1 //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The ELF component of yaml2obj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/StringSet.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/MC/StringTableBuilder.h" 19 #include "llvm/Object/ELFObjectFile.h" 20 #include "llvm/ObjectYAML/ELFYAML.h" 21 #include "llvm/ObjectYAML/yaml2obj.h" 22 #include "llvm/Support/EndianStream.h" 23 #include "llvm/Support/LEB128.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 #include "llvm/Support/WithColor.h" 26 #include "llvm/Support/YAMLTraits.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace llvm; 30 31 // This class is used to build up a contiguous binary blob while keeping 32 // track of an offset in the output (which notionally begins at 33 // `InitialOffset`). 34 namespace { 35 class ContiguousBlobAccumulator { 36 const uint64_t InitialOffset; 37 SmallVector<char, 128> Buf; 38 raw_svector_ostream OS; 39 40 public: 41 ContiguousBlobAccumulator(uint64_t InitialOffset_) 42 : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} 43 44 uint64_t getOffset() const { return InitialOffset + OS.tell(); } 45 raw_ostream &getOS() { return OS; } 46 47 /// \returns The new offset. 48 uint64_t padToAlignment(unsigned Align) { 49 if (Align == 0) 50 Align = 1; 51 uint64_t CurrentOffset = getOffset(); 52 uint64_t AlignedOffset = alignTo(CurrentOffset, Align); 53 OS.write_zeros(AlignedOffset - CurrentOffset); 54 return AlignedOffset; // == CurrentOffset; 55 } 56 57 void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } 58 }; 59 60 // Used to keep track of section and symbol names, so that in the YAML file 61 // sections and symbols can be referenced by name instead of by index. 62 class NameToIdxMap { 63 StringMap<unsigned> Map; 64 65 public: 66 /// \Returns false if name is already present in the map. 67 bool addName(StringRef Name, unsigned Ndx) { 68 return Map.insert({Name, Ndx}).second; 69 } 70 /// \Returns false if name is not present in the map. 71 bool lookup(StringRef Name, unsigned &Idx) const { 72 auto I = Map.find(Name); 73 if (I == Map.end()) 74 return false; 75 Idx = I->getValue(); 76 return true; 77 } 78 /// Asserts if name is not present in the map. 79 unsigned get(StringRef Name) const { 80 unsigned Idx; 81 if (lookup(Name, Idx)) 82 return Idx; 83 assert(false && "Expected section not found in index"); 84 return 0; 85 } 86 unsigned size() const { return Map.size(); } 87 }; 88 89 namespace { 90 struct Fragment { 91 uint64_t Offset; 92 uint64_t Size; 93 uint32_t Type; 94 uint64_t AddrAlign; 95 }; 96 } // namespace 97 98 /// "Single point of truth" for the ELF file construction. 99 /// TODO: This class still has a ways to go before it is truly a "single 100 /// point of truth". 101 template <class ELFT> class ELFState { 102 typedef typename ELFT::Ehdr Elf_Ehdr; 103 typedef typename ELFT::Phdr Elf_Phdr; 104 typedef typename ELFT::Shdr Elf_Shdr; 105 typedef typename ELFT::Sym Elf_Sym; 106 typedef typename ELFT::Rel Elf_Rel; 107 typedef typename ELFT::Rela Elf_Rela; 108 typedef typename ELFT::Relr Elf_Relr; 109 typedef typename ELFT::Dyn Elf_Dyn; 110 typedef typename ELFT::uint uintX_t; 111 112 enum class SymtabType { Static, Dynamic }; 113 114 /// The future ".strtab" section. 115 StringTableBuilder DotStrtab{StringTableBuilder::ELF}; 116 117 /// The future ".shstrtab" section. 118 StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; 119 120 /// The future ".dynstr" section. 121 StringTableBuilder DotDynstr{StringTableBuilder::ELF}; 122 123 NameToIdxMap SN2I; 124 NameToIdxMap SymN2I; 125 NameToIdxMap DynSymN2I; 126 ELFYAML::Object &Doc; 127 128 uint64_t LocationCounter = 0; 129 bool HasError = false; 130 yaml::ErrorHandler ErrHandler; 131 void reportError(const Twine &Msg); 132 133 std::vector<Elf_Sym> toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 134 const StringTableBuilder &Strtab); 135 unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); 136 unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); 137 138 void buildSectionIndex(); 139 void buildSymbolIndexes(); 140 void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders); 141 bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, 142 StringRef SecName, ELFYAML::Section *YAMLSec); 143 void initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 144 ContiguousBlobAccumulator &CBA); 145 void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, 146 ContiguousBlobAccumulator &CBA, 147 ELFYAML::Section *YAMLSec); 148 void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 149 StringTableBuilder &STB, 150 ContiguousBlobAccumulator &CBA, 151 ELFYAML::Section *YAMLSec); 152 void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 153 std::vector<Elf_Shdr> &SHeaders); 154 155 std::vector<Fragment> 156 getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 157 ArrayRef<typename ELFT::Shdr> SHeaders); 158 159 void finalizeStrings(); 160 void writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS); 161 void writeSectionContent(Elf_Shdr &SHeader, 162 const ELFYAML::RawContentSection &Section, 163 ContiguousBlobAccumulator &CBA); 164 void writeSectionContent(Elf_Shdr &SHeader, 165 const ELFYAML::RelocationSection &Section, 166 ContiguousBlobAccumulator &CBA); 167 void writeSectionContent(Elf_Shdr &SHeader, 168 const ELFYAML::RelrSection &Section, 169 ContiguousBlobAccumulator &CBA); 170 void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, 171 ContiguousBlobAccumulator &CBA); 172 void writeSectionContent(Elf_Shdr &SHeader, 173 const ELFYAML::SymtabShndxSection &Shndx, 174 ContiguousBlobAccumulator &CBA); 175 void writeSectionContent(Elf_Shdr &SHeader, 176 const ELFYAML::SymverSection &Section, 177 ContiguousBlobAccumulator &CBA); 178 void writeSectionContent(Elf_Shdr &SHeader, 179 const ELFYAML::VerneedSection &Section, 180 ContiguousBlobAccumulator &CBA); 181 void writeSectionContent(Elf_Shdr &SHeader, 182 const ELFYAML::VerdefSection &Section, 183 ContiguousBlobAccumulator &CBA); 184 void writeSectionContent(Elf_Shdr &SHeader, 185 const ELFYAML::MipsABIFlags &Section, 186 ContiguousBlobAccumulator &CBA); 187 void writeSectionContent(Elf_Shdr &SHeader, 188 const ELFYAML::DynamicSection &Section, 189 ContiguousBlobAccumulator &CBA); 190 void writeSectionContent(Elf_Shdr &SHeader, 191 const ELFYAML::StackSizesSection &Section, 192 ContiguousBlobAccumulator &CBA); 193 void writeSectionContent(Elf_Shdr &SHeader, 194 const ELFYAML::HashSection &Section, 195 ContiguousBlobAccumulator &CBA); 196 void writeSectionContent(Elf_Shdr &SHeader, 197 const ELFYAML::AddrsigSection &Section, 198 ContiguousBlobAccumulator &CBA); 199 void writeSectionContent(Elf_Shdr &SHeader, 200 const ELFYAML::NoteSection &Section, 201 ContiguousBlobAccumulator &CBA); 202 void writeSectionContent(Elf_Shdr &SHeader, 203 const ELFYAML::GnuHashSection &Section, 204 ContiguousBlobAccumulator &CBA); 205 void writeSectionContent(Elf_Shdr &SHeader, 206 const ELFYAML::LinkerOptionsSection &Section, 207 ContiguousBlobAccumulator &CBA); 208 void writeSectionContent(Elf_Shdr &SHeader, 209 const ELFYAML::DependentLibrariesSection &Section, 210 ContiguousBlobAccumulator &CBA); 211 void writeSectionContent(Elf_Shdr &SHeader, 212 const ELFYAML::CallGraphProfileSection &Section, 213 ContiguousBlobAccumulator &CBA); 214 215 void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA); 216 217 ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); 218 219 void assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec); 220 221 uint64_t alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align, 222 llvm::Optional<llvm::yaml::Hex64> Offset); 223 224 public: 225 static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 226 yaml::ErrorHandler EH); 227 }; 228 } // end anonymous namespace 229 230 template <class T> static size_t arrayDataSize(ArrayRef<T> A) { 231 return A.size() * sizeof(T); 232 } 233 234 template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { 235 OS.write((const char *)A.data(), arrayDataSize(A)); 236 } 237 238 template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } 239 240 template <class ELFT> 241 ELFState<ELFT>::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) 242 : Doc(D), ErrHandler(EH) { 243 std::vector<ELFYAML::Section *> Sections = Doc.getSections(); 244 StringSet<> DocSections; 245 for (const ELFYAML::Section *Sec : Sections) 246 if (!Sec->Name.empty()) 247 DocSections.insert(Sec->Name); 248 249 // Insert SHT_NULL section implicitly when it is not defined in YAML. 250 if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL) 251 Doc.Chunks.insert( 252 Doc.Chunks.begin(), 253 std::make_unique<ELFYAML::Section>( 254 ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true)); 255 256 std::vector<StringRef> ImplicitSections; 257 if (Doc.DynamicSymbols) 258 ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"}); 259 if (Doc.Symbols) 260 ImplicitSections.push_back(".symtab"); 261 ImplicitSections.insert(ImplicitSections.end(), {".strtab", ".shstrtab"}); 262 263 // Insert placeholders for implicit sections that are not 264 // defined explicitly in YAML. 265 for (StringRef SecName : ImplicitSections) { 266 if (DocSections.count(SecName)) 267 continue; 268 269 std::unique_ptr<ELFYAML::Chunk> Sec = std::make_unique<ELFYAML::Section>( 270 ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/); 271 Sec->Name = SecName; 272 Doc.Chunks.push_back(std::move(Sec)); 273 } 274 } 275 276 template <class ELFT> 277 void ELFState<ELFT>::writeELFHeader(ContiguousBlobAccumulator &CBA, raw_ostream &OS) { 278 using namespace llvm::ELF; 279 280 Elf_Ehdr Header; 281 zero(Header); 282 Header.e_ident[EI_MAG0] = 0x7f; 283 Header.e_ident[EI_MAG1] = 'E'; 284 Header.e_ident[EI_MAG2] = 'L'; 285 Header.e_ident[EI_MAG3] = 'F'; 286 Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 287 Header.e_ident[EI_DATA] = Doc.Header.Data; 288 Header.e_ident[EI_VERSION] = EV_CURRENT; 289 Header.e_ident[EI_OSABI] = Doc.Header.OSABI; 290 Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; 291 Header.e_type = Doc.Header.Type; 292 Header.e_machine = Doc.Header.Machine; 293 Header.e_version = EV_CURRENT; 294 Header.e_entry = Doc.Header.Entry; 295 Header.e_phoff = Doc.ProgramHeaders.size() ? sizeof(Header) : 0; 296 Header.e_flags = Doc.Header.Flags; 297 Header.e_ehsize = sizeof(Elf_Ehdr); 298 Header.e_phentsize = Doc.ProgramHeaders.size() ? sizeof(Elf_Phdr) : 0; 299 Header.e_phnum = Doc.ProgramHeaders.size(); 300 301 Header.e_shentsize = 302 Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); 303 // Align the start of the section header table, which is written after all 304 // other sections to the end of the file. 305 uint64_t SHOff = 306 alignToOffset(CBA, sizeof(typename ELFT::uint), /*Offset=*/None); 307 Header.e_shoff = 308 Doc.Header.SHOff ? typename ELFT::uint(*Doc.Header.SHOff) : SHOff; 309 Header.e_shnum = 310 Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.getSections().size(); 311 Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx 312 : SN2I.get(".shstrtab"); 313 314 OS.write((const char *)&Header, sizeof(Header)); 315 } 316 317 template <class ELFT> 318 void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) { 319 for (const auto &YamlPhdr : Doc.ProgramHeaders) { 320 Elf_Phdr Phdr; 321 zero(Phdr); 322 Phdr.p_type = YamlPhdr.Type; 323 Phdr.p_flags = YamlPhdr.Flags; 324 Phdr.p_vaddr = YamlPhdr.VAddr; 325 Phdr.p_paddr = YamlPhdr.PAddr; 326 PHeaders.push_back(Phdr); 327 } 328 } 329 330 template <class ELFT> 331 unsigned ELFState<ELFT>::toSectionIndex(StringRef S, StringRef LocSec, 332 StringRef LocSym) { 333 unsigned Index; 334 if (SN2I.lookup(S, Index) || to_integer(S, Index)) 335 return Index; 336 337 assert(LocSec.empty() || LocSym.empty()); 338 if (!LocSym.empty()) 339 reportError("unknown section referenced: '" + S + "' by YAML symbol '" + 340 LocSym + "'"); 341 else 342 reportError("unknown section referenced: '" + S + "' by YAML section '" + 343 LocSec + "'"); 344 return 0; 345 } 346 347 template <class ELFT> 348 unsigned ELFState<ELFT>::toSymbolIndex(StringRef S, StringRef LocSec, 349 bool IsDynamic) { 350 const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; 351 unsigned Index; 352 // Here we try to look up S in the symbol table. If it is not there, 353 // treat its value as a symbol index. 354 if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { 355 reportError("unknown symbol referenced: '" + S + "' by YAML section '" + 356 LocSec + "'"); 357 return 0; 358 } 359 return Index; 360 } 361 362 template <class ELFT> 363 static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) { 364 if (!From) 365 return; 366 if (From->ShFlags) 367 To.sh_flags = *From->ShFlags; 368 if (From->ShName) 369 To.sh_name = *From->ShName; 370 if (From->ShOffset) 371 To.sh_offset = *From->ShOffset; 372 if (From->ShSize) 373 To.sh_size = *From->ShSize; 374 } 375 376 template <class ELFT> 377 bool ELFState<ELFT>::initImplicitHeader(ContiguousBlobAccumulator &CBA, 378 Elf_Shdr &Header, StringRef SecName, 379 ELFYAML::Section *YAMLSec) { 380 // Check if the header was already initialized. 381 if (Header.sh_offset) 382 return false; 383 384 if (SecName == ".symtab") 385 initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); 386 else if (SecName == ".strtab") 387 initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); 388 else if (SecName == ".shstrtab") 389 initStrtabSectionHeader(Header, SecName, DotShStrtab, CBA, YAMLSec); 390 else if (SecName == ".dynsym") 391 initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); 392 else if (SecName == ".dynstr") 393 initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); 394 else 395 return false; 396 397 LocationCounter += Header.sh_size; 398 399 // Override section fields if requested. 400 overrideFields<ELFT>(YAMLSec, Header); 401 return true; 402 } 403 404 constexpr StringRef SuffixStart = " ("; 405 constexpr char SuffixEnd = ')'; 406 407 std::string llvm::ELFYAML::appendUniqueSuffix(StringRef Name, 408 const Twine &Msg) { 409 return (Name + SuffixStart + Msg + Twine(SuffixEnd)).str(); 410 } 411 412 StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { 413 if (S.empty() || S.back() != SuffixEnd) 414 return S; 415 416 size_t SuffixPos = S.rfind(SuffixStart); 417 if (SuffixPos == StringRef::npos) 418 return S; 419 return S.substr(0, SuffixPos); 420 } 421 422 template <class ELFT> 423 void ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, 424 ContiguousBlobAccumulator &CBA) { 425 // Ensure SHN_UNDEF entry is present. An all-zero section header is a 426 // valid SHN_UNDEF entry since SHT_NULL == 0. 427 SHeaders.resize(Doc.getSections().size()); 428 429 size_t SecNdx = -1; 430 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) { 431 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) { 432 S->ShOffset = alignToOffset(CBA, /*Align=*/1, /*Offset=*/None); 433 writeFill(*S, CBA); 434 LocationCounter += S->Size; 435 continue; 436 } 437 438 ++SecNdx; 439 ELFYAML::Section *Sec = cast<ELFYAML::Section>(D.get()); 440 if (SecNdx == 0 && Sec->IsImplicit) 441 continue; 442 443 // We have a few sections like string or symbol tables that are usually 444 // added implicitly to the end. However, if they are explicitly specified 445 // in the YAML, we need to write them here. This ensures the file offset 446 // remains correct. 447 Elf_Shdr &SHeader = SHeaders[SecNdx]; 448 if (initImplicitHeader(CBA, SHeader, Sec->Name, 449 Sec->IsImplicit ? nullptr : Sec)) 450 continue; 451 452 assert(Sec && "It can't be null unless it is an implicit section. But all " 453 "implicit sections should already have been handled above."); 454 455 SHeader.sh_name = 456 DotShStrtab.getOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); 457 SHeader.sh_type = Sec->Type; 458 if (Sec->Flags) 459 SHeader.sh_flags = *Sec->Flags; 460 SHeader.sh_addralign = Sec->AddressAlign; 461 462 // Set the offset for all sections, except the SHN_UNDEF section with index 463 // 0 when not explicitly requested. 464 bool IsFirstUndefSection = SecNdx == 0; 465 if (!IsFirstUndefSection || Sec->Offset) 466 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, Sec->Offset); 467 468 assignSectionAddress(SHeader, Sec); 469 470 if (!Sec->Link.empty()) 471 SHeader.sh_link = toSectionIndex(Sec->Link, Sec->Name); 472 473 if (IsFirstUndefSection) { 474 if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 475 // We do not write any content for special SHN_UNDEF section. 476 if (RawSec->Size) 477 SHeader.sh_size = *RawSec->Size; 478 if (RawSec->Info) 479 SHeader.sh_info = *RawSec->Info; 480 } 481 if (Sec->EntSize) 482 SHeader.sh_entsize = *Sec->EntSize; 483 } else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) { 484 writeSectionContent(SHeader, *S, CBA); 485 } else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) { 486 writeSectionContent(SHeader, *S, CBA); 487 } else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) { 488 writeSectionContent(SHeader, *S, CBA); 489 } else if (auto S = dyn_cast<ELFYAML::RelrSection>(Sec)) { 490 writeSectionContent(SHeader, *S, CBA); 491 } else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) { 492 writeSectionContent(SHeader, *S, CBA); 493 } else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) { 494 writeSectionContent(SHeader, *S, CBA); 495 } else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) { 496 // SHT_NOBITS sections do not have any content to write. 497 SHeader.sh_entsize = 0; 498 SHeader.sh_size = S->Size; 499 } else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) { 500 writeSectionContent(SHeader, *S, CBA); 501 } else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) { 502 writeSectionContent(SHeader, *S, CBA); 503 } else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 504 writeSectionContent(SHeader, *S, CBA); 505 } else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 506 writeSectionContent(SHeader, *S, CBA); 507 } else if (auto S = dyn_cast<ELFYAML::StackSizesSection>(Sec)) { 508 writeSectionContent(SHeader, *S, CBA); 509 } else if (auto S = dyn_cast<ELFYAML::HashSection>(Sec)) { 510 writeSectionContent(SHeader, *S, CBA); 511 } else if (auto S = dyn_cast<ELFYAML::AddrsigSection>(Sec)) { 512 writeSectionContent(SHeader, *S, CBA); 513 } else if (auto S = dyn_cast<ELFYAML::LinkerOptionsSection>(Sec)) { 514 writeSectionContent(SHeader, *S, CBA); 515 } else if (auto S = dyn_cast<ELFYAML::NoteSection>(Sec)) { 516 writeSectionContent(SHeader, *S, CBA); 517 } else if (auto S = dyn_cast<ELFYAML::GnuHashSection>(Sec)) { 518 writeSectionContent(SHeader, *S, CBA); 519 } else if (auto S = dyn_cast<ELFYAML::DependentLibrariesSection>(Sec)) { 520 writeSectionContent(SHeader, *S, CBA); 521 } else if (auto S = dyn_cast<ELFYAML::CallGraphProfileSection>(Sec)) { 522 writeSectionContent(SHeader, *S, CBA); 523 } else { 524 llvm_unreachable("Unknown section type"); 525 } 526 527 LocationCounter += SHeader.sh_size; 528 529 // Override section fields if requested. 530 overrideFields<ELFT>(Sec, SHeader); 531 } 532 } 533 534 template <class ELFT> 535 void ELFState<ELFT>::assignSectionAddress(Elf_Shdr &SHeader, 536 ELFYAML::Section *YAMLSec) { 537 if (YAMLSec && YAMLSec->Address) { 538 SHeader.sh_addr = *YAMLSec->Address; 539 LocationCounter = *YAMLSec->Address; 540 return; 541 } 542 543 // sh_addr represents the address in the memory image of a process. Sections 544 // in a relocatable object file or non-allocatable sections do not need 545 // sh_addr assignment. 546 if (Doc.Header.Type.value == ELF::ET_REL || 547 !(SHeader.sh_flags & ELF::SHF_ALLOC)) 548 return; 549 550 LocationCounter = 551 alignTo(LocationCounter, SHeader.sh_addralign ? SHeader.sh_addralign : 1); 552 SHeader.sh_addr = LocationCounter; 553 } 554 555 static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) { 556 for (size_t I = 0; I < Symbols.size(); ++I) 557 if (Symbols[I].Binding.value != ELF::STB_LOCAL) 558 return I; 559 return Symbols.size(); 560 } 561 562 static uint64_t writeContent(raw_ostream &OS, 563 const Optional<yaml::BinaryRef> &Content, 564 const Optional<llvm::yaml::Hex64> &Size) { 565 size_t ContentSize = 0; 566 if (Content) { 567 Content->writeAsBinary(OS); 568 ContentSize = Content->binary_size(); 569 } 570 571 if (!Size) 572 return ContentSize; 573 574 OS.write_zeros(*Size - ContentSize); 575 return *Size; 576 } 577 578 template <class ELFT> 579 std::vector<typename ELFT::Sym> 580 ELFState<ELFT>::toELFSymbols(ArrayRef<ELFYAML::Symbol> Symbols, 581 const StringTableBuilder &Strtab) { 582 std::vector<Elf_Sym> Ret; 583 Ret.resize(Symbols.size() + 1); 584 585 size_t I = 0; 586 for (const ELFYAML::Symbol &Sym : Symbols) { 587 Elf_Sym &Symbol = Ret[++I]; 588 589 // If NameIndex, which contains the name offset, is explicitly specified, we 590 // use it. This is useful for preparing broken objects. Otherwise, we add 591 // the specified Name to the string table builder to get its offset. 592 if (Sym.StName) 593 Symbol.st_name = *Sym.StName; 594 else if (!Sym.Name.empty()) 595 Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); 596 597 Symbol.setBindingAndType(Sym.Binding, Sym.Type); 598 if (!Sym.Section.empty()) 599 Symbol.st_shndx = toSectionIndex(Sym.Section, "", Sym.Name); 600 else if (Sym.Index) 601 Symbol.st_shndx = *Sym.Index; 602 603 Symbol.st_value = Sym.Value; 604 Symbol.st_other = Sym.Other ? *Sym.Other : 0; 605 Symbol.st_size = Sym.Size; 606 } 607 608 return Ret; 609 } 610 611 template <class ELFT> 612 void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, 613 SymtabType STType, 614 ContiguousBlobAccumulator &CBA, 615 ELFYAML::Section *YAMLSec) { 616 617 bool IsStatic = STType == SymtabType::Static; 618 ArrayRef<ELFYAML::Symbol> Symbols; 619 if (IsStatic && Doc.Symbols) 620 Symbols = *Doc.Symbols; 621 else if (!IsStatic && Doc.DynamicSymbols) 622 Symbols = *Doc.DynamicSymbols; 623 624 ELFYAML::RawContentSection *RawSec = 625 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 626 if (RawSec && (RawSec->Content || RawSec->Size)) { 627 bool HasSymbolsDescription = 628 (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols); 629 if (HasSymbolsDescription) { 630 StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`"); 631 if (RawSec->Content) 632 reportError("cannot specify both `Content` and " + Property + 633 " for symbol table section '" + RawSec->Name + "'"); 634 if (RawSec->Size) 635 reportError("cannot specify both `Size` and " + Property + 636 " for symbol table section '" + RawSec->Name + "'"); 637 return; 638 } 639 } 640 641 zero(SHeader); 642 SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); 643 644 if (YAMLSec) 645 SHeader.sh_type = YAMLSec->Type; 646 else 647 SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; 648 649 if (RawSec && !RawSec->Link.empty()) { 650 // If the Link field is explicitly defined in the document, 651 // we should use it. 652 SHeader.sh_link = toSectionIndex(RawSec->Link, RawSec->Name); 653 } else { 654 // When we describe the .dynsym section in the document explicitly, it is 655 // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not 656 // added implicitly and we should be able to leave the Link zeroed if 657 // .dynstr is not defined. 658 unsigned Link = 0; 659 if (IsStatic) 660 Link = SN2I.get(".strtab"); 661 else 662 SN2I.lookup(".dynstr", Link); 663 SHeader.sh_link = Link; 664 } 665 666 if (YAMLSec && YAMLSec->Flags) 667 SHeader.sh_flags = *YAMLSec->Flags; 668 else if (!IsStatic) 669 SHeader.sh_flags = ELF::SHF_ALLOC; 670 671 // If the symbol table section is explicitly described in the YAML 672 // then we should set the fields requested. 673 SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) 674 : findFirstNonGlobal(Symbols) + 1; 675 SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) 676 ? (uint64_t)(*YAMLSec->EntSize) 677 : sizeof(Elf_Sym); 678 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; 679 680 assignSectionAddress(SHeader, YAMLSec); 681 682 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, /*Offset=*/None); 683 raw_ostream &OS = CBA.getOS(); 684 685 if (RawSec && (RawSec->Content || RawSec->Size)) { 686 assert(Symbols.empty()); 687 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 688 return; 689 } 690 691 std::vector<Elf_Sym> Syms = 692 toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); 693 writeArrayData(OS, makeArrayRef(Syms)); 694 SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); 695 } 696 697 template <class ELFT> 698 void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, 699 StringTableBuilder &STB, 700 ContiguousBlobAccumulator &CBA, 701 ELFYAML::Section *YAMLSec) { 702 zero(SHeader); 703 SHeader.sh_name = DotShStrtab.getOffset(Name); 704 SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; 705 SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; 706 707 ELFYAML::RawContentSection *RawSec = 708 dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec); 709 710 SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, /*Offset=*/None); 711 raw_ostream &OS = CBA.getOS(); 712 713 if (RawSec && (RawSec->Content || RawSec->Size)) { 714 SHeader.sh_size = writeContent(OS, RawSec->Content, RawSec->Size); 715 } else { 716 STB.write(OS); 717 SHeader.sh_size = STB.getSize(); 718 } 719 720 if (YAMLSec && YAMLSec->EntSize) 721 SHeader.sh_entsize = *YAMLSec->EntSize; 722 723 if (RawSec && RawSec->Info) 724 SHeader.sh_info = *RawSec->Info; 725 726 if (YAMLSec && YAMLSec->Flags) 727 SHeader.sh_flags = *YAMLSec->Flags; 728 else if (Name == ".dynstr") 729 SHeader.sh_flags = ELF::SHF_ALLOC; 730 731 assignSectionAddress(SHeader, YAMLSec); 732 } 733 734 template <class ELFT> void ELFState<ELFT>::reportError(const Twine &Msg) { 735 ErrHandler(Msg); 736 HasError = true; 737 } 738 739 template <class ELFT> 740 std::vector<Fragment> 741 ELFState<ELFT>::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, 742 ArrayRef<typename ELFT::Shdr> SHeaders) { 743 DenseMap<StringRef, ELFYAML::Fill *> NameToFill; 744 for (const std::unique_ptr<ELFYAML::Chunk> &D : Doc.Chunks) 745 if (auto S = dyn_cast<ELFYAML::Fill>(D.get())) 746 NameToFill[S->Name] = S; 747 748 std::vector<Fragment> Ret; 749 for (const ELFYAML::SectionName &SecName : Phdr.Sections) { 750 unsigned Index; 751 if (SN2I.lookup(SecName.Section, Index)) { 752 const typename ELFT::Shdr &H = SHeaders[Index]; 753 Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign}); 754 continue; 755 } 756 757 if (ELFYAML::Fill *Fill = NameToFill.lookup(SecName.Section)) { 758 Ret.push_back({Fill->ShOffset, Fill->Size, llvm::ELF::SHT_PROGBITS, 759 /*ShAddrAlign=*/1}); 760 continue; 761 } 762 763 reportError("unknown section or fill referenced: '" + SecName.Section + 764 "' by program header"); 765 } 766 767 return Ret; 768 } 769 770 template <class ELFT> 771 void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders, 772 std::vector<Elf_Shdr> &SHeaders) { 773 uint32_t PhdrIdx = 0; 774 for (auto &YamlPhdr : Doc.ProgramHeaders) { 775 Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; 776 std::vector<Fragment> Fragments = getPhdrFragments(YamlPhdr, SHeaders); 777 if (!llvm::is_sorted(Fragments, [](const Fragment &A, const Fragment &B) { 778 return A.Offset < B.Offset; 779 })) 780 reportError("sections in the program header with index " + 781 Twine(PhdrIdx) + " are not sorted by their file offset"); 782 783 if (YamlPhdr.Offset) { 784 if (!Fragments.empty() && *YamlPhdr.Offset > Fragments.front().Offset) 785 reportError("'Offset' for segment with index " + Twine(PhdrIdx) + 786 " must be less than or equal to the minimum file offset of " 787 "all included sections (0x" + 788 Twine::utohexstr(Fragments.front().Offset) + ")"); 789 PHeader.p_offset = *YamlPhdr.Offset; 790 } else if (!Fragments.empty()) { 791 PHeader.p_offset = Fragments.front().Offset; 792 } 793 794 // Set the file size if not set explicitly. 795 if (YamlPhdr.FileSize) { 796 PHeader.p_filesz = *YamlPhdr.FileSize; 797 } else if (!Fragments.empty()) { 798 uint64_t FileSize = Fragments.back().Offset - PHeader.p_offset; 799 // SHT_NOBITS sections occupy no physical space in a file, we should not 800 // take their sizes into account when calculating the file size of a 801 // segment. 802 if (Fragments.back().Type != llvm::ELF::SHT_NOBITS) 803 FileSize += Fragments.back().Size; 804 PHeader.p_filesz = FileSize; 805 } 806 807 // Find the maximum offset of the end of a section in order to set p_memsz. 808 uint64_t MemOffset = PHeader.p_offset; 809 for (const Fragment &F : Fragments) 810 MemOffset = std::max(MemOffset, F.Offset + F.Size); 811 // Set the memory size if not set explicitly. 812 PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) 813 : MemOffset - PHeader.p_offset; 814 815 if (YamlPhdr.Align) { 816 PHeader.p_align = *YamlPhdr.Align; 817 } else { 818 // Set the alignment of the segment to be the maximum alignment of the 819 // sections so that by default the segment has a valid and sensible 820 // alignment. 821 PHeader.p_align = 1; 822 for (const Fragment &F : Fragments) 823 PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign); 824 } 825 } 826 } 827 828 template <class ELFT> 829 void ELFState<ELFT>::writeSectionContent( 830 Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, 831 ContiguousBlobAccumulator &CBA) { 832 SHeader.sh_size = writeContent(CBA.getOS(), Section.Content, Section.Size); 833 834 if (Section.EntSize) 835 SHeader.sh_entsize = *Section.EntSize; 836 837 if (Section.Info) 838 SHeader.sh_info = *Section.Info; 839 } 840 841 static bool isMips64EL(const ELFYAML::Object &Doc) { 842 return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && 843 Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && 844 Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 845 } 846 847 template <class ELFT> 848 void ELFState<ELFT>::writeSectionContent( 849 Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, 850 ContiguousBlobAccumulator &CBA) { 851 assert((Section.Type == llvm::ELF::SHT_REL || 852 Section.Type == llvm::ELF::SHT_RELA) && 853 "Section type is not SHT_REL nor SHT_RELA"); 854 855 bool IsRela = Section.Type == llvm::ELF::SHT_RELA; 856 if (Section.EntSize) 857 SHeader.sh_entsize = *Section.EntSize; 858 else 859 SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); 860 SHeader.sh_size = (IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)) * 861 Section.Relocations.size(); 862 863 // For relocation section set link to .symtab by default. 864 unsigned Link = 0; 865 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 866 SHeader.sh_link = Link; 867 868 if (!Section.RelocatableSec.empty()) 869 SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); 870 871 raw_ostream &OS = CBA.getOS(); 872 for (const auto &Rel : Section.Relocations) { 873 unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, 874 Section.Link == ".dynsym") 875 : 0; 876 if (IsRela) { 877 Elf_Rela REntry; 878 zero(REntry); 879 REntry.r_offset = Rel.Offset; 880 REntry.r_addend = Rel.Addend; 881 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 882 OS.write((const char *)&REntry, sizeof(REntry)); 883 } else { 884 Elf_Rel REntry; 885 zero(REntry); 886 REntry.r_offset = Rel.Offset; 887 REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); 888 OS.write((const char *)&REntry, sizeof(REntry)); 889 } 890 } 891 } 892 893 template <class ELFT> 894 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 895 const ELFYAML::RelrSection &Section, 896 ContiguousBlobAccumulator &CBA) { 897 SHeader.sh_entsize = 898 Section.EntSize ? uint64_t(*Section.EntSize) : sizeof(Elf_Relr); 899 900 raw_ostream &OS = CBA.getOS(); 901 if (Section.Content) { 902 SHeader.sh_size = writeContent(OS, Section.Content, None); 903 return; 904 } 905 906 if (!Section.Entries) 907 return; 908 909 for (llvm::yaml::Hex64 E : *Section.Entries) { 910 if (!ELFT::Is64Bits && E > UINT32_MAX) 911 reportError(Section.Name + ": the value is too large for 32-bits: 0x" + 912 Twine::utohexstr(E)); 913 support::endian::write<uintX_t>(OS, E, ELFT::TargetEndianness); 914 } 915 916 SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size(); 917 } 918 919 template <class ELFT> 920 void ELFState<ELFT>::writeSectionContent( 921 Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, 922 ContiguousBlobAccumulator &CBA) { 923 for (uint32_t E : Shndx.Entries) 924 support::endian::write<uint32_t>(CBA.getOS(), E, ELFT::TargetEndianness); 925 926 SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4; 927 SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize; 928 } 929 930 template <class ELFT> 931 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 932 const ELFYAML::Group &Section, 933 ContiguousBlobAccumulator &CBA) { 934 assert(Section.Type == llvm::ELF::SHT_GROUP && 935 "Section type is not SHT_GROUP"); 936 937 unsigned Link = 0; 938 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 939 SHeader.sh_link = Link; 940 941 SHeader.sh_entsize = 4; 942 SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); 943 944 if (Section.Signature) 945 SHeader.sh_info = 946 toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); 947 948 raw_ostream &OS = CBA.getOS(); 949 for (const ELFYAML::SectionOrType &Member : Section.Members) { 950 unsigned int SectionIndex = 0; 951 if (Member.sectionNameOrType == "GRP_COMDAT") 952 SectionIndex = llvm::ELF::GRP_COMDAT; 953 else 954 SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); 955 support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness); 956 } 957 } 958 959 template <class ELFT> 960 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 961 const ELFYAML::SymverSection &Section, 962 ContiguousBlobAccumulator &CBA) { 963 raw_ostream &OS = CBA.getOS(); 964 for (uint16_t Version : Section.Entries) 965 support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness); 966 967 SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2; 968 SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; 969 } 970 971 template <class ELFT> 972 void ELFState<ELFT>::writeSectionContent( 973 Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, 974 ContiguousBlobAccumulator &CBA) { 975 raw_ostream &OS = CBA.getOS(); 976 if (Section.Content || Section.Size) { 977 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 978 return; 979 } 980 981 for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { 982 support::endian::write<uintX_t>(OS, E.Address, ELFT::TargetEndianness); 983 SHeader.sh_size += sizeof(uintX_t) + encodeULEB128(E.Size, OS); 984 } 985 } 986 987 template <class ELFT> 988 void ELFState<ELFT>::writeSectionContent( 989 Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, 990 ContiguousBlobAccumulator &CBA) { 991 raw_ostream &OS = CBA.getOS(); 992 if (Section.Content) { 993 SHeader.sh_size = writeContent(OS, Section.Content, None); 994 return; 995 } 996 997 if (!Section.Options) 998 return; 999 1000 for (const ELFYAML::LinkerOption &LO : *Section.Options) { 1001 OS.write(LO.Key.data(), LO.Key.size()); 1002 OS.write('\0'); 1003 OS.write(LO.Value.data(), LO.Value.size()); 1004 OS.write('\0'); 1005 SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2); 1006 } 1007 } 1008 1009 template <class ELFT> 1010 void ELFState<ELFT>::writeSectionContent( 1011 Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, 1012 ContiguousBlobAccumulator &CBA) { 1013 raw_ostream &OS = CBA.getOS(); 1014 if (Section.Content) { 1015 SHeader.sh_size = writeContent(OS, Section.Content, None); 1016 return; 1017 } 1018 1019 if (!Section.Libs) 1020 return; 1021 1022 for (StringRef Lib : *Section.Libs) { 1023 OS.write(Lib.data(), Lib.size()); 1024 OS.write('\0'); 1025 SHeader.sh_size += Lib.size() + 1; 1026 } 1027 } 1028 1029 template <class ELFT> 1030 uint64_t 1031 ELFState<ELFT>::alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align, 1032 llvm::Optional<llvm::yaml::Hex64> Offset) { 1033 uint64_t CurrentOffset = CBA.getOffset(); 1034 uint64_t AlignedOffset; 1035 1036 if (Offset) { 1037 if ((uint64_t)*Offset < CurrentOffset) { 1038 reportError("the 'Offset' value (0x" + 1039 Twine::utohexstr((uint64_t)*Offset) + ") goes backward"); 1040 return CurrentOffset; 1041 } 1042 1043 // We ignore an alignment when an explicit offset has been requested. 1044 AlignedOffset = *Offset; 1045 } else { 1046 AlignedOffset = alignTo(CurrentOffset, std::max(Align, (uint64_t)1)); 1047 } 1048 1049 CBA.getOS().write_zeros(AlignedOffset - CurrentOffset); 1050 return AlignedOffset; 1051 } 1052 1053 template <class ELFT> 1054 void ELFState<ELFT>::writeSectionContent( 1055 Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section, 1056 ContiguousBlobAccumulator &CBA) { 1057 if (Section.EntSize) 1058 SHeader.sh_entsize = *Section.EntSize; 1059 else 1060 SHeader.sh_entsize = 16; 1061 1062 unsigned Link = 0; 1063 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1064 SHeader.sh_link = Link; 1065 1066 raw_ostream &OS = CBA.getOS(); 1067 if (Section.Content) { 1068 SHeader.sh_size = writeContent(OS, Section.Content, None); 1069 return; 1070 } 1071 1072 if (!Section.Entries) 1073 return; 1074 1075 for (const ELFYAML::CallGraphEntry &E : *Section.Entries) { 1076 unsigned From = toSymbolIndex(E.From, Section.Name, /*IsDynamic=*/false); 1077 unsigned To = toSymbolIndex(E.To, Section.Name, /*IsDynamic=*/false); 1078 1079 support::endian::write<uint32_t>(OS, From, ELFT::TargetEndianness); 1080 support::endian::write<uint32_t>(OS, To, ELFT::TargetEndianness); 1081 support::endian::write<uint64_t>(OS, E.Weight, ELFT::TargetEndianness); 1082 SHeader.sh_size += 16; 1083 } 1084 } 1085 1086 template <class ELFT> 1087 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1088 const ELFYAML::HashSection &Section, 1089 ContiguousBlobAccumulator &CBA) { 1090 unsigned Link = 0; 1091 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1092 SHeader.sh_link = Link; 1093 1094 raw_ostream &OS = CBA.getOS(); 1095 if (Section.Content || Section.Size) { 1096 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1097 return; 1098 } 1099 1100 support::endian::write<uint32_t>( 1101 OS, Section.NBucket.getValueOr(llvm::yaml::Hex64(Section.Bucket->size())), 1102 ELFT::TargetEndianness); 1103 support::endian::write<uint32_t>( 1104 OS, Section.NChain.getValueOr(llvm::yaml::Hex64(Section.Chain->size())), 1105 ELFT::TargetEndianness); 1106 1107 for (uint32_t Val : *Section.Bucket) 1108 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1109 for (uint32_t Val : *Section.Chain) 1110 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1111 1112 SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; 1113 } 1114 1115 template <class ELFT> 1116 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1117 const ELFYAML::VerdefSection &Section, 1118 ContiguousBlobAccumulator &CBA) { 1119 typedef typename ELFT::Verdef Elf_Verdef; 1120 typedef typename ELFT::Verdaux Elf_Verdaux; 1121 1122 SHeader.sh_info = Section.Info; 1123 1124 raw_ostream &OS = CBA.getOS(); 1125 if (Section.Content) { 1126 SHeader.sh_size = writeContent(OS, Section.Content, None); 1127 return; 1128 } 1129 1130 if (!Section.Entries) 1131 return; 1132 1133 uint64_t AuxCnt = 0; 1134 for (size_t I = 0; I < Section.Entries->size(); ++I) { 1135 const ELFYAML::VerdefEntry &E = (*Section.Entries)[I]; 1136 1137 Elf_Verdef VerDef; 1138 VerDef.vd_version = E.Version; 1139 VerDef.vd_flags = E.Flags; 1140 VerDef.vd_ndx = E.VersionNdx; 1141 VerDef.vd_hash = E.Hash; 1142 VerDef.vd_aux = sizeof(Elf_Verdef); 1143 VerDef.vd_cnt = E.VerNames.size(); 1144 if (I == Section.Entries->size() - 1) 1145 VerDef.vd_next = 0; 1146 else 1147 VerDef.vd_next = 1148 sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); 1149 OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); 1150 1151 for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { 1152 Elf_Verdaux VernAux; 1153 VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); 1154 if (J == E.VerNames.size() - 1) 1155 VernAux.vda_next = 0; 1156 else 1157 VernAux.vda_next = sizeof(Elf_Verdaux); 1158 OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); 1159 } 1160 } 1161 1162 SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) + 1163 AuxCnt * sizeof(Elf_Verdaux); 1164 } 1165 1166 template <class ELFT> 1167 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1168 const ELFYAML::VerneedSection &Section, 1169 ContiguousBlobAccumulator &CBA) { 1170 typedef typename ELFT::Verneed Elf_Verneed; 1171 typedef typename ELFT::Vernaux Elf_Vernaux; 1172 1173 SHeader.sh_info = Section.Info; 1174 1175 raw_ostream &OS = CBA.getOS(); 1176 if (Section.Content) { 1177 SHeader.sh_size = writeContent(OS, Section.Content, None); 1178 return; 1179 } 1180 1181 if (!Section.VerneedV) 1182 return; 1183 1184 uint64_t AuxCnt = 0; 1185 for (size_t I = 0; I < Section.VerneedV->size(); ++I) { 1186 const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I]; 1187 1188 Elf_Verneed VerNeed; 1189 VerNeed.vn_version = VE.Version; 1190 VerNeed.vn_file = DotDynstr.getOffset(VE.File); 1191 if (I == Section.VerneedV->size() - 1) 1192 VerNeed.vn_next = 0; 1193 else 1194 VerNeed.vn_next = 1195 sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); 1196 VerNeed.vn_cnt = VE.AuxV.size(); 1197 VerNeed.vn_aux = sizeof(Elf_Verneed); 1198 OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); 1199 1200 for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { 1201 const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; 1202 1203 Elf_Vernaux VernAux; 1204 VernAux.vna_hash = VAuxE.Hash; 1205 VernAux.vna_flags = VAuxE.Flags; 1206 VernAux.vna_other = VAuxE.Other; 1207 VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); 1208 if (J == VE.AuxV.size() - 1) 1209 VernAux.vna_next = 0; 1210 else 1211 VernAux.vna_next = sizeof(Elf_Vernaux); 1212 OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); 1213 } 1214 } 1215 1216 SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) + 1217 AuxCnt * sizeof(Elf_Vernaux); 1218 } 1219 1220 template <class ELFT> 1221 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1222 const ELFYAML::MipsABIFlags &Section, 1223 ContiguousBlobAccumulator &CBA) { 1224 assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && 1225 "Section type is not SHT_MIPS_ABIFLAGS"); 1226 1227 object::Elf_Mips_ABIFlags<ELFT> Flags; 1228 zero(Flags); 1229 SHeader.sh_entsize = sizeof(Flags); 1230 SHeader.sh_size = SHeader.sh_entsize; 1231 1232 Flags.version = Section.Version; 1233 Flags.isa_level = Section.ISALevel; 1234 Flags.isa_rev = Section.ISARevision; 1235 Flags.gpr_size = Section.GPRSize; 1236 Flags.cpr1_size = Section.CPR1Size; 1237 Flags.cpr2_size = Section.CPR2Size; 1238 Flags.fp_abi = Section.FpABI; 1239 Flags.isa_ext = Section.ISAExtension; 1240 Flags.ases = Section.ASEs; 1241 Flags.flags1 = Section.Flags1; 1242 Flags.flags2 = Section.Flags2; 1243 CBA.getOS().write((const char *)&Flags, sizeof(Flags)); 1244 } 1245 1246 template <class ELFT> 1247 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1248 const ELFYAML::DynamicSection &Section, 1249 ContiguousBlobAccumulator &CBA) { 1250 assert(Section.Type == llvm::ELF::SHT_DYNAMIC && 1251 "Section type is not SHT_DYNAMIC"); 1252 1253 if (!Section.Entries.empty() && Section.Content) 1254 reportError("cannot specify both raw content and explicit entries " 1255 "for dynamic section '" + 1256 Section.Name + "'"); 1257 1258 if (Section.Content) 1259 SHeader.sh_size = Section.Content->binary_size(); 1260 else 1261 SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); 1262 if (Section.EntSize) 1263 SHeader.sh_entsize = *Section.EntSize; 1264 else 1265 SHeader.sh_entsize = sizeof(Elf_Dyn); 1266 1267 raw_ostream &OS = CBA.getOS(); 1268 for (const ELFYAML::DynamicEntry &DE : Section.Entries) { 1269 support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness); 1270 support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness); 1271 } 1272 if (Section.Content) 1273 Section.Content->writeAsBinary(OS); 1274 } 1275 1276 template <class ELFT> 1277 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1278 const ELFYAML::AddrsigSection &Section, 1279 ContiguousBlobAccumulator &CBA) { 1280 unsigned Link = 0; 1281 if (Section.Link.empty() && SN2I.lookup(".symtab", Link)) 1282 SHeader.sh_link = Link; 1283 1284 raw_ostream &OS = CBA.getOS(); 1285 if (Section.Content || Section.Size) { 1286 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1287 return; 1288 } 1289 1290 for (StringRef Sym : *Section.Symbols) 1291 SHeader.sh_size += encodeULEB128( 1292 toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false), OS); 1293 } 1294 1295 template <class ELFT> 1296 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1297 const ELFYAML::NoteSection &Section, 1298 ContiguousBlobAccumulator &CBA) { 1299 raw_ostream &OS = CBA.getOS(); 1300 uint64_t Offset = OS.tell(); 1301 if (Section.Content || Section.Size) { 1302 SHeader.sh_size = writeContent(OS, Section.Content, Section.Size); 1303 return; 1304 } 1305 1306 for (const ELFYAML::NoteEntry &NE : *Section.Notes) { 1307 // Write name size. 1308 if (NE.Name.empty()) 1309 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1310 else 1311 support::endian::write<uint32_t>(OS, NE.Name.size() + 1, 1312 ELFT::TargetEndianness); 1313 1314 // Write description size. 1315 if (NE.Desc.binary_size() == 0) 1316 support::endian::write<uint32_t>(OS, 0, ELFT::TargetEndianness); 1317 else 1318 support::endian::write<uint32_t>(OS, NE.Desc.binary_size(), 1319 ELFT::TargetEndianness); 1320 1321 // Write type. 1322 support::endian::write<uint32_t>(OS, NE.Type, ELFT::TargetEndianness); 1323 1324 // Write name, null terminator and padding. 1325 if (!NE.Name.empty()) { 1326 support::endian::write<uint8_t>(OS, arrayRefFromStringRef(NE.Name), 1327 ELFT::TargetEndianness); 1328 support::endian::write<uint8_t>(OS, 0, ELFT::TargetEndianness); 1329 CBA.padToAlignment(4); 1330 } 1331 1332 // Write description and padding. 1333 if (NE.Desc.binary_size() != 0) { 1334 NE.Desc.writeAsBinary(OS); 1335 CBA.padToAlignment(4); 1336 } 1337 } 1338 1339 SHeader.sh_size = OS.tell() - Offset; 1340 } 1341 1342 template <class ELFT> 1343 void ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, 1344 const ELFYAML::GnuHashSection &Section, 1345 ContiguousBlobAccumulator &CBA) { 1346 unsigned Link = 0; 1347 if (Section.Link.empty() && SN2I.lookup(".dynsym", Link)) 1348 SHeader.sh_link = Link; 1349 1350 raw_ostream &OS = CBA.getOS(); 1351 if (Section.Content) { 1352 SHeader.sh_size = writeContent(OS, Section.Content, None); 1353 return; 1354 } 1355 1356 // We write the header first, starting with the hash buckets count. Normally 1357 // it is the number of entries in HashBuckets, but the "NBuckets" property can 1358 // be used to override this field, which is useful for producing broken 1359 // objects. 1360 if (Section.Header->NBuckets) 1361 support::endian::write<uint32_t>(OS, *Section.Header->NBuckets, 1362 ELFT::TargetEndianness); 1363 else 1364 support::endian::write<uint32_t>(OS, Section.HashBuckets->size(), 1365 ELFT::TargetEndianness); 1366 1367 // Write the index of the first symbol in the dynamic symbol table accessible 1368 // via the hash table. 1369 support::endian::write<uint32_t>(OS, Section.Header->SymNdx, 1370 ELFT::TargetEndianness); 1371 1372 // Write the number of words in the Bloom filter. As above, the "MaskWords" 1373 // property can be used to set this field to any value. 1374 if (Section.Header->MaskWords) 1375 support::endian::write<uint32_t>(OS, *Section.Header->MaskWords, 1376 ELFT::TargetEndianness); 1377 else 1378 support::endian::write<uint32_t>(OS, Section.BloomFilter->size(), 1379 ELFT::TargetEndianness); 1380 1381 // Write the shift constant used by the Bloom filter. 1382 support::endian::write<uint32_t>(OS, Section.Header->Shift2, 1383 ELFT::TargetEndianness); 1384 1385 // We've finished writing the header. Now write the Bloom filter. 1386 for (llvm::yaml::Hex64 Val : *Section.BloomFilter) 1387 support::endian::write<typename ELFT::uint>(OS, Val, 1388 ELFT::TargetEndianness); 1389 1390 // Write an array of hash buckets. 1391 for (llvm::yaml::Hex32 Val : *Section.HashBuckets) 1392 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1393 1394 // Write an array of hash values. 1395 for (llvm::yaml::Hex32 Val : *Section.HashValues) 1396 support::endian::write<uint32_t>(OS, Val, ELFT::TargetEndianness); 1397 1398 SHeader.sh_size = 16 /*Header size*/ + 1399 Section.BloomFilter->size() * sizeof(typename ELFT::uint) + 1400 Section.HashBuckets->size() * 4 + 1401 Section.HashValues->size() * 4; 1402 } 1403 1404 template <class ELFT> 1405 void ELFState<ELFT>::writeFill(ELFYAML::Fill &Fill, 1406 ContiguousBlobAccumulator &CBA) { 1407 raw_ostream &OS = CBA.getOS(); 1408 size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0; 1409 if (!PatternSize) { 1410 OS.write_zeros(Fill.Size); 1411 return; 1412 } 1413 1414 // Fill the content with the specified pattern. 1415 uint64_t Written = 0; 1416 for (; Written + PatternSize <= Fill.Size; Written += PatternSize) 1417 Fill.Pattern->writeAsBinary(OS); 1418 Fill.Pattern->writeAsBinary(OS, Fill.Size - Written); 1419 } 1420 1421 template <class ELFT> void ELFState<ELFT>::buildSectionIndex() { 1422 size_t SecNdx = -1; 1423 StringSet<> Seen; 1424 for (size_t I = 0; I < Doc.Chunks.size(); ++I) { 1425 const std::unique_ptr<ELFYAML::Chunk> &C = Doc.Chunks[I]; 1426 bool IsSection = isa<ELFYAML::Section>(C.get()); 1427 if (IsSection) 1428 ++SecNdx; 1429 1430 if (C->Name.empty()) 1431 continue; 1432 1433 if (!Seen.insert(C->Name).second) 1434 reportError("repeated section/fill name: '" + C->Name + 1435 "' at YAML section/fill number " + Twine(I)); 1436 if (!IsSection || HasError) 1437 continue; 1438 1439 if (!SN2I.addName(C->Name, SecNdx)) 1440 llvm_unreachable("buildSectionIndex() failed"); 1441 DotShStrtab.add(ELFYAML::dropUniqueSuffix(C->Name)); 1442 } 1443 1444 DotShStrtab.finalize(); 1445 } 1446 1447 template <class ELFT> void ELFState<ELFT>::buildSymbolIndexes() { 1448 auto Build = [this](ArrayRef<ELFYAML::Symbol> V, NameToIdxMap &Map) { 1449 for (size_t I = 0, S = V.size(); I < S; ++I) { 1450 const ELFYAML::Symbol &Sym = V[I]; 1451 if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) 1452 reportError("repeated symbol name: '" + Sym.Name + "'"); 1453 } 1454 }; 1455 1456 if (Doc.Symbols) 1457 Build(*Doc.Symbols, SymN2I); 1458 if (Doc.DynamicSymbols) 1459 Build(*Doc.DynamicSymbols, DynSymN2I); 1460 } 1461 1462 template <class ELFT> void ELFState<ELFT>::finalizeStrings() { 1463 // Add the regular symbol names to .strtab section. 1464 if (Doc.Symbols) 1465 for (const ELFYAML::Symbol &Sym : *Doc.Symbols) 1466 DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1467 DotStrtab.finalize(); 1468 1469 // Add the dynamic symbol names to .dynstr section. 1470 if (Doc.DynamicSymbols) 1471 for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols) 1472 DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); 1473 1474 // SHT_GNU_verdef and SHT_GNU_verneed sections might also 1475 // add strings to .dynstr section. 1476 for (const ELFYAML::Chunk *Sec : Doc.getSections()) { 1477 if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec)) { 1478 if (VerNeed->VerneedV) { 1479 for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) { 1480 DotDynstr.add(VE.File); 1481 for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) 1482 DotDynstr.add(Aux.Name); 1483 } 1484 } 1485 } else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec)) { 1486 if (VerDef->Entries) 1487 for (const ELFYAML::VerdefEntry &E : *VerDef->Entries) 1488 for (StringRef Name : E.VerNames) 1489 DotDynstr.add(Name); 1490 } 1491 } 1492 1493 DotDynstr.finalize(); 1494 } 1495 1496 template <class ELFT> 1497 bool ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, 1498 yaml::ErrorHandler EH) { 1499 ELFState<ELFT> State(Doc, EH); 1500 1501 // Finalize .strtab and .dynstr sections. We do that early because want to 1502 // finalize the string table builders before writing the content of the 1503 // sections that might want to use them. 1504 State.finalizeStrings(); 1505 1506 State.buildSectionIndex(); 1507 if (State.HasError) 1508 return false; 1509 1510 State.buildSymbolIndexes(); 1511 1512 std::vector<Elf_Phdr> PHeaders; 1513 State.initProgramHeaders(PHeaders); 1514 1515 // XXX: This offset is tightly coupled with the order that we write 1516 // things to `OS`. 1517 const size_t SectionContentBeginOffset = 1518 sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); 1519 ContiguousBlobAccumulator CBA(SectionContentBeginOffset); 1520 1521 std::vector<Elf_Shdr> SHeaders; 1522 State.initSectionHeaders(SHeaders, CBA); 1523 1524 // Now we can decide segment offsets. 1525 State.setProgramHeaderLayout(PHeaders, SHeaders); 1526 1527 if (State.HasError) 1528 return false; 1529 1530 State.writeELFHeader(CBA, OS); 1531 writeArrayData(OS, makeArrayRef(PHeaders)); 1532 CBA.writeBlobToStream(OS); 1533 writeArrayData(OS, makeArrayRef(SHeaders)); 1534 return true; 1535 } 1536 1537 namespace llvm { 1538 namespace yaml { 1539 1540 bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH) { 1541 bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); 1542 bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); 1543 if (Is64Bit) { 1544 if (IsLE) 1545 return ELFState<object::ELF64LE>::writeELF(Out, Doc, EH); 1546 return ELFState<object::ELF64BE>::writeELF(Out, Doc, EH); 1547 } 1548 if (IsLE) 1549 return ELFState<object::ELF32LE>::writeELF(Out, Doc, EH); 1550 return ELFState<object::ELF32BE>::writeELF(Out, Doc, EH); 1551 } 1552 1553 } // namespace yaml 1554 } // namespace llvm 1555