align = std::max(PHeader.p_align, SHeader->sh_addralign); 662 } 663 } 664 } 665 666 template <class ELFT> 667 void ELFState<ELFT>::writeSectionContent( 668 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, 669 ContiguousBlobAccumulator &CBA) { 670 raw_ostream &OS = 671 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 672 SHeader.sh_size = writeRawSectionData(OS, Section); 673 674 if (Section.EntSize) 675 SHeader.sh_entsize = *Section.EntSize; 676 else if (Section.Type == llvm::ELF::SHT_RELR) 677 SHeader.sh_entsize = sizeof(Elf_Relr); 678 else 679 SHeader.sh_entsize = 0; 680 681 if (Section.Info) 682 SHeader.sh_info = *Section.Info; 683 } 684 685 static bool isMips64EL(const ELFYAML::Object &Doc) { 686 return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && 687 Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && 688 Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 689 } 690 691 template <class ELFT> 692 void ELFState<ELFT>::writeSectionContent( 693 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, 694 ContiguousBlobAccumulator &CBA) { 695 assert((Section.Type == llvm::ELF::SHT_REL || 696 Section.Type == llvm::ELF::SHT_RELA) && 697 "Section type is not SHT_REL nor SHT_RELA"); 698 699 bool IsRela = Section.Type == llvm::ELF::SHT_RELA; 700 SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 701 SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size(); 702 703 // For relocation section set link to .symtab by default. 704 if (Section.Link.empty()) 705 SHeader.sh_link = SN2I.get(".symtab"); 706 707 if (!Section.RelocatableSec.empty()) 708 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); 709 710 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 711 for (const auto &Rel : Section.Relocations) { 712 unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, 713 Section.Link == ".dynsym") 714 : 0; 715 if (IsRela) { 716 Elf_Rela REntry; 717 zero(REntry); 718 REntry.r_offset = Rel.Offset; 719 REntry.r_addend = Rel.Addend; 720 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 721 OS.write((const char *)&REntry, sizeof(REntry)); 722 } else { 723 Elf_Rel REntry; 724 zero(REntry); 725 REntry.r_offset = Rel.Offset; 726 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 727 OS.write((const char *)&REntry, sizeof(REntry)); 728 } 729 } 730 } 731 732 template <class ELFT> 733 void ELFState<ELFT>::writeSectionContent( 734 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, 735 ContiguousBlobAccumulator &CBA) { 736 raw_ostream &OS = 737 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 738 739 for (uint32_t E : Shndx.Entries) 740 support::endian::write<uint32_t>(OS, E, ELFT::TargetEndianness); 741 742 SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4; 743 SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize; 744 } 745 746 template <class ELFT> 747 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 748 const ELFYAML::Group &Section, 749 ContiguousBlobAccumulator &CBA) { 750 assert(Section.Type == llvm::ELF::SHT_GROUP && 751 "Section type is not SHT_GROUP"); 752 753 SHeader.sh_entsize = 4; 754 SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); 755 SHeader.sh_info = 756 toSymbolIndex(Section.Signature, Section.Name, /*IsDynamic=*/false); 757 758 raw_ostream &OS = 759 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 760 761 for (const ELFYAML::SectionOrType &Member : Section.Members) { 762 unsigned int SectionIndex = 0; 763 if (Member.sectionNameOrType == "GRP_COMDAT") 764 SectionIndex = llvm::ELF::GRP_COMDAT; 765 else 766 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); 767 support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness); 768 } 769 } 770 771 template <class ELFT> 772 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 773 const ELFYAML::SymverSection &Section, 774 ContiguousBlobAccumulator &CBA) { 775 raw_ostream &OS = 776 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 777 for (uint16_t Version : Section.Entries) 778 support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness); 779 780 SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2; 781 SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; 782 } 783 784 template <class ELFT> 785 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 786 const ELFYAML::VerdefSection &Section, 787 ContiguousBlobAccumulator &CBA) { 788 typedef typename ELFT::Verdef Elf_Verdef; 789 typedef typename ELFT::Verdaux Elf_Verdaux; 790 raw_ostream &OS = 791 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 792 793 uint64_t AuxCnt = 0; 794 for (size_t I = 0; I < Section.Entries.size(); ++I) { 795 const ELFYAML::VerdefEntry &E = Section.Entries[I]; 796 797 Elf_Verdef VerDef; 798 VerDef.vd_version = E.Version; 799 VerDef.vd_flags = E.Flags; 800 VerDef.vd_ndx = E.VersionNdx; 801 VerDef.vd_hash = E.Hash; 802 VerDef.vd_aux = sizeof(Elf_Verdef); 803 VerDef.vd_cnt = E.VerNames.size(); 804 if (I == Section.Entries.size() - 1) 805 VerDef.vd_next = 0; 806 else 807 VerDef.vd_next = 808 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); 809 OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); 810 811 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { 812 Elf_Verdaux VernAux; 813 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); 814 if (J == E.VerNames.size() - 1) 815 VernAux.vda_next = 0; 816 else 817 VernAux.vda_next = sizeof(Elf_Verdaux); 818 OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); 819 } 820 } 821 822 SHeader.sh_size = Section.Entries.size() * sizeof(Elf_Verdef) + 823 AuxCnt * sizeof(Elf_Verdaux); 824 SHeader.sh_info = Section.Info; 825 } 826 827 template <class ELFT> 828 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 829 const ELFYAML::VerneedSection &Section, 830 ContiguousBlobAccumulator &CBA) { 831 typedef typename ELFT::Verneed Elf_Verneed; 832 typedef typename ELFT::Vernaux Elf_Vernaux; 833 834 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 835 836 uint64_t AuxCnt = 0; 837 for (size_t I = 0; I < Section.VerneedV.size(); ++I) { 838 const ELFYAML::VerneedEntry &VE = Section.VerneedV[I]; 839 840 Elf_Verneed VerNeed; 841 VerNeed.vn_version = VE.Version; 842 VerNeed.vn_file = DotDynstr.getOffset(VE.File); 843 if (I == Section.VerneedV.size() - 1) 844 VerNeed.vn_next = 0; 845 else 846 VerNeed.vn_next = 847 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); 848 VerNeed.vn_cnt = VE.AuxV.size(); 849 VerNeed.vn_aux = sizeof(Elf_Verneed); 850 OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); 851 852 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { 853 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; 854 855 Elf_Vernaux VernAux; 856 VernAux.vna_hash = VAuxE.Hash; 857 VernAux.vna_flags = VAuxE.Flags; 858 VernAux.vna_other = VAuxE.Other; 859 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); 860 if (J == VE.AuxV.size() - 1) 861 VernAux.vna_next = 0; 862 else 863 VernAux.vna_next = sizeof(Elf_Vernaux); 864 OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); 865 } 866 } 867 868 SHeader.sh_size = Section.VerneedV.size() * sizeof(Elf_Verneed) + 869 AuxCnt * sizeof(Elf_Vernaux); 870 SHeader.sh_info = Section.Info; 871 } 872 873 template <class ELFT> 874 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 875 const ELFYAML::MipsABIFlags &Section, 876 ContiguousBlobAccumulator &CBA) { 877 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && 878 "Section type is not SHT_MIPS_ABIFLAGS"); 879 880 object::Elf_Mips_ABIFlags<ELFT> Flags; 881 zero(Flags); 882 SHeader.sh_entsize = sizeof(Flags); 883 SHeader.sh_size = SHeader.sh_entsize; 884 885 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 886 Flags.version = Section.Version; 887 Flags.isa_level = Section.ISALevel; 888 Flags.isa_rev = Section.ISARevision; 889 Flags.gpr_size = Section.GPRSize; 890 Flags.cpr1_size = Section.CPR1Size; 891 Flags.cpr2_size = Section.CPR2Size; 892 Flags.fp_abi = Section.FpABI; 893 Flags.isa_ext = Section.ISAExtension; 894 Flags.ases = Section.ASEs; 895 Flags.flags1 = Section.Flags1; 896 Flags.flags2 = Section.Flags2; 897 OS.write((const char *)&Flags, sizeof(Flags)); 898 } 899 900 template <class ELFT> 901 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 902 const ELFYAML::DynamicSection &Section, 903 ContiguousBlobAccumulator &CBA) { 904 typedef typename ELFT::uint uintX_t; 905 906 assert(Section.Type == llvm::ELF::SHT_DYNAMIC && 907 "Section type is not SHT_DYNAMIC"); 908 909 if (!Section.Entries.empty() && Section.Content) 910 reportError("cannot specify both raw content and explicit entries " 911 "for dynamic section '" + 912 Section.Name + "'"); 913 914 if (Section.Content) 915 SHeader.sh_size = Section.Content->binary_size(); 916 else 917 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); 918 if (Section.EntSize) 919 SHeader.sh_entsize = *Section.EntSize; 920 else 921 SHeader.sh_entsize = sizeof(Elf_Dyn); 922 923 raw_ostream &OS = 924 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 925 for (const ELFYAML::DynamicEntry &DE : Section.Entries) { 926 support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness); 927 support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness); 928 } 929 if (Section.Content) 930 Section.Content->writeAsBinary(OS); 931 } 932 933 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() { 934 for (unsigned I = 0, E = Doc.Sections.size(); I != E; ++I) { 935 StringRef Name = Doc.Sections[I]->Name; 936 if (Name.empty()) 937 continue; 938 939 DotShStrtab.add(dropUniqueSuffix(Name)); 940 if (!SN2I.addName(Name, I)) 941 reportError("repeated section name: '" + Name + 942 "' at YAML section number " + Twine(I)); 943 } 944 945 DotShStrtab.finalize(); 946 } 947 948 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() { 949 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) { 950 for (size_t I = 0, S = V.size(); I < S; ++I) { 951 const ELFYAML::Symbol &Sym = V[I]; 952 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) 953 reportError("repeated symbol name: '" + Sym.Name + "'"); 954 } 955 }; 956 957 Build(Doc.Symbols, SymN2I); 958 Build(Doc.DynamicSymbols, DynSymN2I); 959 } 960 961 template <class ELFT> void ELFState<ELFT>::finalizeStrings() { 962 // Add the regular symbol names to .strtab section. 963 for (const ELFYAML::Symbol &Sym : Doc.Symbols) 964 DotStrtab.add(dropUniqueSuffix(Sym.Name)); 965 DotStrtab.finalize(); 966 967 // Add the dynamic symbol names to .dynstr section. 968 for (const ELFYAML::Symbol &Sym : Doc.DynamicSymbols) 969 DotDynstr.add(dropUniqueSuffix(Sym.Name)); 970 971 // SHT_GNU_verdef and SHT_GNU_verneed sections might also 972 // add strings to .dynstr section. 973 for (const std::unique_ptr<ELFYAML::Section> &Sec : Doc.Sections) { 974 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec.get())) { 975 for (const ELFYAML::VerneedEntry &VE : VerNeed->VerneedV) { 976 DotDynstr.add(VE.File); 977 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) 978 DotDynstr.add(Aux.Name); 979 } 980 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec.get())) { 981 for (const ELFYAML::VerdefEntry &E : VerDef->Entries) 982 for (StringRef Name : E.VerNames) 983 DotDynstr.add(Name); 984 } 985 } 986 987 DotDynstr.finalize(); 988 } 989 990 template <class ELFT> 991 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 992 yaml::ErrorHandler EH) { 993 ELFState<ELFT> State(Doc, EH); 994 995 // Finalize .strtab and .dynstr sections. We do that early because want to 996 // finalize the string table builders before writing the content of the 997 // sections that might want to use them. 998 State.finalizeStrings(); 999 1000 State.buildSectionIndex(); 1001 State.buildSymbolIndexes(); 1002 1003 std::vector<Elf_Phdr> PHeaders; 1004 State.initProgramHeaders(PHeaders); 1005 1006 // XXX: This offset is tightly coupled with the order that we write 1007 // things to `OS`. 1008 const size_t SectionContentBeginOffset = 1009 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); 1010 ContiguousBlobAccumulator CBA(SectionContentBeginOffset); 1011 1012 std::vector<Elf_Shdr> SHeaders; 1013 State.initSectionHeaders(SHeaders, CBA); 1014 1015 // Now we can decide segment offsets 1016 State.setProgramHeaderLayout(PHeaders, SHeaders); 1017 1018 if (State.HasError) 1019 return false; 1020 1021 State.writeELFHeader(CBA, OS); 1022 writeArrayData(OS, makeArrayRef(PHeaders)); 1023 CBA.writeBlobToStream(OS); 1024 writeArrayData(OS, makeArrayRef(SHeaders)); 1025 return true; 1026 } 1027 1028 namespace llvm { 1029 namespace yaml { 1030 1031 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) { 1032 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 1033 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); 1034 if (Is64Bit) { 1035 if (IsLE) 1036 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH); 1037 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH); 1038 } 1039 if (IsLE) 1040 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH); 1041 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH); 1042 } 1043 1044 } // namespace yaml 1045 } // namespace llvm 1046