1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The ELF component of yaml2obj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/StringSet.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/MC/StringTableBuilder.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/ObjectYAML/ELFYAML.h" 21 #include "llvm/ObjectYAML/yaml2obj.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/LEB128.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 #include "llvm/Support/WithColor.h" 26 #include "llvm/Support/YAMLTraits.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace llvm; 30 31 // This class is used to build up a contiguous binary blob while keeping 32 // track of an offset in the output (which notionally begins at 33 // `InitialOffset`). 34 namespace { 35 class ContiguousBlobAccumulator { 36 const uint64_t InitialOffset; 37 SmallVector<char, 128> Buf; 38 raw_svector_ostream OS; 39 40 public: 41 ContiguousBlobAccumulator(uint64_t InitialOffset_) 42 : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} 43 44 uint64_t getOffset() const { return InitialOffset + OS.tell(); } 45 raw_ostream &getOS() { return OS; } 46 47 /// \returns The new offset. 48 uint64_t padToAlignment(unsigned Align) { 49 if (Align == 0) 50 Align = 1; 51 uint64_t CurrentOffset = getOffset(); 52 uint64_t AlignedOffset = alignTo(CurrentOffset, Align); 53 OS.write_zeros(AlignedOffset - CurrentOffset); 54 return AlignedOffset; // == CurrentOffset; 55 } 56 57 void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } 58 }; 59 60 // Used to keep track of section and symbol names, so that in the YAML file 61 // sections and symbols can be referenced by name instead of by index. 62 class NameToIdxMap { 63 StringMap<unsigned> Map; 64 65 public: 66 /// \Returns false if name is already present in the map. 67 bool addName(StringRef Name, unsigned Ndx) { 68 return Map.insert({Name, Ndx}).second; 69 } 70 /// \Returns false if name is not present in the map. 71 bool lookup(StringRef Name, unsigned &Idx) const { 72 auto I = Map.find(Name); 73 if (I == Map.end()) 74 return false; 75 Idx = I->getValue(); 76 return true; 77 } 78 /// Asserts if name is not present in the map. 79 unsigned get(StringRef Name) const { 80 unsigned Idx; 81 if (lookup(Name, Idx)) 82 return Idx; 83 assert(false && "Expected section not found in index"); 84 return 0; 85 } 86 unsigned size() const { return Map.size(); } 87 }; 88 89 namespace { 90 struct Fragment { 91 uint64_t Offset; 92 uint64_t Size; 93 uint32_t Type; 94 uint64_t AddrAlign; 95 }; 96 } // namespace 97 98 /// "Single point of truth" for the ELF file construction. 99 /// TODO: This class still has a ways to go before it is truly a "single 100 /// point of truth". 101 template <class ELFT> class ELFState { 102 typedef typename ELFT::Ehdr Elf_Ehdr; 103 typedef typename ELFT::Phdr Elf_Phdr; 104 typedef typename ELFT::Shdr Elf_Shdr; 105 typedef typename ELFT::Sym Elf_Sym; 106 typedef typename ELFT::Rel Elf_Rel; 107 typedef typename ELFT::Rela Elf_Rela; 108 typedef typename ELFT::Relr Elf_Relr; 109 typedef typename ELFT::Dyn Elf_Dyn; 110 typedef typename ELFT::uint uintX_t; 111 112 enum class SymtabType { Static, Dynamic }; 113 114 /// The future ".strtab" section. 115 StringTableBuilder DotStrtab{StringTableBuilder::ELF}; 116 117 /// The future ".shstrtab" section. 118 StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; 119 120 /// The future ".dynstr" section. 121 StringTableBuilder DotDynstr{StringTableBuilder::ELF}; 122 123 NameToIdxMap SN2I; 124 NameToIdxMap SymN2I; 125 NameToIdxMap DynSymN2I; 126 ELFYAML::Object &Doc; 127 128 uint64_t LocationCounter = 0; 129 bool HasError = false; 130 yaml::ErrorHandler ErrHandler; 131 void reportError(const Twine &Msg); 132 133 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 134 const StringTableBuilder &Strtab); 135 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); 136 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); 137 138 void buildSectionIndex(); 139 void buildSymbolIndexes(); 140 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders); 141 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, 142 StringRef SecName, ELFYAML::Section *YAMLSec); 143 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 144 ContiguousBlobAccumulator &CBA); 145 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, 146 ContiguousBlobAccumulator &CBA, 147 ELFYAML::Section *YAMLSec); 148 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 149 StringTableBuilder &STB, 150 ContiguousBlobAccumulator &CBA, 151 ELFYAML::Section *YAMLSec); 152 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 153 std::vector<Elf_Shdr> &SHeaders); 154 155 std::vector<Fragment> 156 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 157 ArrayRef<typename ELFT::Shdr> SHeaders); 158 159 void finalizeStrings(); 160 void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS); 161 void writeSectionContent(Elf_Shdr &SHeader, 162 const ELFYAML::RawContentSection &Section, 163 ContiguousBlobAccumulator &CBA); 164 void writeSectionContent(Elf_Shdr &SHeader, 165 const ELFYAML::RelocationSection &Section, 166 ContiguousBlobAccumulator &CBA); 167 void writeSectionContent(Elf_Shdr &SHeader, 168 const ELFYAML::RelrSection &Section, 169 ContiguousBlobAccumulator &CBA); 170 void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, 171 ContiguousBlobAccumulator &CBA); 172 void writeSectionContent(Elf_Shdr &SHeader, 173 const ELFYAML::SymtabShndxSection &Shndx, 174 ContiguousBlobAccumulator &CBA); 175 void writeSectionContent(Elf_Shdr &SHeader, 176 const ELFYAML::SymverSection &Section, 177 ContiguousBlobAccumulator &CBA); 178 void writeSectionContent(Elf_Shdr &SHeader, 179 const ELFYAML::VerneedSection &Section, 180 ContiguousBlobAccumulator &CBA); 181 void writeSectionContent(Elf_Shdr &SHeader, 182 const ELFYAML::VerdefSection &Section, 183 ContiguousBlobAccumulator &CBA); 184 void writeSectionContent(Elf_Shdr &SHeader, 185 const ELFYAML::MipsABIFlags &Section, 186 ContiguousBlobAccumulator &CBA); 187 void writeSectionContent(Elf_Shdr &SHeader, 188 const ELFYAML::DynamicSection &Section, 189 ContiguousBlobAccumulator &CBA); 190 void writeSectionContent(Elf_Shdr &SHeader, 191 const ELFYAML::StackSizesSection &Section, 192 ContiguousBlobAccumulator &CBA); 193 void writeSectionContent(Elf_Shdr &SHeader, 194 const ELFYAML::HashSection &Section, 195 ContiguousBlobAccumulator &CBA); 196 void writeSectionContent(Elf_Shdr &SHeader, 197 const ELFYAML::AddrsigSection &Section, 198 ContiguousBlobAccumulator &CBA); 199 void writeSectionContent(Elf_Shdr &SHeader, 200 const ELFYAML::NoteSection &Section, 201 ContiguousBlobAccumulator &CBA); 202 void writeSectionContent(Elf_Shdr &SHeader, 203 const ELFYAML::GnuHashSection &Section, 204 ContiguousBlobAccumulator &CBA); 205 void writeSectionContent(Elf_Shdr &SHeader, 206 const ELFYAML::LinkerOptionsSection &Section, 207 ContiguousBlobAccumulator &CBA); 208 void writeSectionContent(Elf_Shdr &SHeader, 209 const ELFYAML::DependentLibrariesSection &Section, 210 ContiguousBlobAccumulator &CBA); 211 void writeSectionContent(Elf_Shdr &SHeader, 212 const ELFYAML::CallGraphProfileSection &Section, 213 ContiguousBlobAccumulator &CBA); 214 215 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA); 216 217 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); 218 219 void assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec); 220 221 uint64_t alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align, 222 llvm::Optional<llvm::yaml::Hex64> Offset); 223 224 public: 225 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 226 yaml::ErrorHandler EH); 227 }; 228 } // end anonymous namespace 229 230 template <class T> static size_t arrayDataSize(ArrayRef<T> A) { 231 return A.size() * sizeof(T); 232 } 233 234 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { 235 OS.write((const char *)A.data(), arrayDataSize(A)); 236 } 237 238 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } 239 240 template <class ELFT> 241 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) 242 : Doc(D), ErrHandler(EH) { 243 std::vector<ELFYAML::Section *> Sections = Doc.getSections(); 244 StringSet<> DocSections; 245 for (const ELFYAML::Section *Sec : Sections) 246 if (!Sec->Name.empty()) 247 DocSections.insert(Sec->Name); 248 249 // Insert SHT_NULL section implicitly when it is not defined in YAML. 250 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL) 251 Doc.Chunks.insert( 252 Doc.Chunks.begin(), 253 std::make_unique<ELFYAML::Section>( 254 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true)); 255 256 std::vector<StringRef> ImplicitSections; 257 if (Doc.DynamicSymbols) 258 ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"}); 259 if (Doc.Symbols) 260 ImplicitSections.push_back(".symtab"); 261 ImplicitSections.insert(ImplicitSections.end(), {".strtab", ".shstrtab"}); 262 263 // Insert placeholders for implicit sections that are not 264 // defined explicitly in YAML. 265 for (StringRef SecName : ImplicitSections) { 266 if (DocSections.count(SecName)) 267 continue; 268 269 std::unique_ptr<ELFYAML::Chunk> Sec = std::make_unique<ELFYAML::Section>( 270 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/); 271 Sec->Name = SecName; 272 Doc.Chunks.push_back(std::move(Sec)); 273 } 274 } 275 276 template <class ELFT> 277 void ELFState<ELFT>::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) { 278 using namespace llvm::ELF; 279 280 Elf_Ehdr Header; 281 zero(Header); 282 Header.e_ident[EI_MAG0] = 0x7f; 283 Header.e_ident[EI_MAG1] = 'E'; 284 Header.e_ident[EI_MAG2] = 'L'; 285 Header.e_ident[EI_MAG3] = 'F'; 286 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 287 Header.e_ident[EI_DATA] = Doc.Header.Data; 288 Header.e_ident[EI_VERSION] = EV_CURRENT; 289 Header.e_ident[EI_OSABI] = Doc.Header.OSABI; 290 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; 291 Header.e_type = Doc.Header.Type; 292 Header.e_machine = Doc.Header.Machine; 293 Header.e_version = EV_CURRENT; 294 Header.e_entry = Doc.Header.Entry; 295 Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0; 296 Header.e_flags = Doc.Header.Flags; 297 Header.e_ehsize = sizeof(Elf_Ehdr); 298 Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0; 299 Header.e_phnum = Doc.ProgramHeaders.size(); 300 301 Header.e_shentsize = 302 Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); 303 // Align the start of the section header table, which is written after all 304 // other sections to the end of the file. 305 uint64_t SHOff = 306 alignToOffset(CBA, sizeof(typename ELFT::uint), /*Offset=*/None); 307 Header.e_shoff = 308 Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff; 309 Header.e_shnum = 310 Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.getSections().size(); 311 Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx 312 : SN2I.get(".shstrtab"); 313 314 OS.write((const char *)&Header, sizeof(Header)); 315 } 316 317 template <class ELFT> 318 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) { 319 for (const auto &YamlPhdr : Doc.ProgramHeaders) { 320 Elf_Phdr Phdr; 321 zero(Phdr); 322 Phdr.p_type = YamlPhdr.Type; 323 Phdr.p_flags = YamlPhdr.Flags; 324 Phdr.p_vaddr = YamlPhdr.VAddr; 325 Phdr.p_paddr = YamlPhdr.PAddr; 326 PHeaders.push_back(Phdr); 327 } 328 } 329 330 template <class ELFT> 331 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec, 332 StringRef LocSym) { 333 unsigned Index; 334 if (SN2I.lookup(S, Index) || to_integer(S, Index)) 335 return Index; 336 337 assert(LocSec.empty() || LocSym.empty()); 338 if (!LocSym.empty()) 339 reportError("unknown section referenced: '" + S + "' by YAML symbol '" + 340 LocSym + "'"); 341 else 342 reportError("unknown section referenced: '" + S + "' by YAML section '" + 343 LocSec + "'"); 344 return 0; 345 } 346 347 template <class ELFT> 348 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec, 349 bool IsDynamic) { 350 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; 351 unsigned Index; 352 // Here we try to look up S in the symbol table. If it is not there, 353 // treat its value as a symbol index. 354 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { 355 reportError("unknown symbol referenced: '" + S + "' by YAML section '" + 356 LocSec + "'"); 357 return 0; 358 } 359 return Index; 360 } 361 362 template <class ELFT> 363 static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) { 364 if (!From) 365 return; 366 if (From->ShFlags) 367 To.sh_flags = *From->ShFlags; 368 if (From->ShName) 369 To.sh_name = *From->ShName; 370 if (From->ShOffset) 371 To.sh_offset = *From->ShOffset; 372 if (From->ShSize) 373 To.sh_size = *From->ShSize; 374 } 375 376 template <class ELFT> 377 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA, 378 Elf_Shdr &Header, StringRef SecName, 379 ELFYAML::Section *YAMLSec) { 380 // Check if the header was already initialized. 381 if (Header.sh_offset) 382 return false; 383 384 if (SecName == ".symtab") 385 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); 386 else if (SecName == ".strtab") 387 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); 388 else if (SecName == ".shstrtab") 389 initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec); 390 else if (SecName == ".dynsym") 391 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); 392 else if (SecName == ".dynstr") 393 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); 394 else 395 return false; 396 397 LocationCounter += Header.sh_size; 398 399 // Override section fields if requested. 400 overrideFields<ELFT>(YAMLSec, Header); 401 return true; 402 } 403 404 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { 405 size_t SuffixPos = S.rfind(" ["); 406 if (SuffixPos == StringRef::npos) 407 return S; 408 return S.substr(0, SuffixPos); 409 } 410 411 template <class ELFT> 412 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 413 ContiguousBlobAccumulator &CBA) { 414 // Ensure SHN_UNDEF entry is present. An all-zero section header is a 415 // valid SHN_UNDEF entry since SHT_NULL == 0. 416 SHeaders.resize(Doc.getSections().size()); 417 418 size_t SecNdx = -1; 419 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) { 420 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) { 421 S->ShOffset = alignToOffset(CBA, /*Align=*/1, /*Offset=*/None); 422 writeFill(*S, CBA); 423 LocationCounter += S->Size; 424 continue; 425 } 426 427 ++SecNdx; 428 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get()); 429 if (SecNdx == 0 && Sec->IsImplicit) 430 continue; 431 432 // We have a few sections like string or symbol tables that are usually 433 // added implicitly to the end. However, if they are explicitly specified 434 // in the YAML, we need to write them here. This ensures the file offset 435 // remains correct. 436 Elf_Shdr &SHeader = SHeaders[SecNdx]; 437 if (initImplicitHeader(CBA, SHeader, Sec->Name, 438 Sec->IsImplicit ? nullptr : Sec)) 439 continue; 440 441 assert(Sec && "It can't be null unless it is an implicit section. But all " 442 "implicit sections should already have been handled above."); 443 444 SHeader.sh_name = 445 DotShStrtab.getOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); 446 SHeader.sh_type = Sec->Type; 447 if (Sec->Flags) 448 SHeader.sh_flags = *Sec->Flags; 449 SHeader.sh_addralign = Sec->AddressAlign; 450 451 // Set the offset for all sections, except the SHN_UNDEF section with index 452 // 0 when not explicitly requested. 453 bool IsFirstUndefSection = SecNdx == 0; 454 if (!IsFirstUndefSection || Sec->Offset) 455 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, Sec->Offset); 456 457 assignSectionAddress(SHeader, Sec); 458 459 if (!Sec->Link.empty()) 460 SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name); 461 462 if (IsFirstUndefSection) { 463 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 464 // We do not write any content for special SHN_UNDEF section. 465 if (RawSec->Size) 466 SHeader.sh_size = *RawSec->Size; 467 if (RawSec->Info) 468 SHeader.sh_info = *RawSec->Info; 469 } 470 if (Sec->EntSize) 471 SHeader.sh_entsize = *Sec->EntSize; 472 } else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 473 writeSectionContent(SHeader, *S, CBA); 474 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) { 475 writeSectionContent(SHeader, *S, CBA); 476 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) { 477 writeSectionContent(SHeader, *S, CBA); 478 } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) { 479 writeSectionContent(SHeader, *S, CBA); 480 } else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) { 481 writeSectionContent(SHeader, *S, CBA); 482 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) { 483 writeSectionContent(SHeader, *S, CBA); 484 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) { 485 // SHT_NOBITS sections do not have any content to write. 486 SHeader.sh_entsize = 0; 487 SHeader.sh_size = S->Size; 488 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) { 489 writeSectionContent(SHeader, *S, CBA); 490 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) { 491 writeSectionContent(SHeader, *S, CBA); 492 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 493 writeSectionContent(SHeader, *S, CBA); 494 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 495 writeSectionContent(SHeader, *S, CBA); 496 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) { 497 writeSectionContent(SHeader, *S, CBA); 498 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) { 499 writeSectionContent(SHeader, *S, CBA); 500 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) { 501 writeSectionContent(SHeader, *S, CBA); 502 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) { 503 writeSectionContent(SHeader, *S, CBA); 504 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) { 505 writeSectionContent(SHeader, *S, CBA); 506 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) { 507 writeSectionContent(SHeader, *S, CBA); 508 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) { 509 writeSectionContent(SHeader, *S, CBA); 510 } else if (auto S = dyn_cast<ELFYAML::CallGraphProfileSection>(Sec)) { 511 writeSectionContent(SHeader, *S, CBA); 512 } else { 513 llvm_unreachable("Unknown section type"); 514 } 515 516 LocationCounter += SHeader.sh_size; 517 518 // Override section fields if requested. 519 overrideFields<ELFT>(Sec, SHeader); 520 } 521 } 522 523 template <class ELFT> 524 void ELFState<ELFT>::assignSectionAddress(Elf_Shdr &SHeader, 525 ELFYAML::Section *YAMLSec) { 526 if (YAMLSec && YAMLSec->Address) { 527 SHeader.sh_addr = *YAMLSec->Address; 528 LocationCounter = *YAMLSec->Address; 529 return; 530 } 531 532 // sh_addr represents the address in the memory image of a process. Sections 533 // in a relocatable object file or non-allocatable sections do not need 534 // sh_addr assignment. 535 if (Doc.Header.Type.value == ELF::ET_REL || 536 !(SHeader.sh_flags & ELF::SHF_ALLOC)) 537 return; 538 539 LocationCounter = 540 alignTo(LocationCounter, SHeader.sh_addralign ? SHeader.sh_addralign : 1); 541 SHeader.sh_addr = LocationCounter; 542 } 543 544 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) { 545 for (size_t I = 0; I < Symbols.size(); ++I) 546 if (Symbols[I].Binding.value != ELF::STB_LOCAL) 547 return I; 548 return Symbols.size(); 549 } 550 551 static uint64_t writeContent(raw_ostream &OS, 552 const Optional<yaml::BinaryRef> &Content, 553 const Optional<llvm::yaml::Hex64> &Size) { 554 size_t ContentSize = 0; 555 if (Content) { 556 Content->writeAsBinary(OS); 557 ContentSize = Content->binary_size(); 558 } 559 560 if (!Size) 561 return ContentSize; 562 563 OS.write_zeros(*Size - ContentSize); 564 return *Size; 565 } 566 567 template <class ELFT> 568 std::vector<typename ELFT::Sym> 569 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 570 const StringTableBuilder &Strtab) { 571 std::vector<Elf_Sym> Ret; 572 Ret.resize(Symbols.size() + 1); 573 574 size_t I = 0; 575 for (const ELFYAML::Symbol &Sym : Symbols) { 576 Elf_Sym &Symbol = Ret[++I]; 577 578 // If NameIndex, which contains the name offset, is explicitly specified, we 579 // use it. This is useful for preparing broken objects. Otherwise, we add 580 // the specified Name to the string table builder to get its offset. 581 if (Sym.StName) 582 Symbol.st_name = *Sym.StName; 583 else if (!Sym.Name.empty()) 584 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); 585 586 Symbol.setBindingAndType(Sym.Binding, Sym.Type); 587 if (!Sym.Section.empty()) 588 Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name); 589 else if (Sym.Index) 590 Symbol.st_shndx = *Sym.Index; 591 592 Symbol.st_value = Sym.Value; 593 Symbol.st_other = Sym.Other ? *Sym.Other : 0; 594 Symbol.st_size = Sym.Size; 595 } 596 597 return Ret; 598 } 599 600 template <class ELFT> 601 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, 602 SymtabType STType, 603 ContiguousBlobAccumulator &CBA, 604 ELFYAML::Section *YAMLSec) { 605 606 bool IsStatic = STType == SymtabType::Static; 607 ArrayRef<ELFYAML::Symbol> Symbols; 608 if (IsStatic && Doc.Symbols) 609 Symbols = *Doc.Symbols; 610 else if (!IsStatic && Doc.DynamicSymbols) 611 Symbols = *Doc.DynamicSymbols; 612 613 ELFYAML::RawContentSection *RawSec = 614 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 615 if (RawSec && (RawSec->Content || RawSec->Size)) { 616 bool HasSymbolsDescription = 617 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols); 618 if (HasSymbolsDescription) { 619 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`"); 620 if (RawSec->Content) 621 reportError("cannot specify both `Content` and " + Property + 622 " for symbol table section '" + RawSec->Name + "'"); 623 if (RawSec->Size) 624 reportError("cannot specify both `Size` and " + Property + 625 " for symbol table section '" + RawSec->Name + "'"); 626 return; 627 } 628 } 629 630 zero(SHeader); 631 SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); 632 633 if (YAMLSec) 634 SHeader.sh_type = YAMLSec->Type; 635 else 636 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; 637 638 if (RawSec && !RawSec->Link.empty()) { 639 // If the Link field is explicitly defined in the document, 640 // we should use it. 641 SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name); 642 } else { 643 // When we describe the .dynsym section in the document explicitly, it is 644 // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not 645 // added implicitly and we should be able to leave the Link zeroed if 646 // .dynstr is not defined. 647 unsigned Link = 0; 648 if (IsStatic) 649 Link = SN2I.get(".strtab"); 650 else 651 SN2I.lookup(".dynstr", Link); 652 SHeader.sh_link = Link; 653 } 654 655 if (YAMLSec && YAMLSec->Flags) 656 SHeader.sh_flags = *YAMLSec->Flags; 657 else if (!IsStatic) 658 SHeader.sh_flags = ELF::SHF_ALLOC; 659 660 // If the symbol table section is explicitly described in the YAML 661 // then we should set the fields requested. 662 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) 663 : findFirstNonGlobal(Symbols) + 1; 664 SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) 665 ? (uint64_t)(*YAMLSec->EntSize) 666 : sizeof(Elf_Sym); 667 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; 668 669 assignSectionAddress(SHeader, YAMLSec); 670 671 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, /*Offset=*/None); 672 raw_ostream &OS = CBA.getOS(); 673 674 if (RawSec && (RawSec->Content || RawSec->Size)) { 675 assert(Symbols.empty()); 676 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 677 return; 678 } 679 680 std::vector<Elf_Sym> Syms = 681 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); 682 writeArrayData(OS, makeArrayRef(Syms)); 683 SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); 684 } 685 686 template <class ELFT> 687 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 688 StringTableBuilder &STB, 689 ContiguousBlobAccumulator &CBA, 690 ELFYAML::Section *YAMLSec) { 691 zero(SHeader); 692 SHeader.sh_name = DotShStrtab.getOffset(Name); 693 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; 694 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 695 696 ELFYAML::RawContentSection *RawSec = 697 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 698 699 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, /*Offset=*/None); 700 raw_ostream &OS = CBA.getOS(); 701 702 if (RawSec && (RawSec->Content || RawSec->Size)) { 703 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 704 } else { 705 STB.write(OS); 706 SHeader.sh_size = STB.getSize(); 707 } 708 709 if (YAMLSec && YAMLSec->EntSize) 710 SHeader.sh_entsize = *YAMLSec->EntSize; 711 712 if (RawSec && RawSec->Info) 713 SHeader.sh_info = *RawSec->Info; 714 715 if (YAMLSec && YAMLSec->Flags) 716 SHeader.sh_flags = *YAMLSec->Flags; 717 else if (Name == ".dynstr") 718 SHeader.sh_flags = ELF::SHF_ALLOC; 719 720 assignSectionAddress(SHeader, YAMLSec); 721 } 722 723 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) { 724 ErrHandler(Msg); 725 HasError = true; 726 } 727 728 template <class ELFT> 729 std::vector<Fragment> 730 ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 731 ArrayRef<typename ELFT::Shdr> SHeaders) { 732 DenseMap<StringRef, ELFYAML::Fill *> NameToFill; 733 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) 734 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) 735 NameToFill[S->Name] = S; 736 737 std::vector<Fragment> Ret; 738 for (const ELFYAML::SectionName &SecName : Phdr.Sections) { 739 unsigned Index; 740 if (SN2I.lookup(SecName.Section, Index)) { 741 const typename ELFT::Shdr &H = SHeaders[Index]; 742 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign}); 743 continue; 744 } 745 746 if (ELFYAML::Fill *Fill = NameToFill.lookup(SecName.Section)) { 747 Ret.push_back({Fill->ShOffset, Fill->Size, llvm::ELF::SHT_PROGBITS, 748 /*ShAddrAlign=*/1}); 749 continue; 750 } 751 752 reportError("unknown section or fill referenced: '" + SecName.Section + 753 "' by program header"); 754 } 755 756 return Ret; 757 } 758 759 template <class ELFT> 760 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 761 std::vector<Elf_Shdr> &SHeaders) { 762 uint32_t PhdrIdx = 0; 763 for (auto &YamlPhdr : Doc.ProgramHeaders) { 764 Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; 765 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders); 766 if (!llvm::is_sorted(Fragments, [](const Fragment &A, const Fragment &B) { 767 return A.Offset < B.Offset; 768 })) 769 reportError("sections in the program header with index " + 770 Twine(PhdrIdx) + " are not sorted by their file offset"); 771 772 if (YamlPhdr.Offset) { 773 if (!Fragments.empty() && *YamlPhdr.Offset > Fragments.front().Offset) 774 reportError("'Offset' for segment with index " + Twine(PhdrIdx) + 775 " must be less than or equal to the minimum file offset of " 776 "all included sections (0x" + 777 Twine::utohexstr(Fragments.front().Offset) + ")"); 778 PHeader.p_offset = *YamlPhdr.Offset; 779 } else if (!Fragments.empty()) { 780 PHeader.p_offset = Fragments.front().Offset; 781 } 782 783 // Set the file size if not set explicitly. 784 if (YamlPhdr.FileSize) { 785 PHeader.p_filesz = *YamlPhdr.FileSize; 786 } else if (!Fragments.empty()) { 787 uint64_t FileSize = Fragments.back().Offset - PHeader.p_offset; 788 // SHT_NOBITS sections occupy no physical space in a file, we should not 789 // take their sizes into account when calculating the file size of a 790 // segment. 791 if (Fragments.back().Type != llvm::ELF::SHT_NOBITS) 792 FileSize += Fragments.back().Size; 793 PHeader.p_filesz = FileSize; 794 } 795 796 // Find the maximum offset of the end of a section in order to set p_memsz. 797 uint64_t MemOffset = PHeader.p_offset; 798 for (const Fragment &F : Fragments) 799 MemOffset = std::max(MemOffset, F.Offset + F.Size); 800 // Set the memory size if not set explicitly. 801 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) 802 : MemOffset - PHeader.p_offset; 803 804 if (YamlPhdr.Align) { 805 PHeader.p_align = *YamlPhdr.Align; 806 } else { 807 // Set the alignment of the segment to be the maximum alignment of the 808 // sections so that by default the segment has a valid and sensible 809 // alignment. 810 PHeader.p_align = 1; 811 for (const Fragment &F : Fragments) 812 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign); 813 } 814 } 815 } 816 817 template <class ELFT> 818 void ELFState<ELFT>::writeSectionContent( 819 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, 820 ContiguousBlobAccumulator &CBA) { 821 SHeader.sh_size = writeContent(CBA.getOS(), Section.Content, Section.Size); 822 823 if (Section.EntSize) 824 SHeader.sh_entsize = *Section.EntSize; 825 826 if (Section.Info) 827 SHeader.sh_info = *Section.Info; 828 } 829 830 static bool isMips64EL(const ELFYAML::Object &Doc) { 831 return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && 832 Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && 833 Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 834 } 835 836 template <class ELFT> 837 void ELFState<ELFT>::writeSectionContent( 838 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, 839 ContiguousBlobAccumulator &CBA) { 840 assert((Section.Type == llvm::ELF::SHT_REL || 841 Section.Type == llvm::ELF::SHT_RELA) && 842 "Section type is not SHT_REL nor SHT_RELA"); 843 844 bool IsRela = Section.Type == llvm::ELF::SHT_RELA; 845 if (Section.EntSize) 846 SHeader.sh_entsize = *Section.EntSize; 847 else 848 SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 849 SHeader.sh_size = (IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)) * 850 Section.Relocations.size(); 851 852 // For relocation section set link to .symtab by default. 853 unsigned Link = 0; 854 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 855 SHeader.sh_link = Link; 856 857 if (!Section.RelocatableSec.empty()) 858 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); 859 860 raw_ostream &OS = CBA.getOS(); 861 for (const auto &Rel : Section.Relocations) { 862 unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, 863 Section.Link == ".dynsym") 864 : 0; 865 if (IsRela) { 866 Elf_Rela REntry; 867 zero(REntry); 868 REntry.r_offset = Rel.Offset; 869 REntry.r_addend = Rel.Addend; 870 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 871 OS.write((const char *)&REntry, sizeof(REntry)); 872 } else { 873 Elf_Rel REntry; 874 zero(REntry); 875 REntry.r_offset = Rel.Offset; 876 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 877 OS.write((const char *)&REntry, sizeof(REntry)); 878 } 879 } 880 } 881 882 template <class ELFT> 883 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 884 const ELFYAML::RelrSection &Section, 885 ContiguousBlobAccumulator &CBA) { 886 SHeader.sh_entsize = 887 Section.EntSize ? uint64_t(*Section.EntSize) : sizeof(Elf_Relr); 888 889 raw_ostream &OS = CBA.getOS(); 890 if (Section.Content) { 891 SHeader.sh_size = writeContent(OS, Section.Content, None); 892 return; 893 } 894 895 if (!Section.Entries) 896 return; 897 898 for (llvm::yaml::Hex64 E : *Section.Entries) { 899 if (!ELFT::Is64Bits && E > UINT32_MAX) 900 reportError(Section.Name + ": the value is too large for 32-bits: 0x" + 901 Twine::utohexstr(E)); 902 support::endian::write<uintX_t>(OS, E, ELFT::TargetEndianness); 903 } 904 905 SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size(); 906 } 907 908 template <class ELFT> 909 void ELFState<ELFT>::writeSectionContent( 910 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, 911 ContiguousBlobAccumulator &CBA) { 912 for (uint32_t E : Shndx.Entries) 913 support::endian::write<uint32_t>(CBA.getOS(), E, ELFT::TargetEndianness); 914 915 SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4; 916 SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize; 917 } 918 919 template <class ELFT> 920 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 921 const ELFYAML::Group &Section, 922 ContiguousBlobAccumulator &CBA) { 923 assert(Section.Type == llvm::ELF::SHT_GROUP && 924 "Section type is not SHT_GROUP"); 925 926 unsigned Link = 0; 927 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 928 SHeader.sh_link = Link; 929 930 SHeader.sh_entsize = 4; 931 SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); 932 933 if (Section.Signature) 934 SHeader.sh_info = 935 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); 936 937 raw_ostream &OS = CBA.getOS(); 938 for (const ELFYAML::SectionOrType &Member : Section.Members) { 939 unsigned int SectionIndex = 0; 940 if (Member.sectionNameOrType == "GRP_COMDAT") 941 SectionIndex = llvm::ELF::GRP_COMDAT; 942 else 943 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); 944 support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness); 945 } 946 } 947 948 template <class ELFT> 949 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 950 const ELFYAML::SymverSection &Section, 951 ContiguousBlobAccumulator &CBA) { 952 raw_ostream &OS = CBA.getOS(); 953 for (uint16_t Version : Section.Entries) 954 support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness); 955 956 SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2; 957 SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; 958 } 959 960 template <class ELFT> 961 void ELFState<ELFT>::writeSectionContent( 962 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, 963 ContiguousBlobAccumulator &CBA) { 964 raw_ostream &OS = CBA.getOS(); 965 if (Section.Content || Section.Size) { 966 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 967 return; 968 } 969 970 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { 971 support::endian::write<uintX_t>(OS, E.Address, ELFT::TargetEndianness); 972 SHeader.sh_size += sizeof(uintX_t) + encodeULEB128(E.Size, OS); 973 } 974 } 975 976 template <class ELFT> 977 void ELFState<ELFT>::writeSectionContent( 978 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, 979 ContiguousBlobAccumulator &CBA) { 980 raw_ostream &OS = CBA.getOS(); 981 if (Section.Content) { 982 SHeader.sh_size = writeContent(OS, Section.Content, None); 983 return; 984 } 985 986 if (!Section.Options) 987 return; 988 989 for (const ELFYAML::LinkerOption &LO : *Section.Options) { 990 OS.write(LO.Key.data(), LO.Key.size()); 991 OS.write('\0'); 992 OS.write(LO.Value.data(), LO.Value.size()); 993 OS.write('\0'); 994 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2); 995 } 996 } 997 998 template <class ELFT> 999 void ELFState<ELFT>::writeSectionContent( 1000 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, 1001 ContiguousBlobAccumulator &CBA) { 1002 raw_ostream &OS = CBA.getOS(); 1003 if (Section.Content) { 1004 SHeader.sh_size = writeContent(OS, Section.Content, None); 1005 return; 1006 } 1007 1008 if (!Section.Libs) 1009 return; 1010 1011 for (StringRef Lib : *Section.Libs) { 1012 OS.write(Lib.data(), Lib.size()); 1013 OS.write('\0'); 1014 SHeader.sh_size += Lib.size() + 1; 1015 } 1016 } 1017 1018 template <class ELFT> 1019 uint64_t 1020 ELFState<ELFT>::alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align, 1021 llvm::Optional<llvm::yaml::Hex64> Offset) { 1022 uint64_t CurrentOffset = CBA.getOffset(); 1023 uint64_t AlignedOffset; 1024 1025 if (Offset) { 1026 if ((uint64_t)*Offset < CurrentOffset) { 1027 reportError("the 'Offset' value (0x" + 1028 Twine::utohexstr((uint64_t)*Offset) + ") goes backward"); 1029 return CurrentOffset; 1030 } 1031 1032 // We ignore an alignment when an explicit offset has been requested. 1033 AlignedOffset = *Offset; 1034 } else { 1035 AlignedOffset = alignTo(CurrentOffset, std::max(Align, (uint64_t)1)); 1036 } 1037 1038 CBA.getOS().write_zeros(AlignedOffset - CurrentOffset); 1039 return AlignedOffset; 1040 } 1041 1042 template <class ELFT> 1043 void ELFState<ELFT>::writeSectionContent( 1044 Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section, 1045 ContiguousBlobAccumulator &CBA) { 1046 if (Section.EntSize) 1047 SHeader.sh_entsize = *Section.EntSize; 1048 else 1049 SHeader.sh_entsize = 16; 1050 1051 unsigned Link = 0; 1052 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1053 SHeader.sh_link = Link; 1054 1055 raw_ostream &OS = CBA.getOS(); 1056 if (Section.Content) { 1057 SHeader.sh_size = writeContent(OS, Section.Content, None); 1058 return; 1059 } 1060 1061 if (!Section.Entries) 1062 return; 1063 1064 for (const ELFYAML::CallGraphEntry &E : *Section.Entries) { 1065 unsigned From = toSymbolIndex(E.From, Section.Name, /*IsDynamic=*/false); 1066 unsigned To = toSymbolIndex(E.To, Section.Name, /*IsDynamic=*/false); 1067 1068 support::endian::write<uint32_t>(OS, From, ELFT::TargetEndianness); 1069 support::endian::write<uint32_t>(OS, To, ELFT::TargetEndianness); 1070 support::endian::write<uint64_t>(OS, E.Weight, ELFT::TargetEndianness); 1071 SHeader.sh_size += 16; 1072 } 1073 } 1074 1075 template <class ELFT> 1076 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1077 const ELFYAML::HashSection &Section, 1078 ContiguousBlobAccumulator &CBA) { 1079 unsigned Link = 0; 1080 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1081 SHeader.sh_link = Link; 1082 1083 raw_ostream &OS = CBA.getOS(); 1084 if (Section.Content || Section.Size) { 1085 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1086 return; 1087 } 1088 1089 support::endian::write<uint32_t>( 1090 OS, Section.NBucket.getValueOr(llvm::yaml::Hex64(Section.Bucket->size())), 1091 ELFT::TargetEndianness); 1092 support::endian::write<uint32_t>( 1093 OS, Section.NChain.getValueOr(llvm::yaml::Hex64(Section.Chain->size())), 1094 ELFT::TargetEndianness); 1095 1096 for (uint32_t Val : *Section.Bucket) 1097 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1098 for (uint32_t Val : *Section.Chain) 1099 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1100 1101 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; 1102 } 1103 1104 template <class ELFT> 1105 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1106 const ELFYAML::VerdefSection &Section, 1107 ContiguousBlobAccumulator &CBA) { 1108 typedef typename ELFT::Verdef Elf_Verdef; 1109 typedef typename ELFT::Verdaux Elf_Verdaux; 1110 1111 SHeader.sh_info = Section.Info; 1112 1113 raw_ostream &OS = CBA.getOS(); 1114 if (Section.Content) { 1115 SHeader.sh_size = writeContent(OS, Section.Content, None); 1116 return; 1117 } 1118 1119 if (!Section.Entries) 1120 return; 1121 1122 uint64_t AuxCnt = 0; 1123 for (size_t I = 0; I < Section.Entries->size(); ++I) { 1124 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I]; 1125 1126 Elf_Verdef VerDef; 1127 VerDef.vd_version = E.Version; 1128 VerDef.vd_flags = E.Flags; 1129 VerDef.vd_ndx = E.VersionNdx; 1130 VerDef.vd_hash = E.Hash; 1131 VerDef.vd_aux = sizeof(Elf_Verdef); 1132 VerDef.vd_cnt = E.VerNames.size(); 1133 if (I == Section.Entries->size() - 1) 1134 VerDef.vd_next = 0; 1135 else 1136 VerDef.vd_next = 1137 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); 1138 OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); 1139 1140 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { 1141 Elf_Verdaux VernAux; 1142 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); 1143 if (J == E.VerNames.size() - 1) 1144 VernAux.vda_next = 0; 1145 else 1146 VernAux.vda_next = sizeof(Elf_Verdaux); 1147 OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); 1148 } 1149 } 1150 1151 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) + 1152 AuxCnt * sizeof(Elf_Verdaux); 1153 } 1154 1155 template <class ELFT> 1156 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1157 const ELFYAML::VerneedSection &Section, 1158 ContiguousBlobAccumulator &CBA) { 1159 typedef typename ELFT::Verneed Elf_Verneed; 1160 typedef typename ELFT::Vernaux Elf_Vernaux; 1161 1162 SHeader.sh_info = Section.Info; 1163 1164 raw_ostream &OS = CBA.getOS(); 1165 if (Section.Content) { 1166 SHeader.sh_size = writeContent(OS, Section.Content, None); 1167 return; 1168 } 1169 1170 if (!Section.VerneedV) 1171 return; 1172 1173 uint64_t AuxCnt = 0; 1174 for (size_t I = 0; I < Section.VerneedV->size(); ++I) { 1175 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I]; 1176 1177 Elf_Verneed VerNeed; 1178 VerNeed.vn_version = VE.Version; 1179 VerNeed.vn_file = DotDynstr.getOffset(VE.File); 1180 if (I == Section.VerneedV->size() - 1) 1181 VerNeed.vn_next = 0; 1182 else 1183 VerNeed.vn_next = 1184 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); 1185 VerNeed.vn_cnt = VE.AuxV.size(); 1186 VerNeed.vn_aux = sizeof(Elf_Verneed); 1187 OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); 1188 1189 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { 1190 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; 1191 1192 Elf_Vernaux VernAux; 1193 VernAux.vna_hash = VAuxE.Hash; 1194 VernAux.vna_flags = VAuxE.Flags; 1195 VernAux.vna_other = VAuxE.Other; 1196 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); 1197 if (J == VE.AuxV.size() - 1) 1198 VernAux.vna_next = 0; 1199 else 1200 VernAux.vna_next = sizeof(Elf_Vernaux); 1201 OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); 1202 } 1203 } 1204 1205 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) + 1206 AuxCnt * sizeof(Elf_Vernaux); 1207 } 1208 1209 template <class ELFT> 1210 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1211 const ELFYAML::MipsABIFlags &Section, 1212 ContiguousBlobAccumulator &CBA) { 1213 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && 1214 "Section type is not SHT_MIPS_ABIFLAGS"); 1215 1216 object::Elf_Mips_ABIFlags<ELFT> Flags; 1217 zero(Flags); 1218 SHeader.sh_entsize = sizeof(Flags); 1219 SHeader.sh_size = SHeader.sh_entsize; 1220 1221 Flags.version = Section.Version; 1222 Flags.isa_level = Section.ISALevel; 1223 Flags.isa_rev = Section.ISARevision; 1224 Flags.gpr_size = Section.GPRSize; 1225 Flags.cpr1_size = Section.CPR1Size; 1226 Flags.cpr2_size = Section.CPR2Size; 1227 Flags.fp_abi = Section.FpABI; 1228 Flags.isa_ext = Section.ISAExtension; 1229 Flags.ases = Section.ASEs; 1230 Flags.flags1 = Section.Flags1; 1231 Flags.flags2 = Section.Flags2; 1232 CBA.getOS().write((const char *)&Flags, sizeof(Flags)); 1233 } 1234 1235 template <class ELFT> 1236 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1237 const ELFYAML::DynamicSection &Section, 1238 ContiguousBlobAccumulator &CBA) { 1239 assert(Section.Type == llvm::ELF::SHT_DYNAMIC && 1240 "Section type is not SHT_DYNAMIC"); 1241 1242 if (!Section.Entries.empty() && Section.Content) 1243 reportError("cannot specify both raw content and explicit entries " 1244 "for dynamic section '" + 1245 Section.Name + "'"); 1246 1247 if (Section.Content) 1248 SHeader.sh_size = Section.Content->binary_size(); 1249 else 1250 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); 1251 if (Section.EntSize) 1252 SHeader.sh_entsize = *Section.EntSize; 1253 else 1254 SHeader.sh_entsize = sizeof(Elf_Dyn); 1255 1256 raw_ostream &OS = CBA.getOS(); 1257 for (const ELFYAML::DynamicEntry &DE : Section.Entries) { 1258 support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness); 1259 support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness); 1260 } 1261 if (Section.Content) 1262 Section.Content->writeAsBinary(OS); 1263 } 1264 1265 template <class ELFT> 1266 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1267 const ELFYAML::AddrsigSection &Section, 1268 ContiguousBlobAccumulator &CBA) { 1269 unsigned Link = 0; 1270 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1271 SHeader.sh_link = Link; 1272 1273 raw_ostream &OS = CBA.getOS(); 1274 if (Section.Content || Section.Size) { 1275 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1276 return; 1277 } 1278 1279 for (StringRef Sym : *Section.Symbols) 1280 SHeader.sh_size += encodeULEB128( 1281 toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false), OS); 1282 } 1283 1284 template <class ELFT> 1285 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1286 const ELFYAML::NoteSection &Section, 1287 ContiguousBlobAccumulator &CBA) { 1288 raw_ostream &OS = CBA.getOS(); 1289 uint64_t Offset = OS.tell(); 1290 if (Section.Content || Section.Size) { 1291 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1292 return; 1293 } 1294 1295 for (const ELFYAML::NoteEntry &NE : *Section.Notes) { 1296 // Write name size. 1297 if (NE.Name.empty()) 1298 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1299 else 1300 support::endian::write<uint32_t>(OS, NE.Name.size() + 1, 1301 ELFT::TargetEndianness); 1302 1303 // Write description size. 1304 if (NE.Desc.binary_size() == 0) 1305 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1306 else 1307 support::endian::write<uint32_t>(OS, NE.Desc.binary_size(), 1308 ELFT::TargetEndianness); 1309 1310 // Write type. 1311 support::endian::write<uint32_t>(OS, NE.Type, ELFT::TargetEndianness); 1312 1313 // Write name, null terminator and padding. 1314 if (!NE.Name.empty()) { 1315 support::endian::write<uint8_t>(OS, arrayRefFromStringRef(NE.Name), 1316 ELFT::TargetEndianness); 1317 support::endian::write<uint8_t>(OS, 0, ELFT::TargetEndianness); 1318 CBA.padToAlignment(4); 1319 } 1320 1321 // Write description and padding. 1322 if (NE.Desc.binary_size() != 0) { 1323 NE.Desc.writeAsBinary(OS); 1324 CBA.padToAlignment(4); 1325 } 1326 } 1327 1328 SHeader.sh_size = OS.tell() - Offset; 1329 } 1330 1331 template <class ELFT> 1332 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1333 const ELFYAML::GnuHashSection &Section, 1334 ContiguousBlobAccumulator &CBA) { 1335 unsigned Link = 0; 1336 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1337 SHeader.sh_link = Link; 1338 1339 raw_ostream &OS = CBA.getOS(); 1340 if (Section.Content) { 1341 SHeader.sh_size = writeContent(OS, Section.Content, None); 1342 return; 1343 } 1344 1345 // We write the header first, starting with the hash buckets count. Normally 1346 // it is the number of entries in HashBuckets, but the "NBuckets" property can 1347 // be used to override this field, which is useful for producing broken 1348 // objects. 1349 if (Section.Header->NBuckets) 1350 support::endian::write<uint32_t>(OS, *Section.Header->NBuckets, 1351 ELFT::TargetEndianness); 1352 else 1353 support::endian::write<uint32_t>(OS, Section.HashBuckets->size(), 1354 ELFT::TargetEndianness); 1355 1356 // Write the index of the first symbol in the dynamic symbol table accessible 1357 // via the hash table. 1358 support::endian::write<uint32_t>(OS, Section.Header->SymNdx, 1359 ELFT::TargetEndianness); 1360 1361 // Write the number of words in the Bloom filter. As above, the "MaskWords" 1362 // property can be used to set this field to any value. 1363 if (Section.Header->MaskWords) 1364 support::endian::write<uint32_t>(OS, *Section.Header->MaskWords, 1365 ELFT::TargetEndianness); 1366 else 1367 support::endian::write<uint32_t>(OS, Section.BloomFilter->size(), 1368 ELFT::TargetEndianness); 1369 1370 // Write the shift constant used by the Bloom filter. 1371 support::endian::write<uint32_t>(OS, Section.Header->Shift2, 1372 ELFT::TargetEndianness); 1373 1374 // We've finished writing the header. Now write the Bloom filter. 1375 for (llvm::yaml::Hex64 Val : *Section.BloomFilter) 1376 support::endian::write<typename ELFT::uint>(OS, Val, 1377 ELFT::TargetEndianness); 1378 1379 // Write an array of hash buckets. 1380 for (llvm::yaml::Hex32 Val : *Section.HashBuckets) 1381 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1382 1383 // Write an array of hash values. 1384 for (llvm::yaml::Hex32 Val : *Section.HashValues) 1385 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1386 1387 SHeader.sh_size = 16 /*Header size*/ + 1388 Section.BloomFilter->size() * sizeof(typename ELFT::uint) + 1389 Section.HashBuckets->size() * 4 + 1390 Section.HashValues->size() * 4; 1391 } 1392 1393 template <class ELFT> 1394 void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill, 1395 ContiguousBlobAccumulator &CBA) { 1396 raw_ostream &OS = CBA.getOS(); 1397 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0; 1398 if (!PatternSize) { 1399 OS.write_zeros(Fill.Size); 1400 return; 1401 } 1402 1403 // Fill the content with the specified pattern. 1404 uint64_t Written = 0; 1405 for (; Written + PatternSize <= Fill.Size; Written += PatternSize) 1406 Fill.Pattern->writeAsBinary(OS); 1407 Fill.Pattern->writeAsBinary(OS, Fill.Size - Written); 1408 } 1409 1410 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() { 1411 size_t SecNdx = -1; 1412 StringSet<> Seen; 1413 for (size_t I = 0; I < Doc.Chunks.size(); ++I) { 1414 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I]; 1415 bool IsSection = isa<ELFYAML::Section>(C.get()); 1416 if (IsSection) 1417 ++SecNdx; 1418 1419 if (C->Name.empty()) 1420 continue; 1421 1422 if (!Seen.insert(C->Name).second) 1423 reportError("repeated section/fill name: '" + C->Name + 1424 "' at YAML section/fill number " + Twine(I)); 1425 if (!IsSection || HasError) 1426 continue; 1427 1428 if (!SN2I.addName(C->Name, SecNdx)) 1429 llvm_unreachable("buildSectionIndex() failed"); 1430 DotShStrtab.add(ELFYAML::dropUniqueSuffix(C->Name)); 1431 } 1432 1433 DotShStrtab.finalize(); 1434 } 1435 1436 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() { 1437 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) { 1438 for (size_t I = 0, S = V.size(); I < S; ++I) { 1439 const ELFYAML::Symbol &Sym = V[I]; 1440 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) 1441 reportError("repeated symbol name: '" + Sym.Name + "'"); 1442 } 1443 }; 1444 1445 if (Doc.Symbols) 1446 Build(*Doc.Symbols, SymN2I); 1447 if (Doc.DynamicSymbols) 1448 Build(*Doc.DynamicSymbols, DynSymN2I); 1449 } 1450 1451 template <class ELFT> void ELFState<ELFT>::finalizeStrings() { 1452 // Add the regular symbol names to .strtab section. 1453 if (Doc.Symbols) 1454 for (const ELFYAML::Symbol &Sym : *Doc.Symbols) 1455 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1456 DotStrtab.finalize(); 1457 1458 // Add the dynamic symbol names to .dynstr section. 1459 if (Doc.DynamicSymbols) 1460 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols) 1461 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1462 1463 // SHT_GNU_verdef and SHT_GNU_verneed sections might also 1464 // add strings to .dynstr section. 1465 for (const ELFYAML::Chunk *Sec : Doc.getSections()) { 1466 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 1467 if (VerNeed->VerneedV) { 1468 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) { 1469 DotDynstr.add(VE.File); 1470 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) 1471 DotDynstr.add(Aux.Name); 1472 } 1473 } 1474 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 1475 if (VerDef->Entries) 1476 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries) 1477 for (StringRef Name : E.VerNames) 1478 DotDynstr.add(Name); 1479 } 1480 } 1481 1482 DotDynstr.finalize(); 1483 } 1484 1485 template <class ELFT> 1486 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 1487 yaml::ErrorHandler EH) { 1488 ELFState<ELFT> State(Doc, EH); 1489 1490 // Finalize .strtab and .dynstr sections. We do that early because want to 1491 // finalize the string table builders before writing the content of the 1492 // sections that might want to use them. 1493 State.finalizeStrings(); 1494 1495 State.buildSectionIndex(); 1496 if (State.HasError) 1497 return false; 1498 1499 State.buildSymbolIndexes(); 1500 1501 std::vector<Elf_Phdr> PHeaders; 1502 State.initProgramHeaders(PHeaders); 1503 1504 // XXX: This offset is tightly coupled with the order that we write 1505 // things to `OS`. 1506 const size_t SectionContentBeginOffset = 1507 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); 1508 ContiguousBlobAccumulator CBA(SectionContentBeginOffset); 1509 1510 std::vector<Elf_Shdr> SHeaders; 1511 State.initSectionHeaders(SHeaders, CBA); 1512 1513 // Now we can decide segment offsets. 1514 State.setProgramHeaderLayout(PHeaders, SHeaders); 1515 1516 if (State.HasError) 1517 return false; 1518 1519 State.writeELFHeader(CBA, OS); 1520 writeArrayData(OS, makeArrayRef(PHeaders)); 1521 CBA.writeBlobToStream(OS); 1522 writeArrayData(OS, makeArrayRef(SHeaders)); 1523 return true; 1524 } 1525 1526 namespace llvm { 1527 namespace yaml { 1528 1529 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) { 1530 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 1531 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); 1532 if (Is64Bit) { 1533 if (IsLE) 1534 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH); 1535 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH); 1536 } 1537 if (IsLE) 1538 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH); 1539 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH); 1540 } 1541 1542 } // namespace yaml 1543 } // namespace llvm 1544