1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The ELF component of yaml2obj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/StringSet.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/MC/StringTableBuilder.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/ObjectYAML/ELFYAML.h" 21 #include "llvm/ObjectYAML/yaml2obj.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/LEB128.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 #include "llvm/Support/WithColor.h" 26 #include "llvm/Support/YAMLTraits.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace llvm; 30 31 // This class is used to build up a contiguous binary blob while keeping 32 // track of an offset in the output (which notionally begins at 33 // `InitialOffset`). 34 namespace { 35 class ContiguousBlobAccumulator { 36 const uint64_t InitialOffset; 37 SmallVector<char, 128> Buf; 38 raw_svector_ostream OS; 39 40 public: 41 ContiguousBlobAccumulator(uint64_t InitialOffset_) 42 : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} 43 44 template <class Integer> 45 raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) { 46 Offset = padToAlignment(Align); 47 return OS; 48 } 49 50 /// \returns The new offset. 51 uint64_t padToAlignment(unsigned Align) { 52 if (Align == 0) 53 Align = 1; 54 uint64_t CurrentOffset = InitialOffset + OS.tell(); 55 uint64_t AlignedOffset = alignTo(CurrentOffset, Align); 56 OS.write_zeros(AlignedOffset - CurrentOffset); 57 return AlignedOffset; // == CurrentOffset; 58 } 59 60 void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } 61 }; 62 63 // Used to keep track of section and symbol names, so that in the YAML file 64 // sections and symbols can be referenced by name instead of by index. 65 class NameToIdxMap { 66 StringMap<unsigned> Map; 67 68 public: 69 /// \Returns false if name is already present in the map. 70 bool addName(StringRef Name, unsigned Ndx) { 71 return Map.insert({Name, Ndx}).second; 72 } 73 /// \Returns false if name is not present in the map. 74 bool lookup(StringRef Name, unsigned &Idx) const { 75 auto I = Map.find(Name); 76 if (I == Map.end()) 77 return false; 78 Idx = I->getValue(); 79 return true; 80 } 81 /// Asserts if name is not present in the map. 82 unsigned get(StringRef Name) const { 83 unsigned Idx; 84 if (lookup(Name, Idx)) 85 return Idx; 86 assert(false && "Expected section not found in index"); 87 return 0; 88 } 89 unsigned size() const { return Map.size(); } 90 }; 91 92 namespace { 93 struct Fragment { 94 uint64_t Offset; 95 uint64_t Size; 96 uint32_t Type; 97 uint64_t AddrAlign; 98 }; 99 } // namespace 100 101 /// "Single point of truth" for the ELF file construction. 102 /// TODO: This class still has a ways to go before it is truly a "single 103 /// point of truth". 104 template <class ELFT> class ELFState { 105 typedef typename ELFT::Ehdr Elf_Ehdr; 106 typedef typename ELFT::Phdr Elf_Phdr; 107 typedef typename ELFT::Shdr Elf_Shdr; 108 typedef typename ELFT::Sym Elf_Sym; 109 typedef typename ELFT::Rel Elf_Rel; 110 typedef typename ELFT::Rela Elf_Rela; 111 typedef typename ELFT::Relr Elf_Relr; 112 typedef typename ELFT::Dyn Elf_Dyn; 113 114 enum class SymtabType { Static, Dynamic }; 115 116 /// The future ".strtab" section. 117 StringTableBuilder DotStrtab{StringTableBuilder::ELF}; 118 119 /// The future ".shstrtab" section. 120 StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; 121 122 /// The future ".dynstr" section. 123 StringTableBuilder DotDynstr{StringTableBuilder::ELF}; 124 125 NameToIdxMap SN2I; 126 NameToIdxMap SymN2I; 127 NameToIdxMap DynSymN2I; 128 ELFYAML::Object &Doc; 129 130 bool HasError = false; 131 yaml::ErrorHandler ErrHandler; 132 void reportError(const Twine &Msg); 133 134 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 135 const StringTableBuilder &Strtab); 136 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); 137 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); 138 139 void buildSectionIndex(); 140 void buildSymbolIndexes(); 141 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders); 142 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, 143 StringRef SecName, ELFYAML::Section *YAMLSec); 144 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 145 ContiguousBlobAccumulator &CBA); 146 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, 147 ContiguousBlobAccumulator &CBA, 148 ELFYAML::Section *YAMLSec); 149 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 150 StringTableBuilder &STB, 151 ContiguousBlobAccumulator &CBA, 152 ELFYAML::Section *YAMLSec); 153 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 154 std::vector<Elf_Shdr> &SHeaders); 155 156 std::vector<Fragment> 157 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 158 ArrayRef<typename ELFT::Shdr> SHeaders); 159 160 void finalizeStrings(); 161 void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS); 162 void writeSectionContent(Elf_Shdr &SHeader, 163 const ELFYAML::RawContentSection &Section, 164 ContiguousBlobAccumulator &CBA); 165 void writeSectionContent(Elf_Shdr &SHeader, 166 const ELFYAML::RelocationSection &Section, 167 ContiguousBlobAccumulator &CBA); 168 void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, 169 ContiguousBlobAccumulator &CBA); 170 void writeSectionContent(Elf_Shdr &SHeader, 171 const ELFYAML::SymtabShndxSection &Shndx, 172 ContiguousBlobAccumulator &CBA); 173 void writeSectionContent(Elf_Shdr &SHeader, 174 const ELFYAML::SymverSection &Section, 175 ContiguousBlobAccumulator &CBA); 176 void writeSectionContent(Elf_Shdr &SHeader, 177 const ELFYAML::VerneedSection &Section, 178 ContiguousBlobAccumulator &CBA); 179 void writeSectionContent(Elf_Shdr &SHeader, 180 const ELFYAML::VerdefSection &Section, 181 ContiguousBlobAccumulator &CBA); 182 void writeSectionContent(Elf_Shdr &SHeader, 183 const ELFYAML::MipsABIFlags &Section, 184 ContiguousBlobAccumulator &CBA); 185 void writeSectionContent(Elf_Shdr &SHeader, 186 const ELFYAML::DynamicSection &Section, 187 ContiguousBlobAccumulator &CBA); 188 void writeSectionContent(Elf_Shdr &SHeader, 189 const ELFYAML::StackSizesSection &Section, 190 ContiguousBlobAccumulator &CBA); 191 void writeSectionContent(Elf_Shdr &SHeader, 192 const ELFYAML::HashSection &Section, 193 ContiguousBlobAccumulator &CBA); 194 void writeSectionContent(Elf_Shdr &SHeader, 195 const ELFYAML::AddrsigSection &Section, 196 ContiguousBlobAccumulator &CBA); 197 void writeSectionContent(Elf_Shdr &SHeader, 198 const ELFYAML::NoteSection &Section, 199 ContiguousBlobAccumulator &CBA); 200 void writeSectionContent(Elf_Shdr &SHeader, 201 const ELFYAML::GnuHashSection &Section, 202 ContiguousBlobAccumulator &CBA); 203 void writeSectionContent(Elf_Shdr &SHeader, 204 const ELFYAML::LinkerOptionsSection &Section, 205 ContiguousBlobAccumulator &CBA); 206 void writeSectionContent(Elf_Shdr &SHeader, 207 const ELFYAML::DependentLibrariesSection &Section, 208 ContiguousBlobAccumulator &CBA); 209 210 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA); 211 212 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); 213 214 public: 215 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 216 yaml::ErrorHandler EH); 217 }; 218 } // end anonymous namespace 219 220 template <class T> static size_t arrayDataSize(ArrayRef<T> A) { 221 return A.size() * sizeof(T); 222 } 223 224 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { 225 OS.write((const char *)A.data(), arrayDataSize(A)); 226 } 227 228 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } 229 230 template <class ELFT> 231 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) 232 : Doc(D), ErrHandler(EH) { 233 std::vector<ELFYAML::Section *> Sections = Doc.getSections(); 234 StringSet<> DocSections; 235 for (const ELFYAML::Section *Sec : Sections) 236 if (!Sec->Name.empty()) 237 DocSections.insert(Sec->Name); 238 239 // Insert SHT_NULL section implicitly when it is not defined in YAML. 240 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL) 241 Doc.Chunks.insert( 242 Doc.Chunks.begin(), 243 std::make_unique<ELFYAML::Section>( 244 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true)); 245 246 std::vector<StringRef> ImplicitSections; 247 if (Doc.Symbols) 248 ImplicitSections.push_back(".symtab"); 249 ImplicitSections.insert(ImplicitSections.end(), {".strtab", ".shstrtab"}); 250 251 if (Doc.DynamicSymbols) 252 ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"}); 253 254 // Insert placeholders for implicit sections that are not 255 // defined explicitly in YAML. 256 for (StringRef SecName : ImplicitSections) { 257 if (DocSections.count(SecName)) 258 continue; 259 260 std::unique_ptr<ELFYAML::Chunk> Sec = std::make_unique<ELFYAML::Section>( 261 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/); 262 Sec->Name = SecName; 263 Doc.Chunks.push_back(std::move(Sec)); 264 } 265 } 266 267 template <class ELFT> 268 void ELFState<ELFT>::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) { 269 using namespace llvm::ELF; 270 271 Elf_Ehdr Header; 272 zero(Header); 273 Header.e_ident[EI_MAG0] = 0x7f; 274 Header.e_ident[EI_MAG1] = 'E'; 275 Header.e_ident[EI_MAG2] = 'L'; 276 Header.e_ident[EI_MAG3] = 'F'; 277 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 278 Header.e_ident[EI_DATA] = Doc.Header.Data; 279 Header.e_ident[EI_VERSION] = EV_CURRENT; 280 Header.e_ident[EI_OSABI] = Doc.Header.OSABI; 281 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; 282 Header.e_type = Doc.Header.Type; 283 Header.e_machine = Doc.Header.Machine; 284 Header.e_version = EV_CURRENT; 285 Header.e_entry = Doc.Header.Entry; 286 Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0; 287 Header.e_flags = Doc.Header.Flags; 288 Header.e_ehsize = sizeof(Elf_Ehdr); 289 Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0; 290 Header.e_phnum = Doc.ProgramHeaders.size(); 291 292 Header.e_shentsize = 293 Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); 294 // Immediately following the ELF header and program headers. 295 // Align the start of the section header and write the ELF header. 296 uint64_t SHOff; 297 CBA.getOSAndAlignedOffset(SHOff, sizeof(typename ELFT::uint)); 298 Header.e_shoff = 299 Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff; 300 Header.e_shnum = 301 Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.getSections().size(); 302 Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx 303 : SN2I.get(".shstrtab"); 304 305 OS.write((const char *)&Header, sizeof(Header)); 306 } 307 308 template <class ELFT> 309 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) { 310 for (const auto &YamlPhdr : Doc.ProgramHeaders) { 311 Elf_Phdr Phdr; 312 Phdr.p_type = YamlPhdr.Type; 313 Phdr.p_flags = YamlPhdr.Flags; 314 Phdr.p_vaddr = YamlPhdr.VAddr; 315 Phdr.p_paddr = YamlPhdr.PAddr; 316 PHeaders.push_back(Phdr); 317 } 318 } 319 320 template <class ELFT> 321 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec, 322 StringRef LocSym) { 323 unsigned Index; 324 if (SN2I.lookup(S, Index) || to_integer(S, Index)) 325 return Index; 326 327 assert(LocSec.empty() || LocSym.empty()); 328 if (!LocSym.empty()) 329 reportError("unknown section referenced: '" + S + "' by YAML symbol '" + 330 LocSym + "'"); 331 else 332 reportError("unknown section referenced: '" + S + "' by YAML section '" + 333 LocSec + "'"); 334 return 0; 335 } 336 337 template <class ELFT> 338 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec, 339 bool IsDynamic) { 340 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; 341 unsigned Index; 342 // Here we try to look up S in the symbol table. If it is not there, 343 // treat its value as a symbol index. 344 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { 345 reportError("unknown symbol referenced: '" + S + "' by YAML section '" + 346 LocSec + "'"); 347 return 0; 348 } 349 return Index; 350 } 351 352 template <class ELFT> 353 static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) { 354 if (!From) 355 return; 356 if (From->ShFlags) 357 To.sh_flags = *From->ShFlags; 358 if (From->ShName) 359 To.sh_name = *From->ShName; 360 if (From->ShOffset) 361 To.sh_offset = *From->ShOffset; 362 if (From->ShSize) 363 To.sh_size = *From->ShSize; 364 } 365 366 template <class ELFT> 367 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA, 368 Elf_Shdr &Header, StringRef SecName, 369 ELFYAML::Section *YAMLSec) { 370 // Check if the header was already initialized. 371 if (Header.sh_offset) 372 return false; 373 374 if (SecName == ".symtab") 375 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); 376 else if (SecName == ".strtab") 377 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); 378 else if (SecName == ".shstrtab") 379 initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec); 380 else if (SecName == ".dynsym") 381 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); 382 else if (SecName == ".dynstr") 383 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); 384 else 385 return false; 386 387 // Override section fields if requested. 388 overrideFields<ELFT>(YAMLSec, Header); 389 return true; 390 } 391 392 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { 393 size_t SuffixPos = S.rfind(" ["); 394 if (SuffixPos == StringRef::npos) 395 return S; 396 return S.substr(0, SuffixPos); 397 } 398 399 template <class ELFT> 400 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 401 ContiguousBlobAccumulator &CBA) { 402 // Ensure SHN_UNDEF entry is present. An all-zero section header is a 403 // valid SHN_UNDEF entry since SHT_NULL == 0. 404 SHeaders.resize(Doc.getSections().size()); 405 406 size_t SecNdx = -1; 407 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) { 408 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) { 409 writeFill(*S, CBA); 410 continue; 411 } 412 413 ++SecNdx; 414 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get()); 415 if (SecNdx == 0 && Sec->IsImplicit) 416 continue; 417 418 // We have a few sections like string or symbol tables that are usually 419 // added implicitly to the end. However, if they are explicitly specified 420 // in the YAML, we need to write them here. This ensures the file offset 421 // remains correct. 422 Elf_Shdr &SHeader = SHeaders[SecNdx]; 423 if (initImplicitHeader(CBA, SHeader, Sec->Name, 424 Sec->IsImplicit ? nullptr : Sec)) 425 continue; 426 427 assert(Sec && "It can't be null unless it is an implicit section. But all " 428 "implicit sections should already have been handled above."); 429 430 SHeader.sh_name = 431 DotShStrtab.getOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); 432 SHeader.sh_type = Sec->Type; 433 if (Sec->Flags) 434 SHeader.sh_flags = *Sec->Flags; 435 SHeader.sh_addr = Sec->Address; 436 SHeader.sh_addralign = Sec->AddressAlign; 437 438 if (!Sec->Link.empty()) 439 SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name); 440 441 if (SecNdx == 0) { 442 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 443 // We do not write any content for special SHN_UNDEF section. 444 if (RawSec->Size) 445 SHeader.sh_size = *RawSec->Size; 446 if (RawSec->Info) 447 SHeader.sh_info = *RawSec->Info; 448 } 449 if (Sec->EntSize) 450 SHeader.sh_entsize = *Sec->EntSize; 451 } else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 452 writeSectionContent(SHeader, *S, CBA); 453 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) { 454 writeSectionContent(SHeader, *S, CBA); 455 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) { 456 writeSectionContent(SHeader, *S, CBA); 457 } else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) { 458 writeSectionContent(SHeader, *S, CBA); 459 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) { 460 writeSectionContent(SHeader, *S, CBA); 461 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) { 462 SHeader.sh_entsize = 0; 463 SHeader.sh_size = S->Size; 464 // SHT_NOBITS section does not have content 465 // so just to setup the section offset. 466 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 467 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) { 468 writeSectionContent(SHeader, *S, CBA); 469 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) { 470 writeSectionContent(SHeader, *S, CBA); 471 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 472 writeSectionContent(SHeader, *S, CBA); 473 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 474 writeSectionContent(SHeader, *S, CBA); 475 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) { 476 writeSectionContent(SHeader, *S, CBA); 477 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) { 478 writeSectionContent(SHeader, *S, CBA); 479 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) { 480 writeSectionContent(SHeader, *S, CBA); 481 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) { 482 writeSectionContent(SHeader, *S, CBA); 483 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) { 484 writeSectionContent(SHeader, *S, CBA); 485 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) { 486 writeSectionContent(SHeader, *S, CBA); 487 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) { 488 writeSectionContent(SHeader, *S, CBA); 489 } else { 490 llvm_unreachable("Unknown section type"); 491 } 492 493 // Override section fields if requested. 494 overrideFields<ELFT>(Sec, SHeader); 495 } 496 } 497 498 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) { 499 for (size_t I = 0; I < Symbols.size(); ++I) 500 if (Symbols[I].Binding.value != ELF::STB_LOCAL) 501 return I; 502 return Symbols.size(); 503 } 504 505 static uint64_t writeContent(raw_ostream &OS, 506 const Optional<yaml::BinaryRef> &Content, 507 const Optional<llvm::yaml::Hex64> &Size) { 508 size_t ContentSize = 0; 509 if (Content) { 510 Content->writeAsBinary(OS); 511 ContentSize = Content->binary_size(); 512 } 513 514 if (!Size) 515 return ContentSize; 516 517 OS.write_zeros(*Size - ContentSize); 518 return *Size; 519 } 520 521 template <class ELFT> 522 std::vector<typename ELFT::Sym> 523 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 524 const StringTableBuilder &Strtab) { 525 std::vector<Elf_Sym> Ret; 526 Ret.resize(Symbols.size() + 1); 527 528 size_t I = 0; 529 for (const ELFYAML::Symbol &Sym : Symbols) { 530 Elf_Sym &Symbol = Ret[++I]; 531 532 // If NameIndex, which contains the name offset, is explicitly specified, we 533 // use it. This is useful for preparing broken objects. Otherwise, we add 534 // the specified Name to the string table builder to get its offset. 535 if (Sym.NameIndex) 536 Symbol.st_name = *Sym.NameIndex; 537 else if (!Sym.Name.empty()) 538 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); 539 540 Symbol.setBindingAndType(Sym.Binding, Sym.Type); 541 if (!Sym.Section.empty()) 542 Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name); 543 else if (Sym.Index) 544 Symbol.st_shndx = *Sym.Index; 545 546 Symbol.st_value = Sym.Value; 547 Symbol.st_other = Sym.Other ? *Sym.Other : 0; 548 Symbol.st_size = Sym.Size; 549 } 550 551 return Ret; 552 } 553 554 template <class ELFT> 555 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, 556 SymtabType STType, 557 ContiguousBlobAccumulator &CBA, 558 ELFYAML::Section *YAMLSec) { 559 560 bool IsStatic = STType == SymtabType::Static; 561 ArrayRef<ELFYAML::Symbol> Symbols; 562 if (IsStatic && Doc.Symbols) 563 Symbols = *Doc.Symbols; 564 else if (!IsStatic && Doc.DynamicSymbols) 565 Symbols = *Doc.DynamicSymbols; 566 567 ELFYAML::RawContentSection *RawSec = 568 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 569 if (RawSec && (RawSec->Content || RawSec->Size)) { 570 bool HasSymbolsDescription = 571 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols); 572 if (HasSymbolsDescription) { 573 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`"); 574 if (RawSec->Content) 575 reportError("cannot specify both `Content` and " + Property + 576 " for symbol table section '" + RawSec->Name + "'"); 577 if (RawSec->Size) 578 reportError("cannot specify both `Size` and " + Property + 579 " for symbol table section '" + RawSec->Name + "'"); 580 return; 581 } 582 } 583 584 zero(SHeader); 585 SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); 586 587 if (YAMLSec) 588 SHeader.sh_type = YAMLSec->Type; 589 else 590 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; 591 592 if (RawSec && !RawSec->Link.empty()) { 593 // If the Link field is explicitly defined in the document, 594 // we should use it. 595 SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name); 596 } else { 597 // When we describe the .dynsym section in the document explicitly, it is 598 // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not 599 // added implicitly and we should be able to leave the Link zeroed if 600 // .dynstr is not defined. 601 unsigned Link = 0; 602 if (IsStatic) 603 Link = SN2I.get(".strtab"); 604 else 605 SN2I.lookup(".dynstr", Link); 606 SHeader.sh_link = Link; 607 } 608 609 if (YAMLSec && YAMLSec->Flags) 610 SHeader.sh_flags = *YAMLSec->Flags; 611 else if (!IsStatic) 612 SHeader.sh_flags = ELF::SHF_ALLOC; 613 614 // If the symbol table section is explicitly described in the YAML 615 // then we should set the fields requested. 616 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) 617 : findFirstNonGlobal(Symbols) + 1; 618 SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) 619 ? (uint64_t)(*YAMLSec->EntSize) 620 : sizeof(Elf_Sym); 621 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; 622 SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0; 623 624 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 625 if (RawSec && (RawSec->Content || RawSec->Size)) { 626 assert(Symbols.empty()); 627 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 628 return; 629 } 630 631 std::vector<Elf_Sym> Syms = 632 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); 633 writeArrayData(OS, makeArrayRef(Syms)); 634 SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); 635 } 636 637 template <class ELFT> 638 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 639 StringTableBuilder &STB, 640 ContiguousBlobAccumulator &CBA, 641 ELFYAML::Section *YAMLSec) { 642 zero(SHeader); 643 SHeader.sh_name = DotShStrtab.getOffset(Name); 644 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; 645 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 646 647 ELFYAML::RawContentSection *RawSec = 648 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 649 650 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 651 if (RawSec && (RawSec->Content || RawSec->Size)) { 652 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 653 } else { 654 STB.write(OS); 655 SHeader.sh_size = STB.getSize(); 656 } 657 658 if (YAMLSec && YAMLSec->EntSize) 659 SHeader.sh_entsize = *YAMLSec->EntSize; 660 661 if (RawSec && RawSec->Info) 662 SHeader.sh_info = *RawSec->Info; 663 664 if (YAMLSec && YAMLSec->Flags) 665 SHeader.sh_flags = *YAMLSec->Flags; 666 else if (Name == ".dynstr") 667 SHeader.sh_flags = ELF::SHF_ALLOC; 668 669 // If the section is explicitly described in the YAML 670 // then we want to use its section address. 671 if (YAMLSec) 672 SHeader.sh_addr = YAMLSec->Address; 673 } 674 675 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) { 676 ErrHandler(Msg); 677 HasError = true; 678 } 679 680 template <class ELFT> 681 std::vector<Fragment> 682 ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 683 ArrayRef<typename ELFT::Shdr> SHeaders) { 684 DenseMap<StringRef, ELFYAML::Fill *> NameToFill; 685 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) 686 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) 687 NameToFill[S->Name] = S; 688 689 std::vector<Fragment> Ret; 690 for (const ELFYAML::SectionName &SecName : Phdr.Sections) { 691 unsigned Index; 692 if (SN2I.lookup(SecName.Section, Index)) { 693 const typename ELFT::Shdr &H = SHeaders[Index]; 694 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign}); 695 continue; 696 } 697 698 if (ELFYAML::Fill *Fill = NameToFill.lookup(SecName.Section)) { 699 Ret.push_back({Fill->ShOffset, Fill->Size, llvm::ELF::SHT_PROGBITS, 700 /*ShAddrAlign=*/1}); 701 continue; 702 } 703 704 reportError("unknown section or fill referenced: '" + SecName.Section + 705 "' by program header"); 706 } 707 708 return Ret; 709 } 710 711 template <class ELFT> 712 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 713 std::vector<Elf_Shdr> &SHeaders) { 714 uint32_t PhdrIdx = 0; 715 for (auto &YamlPhdr : Doc.ProgramHeaders) { 716 Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; 717 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders); 718 719 if (YamlPhdr.Offset) { 720 PHeader.p_offset = *YamlPhdr.Offset; 721 } else { 722 if (YamlPhdr.Sections.size()) 723 PHeader.p_offset = UINT32_MAX; 724 else 725 PHeader.p_offset = 0; 726 727 // Find the minimum offset for the program header. 728 for (const Fragment &F : Fragments) 729 PHeader.p_offset = std::min((uint64_t)PHeader.p_offset, F.Offset); 730 } 731 732 // Find the maximum offset of the end of a section in order to set p_filesz 733 // and p_memsz. When setting p_filesz, trailing SHT_NOBITS sections are not 734 // counted. 735 uint64_t FileOffset = PHeader.p_offset, MemOffset = PHeader.p_offset; 736 for (const Fragment &F : Fragments) { 737 uint64_t End = F.Offset + F.Size; 738 MemOffset = std::max(MemOffset, End); 739 740 if (F.Type != llvm::ELF::SHT_NOBITS) 741 FileOffset = std::max(FileOffset, End); 742 } 743 744 // Set the file size and the memory size if not set explicitly. 745 PHeader.p_filesz = YamlPhdr.FileSize ? uint64_t(*YamlPhdr.FileSize) 746 : FileOffset - PHeader.p_offset; 747 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) 748 : MemOffset - PHeader.p_offset; 749 750 if (YamlPhdr.Align) { 751 PHeader.p_align = *YamlPhdr.Align; 752 } else { 753 // Set the alignment of the segment to be the maximum alignment of the 754 // sections so that by default the segment has a valid and sensible 755 // alignment. 756 PHeader.p_align = 1; 757 for (const Fragment &F : Fragments) 758 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign); 759 } 760 } 761 } 762 763 template <class ELFT> 764 void ELFState<ELFT>::writeSectionContent( 765 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, 766 ContiguousBlobAccumulator &CBA) { 767 raw_ostream &OS = 768 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 769 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 770 771 if (Section.EntSize) 772 SHeader.sh_entsize = *Section.EntSize; 773 else if (Section.Type == llvm::ELF::SHT_RELR) 774 SHeader.sh_entsize = sizeof(Elf_Relr); 775 else 776 SHeader.sh_entsize = 0; 777 778 if (Section.Info) 779 SHeader.sh_info = *Section.Info; 780 } 781 782 static bool isMips64EL(const ELFYAML::Object &Doc) { 783 return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && 784 Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && 785 Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 786 } 787 788 template <class ELFT> 789 void ELFState<ELFT>::writeSectionContent( 790 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, 791 ContiguousBlobAccumulator &CBA) { 792 assert((Section.Type == llvm::ELF::SHT_REL || 793 Section.Type == llvm::ELF::SHT_RELA) && 794 "Section type is not SHT_REL nor SHT_RELA"); 795 796 bool IsRela = Section.Type == llvm::ELF::SHT_RELA; 797 SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 798 SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size(); 799 800 // For relocation section set link to .symtab by default. 801 unsigned Link = 0; 802 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 803 SHeader.sh_link = Link; 804 805 if (!Section.RelocatableSec.empty()) 806 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); 807 808 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 809 for (const auto &Rel : Section.Relocations) { 810 unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, 811 Section.Link == ".dynsym") 812 : 0; 813 if (IsRela) { 814 Elf_Rela REntry; 815 zero(REntry); 816 REntry.r_offset = Rel.Offset; 817 REntry.r_addend = Rel.Addend; 818 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 819 OS.write((const char *)&REntry, sizeof(REntry)); 820 } else { 821 Elf_Rel REntry; 822 zero(REntry); 823 REntry.r_offset = Rel.Offset; 824 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 825 OS.write((const char *)&REntry, sizeof(REntry)); 826 } 827 } 828 } 829 830 template <class ELFT> 831 void ELFState<ELFT>::writeSectionContent( 832 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, 833 ContiguousBlobAccumulator &CBA) { 834 raw_ostream &OS = 835 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 836 837 for (uint32_t E : Shndx.Entries) 838 support::endian::write<uint32_t>(OS, E, ELFT::TargetEndianness); 839 840 SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4; 841 SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize; 842 } 843 844 template <class ELFT> 845 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 846 const ELFYAML::Group &Section, 847 ContiguousBlobAccumulator &CBA) { 848 assert(Section.Type == llvm::ELF::SHT_GROUP && 849 "Section type is not SHT_GROUP"); 850 851 unsigned Link = 0; 852 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 853 SHeader.sh_link = Link; 854 855 SHeader.sh_entsize = 4; 856 SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); 857 858 if (Section.Signature) 859 SHeader.sh_info = 860 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); 861 862 raw_ostream &OS = 863 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 864 865 for (const ELFYAML::SectionOrType &Member : Section.Members) { 866 unsigned int SectionIndex = 0; 867 if (Member.sectionNameOrType == "GRP_COMDAT") 868 SectionIndex = llvm::ELF::GRP_COMDAT; 869 else 870 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); 871 support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness); 872 } 873 } 874 875 template <class ELFT> 876 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 877 const ELFYAML::SymverSection &Section, 878 ContiguousBlobAccumulator &CBA) { 879 raw_ostream &OS = 880 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 881 for (uint16_t Version : Section.Entries) 882 support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness); 883 884 SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2; 885 SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; 886 } 887 888 template <class ELFT> 889 void ELFState<ELFT>::writeSectionContent( 890 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, 891 ContiguousBlobAccumulator &CBA) { 892 using uintX_t = typename ELFT::uint; 893 raw_ostream &OS = 894 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 895 896 if (Section.Content || Section.Size) { 897 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 898 return; 899 } 900 901 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { 902 support::endian::write<uintX_t>(OS, E.Address, ELFT::TargetEndianness); 903 SHeader.sh_size += sizeof(uintX_t) + encodeULEB128(E.Size, OS); 904 } 905 } 906 907 template <class ELFT> 908 void ELFState<ELFT>::writeSectionContent( 909 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, 910 ContiguousBlobAccumulator &CBA) { 911 raw_ostream &OS = 912 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 913 914 if (Section.Content) { 915 SHeader.sh_size = writeContent(OS, Section.Content, None); 916 return; 917 } 918 919 if (!Section.Options) 920 return; 921 922 for (const ELFYAML::LinkerOption &LO : *Section.Options) { 923 OS.write(LO.Key.data(), LO.Key.size()); 924 OS.write('\0'); 925 OS.write(LO.Value.data(), LO.Value.size()); 926 OS.write('\0'); 927 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2); 928 } 929 } 930 931 template <class ELFT> 932 void ELFState<ELFT>::writeSectionContent( 933 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, 934 ContiguousBlobAccumulator &CBA) { 935 raw_ostream &OS = 936 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 937 938 if (Section.Content) { 939 SHeader.sh_size = writeContent(OS, Section.Content, None); 940 return; 941 } 942 943 if (!Section.Libs) 944 return; 945 946 for (StringRef Lib : *Section.Libs) { 947 OS.write(Lib.data(), Lib.size()); 948 OS.write('\0'); 949 SHeader.sh_size += Lib.size() + 1; 950 } 951 } 952 953 template <class ELFT> 954 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 955 const ELFYAML::HashSection &Section, 956 ContiguousBlobAccumulator &CBA) { 957 raw_ostream &OS = 958 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 959 960 unsigned Link = 0; 961 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 962 SHeader.sh_link = Link; 963 964 if (Section.Content || Section.Size) { 965 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 966 return; 967 } 968 969 support::endian::write<uint32_t>(OS, Section.Bucket->size(), 970 ELFT::TargetEndianness); 971 support::endian::write<uint32_t>(OS, Section.Chain->size(), 972 ELFT::TargetEndianness); 973 for (uint32_t Val : *Section.Bucket) 974 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 975 for (uint32_t Val : *Section.Chain) 976 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 977 978 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; 979 } 980 981 template <class ELFT> 982 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 983 const ELFYAML::VerdefSection &Section, 984 ContiguousBlobAccumulator &CBA) { 985 typedef typename ELFT::Verdef Elf_Verdef; 986 typedef typename ELFT::Verdaux Elf_Verdaux; 987 raw_ostream &OS = 988 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 989 990 SHeader.sh_info = Section.Info; 991 992 if (Section.Content) { 993 SHeader.sh_size = writeContent(OS, Section.Content, None); 994 return; 995 } 996 997 if (!Section.Entries) 998 return; 999 1000 uint64_t AuxCnt = 0; 1001 for (size_t I = 0; I < Section.Entries->size(); ++I) { 1002 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I]; 1003 1004 Elf_Verdef VerDef; 1005 VerDef.vd_version = E.Version; 1006 VerDef.vd_flags = E.Flags; 1007 VerDef.vd_ndx = E.VersionNdx; 1008 VerDef.vd_hash = E.Hash; 1009 VerDef.vd_aux = sizeof(Elf_Verdef); 1010 VerDef.vd_cnt = E.VerNames.size(); 1011 if (I == Section.Entries->size() - 1) 1012 VerDef.vd_next = 0; 1013 else 1014 VerDef.vd_next = 1015 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); 1016 OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); 1017 1018 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { 1019 Elf_Verdaux VernAux; 1020 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); 1021 if (J == E.VerNames.size() - 1) 1022 VernAux.vda_next = 0; 1023 else 1024 VernAux.vda_next = sizeof(Elf_Verdaux); 1025 OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); 1026 } 1027 } 1028 1029 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) + 1030 AuxCnt * sizeof(Elf_Verdaux); 1031 } 1032 1033 template <class ELFT> 1034 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1035 const ELFYAML::VerneedSection &Section, 1036 ContiguousBlobAccumulator &CBA) { 1037 typedef typename ELFT::Verneed Elf_Verneed; 1038 typedef typename ELFT::Vernaux Elf_Vernaux; 1039 1040 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1041 SHeader.sh_info = Section.Info; 1042 1043 if (Section.Content) { 1044 SHeader.sh_size = writeContent(OS, Section.Content, None); 1045 return; 1046 } 1047 1048 if (!Section.VerneedV) 1049 return; 1050 1051 uint64_t AuxCnt = 0; 1052 for (size_t I = 0; I < Section.VerneedV->size(); ++I) { 1053 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I]; 1054 1055 Elf_Verneed VerNeed; 1056 VerNeed.vn_version = VE.Version; 1057 VerNeed.vn_file = DotDynstr.getOffset(VE.File); 1058 if (I == Section.VerneedV->size() - 1) 1059 VerNeed.vn_next = 0; 1060 else 1061 VerNeed.vn_next = 1062 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); 1063 VerNeed.vn_cnt = VE.AuxV.size(); 1064 VerNeed.vn_aux = sizeof(Elf_Verneed); 1065 OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); 1066 1067 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { 1068 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; 1069 1070 Elf_Vernaux VernAux; 1071 VernAux.vna_hash = VAuxE.Hash; 1072 VernAux.vna_flags = VAuxE.Flags; 1073 VernAux.vna_other = VAuxE.Other; 1074 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); 1075 if (J == VE.AuxV.size() - 1) 1076 VernAux.vna_next = 0; 1077 else 1078 VernAux.vna_next = sizeof(Elf_Vernaux); 1079 OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); 1080 } 1081 } 1082 1083 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) + 1084 AuxCnt * sizeof(Elf_Vernaux); 1085 } 1086 1087 template <class ELFT> 1088 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1089 const ELFYAML::MipsABIFlags &Section, 1090 ContiguousBlobAccumulator &CBA) { 1091 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && 1092 "Section type is not SHT_MIPS_ABIFLAGS"); 1093 1094 object::Elf_Mips_ABIFlags<ELFT> Flags; 1095 zero(Flags); 1096 SHeader.sh_entsize = sizeof(Flags); 1097 SHeader.sh_size = SHeader.sh_entsize; 1098 1099 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1100 Flags.version = Section.Version; 1101 Flags.isa_level = Section.ISALevel; 1102 Flags.isa_rev = Section.ISARevision; 1103 Flags.gpr_size = Section.GPRSize; 1104 Flags.cpr1_size = Section.CPR1Size; 1105 Flags.cpr2_size = Section.CPR2Size; 1106 Flags.fp_abi = Section.FpABI; 1107 Flags.isa_ext = Section.ISAExtension; 1108 Flags.ases = Section.ASEs; 1109 Flags.flags1 = Section.Flags1; 1110 Flags.flags2 = Section.Flags2; 1111 OS.write((const char *)&Flags, sizeof(Flags)); 1112 } 1113 1114 template <class ELFT> 1115 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1116 const ELFYAML::DynamicSection &Section, 1117 ContiguousBlobAccumulator &CBA) { 1118 typedef typename ELFT::uint uintX_t; 1119 1120 assert(Section.Type == llvm::ELF::SHT_DYNAMIC && 1121 "Section type is not SHT_DYNAMIC"); 1122 1123 if (!Section.Entries.empty() && Section.Content) 1124 reportError("cannot specify both raw content and explicit entries " 1125 "for dynamic section '" + 1126 Section.Name + "'"); 1127 1128 if (Section.Content) 1129 SHeader.sh_size = Section.Content->binary_size(); 1130 else 1131 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); 1132 if (Section.EntSize) 1133 SHeader.sh_entsize = *Section.EntSize; 1134 else 1135 SHeader.sh_entsize = sizeof(Elf_Dyn); 1136 1137 raw_ostream &OS = 1138 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1139 for (const ELFYAML::DynamicEntry &DE : Section.Entries) { 1140 support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness); 1141 support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness); 1142 } 1143 if (Section.Content) 1144 Section.Content->writeAsBinary(OS); 1145 } 1146 1147 template <class ELFT> 1148 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1149 const ELFYAML::AddrsigSection &Section, 1150 ContiguousBlobAccumulator &CBA) { 1151 raw_ostream &OS = 1152 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1153 1154 unsigned Link = 0; 1155 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1156 SHeader.sh_link = Link; 1157 1158 if (Section.Content || Section.Size) { 1159 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1160 return; 1161 } 1162 1163 for (const ELFYAML::AddrsigSymbol &Sym : *Section.Symbols) { 1164 uint64_t Val = 1165 Sym.Name ? toSymbolIndex(*Sym.Name, Section.Name, /*IsDynamic=*/false) 1166 : (uint32_t)*Sym.Index; 1167 SHeader.sh_size += encodeULEB128(Val, OS); 1168 } 1169 } 1170 1171 template <class ELFT> 1172 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1173 const ELFYAML::NoteSection &Section, 1174 ContiguousBlobAccumulator &CBA) { 1175 raw_ostream &OS = 1176 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1177 uint64_t Offset = OS.tell(); 1178 1179 if (Section.Content || Section.Size) { 1180 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1181 return; 1182 } 1183 1184 for (const ELFYAML::NoteEntry &NE : *Section.Notes) { 1185 // Write name size. 1186 if (NE.Name.empty()) 1187 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1188 else 1189 support::endian::write<uint32_t>(OS, NE.Name.size() + 1, 1190 ELFT::TargetEndianness); 1191 1192 // Write description size. 1193 if (NE.Desc.binary_size() == 0) 1194 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1195 else 1196 support::endian::write<uint32_t>(OS, NE.Desc.binary_size(), 1197 ELFT::TargetEndianness); 1198 1199 // Write type. 1200 support::endian::write<uint32_t>(OS, NE.Type, ELFT::TargetEndianness); 1201 1202 // Write name, null terminator and padding. 1203 if (!NE.Name.empty()) { 1204 support::endian::write<uint8_t>(OS, arrayRefFromStringRef(NE.Name), 1205 ELFT::TargetEndianness); 1206 support::endian::write<uint8_t>(OS, 0, ELFT::TargetEndianness); 1207 CBA.padToAlignment(4); 1208 } 1209 1210 // Write description and padding. 1211 if (NE.Desc.binary_size() != 0) { 1212 NE.Desc.writeAsBinary(OS); 1213 CBA.padToAlignment(4); 1214 } 1215 } 1216 1217 SHeader.sh_size = OS.tell() - Offset; 1218 } 1219 1220 template <class ELFT> 1221 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1222 const ELFYAML::GnuHashSection &Section, 1223 ContiguousBlobAccumulator &CBA) { 1224 raw_ostream &OS = 1225 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1226 1227 unsigned Link = 0; 1228 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1229 SHeader.sh_link = Link; 1230 1231 if (Section.Content) { 1232 SHeader.sh_size = writeContent(OS, Section.Content, None); 1233 return; 1234 } 1235 1236 // We write the header first, starting with the hash buckets count. Normally 1237 // it is the number of entries in HashBuckets, but the "NBuckets" property can 1238 // be used to override this field, which is useful for producing broken 1239 // objects. 1240 if (Section.Header->NBuckets) 1241 support::endian::write<uint32_t>(OS, *Section.Header->NBuckets, 1242 ELFT::TargetEndianness); 1243 else 1244 support::endian::write<uint32_t>(OS, Section.HashBuckets->size(), 1245 ELFT::TargetEndianness); 1246 1247 // Write the index of the first symbol in the dynamic symbol table accessible 1248 // via the hash table. 1249 support::endian::write<uint32_t>(OS, Section.Header->SymNdx, 1250 ELFT::TargetEndianness); 1251 1252 // Write the number of words in the Bloom filter. As above, the "MaskWords" 1253 // property can be used to set this field to any value. 1254 if (Section.Header->MaskWords) 1255 support::endian::write<uint32_t>(OS, *Section.Header->MaskWords, 1256 ELFT::TargetEndianness); 1257 else 1258 support::endian::write<uint32_t>(OS, Section.BloomFilter->size(), 1259 ELFT::TargetEndianness); 1260 1261 // Write the shift constant used by the Bloom filter. 1262 support::endian::write<uint32_t>(OS, Section.Header->Shift2, 1263 ELFT::TargetEndianness); 1264 1265 // We've finished writing the header. Now write the Bloom filter. 1266 for (llvm::yaml::Hex64 Val : *Section.BloomFilter) 1267 support::endian::write<typename ELFT::uint>(OS, Val, 1268 ELFT::TargetEndianness); 1269 1270 // Write an array of hash buckets. 1271 for (llvm::yaml::Hex32 Val : *Section.HashBuckets) 1272 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1273 1274 // Write an array of hash values. 1275 for (llvm::yaml::Hex32 Val : *Section.HashValues) 1276 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1277 1278 SHeader.sh_size = 16 /*Header size*/ + 1279 Section.BloomFilter->size() * sizeof(typename ELFT::uint) + 1280 Section.HashBuckets->size() * 4 + 1281 Section.HashValues->size() * 4; 1282 } 1283 1284 template <class ELFT> 1285 void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill, 1286 ContiguousBlobAccumulator &CBA) { 1287 raw_ostream &OS = CBA.getOSAndAlignedOffset(Fill.ShOffset, /*Align=*/1); 1288 1289 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0; 1290 if (!PatternSize) { 1291 OS.write_zeros(Fill.Size); 1292 return; 1293 } 1294 1295 // Fill the content with the specified pattern. 1296 uint64_t Written = 0; 1297 for (; Written + PatternSize <= Fill.Size; Written += PatternSize) 1298 Fill.Pattern->writeAsBinary(OS); 1299 Fill.Pattern->writeAsBinary(OS, Fill.Size - Written); 1300 } 1301 1302 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() { 1303 size_t SecNdx = -1; 1304 StringSet<> Seen; 1305 for (size_t I = 0; I < Doc.Chunks.size(); ++I) { 1306 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I]; 1307 bool IsSection = isa<ELFYAML::Section>(C.get()); 1308 if (IsSection) 1309 ++SecNdx; 1310 1311 if (C->Name.empty()) 1312 continue; 1313 1314 if (!Seen.insert(C->Name).second) 1315 reportError("repeated section/fill name: '" + C->Name + 1316 "' at YAML section/fill number " + Twine(I)); 1317 if (!IsSection || HasError) 1318 continue; 1319 1320 if (!SN2I.addName(C->Name, SecNdx)) 1321 llvm_unreachable("buildSectionIndex() failed"); 1322 DotShStrtab.add(ELFYAML::dropUniqueSuffix(C->Name)); 1323 } 1324 1325 DotShStrtab.finalize(); 1326 } 1327 1328 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() { 1329 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) { 1330 for (size_t I = 0, S = V.size(); I < S; ++I) { 1331 const ELFYAML::Symbol &Sym = V[I]; 1332 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) 1333 reportError("repeated symbol name: '" + Sym.Name + "'"); 1334 } 1335 }; 1336 1337 if (Doc.Symbols) 1338 Build(*Doc.Symbols, SymN2I); 1339 if (Doc.DynamicSymbols) 1340 Build(*Doc.DynamicSymbols, DynSymN2I); 1341 } 1342 1343 template <class ELFT> void ELFState<ELFT>::finalizeStrings() { 1344 // Add the regular symbol names to .strtab section. 1345 if (Doc.Symbols) 1346 for (const ELFYAML::Symbol &Sym : *Doc.Symbols) 1347 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1348 DotStrtab.finalize(); 1349 1350 // Add the dynamic symbol names to .dynstr section. 1351 if (Doc.DynamicSymbols) 1352 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols) 1353 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1354 1355 // SHT_GNU_verdef and SHT_GNU_verneed sections might also 1356 // add strings to .dynstr section. 1357 for (const ELFYAML::Chunk *Sec : Doc.getSections()) { 1358 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 1359 if (VerNeed->VerneedV) { 1360 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) { 1361 DotDynstr.add(VE.File); 1362 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) 1363 DotDynstr.add(Aux.Name); 1364 } 1365 } 1366 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 1367 if (VerDef->Entries) 1368 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries) 1369 for (StringRef Name : E.VerNames) 1370 DotDynstr.add(Name); 1371 } 1372 } 1373 1374 DotDynstr.finalize(); 1375 } 1376 1377 template <class ELFT> 1378 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 1379 yaml::ErrorHandler EH) { 1380 ELFState<ELFT> State(Doc, EH); 1381 1382 // Finalize .strtab and .dynstr sections. We do that early because want to 1383 // finalize the string table builders before writing the content of the 1384 // sections that might want to use them. 1385 State.finalizeStrings(); 1386 1387 State.buildSectionIndex(); 1388 if (State.HasError) 1389 return false; 1390 1391 State.buildSymbolIndexes(); 1392 1393 std::vector<Elf_Phdr> PHeaders; 1394 State.initProgramHeaders(PHeaders); 1395 1396 // XXX: This offset is tightly coupled with the order that we write 1397 // things to `OS`. 1398 const size_t SectionContentBeginOffset = 1399 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); 1400 ContiguousBlobAccumulator CBA(SectionContentBeginOffset); 1401 1402 std::vector<Elf_Shdr> SHeaders; 1403 State.initSectionHeaders(SHeaders, CBA); 1404 1405 // Now we can decide segment offsets. 1406 State.setProgramHeaderLayout(PHeaders, SHeaders); 1407 1408 if (State.HasError) 1409 return false; 1410 1411 State.writeELFHeader(CBA, OS); 1412 writeArrayData(OS, makeArrayRef(PHeaders)); 1413 CBA.writeBlobToStream(OS); 1414 writeArrayData(OS, makeArrayRef(SHeaders)); 1415 return true; 1416 } 1417 1418 namespace llvm { 1419 namespace yaml { 1420 1421 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) { 1422 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 1423 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); 1424 if (Is64Bit) { 1425 if (IsLE) 1426 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH); 1427 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH); 1428 } 1429 if (IsLE) 1430 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH); 1431 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH); 1432 } 1433 1434 } // namespace yaml 1435 } // namespace llvm 1436