1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The ELF component of yaml2obj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/StringSet.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/MC/StringTableBuilder.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/ObjectYAML/ELFYAML.h" 21 #include "llvm/ObjectYAML/yaml2obj.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/LEB128.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 #include "llvm/Support/WithColor.h" 26 #include "llvm/Support/YAMLTraits.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace llvm; 30 31 // This class is used to build up a contiguous binary blob while keeping 32 // track of an offset in the output (which notionally begins at 33 // `InitialOffset`). 34 namespace { 35 class ContiguousBlobAccumulator { 36 const uint64_t InitialOffset; 37 SmallVector<char, 128> Buf; 38 raw_svector_ostream OS; 39 40 public: 41 ContiguousBlobAccumulator(uint64_t InitialOffset_) 42 : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} 43 44 template <class Integer> 45 raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) { 46 Offset = padToAlignment(Align); 47 return OS; 48 } 49 50 /// \returns The new offset. 51 uint64_t padToAlignment(unsigned Align) { 52 if (Align == 0) 53 Align = 1; 54 uint64_t CurrentOffset = InitialOffset + OS.tell(); 55 uint64_t AlignedOffset = alignTo(CurrentOffset, Align); 56 OS.write_zeros(AlignedOffset - CurrentOffset); 57 return AlignedOffset; // == CurrentOffset; 58 } 59 60 void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } 61 }; 62 63 // Used to keep track of section and symbol names, so that in the YAML file 64 // sections and symbols can be referenced by name instead of by index. 65 class NameToIdxMap { 66 StringMap<unsigned> Map; 67 68 public: 69 /// \Returns false if name is already present in the map. 70 bool addName(StringRef Name, unsigned Ndx) { 71 return Map.insert({Name, Ndx}).second; 72 } 73 /// \Returns false if name is not present in the map. 74 bool lookup(StringRef Name, unsigned &Idx) const { 75 auto I = Map.find(Name); 76 if (I == Map.end()) 77 return false; 78 Idx = I->getValue(); 79 return true; 80 } 81 /// Asserts if name is not present in the map. 82 unsigned get(StringRef Name) const { 83 unsigned Idx; 84 if (lookup(Name, Idx)) 85 return Idx; 86 assert(false && "Expected section not found in index"); 87 return 0; 88 } 89 unsigned size() const { return Map.size(); } 90 }; 91 92 namespace { 93 struct Fragment { 94 uint64_t Offset; 95 uint64_t Size; 96 uint32_t Type; 97 uint64_t AddrAlign; 98 }; 99 } // namespace 100 101 /// "Single point of truth" for the ELF file construction. 102 /// TODO: This class still has a ways to go before it is truly a "single 103 /// point of truth". 104 template <class ELFT> class ELFState { 105 typedef typename ELFT::Ehdr Elf_Ehdr; 106 typedef typename ELFT::Phdr Elf_Phdr; 107 typedef typename ELFT::Shdr Elf_Shdr; 108 typedef typename ELFT::Sym Elf_Sym; 109 typedef typename ELFT::Rel Elf_Rel; 110 typedef typename ELFT::Rela Elf_Rela; 111 typedef typename ELFT::Relr Elf_Relr; 112 typedef typename ELFT::Dyn Elf_Dyn; 113 typedef typename ELFT::uint uintX_t; 114 115 enum class SymtabType { Static, Dynamic }; 116 117 /// The future ".strtab" section. 118 StringTableBuilder DotStrtab{StringTableBuilder::ELF}; 119 120 /// The future ".shstrtab" section. 121 StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; 122 123 /// The future ".dynstr" section. 124 StringTableBuilder DotDynstr{StringTableBuilder::ELF}; 125 126 NameToIdxMap SN2I; 127 NameToIdxMap SymN2I; 128 NameToIdxMap DynSymN2I; 129 ELFYAML::Object &Doc; 130 131 uint64_t LocationCounter = 0; 132 bool HasError = false; 133 yaml::ErrorHandler ErrHandler; 134 void reportError(const Twine &Msg); 135 136 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 137 const StringTableBuilder &Strtab); 138 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); 139 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); 140 141 void buildSectionIndex(); 142 void buildSymbolIndexes(); 143 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders); 144 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, 145 StringRef SecName, ELFYAML::Section *YAMLSec); 146 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 147 ContiguousBlobAccumulator &CBA); 148 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, 149 ContiguousBlobAccumulator &CBA, 150 ELFYAML::Section *YAMLSec); 151 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 152 StringTableBuilder &STB, 153 ContiguousBlobAccumulator &CBA, 154 ELFYAML::Section *YAMLSec); 155 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 156 std::vector<Elf_Shdr> &SHeaders); 157 158 std::vector<Fragment> 159 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 160 ArrayRef<typename ELFT::Shdr> SHeaders); 161 162 void finalizeStrings(); 163 void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS); 164 void writeSectionContent(Elf_Shdr &SHeader, 165 const ELFYAML::RawContentSection &Section, 166 ContiguousBlobAccumulator &CBA); 167 void writeSectionContent(Elf_Shdr &SHeader, 168 const ELFYAML::RelocationSection &Section, 169 ContiguousBlobAccumulator &CBA); 170 void writeSectionContent(Elf_Shdr &SHeader, 171 const ELFYAML::RelrSection &Section, 172 ContiguousBlobAccumulator &CBA); 173 void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, 174 ContiguousBlobAccumulator &CBA); 175 void writeSectionContent(Elf_Shdr &SHeader, 176 const ELFYAML::SymtabShndxSection &Shndx, 177 ContiguousBlobAccumulator &CBA); 178 void writeSectionContent(Elf_Shdr &SHeader, 179 const ELFYAML::SymverSection &Section, 180 ContiguousBlobAccumulator &CBA); 181 void writeSectionContent(Elf_Shdr &SHeader, 182 const ELFYAML::VerneedSection &Section, 183 ContiguousBlobAccumulator &CBA); 184 void writeSectionContent(Elf_Shdr &SHeader, 185 const ELFYAML::VerdefSection &Section, 186 ContiguousBlobAccumulator &CBA); 187 void writeSectionContent(Elf_Shdr &SHeader, 188 const ELFYAML::MipsABIFlags &Section, 189 ContiguousBlobAccumulator &CBA); 190 void writeSectionContent(Elf_Shdr &SHeader, 191 const ELFYAML::DynamicSection &Section, 192 ContiguousBlobAccumulator &CBA); 193 void writeSectionContent(Elf_Shdr &SHeader, 194 const ELFYAML::StackSizesSection &Section, 195 ContiguousBlobAccumulator &CBA); 196 void writeSectionContent(Elf_Shdr &SHeader, 197 const ELFYAML::HashSection &Section, 198 ContiguousBlobAccumulator &CBA); 199 void writeSectionContent(Elf_Shdr &SHeader, 200 const ELFYAML::AddrsigSection &Section, 201 ContiguousBlobAccumulator &CBA); 202 void writeSectionContent(Elf_Shdr &SHeader, 203 const ELFYAML::NoteSection &Section, 204 ContiguousBlobAccumulator &CBA); 205 void writeSectionContent(Elf_Shdr &SHeader, 206 const ELFYAML::GnuHashSection &Section, 207 ContiguousBlobAccumulator &CBA); 208 void writeSectionContent(Elf_Shdr &SHeader, 209 const ELFYAML::LinkerOptionsSection &Section, 210 ContiguousBlobAccumulator &CBA); 211 void writeSectionContent(Elf_Shdr &SHeader, 212 const ELFYAML::DependentLibrariesSection &Section, 213 ContiguousBlobAccumulator &CBA); 214 void writeSectionContent(Elf_Shdr &SHeader, 215 const ELFYAML::CallGraphProfileSection &Section, 216 ContiguousBlobAccumulator &CBA); 217 218 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA); 219 220 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); 221 222 void assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec); 223 224 public: 225 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 226 yaml::ErrorHandler EH); 227 }; 228 } // end anonymous namespace 229 230 template <class T> static size_t arrayDataSize(ArrayRef<T> A) { 231 return A.size() * sizeof(T); 232 } 233 234 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { 235 OS.write((const char *)A.data(), arrayDataSize(A)); 236 } 237 238 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } 239 240 template <class ELFT> 241 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) 242 : Doc(D), ErrHandler(EH) { 243 std::vector<ELFYAML::Section *> Sections = Doc.getSections(); 244 StringSet<> DocSections; 245 for (const ELFYAML::Section *Sec : Sections) 246 if (!Sec->Name.empty()) 247 DocSections.insert(Sec->Name); 248 249 // Insert SHT_NULL section implicitly when it is not defined in YAML. 250 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL) 251 Doc.Chunks.insert( 252 Doc.Chunks.begin(), 253 std::make_unique<ELFYAML::Section>( 254 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true)); 255 256 std::vector<StringRef> ImplicitSections; 257 if (Doc.DynamicSymbols) 258 ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"}); 259 if (Doc.Symbols) 260 ImplicitSections.push_back(".symtab"); 261 ImplicitSections.insert(ImplicitSections.end(), {".strtab", ".shstrtab"}); 262 263 // Insert placeholders for implicit sections that are not 264 // defined explicitly in YAML. 265 for (StringRef SecName : ImplicitSections) { 266 if (DocSections.count(SecName)) 267 continue; 268 269 std::unique_ptr<ELFYAML::Chunk> Sec = std::make_unique<ELFYAML::Section>( 270 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/); 271 Sec->Name = SecName; 272 Doc.Chunks.push_back(std::move(Sec)); 273 } 274 } 275 276 template <class ELFT> 277 void ELFState<ELFT>::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) { 278 using namespace llvm::ELF; 279 280 Elf_Ehdr Header; 281 zero(Header); 282 Header.e_ident[EI_MAG0] = 0x7f; 283 Header.e_ident[EI_MAG1] = 'E'; 284 Header.e_ident[EI_MAG2] = 'L'; 285 Header.e_ident[EI_MAG3] = 'F'; 286 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 287 Header.e_ident[EI_DATA] = Doc.Header.Data; 288 Header.e_ident[EI_VERSION] = EV_CURRENT; 289 Header.e_ident[EI_OSABI] = Doc.Header.OSABI; 290 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; 291 Header.e_type = Doc.Header.Type; 292 Header.e_machine = Doc.Header.Machine; 293 Header.e_version = EV_CURRENT; 294 Header.e_entry = Doc.Header.Entry; 295 Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0; 296 Header.e_flags = Doc.Header.Flags; 297 Header.e_ehsize = sizeof(Elf_Ehdr); 298 Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0; 299 Header.e_phnum = Doc.ProgramHeaders.size(); 300 301 Header.e_shentsize = 302 Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); 303 // Immediately following the ELF header and program headers. 304 // Align the start of the section header and write the ELF header. 305 uint64_t SHOff; 306 CBA.getOSAndAlignedOffset(SHOff, sizeof(typename ELFT::uint)); 307 Header.e_shoff = 308 Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff; 309 Header.e_shnum = 310 Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.getSections().size(); 311 Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx 312 : SN2I.get(".shstrtab"); 313 314 OS.write((const char *)&Header, sizeof(Header)); 315 } 316 317 template <class ELFT> 318 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) { 319 for (const auto &YamlPhdr : Doc.ProgramHeaders) { 320 Elf_Phdr Phdr; 321 zero(Phdr); 322 Phdr.p_type = YamlPhdr.Type; 323 Phdr.p_flags = YamlPhdr.Flags; 324 Phdr.p_vaddr = YamlPhdr.VAddr; 325 Phdr.p_paddr = YamlPhdr.PAddr; 326 PHeaders.push_back(Phdr); 327 } 328 } 329 330 template <class ELFT> 331 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec, 332 StringRef LocSym) { 333 unsigned Index; 334 if (SN2I.lookup(S, Index) || to_integer(S, Index)) 335 return Index; 336 337 assert(LocSec.empty() || LocSym.empty()); 338 if (!LocSym.empty()) 339 reportError("unknown section referenced: '" + S + "' by YAML symbol '" + 340 LocSym + "'"); 341 else 342 reportError("unknown section referenced: '" + S + "' by YAML section '" + 343 LocSec + "'"); 344 return 0; 345 } 346 347 template <class ELFT> 348 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec, 349 bool IsDynamic) { 350 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; 351 unsigned Index; 352 // Here we try to look up S in the symbol table. If it is not there, 353 // treat its value as a symbol index. 354 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { 355 reportError("unknown symbol referenced: '" + S + "' by YAML section '" + 356 LocSec + "'"); 357 return 0; 358 } 359 return Index; 360 } 361 362 template <class ELFT> 363 static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) { 364 if (!From) 365 return; 366 if (From->ShFlags) 367 To.sh_flags = *From->ShFlags; 368 if (From->ShName) 369 To.sh_name = *From->ShName; 370 if (From->ShOffset) 371 To.sh_offset = *From->ShOffset; 372 if (From->ShSize) 373 To.sh_size = *From->ShSize; 374 } 375 376 template <class ELFT> 377 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA, 378 Elf_Shdr &Header, StringRef SecName, 379 ELFYAML::Section *YAMLSec) { 380 // Check if the header was already initialized. 381 if (Header.sh_offset) 382 return false; 383 384 if (SecName == ".symtab") 385 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); 386 else if (SecName == ".strtab") 387 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); 388 else if (SecName == ".shstrtab") 389 initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec); 390 else if (SecName == ".dynsym") 391 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); 392 else if (SecName == ".dynstr") 393 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); 394 else 395 return false; 396 397 LocationCounter += Header.sh_size; 398 399 // Override section fields if requested. 400 overrideFields<ELFT>(YAMLSec, Header); 401 return true; 402 } 403 404 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { 405 size_t SuffixPos = S.rfind(" ["); 406 if (SuffixPos == StringRef::npos) 407 return S; 408 return S.substr(0, SuffixPos); 409 } 410 411 template <class ELFT> 412 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 413 ContiguousBlobAccumulator &CBA) { 414 // Ensure SHN_UNDEF entry is present. An all-zero section header is a 415 // valid SHN_UNDEF entry since SHT_NULL == 0. 416 SHeaders.resize(Doc.getSections().size()); 417 418 size_t SecNdx = -1; 419 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) { 420 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) { 421 writeFill(*S, CBA); 422 LocationCounter += S->Size; 423 continue; 424 } 425 426 ++SecNdx; 427 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get()); 428 if (SecNdx == 0 && Sec->IsImplicit) 429 continue; 430 431 // We have a few sections like string or symbol tables that are usually 432 // added implicitly to the end. However, if they are explicitly specified 433 // in the YAML, we need to write them here. This ensures the file offset 434 // remains correct. 435 Elf_Shdr &SHeader = SHeaders[SecNdx]; 436 if (initImplicitHeader(CBA, SHeader, Sec->Name, 437 Sec->IsImplicit ? nullptr : Sec)) 438 continue; 439 440 assert(Sec && "It can't be null unless it is an implicit section. But all " 441 "implicit sections should already have been handled above."); 442 443 SHeader.sh_name = 444 DotShStrtab.getOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); 445 SHeader.sh_type = Sec->Type; 446 if (Sec->Flags) 447 SHeader.sh_flags = *Sec->Flags; 448 SHeader.sh_addralign = Sec->AddressAlign; 449 450 assignSectionAddress(SHeader, Sec); 451 452 if (!Sec->Link.empty()) 453 SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name); 454 455 if (SecNdx == 0) { 456 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 457 // We do not write any content for special SHN_UNDEF section. 458 if (RawSec->Size) 459 SHeader.sh_size = *RawSec->Size; 460 if (RawSec->Info) 461 SHeader.sh_info = *RawSec->Info; 462 } 463 if (Sec->EntSize) 464 SHeader.sh_entsize = *Sec->EntSize; 465 } else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 466 writeSectionContent(SHeader, *S, CBA); 467 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) { 468 writeSectionContent(SHeader, *S, CBA); 469 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) { 470 writeSectionContent(SHeader, *S, CBA); 471 } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) { 472 writeSectionContent(SHeader, *S, CBA); 473 } else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) { 474 writeSectionContent(SHeader, *S, CBA); 475 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) { 476 writeSectionContent(SHeader, *S, CBA); 477 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) { 478 SHeader.sh_entsize = 0; 479 SHeader.sh_size = S->Size; 480 // SHT_NOBITS section does not have content 481 // so just to setup the section offset. 482 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 483 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) { 484 writeSectionContent(SHeader, *S, CBA); 485 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) { 486 writeSectionContent(SHeader, *S, CBA); 487 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 488 writeSectionContent(SHeader, *S, CBA); 489 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 490 writeSectionContent(SHeader, *S, CBA); 491 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) { 492 writeSectionContent(SHeader, *S, CBA); 493 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) { 494 writeSectionContent(SHeader, *S, CBA); 495 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) { 496 writeSectionContent(SHeader, *S, CBA); 497 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) { 498 writeSectionContent(SHeader, *S, CBA); 499 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) { 500 writeSectionContent(SHeader, *S, CBA); 501 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) { 502 writeSectionContent(SHeader, *S, CBA); 503 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) { 504 writeSectionContent(SHeader, *S, CBA); 505 } else if (auto S = dyn_cast<ELFYAML::CallGraphProfileSection>(Sec)) { 506 writeSectionContent(SHeader, *S, CBA); 507 } else { 508 llvm_unreachable("Unknown section type"); 509 } 510 511 LocationCounter += SHeader.sh_size; 512 513 // Override section fields if requested. 514 overrideFields<ELFT>(Sec, SHeader); 515 } 516 } 517 518 template <class ELFT> 519 void ELFState<ELFT>::assignSectionAddress(Elf_Shdr &SHeader, 520 ELFYAML::Section *YAMLSec) { 521 if (YAMLSec && YAMLSec->Address) { 522 SHeader.sh_addr = *YAMLSec->Address; 523 LocationCounter = *YAMLSec->Address; 524 return; 525 } 526 527 // sh_addr represents the address in the memory image of a process. Sections 528 // in a relocatable object file or non-allocatable sections do not need 529 // sh_addr assignment. 530 if (Doc.Header.Type.value == ELF::ET_REL || 531 !(SHeader.sh_flags & ELF::SHF_ALLOC)) 532 return; 533 534 LocationCounter = 535 alignTo(LocationCounter, SHeader.sh_addralign ? SHeader.sh_addralign : 1); 536 SHeader.sh_addr = LocationCounter; 537 } 538 539 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) { 540 for (size_t I = 0; I < Symbols.size(); ++I) 541 if (Symbols[I].Binding.value != ELF::STB_LOCAL) 542 return I; 543 return Symbols.size(); 544 } 545 546 static uint64_t writeContent(raw_ostream &OS, 547 const Optional<yaml::BinaryRef> &Content, 548 const Optional<llvm::yaml::Hex64> &Size) { 549 size_t ContentSize = 0; 550 if (Content) { 551 Content->writeAsBinary(OS); 552 ContentSize = Content->binary_size(); 553 } 554 555 if (!Size) 556 return ContentSize; 557 558 OS.write_zeros(*Size - ContentSize); 559 return *Size; 560 } 561 562 template <class ELFT> 563 std::vector<typename ELFT::Sym> 564 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 565 const StringTableBuilder &Strtab) { 566 std::vector<Elf_Sym> Ret; 567 Ret.resize(Symbols.size() + 1); 568 569 size_t I = 0; 570 for (const ELFYAML::Symbol &Sym : Symbols) { 571 Elf_Sym &Symbol = Ret[++I]; 572 573 // If NameIndex, which contains the name offset, is explicitly specified, we 574 // use it. This is useful for preparing broken objects. Otherwise, we add 575 // the specified Name to the string table builder to get its offset. 576 if (Sym.StName) 577 Symbol.st_name = *Sym.StName; 578 else if (!Sym.Name.empty()) 579 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); 580 581 Symbol.setBindingAndType(Sym.Binding, Sym.Type); 582 if (!Sym.Section.empty()) 583 Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name); 584 else if (Sym.Index) 585 Symbol.st_shndx = *Sym.Index; 586 587 Symbol.st_value = Sym.Value; 588 Symbol.st_other = Sym.Other ? *Sym.Other : 0; 589 Symbol.st_size = Sym.Size; 590 } 591 592 return Ret; 593 } 594 595 template <class ELFT> 596 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, 597 SymtabType STType, 598 ContiguousBlobAccumulator &CBA, 599 ELFYAML::Section *YAMLSec) { 600 601 bool IsStatic = STType == SymtabType::Static; 602 ArrayRef<ELFYAML::Symbol> Symbols; 603 if (IsStatic && Doc.Symbols) 604 Symbols = *Doc.Symbols; 605 else if (!IsStatic && Doc.DynamicSymbols) 606 Symbols = *Doc.DynamicSymbols; 607 608 ELFYAML::RawContentSection *RawSec = 609 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 610 if (RawSec && (RawSec->Content || RawSec->Size)) { 611 bool HasSymbolsDescription = 612 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols); 613 if (HasSymbolsDescription) { 614 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`"); 615 if (RawSec->Content) 616 reportError("cannot specify both `Content` and " + Property + 617 " for symbol table section '" + RawSec->Name + "'"); 618 if (RawSec->Size) 619 reportError("cannot specify both `Size` and " + Property + 620 " for symbol table section '" + RawSec->Name + "'"); 621 return; 622 } 623 } 624 625 zero(SHeader); 626 SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); 627 628 if (YAMLSec) 629 SHeader.sh_type = YAMLSec->Type; 630 else 631 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; 632 633 if (RawSec && !RawSec->Link.empty()) { 634 // If the Link field is explicitly defined in the document, 635 // we should use it. 636 SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name); 637 } else { 638 // When we describe the .dynsym section in the document explicitly, it is 639 // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not 640 // added implicitly and we should be able to leave the Link zeroed if 641 // .dynstr is not defined. 642 unsigned Link = 0; 643 if (IsStatic) 644 Link = SN2I.get(".strtab"); 645 else 646 SN2I.lookup(".dynstr", Link); 647 SHeader.sh_link = Link; 648 } 649 650 if (YAMLSec && YAMLSec->Flags) 651 SHeader.sh_flags = *YAMLSec->Flags; 652 else if (!IsStatic) 653 SHeader.sh_flags = ELF::SHF_ALLOC; 654 655 // If the symbol table section is explicitly described in the YAML 656 // then we should set the fields requested. 657 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) 658 : findFirstNonGlobal(Symbols) + 1; 659 SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) 660 ? (uint64_t)(*YAMLSec->EntSize) 661 : sizeof(Elf_Sym); 662 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; 663 664 assignSectionAddress(SHeader, YAMLSec); 665 666 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 667 if (RawSec && (RawSec->Content || RawSec->Size)) { 668 assert(Symbols.empty()); 669 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 670 return; 671 } 672 673 std::vector<Elf_Sym> Syms = 674 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); 675 writeArrayData(OS, makeArrayRef(Syms)); 676 SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); 677 } 678 679 template <class ELFT> 680 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 681 StringTableBuilder &STB, 682 ContiguousBlobAccumulator &CBA, 683 ELFYAML::Section *YAMLSec) { 684 zero(SHeader); 685 SHeader.sh_name = DotShStrtab.getOffset(Name); 686 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; 687 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 688 689 ELFYAML::RawContentSection *RawSec = 690 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 691 692 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 693 if (RawSec && (RawSec->Content || RawSec->Size)) { 694 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 695 } else { 696 STB.write(OS); 697 SHeader.sh_size = STB.getSize(); 698 } 699 700 if (YAMLSec && YAMLSec->EntSize) 701 SHeader.sh_entsize = *YAMLSec->EntSize; 702 703 if (RawSec && RawSec->Info) 704 SHeader.sh_info = *RawSec->Info; 705 706 if (YAMLSec && YAMLSec->Flags) 707 SHeader.sh_flags = *YAMLSec->Flags; 708 else if (Name == ".dynstr") 709 SHeader.sh_flags = ELF::SHF_ALLOC; 710 711 assignSectionAddress(SHeader, YAMLSec); 712 } 713 714 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) { 715 ErrHandler(Msg); 716 HasError = true; 717 } 718 719 template <class ELFT> 720 std::vector<Fragment> 721 ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 722 ArrayRef<typename ELFT::Shdr> SHeaders) { 723 DenseMap<StringRef, ELFYAML::Fill *> NameToFill; 724 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) 725 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) 726 NameToFill[S->Name] = S; 727 728 std::vector<Fragment> Ret; 729 for (const ELFYAML::SectionName &SecName : Phdr.Sections) { 730 unsigned Index; 731 if (SN2I.lookup(SecName.Section, Index)) { 732 const typename ELFT::Shdr &H = SHeaders[Index]; 733 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign}); 734 continue; 735 } 736 737 if (ELFYAML::Fill *Fill = NameToFill.lookup(SecName.Section)) { 738 Ret.push_back({Fill->ShOffset, Fill->Size, llvm::ELF::SHT_PROGBITS, 739 /*ShAddrAlign=*/1}); 740 continue; 741 } 742 743 reportError("unknown section or fill referenced: '" + SecName.Section + 744 "' by program header"); 745 } 746 747 return Ret; 748 } 749 750 template <class ELFT> 751 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 752 std::vector<Elf_Shdr> &SHeaders) { 753 uint32_t PhdrIdx = 0; 754 for (auto &YamlPhdr : Doc.ProgramHeaders) { 755 Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; 756 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders); 757 if (!llvm::is_sorted(Fragments, [](const Fragment &A, const Fragment &B) { 758 return A.Offset < B.Offset; 759 })) 760 reportError("sections in the program header with index " + 761 Twine(PhdrIdx) + " are not sorted by their file offset"); 762 763 if (YamlPhdr.Offset) { 764 if (!Fragments.empty() && *YamlPhdr.Offset > Fragments.front().Offset) 765 reportError("'Offset' for segment with index " + Twine(PhdrIdx) + 766 " must be less than or equal to the minimum file offset of " 767 "all included sections (0x" + 768 Twine::utohexstr(Fragments.front().Offset) + ")"); 769 PHeader.p_offset = *YamlPhdr.Offset; 770 } else if (!Fragments.empty()) { 771 PHeader.p_offset = Fragments.front().Offset; 772 } 773 774 // Set the file size if not set explicitly. 775 if (YamlPhdr.FileSize) { 776 PHeader.p_filesz = *YamlPhdr.FileSize; 777 } else if (!Fragments.empty()) { 778 uint64_t FileSize = Fragments.back().Offset - PHeader.p_offset; 779 // SHT_NOBITS sections occupy no physical space in a file, we should not 780 // take their sizes into account when calculating the file size of a 781 // segment. 782 if (Fragments.back().Type != llvm::ELF::SHT_NOBITS) 783 FileSize += Fragments.back().Size; 784 PHeader.p_filesz = FileSize; 785 } 786 787 // Find the maximum offset of the end of a section in order to set p_memsz. 788 uint64_t MemOffset = PHeader.p_offset; 789 for (const Fragment &F : Fragments) 790 MemOffset = std::max(MemOffset, F.Offset + F.Size); 791 // Set the memory size if not set explicitly. 792 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) 793 : MemOffset - PHeader.p_offset; 794 795 if (YamlPhdr.Align) { 796 PHeader.p_align = *YamlPhdr.Align; 797 } else { 798 // Set the alignment of the segment to be the maximum alignment of the 799 // sections so that by default the segment has a valid and sensible 800 // alignment. 801 PHeader.p_align = 1; 802 for (const Fragment &F : Fragments) 803 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign); 804 } 805 } 806 } 807 808 template <class ELFT> 809 void ELFState<ELFT>::writeSectionContent( 810 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, 811 ContiguousBlobAccumulator &CBA) { 812 raw_ostream &OS = 813 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 814 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 815 816 if (Section.EntSize) 817 SHeader.sh_entsize = *Section.EntSize; 818 819 if (Section.Info) 820 SHeader.sh_info = *Section.Info; 821 } 822 823 static bool isMips64EL(const ELFYAML::Object &Doc) { 824 return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && 825 Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && 826 Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 827 } 828 829 template <class ELFT> 830 void ELFState<ELFT>::writeSectionContent( 831 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, 832 ContiguousBlobAccumulator &CBA) { 833 assert((Section.Type == llvm::ELF::SHT_REL || 834 Section.Type == llvm::ELF::SHT_RELA) && 835 "Section type is not SHT_REL nor SHT_RELA"); 836 837 bool IsRela = Section.Type == llvm::ELF::SHT_RELA; 838 if (Section.EntSize) 839 SHeader.sh_entsize = *Section.EntSize; 840 else 841 SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 842 SHeader.sh_size = (IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)) * 843 Section.Relocations.size(); 844 845 // For relocation section set link to .symtab by default. 846 unsigned Link = 0; 847 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 848 SHeader.sh_link = Link; 849 850 if (!Section.RelocatableSec.empty()) 851 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); 852 853 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 854 for (const auto &Rel : Section.Relocations) { 855 unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, 856 Section.Link == ".dynsym") 857 : 0; 858 if (IsRela) { 859 Elf_Rela REntry; 860 zero(REntry); 861 REntry.r_offset = Rel.Offset; 862 REntry.r_addend = Rel.Addend; 863 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 864 OS.write((const char *)&REntry, sizeof(REntry)); 865 } else { 866 Elf_Rel REntry; 867 zero(REntry); 868 REntry.r_offset = Rel.Offset; 869 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 870 OS.write((const char *)&REntry, sizeof(REntry)); 871 } 872 } 873 } 874 875 template <class ELFT> 876 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 877 const ELFYAML::RelrSection &Section, 878 ContiguousBlobAccumulator &CBA) { 879 raw_ostream &OS = 880 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 881 SHeader.sh_entsize = 882 Section.EntSize ? uint64_t(*Section.EntSize) : sizeof(Elf_Relr); 883 884 if (Section.Content) { 885 SHeader.sh_size = writeContent(OS, Section.Content, None); 886 return; 887 } 888 889 if (!Section.Entries) 890 return; 891 892 for (llvm::yaml::Hex64 E : *Section.Entries) { 893 if (!ELFT::Is64Bits && E > UINT32_MAX) 894 reportError(Section.Name + ": the value is too large for 32-bits: 0x" + 895 Twine::utohexstr(E)); 896 support::endian::write<uintX_t>(OS, E, ELFT::TargetEndianness); 897 } 898 899 SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size(); 900 } 901 902 template <class ELFT> 903 void ELFState<ELFT>::writeSectionContent( 904 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, 905 ContiguousBlobAccumulator &CBA) { 906 raw_ostream &OS = 907 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 908 909 for (uint32_t E : Shndx.Entries) 910 support::endian::write<uint32_t>(OS, E, ELFT::TargetEndianness); 911 912 SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4; 913 SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize; 914 } 915 916 template <class ELFT> 917 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 918 const ELFYAML::Group &Section, 919 ContiguousBlobAccumulator &CBA) { 920 assert(Section.Type == llvm::ELF::SHT_GROUP && 921 "Section type is not SHT_GROUP"); 922 923 unsigned Link = 0; 924 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 925 SHeader.sh_link = Link; 926 927 SHeader.sh_entsize = 4; 928 SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); 929 930 if (Section.Signature) 931 SHeader.sh_info = 932 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); 933 934 raw_ostream &OS = 935 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 936 937 for (const ELFYAML::SectionOrType &Member : Section.Members) { 938 unsigned int SectionIndex = 0; 939 if (Member.sectionNameOrType == "GRP_COMDAT") 940 SectionIndex = llvm::ELF::GRP_COMDAT; 941 else 942 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); 943 support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness); 944 } 945 } 946 947 template <class ELFT> 948 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 949 const ELFYAML::SymverSection &Section, 950 ContiguousBlobAccumulator &CBA) { 951 raw_ostream &OS = 952 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 953 for (uint16_t Version : Section.Entries) 954 support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness); 955 956 SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2; 957 SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; 958 } 959 960 template <class ELFT> 961 void ELFState<ELFT>::writeSectionContent( 962 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, 963 ContiguousBlobAccumulator &CBA) { 964 raw_ostream &OS = 965 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 966 967 if (Section.Content || Section.Size) { 968 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 969 return; 970 } 971 972 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { 973 support::endian::write<uintX_t>(OS, E.Address, ELFT::TargetEndianness); 974 SHeader.sh_size += sizeof(uintX_t) + encodeULEB128(E.Size, OS); 975 } 976 } 977 978 template <class ELFT> 979 void ELFState<ELFT>::writeSectionContent( 980 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, 981 ContiguousBlobAccumulator &CBA) { 982 raw_ostream &OS = 983 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 984 985 if (Section.Content) { 986 SHeader.sh_size = writeContent(OS, Section.Content, None); 987 return; 988 } 989 990 if (!Section.Options) 991 return; 992 993 for (const ELFYAML::LinkerOption &LO : *Section.Options) { 994 OS.write(LO.Key.data(), LO.Key.size()); 995 OS.write('\0'); 996 OS.write(LO.Value.data(), LO.Value.size()); 997 OS.write('\0'); 998 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2); 999 } 1000 } 1001 1002 template <class ELFT> 1003 void ELFState<ELFT>::writeSectionContent( 1004 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, 1005 ContiguousBlobAccumulator &CBA) { 1006 raw_ostream &OS = 1007 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1008 1009 if (Section.Content) { 1010 SHeader.sh_size = writeContent(OS, Section.Content, None); 1011 return; 1012 } 1013 1014 if (!Section.Libs) 1015 return; 1016 1017 for (StringRef Lib : *Section.Libs) { 1018 OS.write(Lib.data(), Lib.size()); 1019 OS.write('\0'); 1020 SHeader.sh_size += Lib.size() + 1; 1021 } 1022 } 1023 1024 template <class ELFT> 1025 void ELFState<ELFT>::writeSectionContent( 1026 Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section, 1027 ContiguousBlobAccumulator &CBA) { 1028 raw_ostream &OS = 1029 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1030 1031 if (Section.EntSize) 1032 SHeader.sh_entsize = *Section.EntSize; 1033 else 1034 SHeader.sh_entsize = 16; 1035 1036 unsigned Link = 0; 1037 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1038 SHeader.sh_link = Link; 1039 1040 if (Section.Content) { 1041 SHeader.sh_size = writeContent(OS, Section.Content, None); 1042 return; 1043 } 1044 1045 if (!Section.Entries) 1046 return; 1047 1048 for (const ELFYAML::CallGraphEntry &E : *Section.Entries) { 1049 unsigned From = toSymbolIndex(E.From, Section.Name, /*IsDynamic=*/false); 1050 unsigned To = toSymbolIndex(E.To, Section.Name, /*IsDynamic=*/false); 1051 1052 support::endian::write<uint32_t>(OS, From, ELFT::TargetEndianness); 1053 support::endian::write<uint32_t>(OS, To, ELFT::TargetEndianness); 1054 support::endian::write<uint64_t>(OS, E.Weight, ELFT::TargetEndianness); 1055 SHeader.sh_size += 16; 1056 } 1057 } 1058 1059 template <class ELFT> 1060 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1061 const ELFYAML::HashSection &Section, 1062 ContiguousBlobAccumulator &CBA) { 1063 raw_ostream &OS = 1064 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1065 1066 unsigned Link = 0; 1067 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1068 SHeader.sh_link = Link; 1069 1070 if (Section.Content || Section.Size) { 1071 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1072 return; 1073 } 1074 1075 support::endian::write<uint32_t>( 1076 OS, Section.NBucket.getValueOr(llvm::yaml::Hex64(Section.Bucket->size())), 1077 ELFT::TargetEndianness); 1078 support::endian::write<uint32_t>( 1079 OS, Section.NChain.getValueOr(llvm::yaml::Hex64(Section.Chain->size())), 1080 ELFT::TargetEndianness); 1081 1082 for (uint32_t Val : *Section.Bucket) 1083 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1084 for (uint32_t Val : *Section.Chain) 1085 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1086 1087 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; 1088 } 1089 1090 template <class ELFT> 1091 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1092 const ELFYAML::VerdefSection &Section, 1093 ContiguousBlobAccumulator &CBA) { 1094 typedef typename ELFT::Verdef Elf_Verdef; 1095 typedef typename ELFT::Verdaux Elf_Verdaux; 1096 raw_ostream &OS = 1097 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1098 1099 SHeader.sh_info = Section.Info; 1100 1101 if (Section.Content) { 1102 SHeader.sh_size = writeContent(OS, Section.Content, None); 1103 return; 1104 } 1105 1106 if (!Section.Entries) 1107 return; 1108 1109 uint64_t AuxCnt = 0; 1110 for (size_t I = 0; I < Section.Entries->size(); ++I) { 1111 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I]; 1112 1113 Elf_Verdef VerDef; 1114 VerDef.vd_version = E.Version; 1115 VerDef.vd_flags = E.Flags; 1116 VerDef.vd_ndx = E.VersionNdx; 1117 VerDef.vd_hash = E.Hash; 1118 VerDef.vd_aux = sizeof(Elf_Verdef); 1119 VerDef.vd_cnt = E.VerNames.size(); 1120 if (I == Section.Entries->size() - 1) 1121 VerDef.vd_next = 0; 1122 else 1123 VerDef.vd_next = 1124 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); 1125 OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); 1126 1127 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { 1128 Elf_Verdaux VernAux; 1129 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); 1130 if (J == E.VerNames.size() - 1) 1131 VernAux.vda_next = 0; 1132 else 1133 VernAux.vda_next = sizeof(Elf_Verdaux); 1134 OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); 1135 } 1136 } 1137 1138 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) + 1139 AuxCnt * sizeof(Elf_Verdaux); 1140 } 1141 1142 template <class ELFT> 1143 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1144 const ELFYAML::VerneedSection &Section, 1145 ContiguousBlobAccumulator &CBA) { 1146 typedef typename ELFT::Verneed Elf_Verneed; 1147 typedef typename ELFT::Vernaux Elf_Vernaux; 1148 1149 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1150 SHeader.sh_info = Section.Info; 1151 1152 if (Section.Content) { 1153 SHeader.sh_size = writeContent(OS, Section.Content, None); 1154 return; 1155 } 1156 1157 if (!Section.VerneedV) 1158 return; 1159 1160 uint64_t AuxCnt = 0; 1161 for (size_t I = 0; I < Section.VerneedV->size(); ++I) { 1162 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I]; 1163 1164 Elf_Verneed VerNeed; 1165 VerNeed.vn_version = VE.Version; 1166 VerNeed.vn_file = DotDynstr.getOffset(VE.File); 1167 if (I == Section.VerneedV->size() - 1) 1168 VerNeed.vn_next = 0; 1169 else 1170 VerNeed.vn_next = 1171 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); 1172 VerNeed.vn_cnt = VE.AuxV.size(); 1173 VerNeed.vn_aux = sizeof(Elf_Verneed); 1174 OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); 1175 1176 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { 1177 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; 1178 1179 Elf_Vernaux VernAux; 1180 VernAux.vna_hash = VAuxE.Hash; 1181 VernAux.vna_flags = VAuxE.Flags; 1182 VernAux.vna_other = VAuxE.Other; 1183 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); 1184 if (J == VE.AuxV.size() - 1) 1185 VernAux.vna_next = 0; 1186 else 1187 VernAux.vna_next = sizeof(Elf_Vernaux); 1188 OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); 1189 } 1190 } 1191 1192 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) + 1193 AuxCnt * sizeof(Elf_Vernaux); 1194 } 1195 1196 template <class ELFT> 1197 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1198 const ELFYAML::MipsABIFlags &Section, 1199 ContiguousBlobAccumulator &CBA) { 1200 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && 1201 "Section type is not SHT_MIPS_ABIFLAGS"); 1202 1203 object::Elf_Mips_ABIFlags<ELFT> Flags; 1204 zero(Flags); 1205 SHeader.sh_entsize = sizeof(Flags); 1206 SHeader.sh_size = SHeader.sh_entsize; 1207 1208 auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1209 Flags.version = Section.Version; 1210 Flags.isa_level = Section.ISALevel; 1211 Flags.isa_rev = Section.ISARevision; 1212 Flags.gpr_size = Section.GPRSize; 1213 Flags.cpr1_size = Section.CPR1Size; 1214 Flags.cpr2_size = Section.CPR2Size; 1215 Flags.fp_abi = Section.FpABI; 1216 Flags.isa_ext = Section.ISAExtension; 1217 Flags.ases = Section.ASEs; 1218 Flags.flags1 = Section.Flags1; 1219 Flags.flags2 = Section.Flags2; 1220 OS.write((const char *)&Flags, sizeof(Flags)); 1221 } 1222 1223 template <class ELFT> 1224 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1225 const ELFYAML::DynamicSection &Section, 1226 ContiguousBlobAccumulator &CBA) { 1227 assert(Section.Type == llvm::ELF::SHT_DYNAMIC && 1228 "Section type is not SHT_DYNAMIC"); 1229 1230 if (!Section.Entries.empty() && Section.Content) 1231 reportError("cannot specify both raw content and explicit entries " 1232 "for dynamic section '" + 1233 Section.Name + "'"); 1234 1235 if (Section.Content) 1236 SHeader.sh_size = Section.Content->binary_size(); 1237 else 1238 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); 1239 if (Section.EntSize) 1240 SHeader.sh_entsize = *Section.EntSize; 1241 else 1242 SHeader.sh_entsize = sizeof(Elf_Dyn); 1243 1244 raw_ostream &OS = 1245 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1246 for (const ELFYAML::DynamicEntry &DE : Section.Entries) { 1247 support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness); 1248 support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness); 1249 } 1250 if (Section.Content) 1251 Section.Content->writeAsBinary(OS); 1252 } 1253 1254 template <class ELFT> 1255 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1256 const ELFYAML::AddrsigSection &Section, 1257 ContiguousBlobAccumulator &CBA) { 1258 raw_ostream &OS = 1259 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1260 1261 unsigned Link = 0; 1262 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1263 SHeader.sh_link = Link; 1264 1265 if (Section.Content || Section.Size) { 1266 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1267 return; 1268 } 1269 1270 for (StringRef Sym : *Section.Symbols) 1271 SHeader.sh_size += encodeULEB128( 1272 toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false), OS); 1273 } 1274 1275 template <class ELFT> 1276 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1277 const ELFYAML::NoteSection &Section, 1278 ContiguousBlobAccumulator &CBA) { 1279 raw_ostream &OS = 1280 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1281 uint64_t Offset = OS.tell(); 1282 1283 if (Section.Content || Section.Size) { 1284 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1285 return; 1286 } 1287 1288 for (const ELFYAML::NoteEntry &NE : *Section.Notes) { 1289 // Write name size. 1290 if (NE.Name.empty()) 1291 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1292 else 1293 support::endian::write<uint32_t>(OS, NE.Name.size() + 1, 1294 ELFT::TargetEndianness); 1295 1296 // Write description size. 1297 if (NE.Desc.binary_size() == 0) 1298 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1299 else 1300 support::endian::write<uint32_t>(OS, NE.Desc.binary_size(), 1301 ELFT::TargetEndianness); 1302 1303 // Write type. 1304 support::endian::write<uint32_t>(OS, NE.Type, ELFT::TargetEndianness); 1305 1306 // Write name, null terminator and padding. 1307 if (!NE.Name.empty()) { 1308 support::endian::write<uint8_t>(OS, arrayRefFromStringRef(NE.Name), 1309 ELFT::TargetEndianness); 1310 support::endian::write<uint8_t>(OS, 0, ELFT::TargetEndianness); 1311 CBA.padToAlignment(4); 1312 } 1313 1314 // Write description and padding. 1315 if (NE.Desc.binary_size() != 0) { 1316 NE.Desc.writeAsBinary(OS); 1317 CBA.padToAlignment(4); 1318 } 1319 } 1320 1321 SHeader.sh_size = OS.tell() - Offset; 1322 } 1323 1324 template <class ELFT> 1325 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1326 const ELFYAML::GnuHashSection &Section, 1327 ContiguousBlobAccumulator &CBA) { 1328 raw_ostream &OS = 1329 CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); 1330 1331 unsigned Link = 0; 1332 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1333 SHeader.sh_link = Link; 1334 1335 if (Section.Content) { 1336 SHeader.sh_size = writeContent(OS, Section.Content, None); 1337 return; 1338 } 1339 1340 // We write the header first, starting with the hash buckets count. Normally 1341 // it is the number of entries in HashBuckets, but the "NBuckets" property can 1342 // be used to override this field, which is useful for producing broken 1343 // objects. 1344 if (Section.Header->NBuckets) 1345 support::endian::write<uint32_t>(OS, *Section.Header->NBuckets, 1346 ELFT::TargetEndianness); 1347 else 1348 support::endian::write<uint32_t>(OS, Section.HashBuckets->size(), 1349 ELFT::TargetEndianness); 1350 1351 // Write the index of the first symbol in the dynamic symbol table accessible 1352 // via the hash table. 1353 support::endian::write<uint32_t>(OS, Section.Header->SymNdx, 1354 ELFT::TargetEndianness); 1355 1356 // Write the number of words in the Bloom filter. As above, the "MaskWords" 1357 // property can be used to set this field to any value. 1358 if (Section.Header->MaskWords) 1359 support::endian::write<uint32_t>(OS, *Section.Header->MaskWords, 1360 ELFT::TargetEndianness); 1361 else 1362 support::endian::write<uint32_t>(OS, Section.BloomFilter->size(), 1363 ELFT::TargetEndianness); 1364 1365 // Write the shift constant used by the Bloom filter. 1366 support::endian::write<uint32_t>(OS, Section.Header->Shift2, 1367 ELFT::TargetEndianness); 1368 1369 // We've finished writing the header. Now write the Bloom filter. 1370 for (llvm::yaml::Hex64 Val : *Section.BloomFilter) 1371 support::endian::write<typename ELFT::uint>(OS, Val, 1372 ELFT::TargetEndianness); 1373 1374 // Write an array of hash buckets. 1375 for (llvm::yaml::Hex32 Val : *Section.HashBuckets) 1376 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1377 1378 // Write an array of hash values. 1379 for (llvm::yaml::Hex32 Val : *Section.HashValues) 1380 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1381 1382 SHeader.sh_size = 16 /*Header size*/ + 1383 Section.BloomFilter->size() * sizeof(typename ELFT::uint) + 1384 Section.HashBuckets->size() * 4 + 1385 Section.HashValues->size() * 4; 1386 } 1387 1388 template <class ELFT> 1389 void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill, 1390 ContiguousBlobAccumulator &CBA) { 1391 raw_ostream &OS = CBA.getOSAndAlignedOffset(Fill.ShOffset, /*Align=*/1); 1392 1393 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0; 1394 if (!PatternSize) { 1395 OS.write_zeros(Fill.Size); 1396 return; 1397 } 1398 1399 // Fill the content with the specified pattern. 1400 uint64_t Written = 0; 1401 for (; Written + PatternSize <= Fill.Size; Written += PatternSize) 1402 Fill.Pattern->writeAsBinary(OS); 1403 Fill.Pattern->writeAsBinary(OS, Fill.Size - Written); 1404 } 1405 1406 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() { 1407 size_t SecNdx = -1; 1408 StringSet<> Seen; 1409 for (size_t I = 0; I < Doc.Chunks.size(); ++I) { 1410 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I]; 1411 bool IsSection = isa<ELFYAML::Section>(C.get()); 1412 if (IsSection) 1413 ++SecNdx; 1414 1415 if (C->Name.empty()) 1416 continue; 1417 1418 if (!Seen.insert(C->Name).second) 1419 reportError("repeated section/fill name: '" + C->Name + 1420 "' at YAML section/fill number " + Twine(I)); 1421 if (!IsSection || HasError) 1422 continue; 1423 1424 if (!SN2I.addName(C->Name, SecNdx)) 1425 llvm_unreachable("buildSectionIndex() failed"); 1426 DotShStrtab.add(ELFYAML::dropUniqueSuffix(C->Name)); 1427 } 1428 1429 DotShStrtab.finalize(); 1430 } 1431 1432 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() { 1433 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) { 1434 for (size_t I = 0, S = V.size(); I < S; ++I) { 1435 const ELFYAML::Symbol &Sym = V[I]; 1436 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) 1437 reportError("repeated symbol name: '" + Sym.Name + "'"); 1438 } 1439 }; 1440 1441 if (Doc.Symbols) 1442 Build(*Doc.Symbols, SymN2I); 1443 if (Doc.DynamicSymbols) 1444 Build(*Doc.DynamicSymbols, DynSymN2I); 1445 } 1446 1447 template <class ELFT> void ELFState<ELFT>::finalizeStrings() { 1448 // Add the regular symbol names to .strtab section. 1449 if (Doc.Symbols) 1450 for (const ELFYAML::Symbol &Sym : *Doc.Symbols) 1451 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1452 DotStrtab.finalize(); 1453 1454 // Add the dynamic symbol names to .dynstr section. 1455 if (Doc.DynamicSymbols) 1456 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols) 1457 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1458 1459 // SHT_GNU_verdef and SHT_GNU_verneed sections might also 1460 // add strings to .dynstr section. 1461 for (const ELFYAML::Chunk *Sec : Doc.getSections()) { 1462 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 1463 if (VerNeed->VerneedV) { 1464 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) { 1465 DotDynstr.add(VE.File); 1466 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) 1467 DotDynstr.add(Aux.Name); 1468 } 1469 } 1470 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 1471 if (VerDef->Entries) 1472 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries) 1473 for (StringRef Name : E.VerNames) 1474 DotDynstr.add(Name); 1475 } 1476 } 1477 1478 DotDynstr.finalize(); 1479 } 1480 1481 template <class ELFT> 1482 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 1483 yaml::ErrorHandler EH) { 1484 ELFState<ELFT> State(Doc, EH); 1485 1486 // Finalize .strtab and .dynstr sections. We do that early because want to 1487 // finalize the string table builders before writing the content of the 1488 // sections that might want to use them. 1489 State.finalizeStrings(); 1490 1491 State.buildSectionIndex(); 1492 if (State.HasError) 1493 return false; 1494 1495 State.buildSymbolIndexes(); 1496 1497 std::vector<Elf_Phdr> PHeaders; 1498 State.initProgramHeaders(PHeaders); 1499 1500 // XXX: This offset is tightly coupled with the order that we write 1501 // things to `OS`. 1502 const size_t SectionContentBeginOffset = 1503 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); 1504 ContiguousBlobAccumulator CBA(SectionContentBeginOffset); 1505 1506 std::vector<Elf_Shdr> SHeaders; 1507 State.initSectionHeaders(SHeaders, CBA); 1508 1509 // Now we can decide segment offsets. 1510 State.setProgramHeaderLayout(PHeaders, SHeaders); 1511 1512 if (State.HasError) 1513 return false; 1514 1515 State.writeELFHeader(CBA, OS); 1516 writeArrayData(OS, makeArrayRef(PHeaders)); 1517 CBA.writeBlobToStream(OS); 1518 writeArrayData(OS, makeArrayRef(SHeaders)); 1519 return true; 1520 } 1521 1522 namespace llvm { 1523 namespace yaml { 1524 1525 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) { 1526 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 1527 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); 1528 if (Is64Bit) { 1529 if (IsLE) 1530 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH); 1531 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH); 1532 } 1533 if (IsLE) 1534 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH); 1535 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH); 1536 } 1537 1538 } // namespace yaml 1539 } // namespace llvm 1540