1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Object/IRSymtab.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ObjectUtils.h" 19 #include "llvm/IR/Comdat.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/GlobalAlias.h" 22 #include "llvm/IR/GlobalObject.h" 23 #include "llvm/IR/Mangler.h" 24 #include "llvm/IR/Metadata.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Bitcode/BitcodeReader.h" 27 #include "llvm/MC/StringTableBuilder.h" 28 #include "llvm/Object/IRObjectFile.h" 29 #include "llvm/Object/ModuleSymbolTable.h" 30 #include "llvm/Object/SymbolicFile.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Error.h" 34 #include "llvm/Support/StringSaver.h" 35 #include "llvm/Support/VCSRevision.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cassert> 38 #include <string> 39 #include <utility> 40 #include <vector> 41 42 using namespace llvm; 43 using namespace irsymtab; 44 45 namespace { 46 47 const char *getExpectedProducerName() { 48 static char DefaultName[] = LLVM_VERSION_STRING 49 #ifdef LLVM_REVISION 50 " " LLVM_REVISION 51 #endif 52 ; 53 // Allows for testing of the irsymtab writer and upgrade mechanism. This 54 // environment variable should not be set by users. 55 if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER")) 56 return OverrideName; 57 return DefaultName; 58 } 59 60 const char *kExpectedProducerName = getExpectedProducerName(); 61 62 /// Stores the temporary state that is required to build an IR symbol table. 63 struct Builder { 64 SmallVector<char, 0> &Symtab; 65 StringTableBuilder &StrtabBuilder; 66 StringSaver Saver; 67 68 // This ctor initializes a StringSaver using the passed in BumpPtrAllocator. 69 // The StringTableBuilder does not create a copy of any strings added to it, 70 // so this provides somewhere to store any strings that we create. 71 Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder, 72 BumpPtrAllocator &Alloc) 73 : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {} 74 75 DenseMap<const Comdat *, int> ComdatMap; 76 Mangler Mang; 77 Triple TT; 78 79 std::vector<storage::Comdat> Comdats; 80 std::vector<storage::Module> Mods; 81 std::vector<storage::Symbol> Syms; 82 std::vector<storage::Uncommon> Uncommons; 83 84 std::string COFFLinkerOpts; 85 raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts}; 86 87 void setStr(storage::Str &S, StringRef Value) { 88 S.Offset = StrtabBuilder.add(Value); 89 S.Size = Value.size(); 90 } 91 92 template <typename T> 93 void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) { 94 R.Offset = Symtab.size(); 95 R.Size = Objs.size(); 96 Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()), 97 reinterpret_cast<const char *>(Objs.data() + Objs.size())); 98 } 99 100 Expected<int> getComdatIndex(const Comdat *C, const Module *M); 101 102 Error addModule(Module *M); 103 Error addSymbol(const ModuleSymbolTable &Msymtab, 104 const SmallPtrSet<GlobalValue *, 8> &Used, 105 ModuleSymbolTable::Symbol Sym); 106 107 Error build(ArrayRef<Module *> Mods); 108 }; 109 110 Error Builder::addModule(Module *M) { 111 if (M->getDataLayoutStr().empty()) 112 return make_error<StringError>("input module has no datalayout", 113 inconvertibleErrorCode()); 114 115 SmallPtrSet<GlobalValue *, 8> Used; 116 collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false); 117 118 ModuleSymbolTable Msymtab; 119 Msymtab.addModule(M); 120 121 storage::Module Mod; 122 Mod.Begin = Syms.size(); 123 Mod.End = Syms.size() + Msymtab.symbols().size(); 124 Mod.UncBegin = Uncommons.size(); 125 Mods.push_back(Mod); 126 127 if (TT.isOSBinFormatCOFF()) { 128 if (auto E = M->materializeMetadata()) 129 return E; 130 if (NamedMDNode *LinkerOptions = 131 M->getNamedMetadata("llvm.linker.options")) { 132 for (MDNode *MDOptions : LinkerOptions->operands()) 133 for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands()) 134 COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString(); 135 } 136 } 137 138 for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols()) 139 if (Error Err = addSymbol(Msymtab, Used, Msym)) 140 return Err; 141 142 return Error::success(); 143 } 144 145 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) { 146 auto P = ComdatMap.insert(std::make_pair(C, Comdats.size())); 147 if (P.second) { 148 std::string Name; 149 if (TT.isOSBinFormatCOFF()) { 150 const GlobalValue *GV = M->getNamedValue(C->getName()); 151 if (!GV) 152 return make_error<StringError>("Could not find leader", 153 inconvertibleErrorCode()); 154 // Internal leaders do not affect symbol resolution, therefore they do not 155 // appear in the symbol table. 156 if (GV->hasLocalLinkage()) { 157 P.first->second = -1; 158 return -1; 159 } 160 llvm::raw_string_ostream OS(Name); 161 Mang.getNameWithPrefix(OS, GV, false); 162 } else { 163 Name = C->getName(); 164 } 165 166 storage::Comdat Comdat; 167 setStr(Comdat.Name, Saver.save(Name)); 168 Comdats.push_back(Comdat); 169 } 170 171 return P.first->second; 172 } 173 174 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab, 175 const SmallPtrSet<GlobalValue *, 8> &Used, 176 ModuleSymbolTable::Symbol Msym) { 177 Syms.emplace_back(); 178 storage::Symbol &Sym = Syms.back(); 179 Sym = {}; 180 181 storage::Uncommon *Unc = nullptr; 182 auto Uncommon = [&]() -> storage::Uncommon & { 183 if (Unc) 184 return *Unc; 185 Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon; 186 Uncommons.emplace_back(); 187 Unc = &Uncommons.back(); 188 *Unc = {}; 189 setStr(Unc->COFFWeakExternFallbackName, ""); 190 setStr(Unc->SectionName, ""); 191 return *Unc; 192 }; 193 194 SmallString<64> Name; 195 { 196 raw_svector_ostream OS(Name); 197 Msymtab.printSymbolName(OS, Msym); 198 } 199 setStr(Sym.Name, Saver.save(StringRef(Name))); 200 201 auto Flags = Msymtab.getSymbolFlags(Msym); 202 if (Flags & object::BasicSymbolRef::SF_Undefined) 203 Sym.Flags |= 1 << storage::Symbol::FB_undefined; 204 if (Flags & object::BasicSymbolRef::SF_Weak) 205 Sym.Flags |= 1 << storage::Symbol::FB_weak; 206 if (Flags & object::BasicSymbolRef::SF_Common) 207 Sym.Flags |= 1 << storage::Symbol::FB_common; 208 if (Flags & object::BasicSymbolRef::SF_Indirect) 209 Sym.Flags |= 1 << storage::Symbol::FB_indirect; 210 if (Flags & object::BasicSymbolRef::SF_Global) 211 Sym.Flags |= 1 << storage::Symbol::FB_global; 212 if (Flags & object::BasicSymbolRef::SF_FormatSpecific) 213 Sym.Flags |= 1 << storage::Symbol::FB_format_specific; 214 if (Flags & object::BasicSymbolRef::SF_Executable) 215 Sym.Flags |= 1 << storage::Symbol::FB_executable; 216 217 Sym.ComdatIndex = -1; 218 auto *GV = Msym.dyn_cast<GlobalValue *>(); 219 if (!GV) { 220 // Undefined module asm symbols act as GC roots and are implicitly used. 221 if (Flags & object::BasicSymbolRef::SF_Undefined) 222 Sym.Flags |= 1 << storage::Symbol::FB_used; 223 setStr(Sym.IRName, ""); 224 return Error::success(); 225 } 226 227 setStr(Sym.IRName, GV->getName()); 228 229 if (Used.count(GV)) 230 Sym.Flags |= 1 << storage::Symbol::FB_used; 231 if (GV->isThreadLocal()) 232 Sym.Flags |= 1 << storage::Symbol::FB_tls; 233 if (GV->hasGlobalUnnamedAddr()) 234 Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr; 235 if (canBeOmittedFromSymbolTable(GV)) 236 Sym.Flags |= 1 << storage::Symbol::FB_may_omit; 237 Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility; 238 239 if (Flags & object::BasicSymbolRef::SF_Common) { 240 Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize( 241 GV->getType()->getElementType()); 242 Uncommon().CommonAlign = GV->getAlignment(); 243 } 244 245 const GlobalObject *Base = GV->getBaseObject(); 246 if (!Base) 247 return make_error<StringError>("Unable to determine comdat of alias!", 248 inconvertibleErrorCode()); 249 if (const Comdat *C = Base->getComdat()) { 250 Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent()); 251 if (!ComdatIndexOrErr) 252 return ComdatIndexOrErr.takeError(); 253 Sym.ComdatIndex = *ComdatIndexOrErr; 254 } 255 256 if (TT.isOSBinFormatCOFF()) { 257 emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang); 258 259 if ((Flags & object::BasicSymbolRef::SF_Weak) && 260 (Flags & object::BasicSymbolRef::SF_Indirect)) { 261 auto *Fallback = dyn_cast<GlobalValue>( 262 cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts()); 263 if (!Fallback) 264 return make_error<StringError>("Invalid weak external", 265 inconvertibleErrorCode()); 266 std::string FallbackName; 267 raw_string_ostream OS(FallbackName); 268 Msymtab.printSymbolName(OS, Fallback); 269 OS.flush(); 270 setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName)); 271 } 272 } 273 274 if (!Base->getSection().empty()) 275 setStr(Uncommon().SectionName, Saver.save(Base->getSection())); 276 277 return Error::success(); 278 } 279 280 Error Builder::build(ArrayRef<Module *> IRMods) { 281 storage::Header Hdr; 282 283 assert(!IRMods.empty()); 284 Hdr.Version = storage::Header::kCurrentVersion; 285 setStr(Hdr.Producer, kExpectedProducerName); 286 setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple()); 287 setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName()); 288 TT = Triple(IRMods[0]->getTargetTriple()); 289 290 for (auto *M : IRMods) 291 if (Error Err = addModule(M)) 292 return Err; 293 294 COFFLinkerOptsOS.flush(); 295 setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts)); 296 297 // We are about to fill in the header's range fields, so reserve space for it 298 // and copy it in afterwards. 299 Symtab.resize(sizeof(storage::Header)); 300 writeRange(Hdr.Modules, Mods); 301 writeRange(Hdr.Comdats, Comdats); 302 writeRange(Hdr.Symbols, Syms); 303 writeRange(Hdr.Uncommons, Uncommons); 304 305 *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr; 306 return Error::success(); 307 } 308 309 } // end anonymous namespace 310 311 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab, 312 StringTableBuilder &StrtabBuilder, 313 BumpPtrAllocator &Alloc) { 314 return Builder(Symtab, StrtabBuilder, Alloc).build(Mods); 315 } 316 317 // Upgrade a vector of bitcode modules created by an old version of LLVM by 318 // creating an irsymtab for them in the current format. 319 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) { 320 FileContents FC; 321 322 LLVMContext Ctx; 323 std::vector<Module *> Mods; 324 std::vector<std::unique_ptr<Module>> OwnedMods; 325 for (auto BM : BMs) { 326 Expected<std::unique_ptr<Module>> MOrErr = 327 BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true, 328 /*IsImporting*/ false); 329 if (!MOrErr) 330 return MOrErr.takeError(); 331 332 Mods.push_back(MOrErr->get()); 333 OwnedMods.push_back(std::move(*MOrErr)); 334 } 335 336 StringTableBuilder StrtabBuilder(StringTableBuilder::RAW); 337 BumpPtrAllocator Alloc; 338 if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc)) 339 return std::move(E); 340 341 StrtabBuilder.finalizeInOrder(); 342 FC.Strtab.resize(StrtabBuilder.getSize()); 343 StrtabBuilder.write((uint8_t *)FC.Strtab.data()); 344 345 FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()}, 346 {FC.Strtab.data(), FC.Strtab.size()}}; 347 return std::move(FC); 348 } 349 350 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) { 351 if (BFC.Mods.empty()) 352 return make_error<StringError>("Bitcode file does not contain any modules", 353 inconvertibleErrorCode()); 354 355 if (BFC.StrtabForSymtab.empty() || 356 BFC.Symtab.size() < sizeof(storage::Header)) 357 return upgrade(BFC.Mods); 358 359 // We cannot use the regular reader to read the version and producer, because 360 // it will expect the header to be in the current format. The only thing we 361 // can rely on is that the version and producer will be present as the first 362 // struct elements. 363 auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data()); 364 unsigned Version = Hdr->Version; 365 StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab); 366 if (Version != storage::Header::kCurrentVersion || 367 Producer != kExpectedProducerName) 368 return upgrade(BFC.Mods); 369 370 FileContents FC; 371 FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()}, 372 {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}}; 373 374 // Finally, make sure that the number of modules in the symbol table matches 375 // the number of modules in the bitcode file. If they differ, it may mean that 376 // the bitcode file was created by binary concatenation, so we need to create 377 // a new symbol table from scratch. 378 if (FC.TheReader.getNumModules() != BFC.Mods.size()) 379 return upgrade(std::move(BFC.Mods)); 380 381 return std::move(FC); 382 } 383