1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Object/IRSymtab.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/IR/Comdat.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalObject.h" 22 #include "llvm/IR/Mangler.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/MC/StringTableBuilder.h" 27 #include "llvm/Object/IRObjectFile.h" 28 #include "llvm/Object/ModuleSymbolTable.h" 29 #include "llvm/Object/SymbolicFile.h" 30 #include "llvm/Support/Allocator.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/StringSaver.h" 34 #include "llvm/Support/VCSRevision.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <string> 38 #include <utility> 39 #include <vector> 40 41 using namespace llvm; 42 using namespace irsymtab; 43 44 namespace { 45 46 const char *getExpectedProducerName() { 47 static char DefaultName[] = LLVM_VERSION_STRING 48 #ifdef LLVM_REVISION 49 " " LLVM_REVISION 50 #endif 51 ; 52 // Allows for testing of the irsymtab writer and upgrade mechanism. This 53 // environment variable should not be set by users. 54 if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER")) 55 return OverrideName; 56 return DefaultName; 57 } 58 59 const char *kExpectedProducerName = getExpectedProducerName(); 60 61 /// Stores the temporary state that is required to build an IR symbol table. 62 struct Builder { 63 SmallVector<char, 0> &Symtab; 64 StringTableBuilder &StrtabBuilder; 65 StringSaver Saver; 66 67 // This ctor initializes a StringSaver using the passed in BumpPtrAllocator. 68 // The StringTableBuilder does not create a copy of any strings added to it, 69 // so this provides somewhere to store any strings that we create. 70 Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder, 71 BumpPtrAllocator &Alloc) 72 : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {} 73 74 DenseMap<const Comdat *, int> ComdatMap; 75 Mangler Mang; 76 Triple TT; 77 78 std::vector<storage::Comdat> Comdats; 79 std::vector<storage::Module> Mods; 80 std::vector<storage::Symbol> Syms; 81 std::vector<storage::Uncommon> Uncommons; 82 83 std::string COFFLinkerOpts; 84 raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts}; 85 86 void setStr(storage::Str &S, StringRef Value) { 87 S.Offset = StrtabBuilder.add(Value); 88 S.Size = Value.size(); 89 } 90 91 template <typename T> 92 void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) { 93 R.Offset = Symtab.size(); 94 R.Size = Objs.size(); 95 Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()), 96 reinterpret_cast<const char *>(Objs.data() + Objs.size())); 97 } 98 99 Expected<int> getComdatIndex(const Comdat *C, const Module *M); 100 101 Error addModule(Module *M); 102 Error addSymbol(const ModuleSymbolTable &Msymtab, 103 const SmallPtrSet<GlobalValue *, 8> &Used, 104 ModuleSymbolTable::Symbol Sym); 105 106 Error build(ArrayRef<Module *> Mods); 107 }; 108 109 Error Builder::addModule(Module *M) { 110 if (M->getDataLayoutStr().empty()) 111 return make_error<StringError>("input module has no datalayout", 112 inconvertibleErrorCode()); 113 114 SmallPtrSet<GlobalValue *, 8> Used; 115 collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false); 116 117 ModuleSymbolTable Msymtab; 118 Msymtab.addModule(M); 119 120 storage::Module Mod; 121 Mod.Begin = Syms.size(); 122 Mod.End = Syms.size() + Msymtab.symbols().size(); 123 Mod.UncBegin = Uncommons.size(); 124 Mods.push_back(Mod); 125 126 if (TT.isOSBinFormatCOFF()) { 127 if (auto E = M->materializeMetadata()) 128 return E; 129 if (NamedMDNode *LinkerOptions = 130 M->getNamedMetadata("llvm.linker.options")) { 131 for (MDNode *MDOptions : LinkerOptions->operands()) 132 for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands()) 133 COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString(); 134 } 135 } 136 137 for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols()) 138 if (Error Err = addSymbol(Msymtab, Used, Msym)) 139 return Err; 140 141 return Error::success(); 142 } 143 144 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) { 145 auto P = ComdatMap.insert(std::make_pair(C, Comdats.size())); 146 if (P.second) { 147 std::string Name; 148 if (TT.isOSBinFormatCOFF()) { 149 const GlobalValue *GV = M->getNamedValue(C->getName()); 150 if (!GV) 151 return make_error<StringError>("Could not find leader", 152 inconvertibleErrorCode()); 153 // Internal leaders do not affect symbol resolution, therefore they do not 154 // appear in the symbol table. 155 if (GV->hasLocalLinkage()) { 156 P.first->second = -1; 157 return -1; 158 } 159 llvm::raw_string_ostream OS(Name); 160 Mang.getNameWithPrefix(OS, GV, false); 161 } else { 162 Name = C->getName(); 163 } 164 165 storage::Comdat Comdat; 166 setStr(Comdat.Name, Saver.save(Name)); 167 Comdats.push_back(Comdat); 168 } 169 170 return P.first->second; 171 } 172 173 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab, 174 const SmallPtrSet<GlobalValue *, 8> &Used, 175 ModuleSymbolTable::Symbol Msym) { 176 Syms.emplace_back(); 177 storage::Symbol &Sym = Syms.back(); 178 Sym = {}; 179 180 storage::Uncommon *Unc = nullptr; 181 auto Uncommon = [&]() -> storage::Uncommon & { 182 if (Unc) 183 return *Unc; 184 Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon; 185 Uncommons.emplace_back(); 186 Unc = &Uncommons.back(); 187 *Unc = {}; 188 setStr(Unc->COFFWeakExternFallbackName, ""); 189 setStr(Unc->SectionName, ""); 190 return *Unc; 191 }; 192 193 SmallString<64> Name; 194 { 195 raw_svector_ostream OS(Name); 196 Msymtab.printSymbolName(OS, Msym); 197 } 198 setStr(Sym.Name, Saver.save(StringRef(Name))); 199 200 auto Flags = Msymtab.getSymbolFlags(Msym); 201 if (Flags & object::BasicSymbolRef::SF_Undefined) 202 Sym.Flags |= 1 << storage::Symbol::FB_undefined; 203 if (Flags & object::BasicSymbolRef::SF_Weak) 204 Sym.Flags |= 1 << storage::Symbol::FB_weak; 205 if (Flags & object::BasicSymbolRef::SF_Common) 206 Sym.Flags |= 1 << storage::Symbol::FB_common; 207 if (Flags & object::BasicSymbolRef::SF_Indirect) 208 Sym.Flags |= 1 << storage::Symbol::FB_indirect; 209 if (Flags & object::BasicSymbolRef::SF_Global) 210 Sym.Flags |= 1 << storage::Symbol::FB_global; 211 if (Flags & object::BasicSymbolRef::SF_FormatSpecific) 212 Sym.Flags |= 1 << storage::Symbol::FB_format_specific; 213 if (Flags & object::BasicSymbolRef::SF_Executable) 214 Sym.Flags |= 1 << storage::Symbol::FB_executable; 215 216 Sym.ComdatIndex = -1; 217 auto *GV = Msym.dyn_cast<GlobalValue *>(); 218 if (!GV) { 219 // Undefined module asm symbols act as GC roots and are implicitly used. 220 if (Flags & object::BasicSymbolRef::SF_Undefined) 221 Sym.Flags |= 1 << storage::Symbol::FB_used; 222 setStr(Sym.IRName, ""); 223 return Error::success(); 224 } 225 226 setStr(Sym.IRName, GV->getName()); 227 228 if (Used.count(GV)) 229 Sym.Flags |= 1 << storage::Symbol::FB_used; 230 if (GV->isThreadLocal()) 231 Sym.Flags |= 1 << storage::Symbol::FB_tls; 232 if (GV->hasGlobalUnnamedAddr()) 233 Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr; 234 if (GV->canBeOmittedFromSymbolTable()) 235 Sym.Flags |= 1 << storage::Symbol::FB_may_omit; 236 Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility; 237 238 if (Flags & object::BasicSymbolRef::SF_Common) { 239 Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize( 240 GV->getType()->getElementType()); 241 Uncommon().CommonAlign = GV->getAlignment(); 242 } 243 244 const GlobalObject *Base = GV->getBaseObject(); 245 if (!Base) 246 return make_error<StringError>("Unable to determine comdat of alias!", 247 inconvertibleErrorCode()); 248 if (const Comdat *C = Base->getComdat()) { 249 Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent()); 250 if (!ComdatIndexOrErr) 251 return ComdatIndexOrErr.takeError(); 252 Sym.ComdatIndex = *ComdatIndexOrErr; 253 } 254 255 if (TT.isOSBinFormatCOFF()) { 256 emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang); 257 258 if ((Flags & object::BasicSymbolRef::SF_Weak) && 259 (Flags & object::BasicSymbolRef::SF_Indirect)) { 260 auto *Fallback = dyn_cast<GlobalValue>( 261 cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts()); 262 if (!Fallback) 263 return make_error<StringError>("Invalid weak external", 264 inconvertibleErrorCode()); 265 std::string FallbackName; 266 raw_string_ostream OS(FallbackName); 267 Msymtab.printSymbolName(OS, Fallback); 268 OS.flush(); 269 setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName)); 270 } 271 } 272 273 if (!Base->getSection().empty()) 274 setStr(Uncommon().SectionName, Saver.save(Base->getSection())); 275 276 return Error::success(); 277 } 278 279 Error Builder::build(ArrayRef<Module *> IRMods) { 280 storage::Header Hdr; 281 282 assert(!IRMods.empty()); 283 Hdr.Version = storage::Header::kCurrentVersion; 284 setStr(Hdr.Producer, kExpectedProducerName); 285 setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple()); 286 setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName()); 287 TT = Triple(IRMods[0]->getTargetTriple()); 288 289 for (auto *M : IRMods) 290 if (Error Err = addModule(M)) 291 return Err; 292 293 COFFLinkerOptsOS.flush(); 294 setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts)); 295 296 // We are about to fill in the header's range fields, so reserve space for it 297 // and copy it in afterwards. 298 Symtab.resize(sizeof(storage::Header)); 299 writeRange(Hdr.Modules, Mods); 300 writeRange(Hdr.Comdats, Comdats); 301 writeRange(Hdr.Symbols, Syms); 302 writeRange(Hdr.Uncommons, Uncommons); 303 304 *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr; 305 return Error::success(); 306 } 307 308 } // end anonymous namespace 309 310 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab, 311 StringTableBuilder &StrtabBuilder, 312 BumpPtrAllocator &Alloc) { 313 return Builder(Symtab, StrtabBuilder, Alloc).build(Mods); 314 } 315 316 // Upgrade a vector of bitcode modules created by an old version of LLVM by 317 // creating an irsymtab for them in the current format. 318 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) { 319 FileContents FC; 320 321 LLVMContext Ctx; 322 std::vector<Module *> Mods; 323 std::vector<std::unique_ptr<Module>> OwnedMods; 324 for (auto BM : BMs) { 325 Expected<std::unique_ptr<Module>> MOrErr = 326 BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true, 327 /*IsImporting*/ false); 328 if (!MOrErr) 329 return MOrErr.takeError(); 330 331 Mods.push_back(MOrErr->get()); 332 OwnedMods.push_back(std::move(*MOrErr)); 333 } 334 335 StringTableBuilder StrtabBuilder(StringTableBuilder::RAW); 336 BumpPtrAllocator Alloc; 337 if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc)) 338 return std::move(E); 339 340 StrtabBuilder.finalizeInOrder(); 341 FC.Strtab.resize(StrtabBuilder.getSize()); 342 StrtabBuilder.write((uint8_t *)FC.Strtab.data()); 343 344 FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()}, 345 {FC.Strtab.data(), FC.Strtab.size()}}; 346 return std::move(FC); 347 } 348 349 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) { 350 if (BFC.Mods.empty()) 351 return make_error<StringError>("Bitcode file does not contain any modules", 352 inconvertibleErrorCode()); 353 354 if (BFC.StrtabForSymtab.empty() || 355 BFC.Symtab.size() < sizeof(storage::Header)) 356 return upgrade(BFC.Mods); 357 358 // We cannot use the regular reader to read the version and producer, because 359 // it will expect the header to be in the current format. The only thing we 360 // can rely on is that the version and producer will be present as the first 361 // struct elements. 362 auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data()); 363 unsigned Version = Hdr->Version; 364 StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab); 365 if (Version != storage::Header::kCurrentVersion || 366 Producer != kExpectedProducerName) 367 return upgrade(BFC.Mods); 368 369 FileContents FC; 370 FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()}, 371 {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}}; 372 373 // Finally, make sure that the number of modules in the symbol table matches 374 // the number of modules in the bitcode file. If they differ, it may mean that 375 // the bitcode file was created by binary concatenation, so we need to create 376 // a new symbol table from scratch. 377 if (FC.TheReader.getNumModules() != BFC.Mods.size()) 378 return upgrade(std::move(BFC.Mods)); 379 380 return std::move(FC); 381 } 382